El ? - E [HHKR23] T. Hofer, M. Hoppe, E. Kusmenko, B. Rumpe:
o MontiSim: Agent-Based Simulation for Reinforcement Learning of Autonomous Driving.
: In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC),

2023 IEEE 26th International Conference on

2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) | 979-8-3503-9946-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/ITSC57777.2023.10422118

Intelligent Transportation Systems (ITSC)
24-28 September 2023. Bilbao, Bizkaia, Spain

=]y

pp. 2634-2639, Sep. 2023.

e

MontiSim: Agent-Based Simulation for Reinforcement Learning of
Autonomous Driving*

Tristan Hofer!, Mattis Hoppe', Evgeny Kusmenko!, Bernhard Rumpe'

Abstract— Reinforcement learning is a machine learning
method particularly interesting for the autonomous driving
domain, as it enables autopilot training without the need for
large and expensive amounts of manually labeled training
data. Instead, agents are trained by evaluating the effects of
their actions and punishing or rewarding them accordingly.
In autonomous and particularly cooperative driving a core
problem is however that multiple vehicles need to be trained in
parallel while having an impact on each other’s behavior. In this
paper, we present a simulation solution providing cooperative
training capabilities out-of-the-box and compare the quality of
the resulting autopilots in an intersection scenario.

I. INTRODUCTION

Reinforcement learning is a machine learning method
which can be used to train agents such as autonomously
driving autopilot software to make decisions in their envi-
ronment. The agent, i.e. the autonomous vehicle, produces
actions to alter its own physical state and its environment,
e.g. by accelerating, braking, steering, or sending V2V
messages. Based on the resulting environmental change, the
agent is punished in the case of a deviation of the desired
behavior, e.g. a crash or a divergence from the planned
trajectory, or rewarded, if the actions led to the desired state.
The reward or punishment is a numerical score, which the
training algorithm uses to adapt the behavior of the agent.
Mostly, a pre-training is carried out in a simulator, since
conducting the necessary experiments using a real vehicle
would be not only costly, but also slow and dangerous (in
our example, we needed several thousand training episodes).
Once the network is sufficiently pre-trained, a fine-tuning can
be carried out in a real vehicle.

We are particularly interested in simulation-based re-
inforcement learning for automated cooperative driving.
Hence, a suitable training environment is required. And while
it is straight-forward to train a single vehicle in a given
environment, the situation becomes more intricate, if we have
several vehicles in a scenario, all using the same autopilot
software to be trained. Hence, the vehicles need to learn
simultaneously, each one probably starting from zero and
depending on the equally untrained behavior of its peers.
Consequently, the agents need to synchronize what they have
learned, making the training more complicated and requiring
a lot of manual implementation work by the developer. In
this paper we present a simulation toolchain for cooperative

*This work was supported by the grant SPP1835 of the German Research
Foundation (DFG).

L All authors are with the Software Engineering department of the RWTH
Aachen University, Germany.

reinforcement learning based on the MontiSim ITS simu-
lator offering functionality for basic reinforcement learning
as well as several cooperative reinforcement learning ap-
proaches out-of-the-box. In an evaluation we demonstrate the
general capability of our training environment as well as the
two competing learning approaches for cooperative driving
in an urban setting and compare the resulting autopilots.

The remainder of this paper is structured as follows. In
section II we discuss other works concerned with multi-agent
reinforcement learning. Section III introduces the EMADL
deep learning framework which we use for reinforcement
learning and MontiSim, the ITS simulator used as environ-
ment for the vehicles to be trained. In section IV we discuss
the extensions we developed for MontiSim as well as the
two cooperative learning approaches which we implemented
in our toolchain. Section V summarizes the training results of
the discussed training methods before the paper is concluded
in section VL.

II. RELATED WORK
A. TORCS

The open racing car simulator (TORCS) [1] is an open
source multi-agent car simulator. TORCS focuses on low-
level simulation of racing cars in racing scenarios. Hence,
several physical phenomenons such as realistic aerodynamics
or varying friction across different surfaces on the track.

TORCS provides a low level API that allows detailed
information from sensors on the cars that grant insight into
current state of the simulation. This data made it possible
to use the simulator as a training environment for a rein-
forcement learning agent [2]. The state is composed of a
29-dimensional vector containing the sensor values, and the
action is a 3-dimensional vector containing the basic inputs
throttle, braking and steering that are required to handle a
vehicle.

Since TORCS contains racing scenarios, the reward func-
tion intended to maximize performance within a race. Hence,
on the one hand it had high-level goals like minimizing the
lap time of the agent by finding optimal trajectories across
the track. On the other hand, however, the basic driving tasks
such as staying on the track in corners, while still maximizing
the velocity needed to be considered.

