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Abstract
Systems engineering, in particular in the automotive domain,
needs to cope with the massively increasing numbers of re-
quirements that arise during the development process. The
language in which requirements are written is mostly infor-
mal and highly individual. This hinders automated process-
ing of requirements as well as the linking of requirements to
models. Introducing formal requirement notations in exist-
ing projects leads to the challenge of translating masses of
requirements and the necessity of training for requirements
engineers. In this paper, we derive domain-specific language
constructs helping us to avoid ambiguities in requirements
and increase the level of formality. The main contribution is
the adoption and evaluation of few-shot learning with large
pretrained language models for the automated translation
of informal requirements to structured languages such as a
requirement DSL.

CCS Concepts: • Software and its engineering → Re-
quirements analysis; • Computing methodologies →
Machine translation.

Keywords: model-driven requirements engineering, few-
shot learning, natural language processing
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1 Introduction
The engineering of complex Cyber-Physical Systems (CPSs)
such as Advanced Driver Assistance Systems (ADASs) is a
highly effortful task that faces many challenges [18, 22, 30].
One of them is the rising number of requirements that ad-
dress stakeholders from heterogeneous domains. In systems
engineering, and in particular the automotive domain, re-
quirements are captured as documents that contain text
mainly in natural language [23] often with additional in-
formation provided through pictures or Computer-Aided
Design (CAD) models. Experts interpret these textual re-
quirements to enter the design phase, and most often derive
details of the implementation directly from them [14]. The
ambiguity of natural language, in particular, when inter-
preted by experts from different backgrounds, as well as
the increasing number of requirements may result in de-
creasing product quality, system failures which are currently
detected at late development stages [11] and hinders the im-
plementation of functional safety standards such ISO 26262.
Furthermore, the document-based approach to requirements
engineering prevents agile development where automated
analyses and syntheses should enable early error detection
and fast feedback for the developers.
What is needed are tools to process requirements sys-

tematically during all phases of the development cycle. An
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approach to achieve this is Model-Driven Engineering (MDE)
[14], which utilizes models as primary development artifacts.
These models serve as documentation and communication
basis for engineers, but also as input for analyses and syn-
theses, such as verification [19], test case [11], or code gener-
ation [10]. For instance, MDE can be applied to facilitate the
design of Artificial Intelligence (AI)-based systems [2, 20, 21].
Approaches to introduce MDE in the automotive require-
ments engineering exist [24], but introducing MDE comes
with initial costs for training the domain experts in modeling
and translating many documents to models [7]. An advan-
tage of using Domain Specific Languages (DSLs) rather than
general purpose modeling languages such as the Unified
Modeling Language (UML) is that their syntax and seman-
tics [15] can be designed to be intuitive for the model users.
As requirements are captured in natural language, we assume
that a textual DSL that offers sentence structures and word-
ing that is close to the current formulation of requirements
increases intuitiveness of both usage and understanding of
models in this DSL significantly. However, in addition to the
DSL development costs and the DSL training, once the DSL is
developed, the translation of old, unstructured requirements
to models in the DSL can be a tremendous effort due to the
high number of requirements, requiring time and modeling
know-how from the translating developer.

In this paper, we analyze an open source set of automotive
requirements for ADAS and Adaptive Light System (ALS) to
understand where formulation inaccuracies occur and how
targeted DSL constructs can help eliminate these inaccura-
cies and increase the level of formality and consistency in
these requirements. The main contribution of this paper
is the application and evaluation of few-shot learning
of large neural natural language models for the trans-
lation of given unstructured requirements to sentences
incorporating the new formal DSL constructs.
Such translation models can be used 1) during the intro-

duction phase of a DSL to automatically translate existing
or legacy natural language requirements into the new DSL
syntax and 2) to correct natural language inputs in a smart
editor when a requirement engineer writes a new require-
ment as natural text. With this automation supported by the
fact that few-shot learning requires only a handful of trans-
lation examples to learn a given translation task our aim
is to facilitate the introduction of highly specialized
requirement DSLs, e.g. targeting a single department
of a company using specific wording or even a single
project. Further technical details and examples are given in
the accompanying technical report [4].