Even though TORCS works well as a training environment
within its intended domain, for the training of agents used
in everyday-life driving especially with a large number of
agents, it is not suited, due to the racing orientated nature of
its scenarios and the low-level nature of the simulation.

979-8-3503-9946-2/23/$31.00 ©2023 IEEE 2634

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 27,2024 at 13:40:25 UTC from IEEE Xplore. Restrictions apply.

B. MATSim

The Multi-Agent Transport Simulation (MATSim) [3] is
an open-source, multi agent simulation framework imple-
mented in Java. Since it’s purpose is to simulate the daily
traffic of whole cities, the simulation is high-level. The main
goal of the simulator is to find optimal traffic distribution
with respect to time and routing. This enables investigating
possible weaknesses in the street layout, and exploring new
solutions without incurring high cost in case of failure.

The people using the transportation system of the city are
modeled as agents. Every agent has an own agenda consisting
of a collection of tasks to fulfill during the simulated day.
Tasks are usually destinations to which an agent has to
travel using the transportation infrastructure. The tasks are
usually obtained from studies of that specific area, but can
be artificial as well.

Each agent chooses a plan out of its agenda at the
beginning of a simulation. The plan defines in which order
the tasks are completed, the departure time for each task, the
route taken to reach the location of each task and the vehicle
used for reaching each location. The maximal number of
plans in an agenda is fixed and agent dependent.

After every simulated day, a score for the plan taken by
each agent is calculated. The score of a plan is obtained by
applying a function to the scores of the different tasks of
the respective agent which is then used to change existing,
and create new plans for future days. The criteria which are
taken into account for each task is customizable and task
dependent. The goal of an agent is to obtain a plan with a
maximized score.

Since MATSim focuses on high-level simulation of traffic,
low level simulation is only possible to a limited extend, due
to the extensive computation power that would be required
otherwise.

III. FOUNDATIONS
A. EMADL Learning Framework

EmbeddedMontiArc Deep Learning (EMADL) is a frame-
work that allows modeling and training of deep reinforce-
ment learning pipelines. It is composed out of three different
languages which are introduced in the following.

The heart of EMADL is the textual modeling language
EmbeddedMontiArc (EMA) [4], [5] that enables modeling
architectures as a system of hierarchically organized inter-
acting components. It was developed with the MontiCore
language workbench, that allows the development of domain-
specific languages. EMA is based on the component and
connector (C&C) paradigm, which enables the division of
a system into different components. Thus, components can
communicate and exchange data between each user using
ports. The data type system includes mathematical prim-
itive types which can be extended to multi-dimensional
vectors and matrices. One advantage of the C&C paradigm
is the separation of tasks into smaller tasks that can be
accomplished independently by a component. Because the
components are connected, they can provide a solution to
the main task by combining the partial results.

To define atomic components EMADL offers two behavior
modeling languages called MontiAnna and MontiMath.

The deep learning framework MontiAnna [6] enables easy
declarative modeling of deep neural networks. MontiAnna
allows detailed constructing of network architecture via the
language CNNArch and a definition of training parameters
using the language ConfLang. The developer can choose be-
tween common neural network layers such as convolutional
or fully-connected. Furthermore the input and output ports
of the EMADL component can be seamingless integrated
as input and output layers of the network architecture. In
an additional file, the training configuration can be defined
which include typical deep learning parameters but also
hyperparameters for different reinforcement learning algo-
rithms [?], e.g. DDPG [7]. MontiAnna is especially important
for this work to configure and train the autopilots using
reinforcement learning.

The benefit of splitting up the architecture and the training
definition is that both offer options for modification without
affecting the other one. For using datasets, a declarative
dataset model exists. The architecture, dataset, and training
definition are merged before generating the C++ or Python
code for the model. After the compatibility between the dif-
ferent components has been validated, code for popular deep
learning frameworks such as MxNet, Caffe2, or Tensorflow
can be generated [8].

The second language for atomic components, MontiMath
[4], is a matrix based programming language similar to
MATLAB that enables the implementation of mathematical
expressions.

B. MontiSim

MontiSim [9] is an agent based, open-source Intelligent
Transportation System (ITS) simulator [10]. Its main goal
is to provide an environment for developing and evaluating
software for autonomous vehicles in isolated as well as
cooperative driving scenarios.

MontiSim balances between a high and low level simula-
tion. Accordingly, it allows simulating more complex driving
scenarios with a large number of participating vehicles, and
also simulates event-based intra vehicle communication as
well as low level physics [11]. This is due to the fact, that
MontiSim is focused on everyday-life driving scenarios and
therefore is required to have good scalability in terms of the
number of participants as well as low enough simulation to
simulate the effects of bad driving behavior.

In a simulation scenario, there are a number of vehicles at
different starting positions. Each of the vehicles has a task,
namely a list of coordinates, it has to reach in the correct
order during the course of the simulation. Scenario specific
settings as for instance the number of vehicles and their
properties such as starting positions, tasks and more low
level settings are set in the scenario file, using the JSON
format. MontiSim has an integrated high-level navigation
and is therefore able to provide the vehicles with trajectory
points to reach their destination. In addition, the vehicles
have several sensors for, among more, their current velocity,

2635

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 27,2024 at 13:40:25 UTC from IEEE Xplore. Restrictions apply.

position and orientation. The only way to drive the vehicle
is by using the throttle, braking and steering values.

Since the target domain of MontiSim are everyday-life
driving scenarios, it must be possible to obtain versatile and
realistic scenarios in an easy way. To accomplish this, the
world in which the scenarios take place, is imported from
OpenStreetMaps (OSM) [12] resulting in street constellations
occurring in real life. To further improve realism when
testing automotive driving software, the simulator uses a
Hardware Emulator [13] that computes worst case execution
times of control software in each time step for hardware
parameters set in advance. The simulator uses the calculated
time to simulate the time required for computation of the
control signals [14].

IV. MONTISIM FOR REINFORCEMENT LEARNING
A. General

So far, MontiSim was only able to execute conventionally
programmed control software. However, since the domain
of automated driving often makes use of machine learning
techniques, we extended MontiSim to provide the possibil-
ity for it to be used as a virtual training, execution and
evaluation environment for reinforcement learning agents.
To achieve a loose coupling between the simulator, the
training is realized by ROS [15], which ensures a language
independent communication between the processes. While
MontiSim is mostly independent of the implementation of
the agent and its training, the interface has to match. We
intended an easy use of EMADL for this implementation.
Hence, the design was chosen such that EMADL models can
be generated against the ROS interface of MontiSim directly.
The only precondition is that the EMADL autopilot has a
state input port to read the environment state (in particular
the sensor data) and an action output port to produce actuator
commands (steering, breaking, accelerating).

The training result relies heavily on the design choices of
the reward function, and it therefore can take time before
obtaining any useful results. Hence, integrated a default
reward function into MontiSim for autonomous driving that
can be used out-of-the-box. However, since the task that
the agent is supposed to learn dictates the choice of the
reward function, custom reward functions can be designed
in EMADL or the simulator itself.

To guarantee synchronization between EMADL agent and
MontiSim, the training process is made to be event-based.
Meaning that the simulation only proceeds after receiving
a signal from the agent. The reason for this is to make
the simulation completely reproducible. Furthermore, the
calculations done in the training process takeslonger than
during the execution of the trained model, which would
result in different, unrealistic training results without such
synchronization.

So far, MontiSim only had deterministic scenarios, mean-
ing that per scenario the task was to drive a single and
constant trajectory. However, only training with a single
scenario would lead to strong overfitting to the chosen
scenario, and hence bad generalization to unseen tasks. To

prevent this, we introduced a randomization process, that
chooses new starting and target positions at the start of each
episode. The integrated high-level navigation of the simulator
ensures that these positions still result in valid trajectories
that use the present streets in the map.

Aside from the training of isolated vehicles, another goal
is to train agents for cooperative driving vehicles where
the training usually contains multiple agents. This, however,
results in challenges for the reinforcement learning toolchain,
as all vehicles have to be trained in parallel. This means that
multiple agents need to process their perceived world state
and produce an individual action. All of these agents start off
with an untrained neural network and influence each other’s
training. Furthermore, the learned actions need to be shared,
i.e. some synchronization of the network weights is required.
Solutions to these challenges are presented in the following.

B. Cooperative Learning

We discuss two alternative approaches for cooperative
learning, which we implemented and evaluated as part of the
MontiSim simulation framework for reinforcement learning.
Our first approach creates separate agents and trains them
in a round robin manner, letting the training algorithm think
that there is only one agent, with the only difference being
the extended state vector. Secondly, the self-play [16] mode
uses a learning agent and a self-play agent which is fixed and
gets updates from the learning agent in predefined intervals.

1) Mini-Step: In this approach, it is assumed that every
vehicle is controlled separately. However, the vehicles are
controlled by the same network instance. Considering that
EMADL requires the reward for an action to be returned
before calculating the next action, MontiSim has to provide
rewards for every vehicle instantly after receiving its actions.
The problem arises, that the reward r;; for action ay; for
vehicle 7 at simulation step ¢ cannot be calculated, because
the reward can only be calculated after the simulation of time
step ¢, that is at time step ¢ + 1. However, before simulating
time step ¢, one has to obtain the actions for the remaining
vehicles j € {i + 1,...,n}, since all vehicles should
receive new actions in each time step. Before obtaining these,
EMADL requires the reward r; for a;; to be present which
is not possible, as stated before.