2 Preliminaries
Our approach for text-to-DSL translation of requirements re-
lies heavily on large transformer-based neural language mod-
els [31]. For the automatic translation from natural language

requirements to the DSL, we utilize a derivative of Genera-
tive Pre-trained Transformer (GPT) [28], which is tailored
towards text generation. GPT is a transformer-based decoder-
only language model that employs a semi-supervised learn-
ing approach [28]. The authors showed that generative un-
supervised pretraining on unlabeled data, where, given a se-
quence of words, the network is supposed to learn to predict
the next word with the highest likelihood, and subsequent
supervised fine-tuning of the pretrained parameters for a spe-
cific downstream task outperformed discriminatively trained
models. GPT language models have evolved over the last few
years and various variants exist.
In [6], the authors show the few-shot learning capabil-

ities of GPT-3. In few-shot learning, the model is given a
support set consisting of a very small number of training
examples demonstrating how to solve a new task as part of
the model’s input. No weight updates are necessary, i.e. no
classical training is performed. The support set is input into
the model as part of the query. Based on this context, the
language model can then solve the new task for a new input.
Few-shot learning enables targeted training for very specific
tasks, making it particularly interesting for requirements
engineering, a discipline heavily relying on natural language
and where training data is often scarce.

For the automatic translation of natural language require-
ments to a model in the DSL we mainly rely on GPT-J-
6B [32, 33], an open-source language model based on the
6.7B GPT-3 [6] network and its hyperparameters. According
to the authors, its performance is almost on par with the
6.7B GPT-3 network and it is the best-performing publicly
available transformer language model in terms of zero-shot
performance on various down-streaming tasks1.

The method presented in this paper is evaluated on a pub-
licly available dataset published by Daimler AG, fostering re-
producibility [5]. The dataset contains 120 natural language
requirements for two typical automotive systems, namely
ALS and ADAS.

The requirements of the ALS describe a set of system func-
tions: The functionality that causes the vehicle’s direction
indicators to flash in response to the steering column lever
and hazard warning flasher switch. A function to lower the
beams depending on the rotary light switch position and the
vehicle setting for daytime running light. An adaptive high
beam to control the high beam headlamp depending on the
high beam switch and the detection of oncoming vehicles.

For the ADAS system, the dataset contains requirements
concerning the main components for adaptive cruise control
which maintains the distance to the vehicle in front and a
speed set either manually by the driver or via traffic sign
detection, provides a distance warning and an emergency
brake assistant which reacts to stationary obstacles and to
moving obstacles.

1https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/
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3 Related Work
NoRBERT [16] is a fine-tuned version of BERT [9] for deep
learning-based requirements classification. It was trained
on the PROMISE NFR dataset [8]. An approach for clus-
tering natural language requirements is presented in [17].
The approach applies clustering to natural language descrip-
tions with the idea of developing a DSL in mind. Apart from
requirement classification, machine-learning and Natural
Language Processing (NLP) can be used for prioritizing re-
quirements [26]. These approaches however are not tailored
for reducing the initial modeling efforts necessary for intro-
ducing Model-Driven Requirements Engineering (MDRE).
Approaches focusing on few-shot learning in require-

ments engineering exist, as well. One of these approaches
uses transformer models for a named entity-recognition
task [25]. Another related approach is a preliminary study
on requirement classification using zero-shot learning [1].
The PROMISE NFR dataset is used with pre-trained Trans-
former models such as BERT and RoBERTa. Since it is in a
preliminary status, only a reduced part of the dataset is used.
Apart from requirement classification, few-shot learning

on requirements is also applicable for requirement elicitation
as described in [29]. In contrast to other approaches in the
area of few-shot learning in requirements engineering, the
approach does not take already existing requirements as an
input, but chat messages from which requirements for new
hidden features are extracted.

4 Example DSL for Structured
Requirements

The aim of this section is to design an exemplary require-
ments DSL increasing the degree of formality of requirement
documents enabling automated verification and consistency
checks. Then, we employ few-shot learning capabilities of
large neural language models in order to transform existing
requirements into the new syntax or to support the formula-
tion of new requirements in an editor. In this work we focus
on the automotive domain, and an existing set of ADAS and
ALS requirements from [5].

We derived the following non-exhaustive set of require-
ments on DSLs that facilitate introducing MDRE in the au-
tomotive domain by reducing the training and translation
efforts. R1: Since the modelers will not necessarily have
a computer-science background, the DSL’s syntax shall be
based on natural language. R2: To make the language as in-
tuitive as possible for its users and to enable the application
of few-shot learning to implement an automatic translation
from natural language requirements to models, the DSL’s
syntax shall be as close to the phrasing of requirements in
natural language used by the modelers as possible. R3: In
the DSL, requirements shall be formulated consistently and
with a precise meaning understood by relevant stakeholders
enabling automatic interpretation.

To engineer a DSL that fulfills the requirements R1-R3,
the DSL designer must analyze and understand how the
requirements are currently phrased and which meanings are
implied by certain formulations.

The DSL is to be used in a natural language domain (cf. R1)
and must ensure an intuitive readability for the requirements
engineer as well as the modeler who is implementing the
requirements at a later stage in the development process,
cf. R3. The developed DSL follows an open-world assump-
tion [12, 13], i.e., whatever is not restricted by the model
is allowed. Currently, the DSL focuses on isolated require-
ments written in one sentence. The reason for this is that
we are mainly interested in concrete syntax and features
such as unambiguity. Complex semantic connections and
cross-references will not be discussed here.

A manual analysis of the requirements from [5] reveals a
set of ambiguous or unstructured formulations and incon-
sistencies which might lead to misinterpretations and hence
need to be tackled by the DSL approach. The following three
ambiguity types are a non-exhaustive selection which is
sufficient as a basis for our few-shot learning experiments.

Ambiguity 1: If-Then Constructs. The If-Then style is
an often reoccurring pattern in requirements documents and
an often occurring pattern. It reflects the idea that upon the
occurrence of a trigger event something must happen. In
standard English there are lots of variants how to express
this, making it difficult for requirements engineers to stick
to a consistent scheme, to search for such requirements, and
to analyze them automatically. To tackle this difficulty, the
first construct we introduce is the If-Then pattern. It not only
creates clarity for the different stakeholders, cf. R3, but also
makes further processing in trigger action patterns much
easier [3]. Therefore, the DSL introduces the two keywords
IF: and THEN:. For this purpose, the individual requirements
are divided into two parts, a trigger part beginning with the
keyword IF: and an action part starting with the keyword
THEN:, i.e. a parsing rule is given as if-then-req = ’IF:’
trigger ’THEN:’ action. For the sake of simplicity we
assume that the non-terminals trigger and action can be
arbitrary strings.

This way we achieve a partial formalization of the original
requirement. The trigger and the action are now clearly
separated and the requirement can be identified as an If-
Then requirement easily.

Ambiguity 2: Modal Verbs. The modal verbs (must,
can, should, etc.) are important for the precise inter-
pretation of requirements [27]. Moreover, in safety-critical
systems such as vehicles, there is an important distinction
between the available modal verbs. For instance, the modal
verb must indicates a legal regulation and non-conformity
can lead to legal consequences.

Our analysis shows however that the model verb is some-
times skipped. In such cases it might be not clear whether
the given sentence is a requirement or a description of an

262



SLE ’22, December 06–07, 2022, Auckland, New Zealand Bertram, Boß, Kusmenko et al.

existing system. To enforce the usage of modal verbs we
therefore introduce the dedicated keyword MUST in the
DSL. In cases of missing modal verbs the keyword MUST
needs to be included at the correct position. If a wrong modal
verb such as “can” or “could” is used, it needs to be exchange
by MUST thereby preventing the usage of weak words [27].
Requirements written without a modal verb should also be
supplemented appropriately.
Ambiguity 3: Expressions. In requirements, we often

need to quantify and compare things. Again, natural lan-
guage offers many ways to describe comparisons, making it
difficult to grasp the information of requirements automat-
ically. For this reason, we introduce a third DSL construct
for our DSL, namely logical formulae. Thereby, we are going
to allow both: words (to keep the language close to natu-
ral formulations) and mathematical expressions in the DSL.
For instance, we use the operators >= and <= for greater
equal and less or equal. As an alternative we introduce the
keywords “GREATER”, “LESS”, “EQUAL”, “LESS EQUAL”, and
“GREATER EQUAL”. Such DSL constructs standardize the way
how comparisons are formulated in a requirement. This fa-
cilitates automated consistency analysis since the operators
and their semantics are clearly defined and the variables and
constants can be extracted easily from the sentence. Now, if
the same variable is used in another requirement, we can 1)
link these requirements as treating the same context, e.g. to
enable semantic requirement search and 2) are able to check
whether the two requirements are consistent.

The three constructs introduced above should be com-
bined when appropriate. For instance, the requirement “The
vehicle’s doors are closed automatically when speeding veloc-
ity is bigger than 10 km/h” needs to be translated to “IF:
speeding velocity is GREATER 10 km/h, THEN: the vehicle’s
doorsMUST be closed automatically.”
The DSL requirement has almost no degrees of freedom

in terms of formulation making it easy to extract the trigger
variable (speeding velocity), the subject of the action (the
vehicle’s doors), and the desired state (closed automatically).

5 Translating Requirements to DSL
To automatically translate legacy natural language require-
ments into the DSL defined in Section 4, fixing bad formu-
lations and enforcing guidelines usage and regulatory com-
pliance, we utilize GPT-based language models. Since we
need to avoid data and resource intensive finetuning (as the
necessary amounts of data might lack in project or company-
specific design and the required hardware resources might
not be accessible/too expensive), we will make use of the
few-shot capability, which has been shown to yield good
results with only a few training examples.

The number of training examples for few-shot learning a
new task is usually constrained by the context window, typi-
cally allowing 10-100 examples [6]. Sometimes the number

of examples is further constrained by the available compu-
tational resources. To exploit the available training data as
far as possible, we propose a cascaded translation process,
where we provide a dedicated few-shot model for each trans-
lation task, i.e. trigger-action, modal verbs, and expressions.
We expect this to reduce the few-shot complexity and to
yield more focused models. The dedicated models need to be
applied sequentially to incorporate all DSL constructs into a
given requirement.

For each translation step, a set of few-shot examples, also
referred to as the support set, for the respective requirements
category is selected and given to the language model as
context. Our hypothesis is that a large capacity language
model pretrained on a sufficiently large training set can be
used to solve a specific task such as a reformulation of a
given requirement into a systematic form with a very small
support set and without adapting the network’s weights.
The few-shot examples consist of input/output pairs and are
input into the network as a demonstration for the task to
be solved, followed by the actual query. The solution to the
query is then generated as the model’s output based on the
support examples from the context.
The translation model can be implemented using any

large enough pretrained language model supporting few-
shot learning. Models of higher capacity can be expected to
perform better in few-shot learned downstream tasks. Based
on promising preliminary results, we decided to concentrate
mainly on GPT-J-6B.

6 Evaluation
With the experiments conducted for the translation of re-
quirements from unstructured text to DSL our aim was to
find answers to the following research questions:

RQ1: Can state-of-the-art language models be employed
to translate natural text requirements to systematic formula-
tions based on few-shot learning?

RQ2: How many few-shot learning examples are required
to train a translation rule?
To answer RQ1, we applied few-shot learning separately

for If-Then requirements, modal verb insertion, and expres-
sions (recall that for training each rule we use a separate
instance of the language model). Input for the few-shot learn-
ing were pairs containing the unstructured input and the
desired DSL formulation. To evaluate the “trained” language
model, it had to transform an unstructured requirement that
the model was not given as example into a requirement in
the DSL. We then assessed the result of this transformation.
We propose a custom evaluation scale with six possible qual-
ity classes. Class 1: The translation is both syntactically
and semantically correct and fulfills the required formula-
tion rule. No changes required. Class 2: The translation
is semantically correct, but contains one or two syntacti-
cal inaccuracies to fully implement the desired rule. Class
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Table 1. Evaluation results for the translation experiments from natural language requirements to domain-specific syntax.

# of Training Set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 total
Translation results for If-Then structure using GPT-J6B

1 2 0 1 0 6 2 11
4 5 2 0 1 1 2 11
6 6 3 0 0 0 2 11

Translation results for modal verbs structure using GPT-J6B
1 3 0 0 0 5 0 8
4 5 0 0 0 3 0 8
6 6 0 0 0 2 0 8

Translation results for propositional logic Structure using GPT-J6B
1 (trained on key-
word: equal)

2 0 1 0 4 1 8

1 (trained on key-
word: less or equal)

0 0 4 0 4 0 8

4 1 0 1 0 3 3 8
6 2 0 3 0 2 1 8
9 3 0 0 0 3 2 8

3: Syntactically correct but fails to fully cover the semantics
of the source requirement (e.g. by missing a quantifier or
a marginal constraint). Class 4: The translation contains
one or two syntactical inaccuracies to fully implement the
desired rule and the semantics is not fully covered, i.e. a
combination of 2 and 3. Class 5: The translation has grave
syntactical errors or does not implement the desired rule. An
identity mapping would result in this label, as well (unless
the input already implements the desired rule). Class 6: The
translation is semantically wrong.

A flaw of this scale is that it is not ordinal. However, based
on the experience we gathered with it in this work, in most
cases a smaller number indicates a more satisfying result.
To answer RQ2 we conducted our evaluation with three

differently sized few-shot support sets per translation rule
consisting of one, four, and six examples each. In case of one-
shot learning, i.e., if only one example is presented in training,
for the conversion of constraints containing (in)equalities,
the result depends on the keyword used in the example. For
this reason, we tried two different one-shot trainings, i.e., for
introducing “EQUAL”, and “LESS OR EQUAL”. The require-
ments used for testing were not present in the support sets.
For instance, to one-shot train the translation of a require-
ment to the desired If-Then syntax we use the following
input and output pair:
“Input: If a defective illuminant is detected, the information
about the defective illuminant is transmitted to the instrument
cluster.
DSL: IF: defective illuminant is detected, THEN: information
about the defective illuminant is transmitted to the instrument
cluster.”

As we can see in the example, the two keywords “IF:” and
“THEN:” are included in the target sentence. Apart from that
the sentence remains almost unchanged, making it relatively
easy for themodel to learn the rule. Having seen this example,
the model is already able to apply the rule perfectly to some
examples of the test set, yielding a class 1 rating according
to the scheme given above. For instance, the requirement

“If tip-blinking was activated shortly before deactivation
of the hazard warning, this is not considered during the de-
activation of the hazard warning.” is correctly translated to
“IF: tip-blinking was activated shortly before deactivation of
the hazard warning, THEN: this is not considered during the
deactivation of the hazard warning ”.

However, some other examples are translated incompletely
or wrong, e.g. the requirement “With activated darkness
switch (only armored vehicles) the cornering light is not acti-
vated.” is translated to “IF: darkness switch is activated, THEN:
cornering light is not activated. ”
While the keywords are included at the correct position,

the model drops the information in parentheses stating that
the requirement only applies to armored vehicles. For this
reason, we consider this translation as syntactically correct,
but semantically incomplete, resulting in a class 3 rating.

The experiments reveal some drawbacks inherent to mod-
els such as GPT. The models use statistically learned se-
quences without understanding the semantics. For instance,
our model often confused less-than and greater-than inequal-
ities due to the syntactic similarities. An overview of all ex-
periment results is summarized in Table 1. As expected, in
each of the three experiments, the translation quality im-
proved with larger support sets. It is fascinating however,
how steep the learning curve is. It suggests that few-shot
learning can deal with natural language processing (NLP)
tasks in requirements engineering even when only small
training sets are available.

7 Conclusion
In this paper we have shown how neural language models
such as representatives of the GPT family can support re-
quirements engineering without the need for resource and
data intensive fine-tuning. Our most important result is that
few-shot learning of language models can be applied to trans-
late legacy requirements into a given structured DSL form
automatically. However, language models available today
still require human supervision.
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