This problem can be solved by dividing every time step
t of size At into n time steps of size %. Then, for an
action ay; the reward after simulating the reduced time step
is returned. After every vehicle has received its action, time
steps of accumulated size n - % = At have been simulated,
resulting in time step ¢ + 1 being reached. Therefore, new
actions are obtained after At for each vehicle, and the actions
for all vehicles are applied in a pseudo-simultaneous matter.

In order to still support cooperative driving to a further
extend than simple lane centering, explicit inter-vehicle com-
munication is required that allows the vehicles to send and
receive messages from other vehicles. This is modeled by
adding (n — 1) - = additional values to the state containing
the messages sent of all the other vehicles, with x being the
number of values communicated from one vehicle to another.

2636

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 27,2024 at 13:40:25 UTC from IEEE Xplore. Restrictions apply.

2) Self-Play: Self-play is a well-known reinforcement
learning mechanism [16] to train multiple agents by using
a separate instance of the same network for each agent. So
far, it was mainly used in e.g. competitive games, but was
not much explored and tested in the cooperative domain.

Therefore, during training, two agents are executed in
parallel in the same environment. An agent trained with
EMADL controls one vehicle and learns based on the
resulting reward. Meanwhile, the self-play agent simulates
the actions for all other vehicles in the scenario. The self-
play agent is generated based on the parameters using the
EMADL code generator at the beginning of the training
process. After a number of episodes a snapshot of the
EMADL agent’s current policy is created. The self-play agent
then gets updated according to the network parameters and
weights of the latest snapshot. This update is managed by
a script which is called automatically when a snapshot is
created. It extracts the newest parameters and restarts the
self-play agent. At the beginning of the training, an initial
strategy is created that the agent relies on until the first
snapshot is taken. The available training parameters of the
ConfLang are extended by a new parameter for self-play that
activates the network weight update of the self-play agent
after each snapshot.

For each vehicle except the one currently being trained
by EMADL, the simulator sends the current state of the
environment to the self-play agent, which then computes
an action. Since the agent executable does not demand a
reward for its action, this procedure can be repeated for all
not trained vehicles. At last, the currently trained vehicle
receives the state and returns its action. Since the simulator
now has the action of every vehicle, it can simulate the next
step and return the reward to the trained vehicle immediately.
For further illustration consider figure 1.

Start training
Vehicle 1

:Self-play Agent|

determine action

state

action 1

Vehicle i

determine action

trained
Vehicle

determine

action .
-- action

Set action
and simulate

reward

provide policy
Restart Agent
with updated
network weights

Evaluate

Fig. 1. Sequence diagram representing the training process using a self-play
agent.

To make the policy robust to the route of every vehicle
the trained vehicle is switched after every episode. Thus
the vehicle trained with EMADL is now controlled by the
self-play agent. If the trained vehicle remains the same
throughout the training, the strategy might learn only one
vehicle’s route and perform inadequately on other routes.

:EMADL Agent

Create Snapshot

current policy

V. EVALUATION

An isolated vehicle as well as the two cooperative driving
approaches presented in this paper are trained and tested
using MontiSim. The isolated vehicle is trained using a map
of Aachen, where start and target positions are randomly
assigned at the start of each episode. For the cooperative
driving approaches, an urban intersection was selected as
the cooperative driving scenario where two vehicles are
simulated.This scenario was selected, since it occurs in real
life scenarios on a regular basis and a cooperation between
both vehicles is necessary to prevent delays or collisions
at the intersection center. Furthermore, the intersection was
chosen as a simple learning scenario to demonstrate the
functioning of the learning process.

All three agents were trained with the TD3-Algorithm,
which is a deep reinforcement learning algorithm that uses an
actor-critic model. The actor learns the policy and interacts
with the environment while the critic tries to estimate the
returned reward for the chosen action. Both, the actor and
the critic, are modeled as deep neural networks using the
EMADL framework. Hyperparameters are tuned using the
ConfLang included in EMADL. The state space of each
vehicle is 25-dimensional consisting of the trajectory’s X-
and Y-coordinates, the vehicle’s position and it’s velocity and
angle. The action space is three-dimensional and includes the
chosen values for gas, brake and steering on a scale of -1 to
1.

For the cooperative driving approaches, the state space of
the vehicle gets extended by four states for each vehicle to
support inter-vehicle information exchange. The additional
states are the X and Y position coordinates, the current
velocity and the angle of the other vehicle. Therefore, when
using two cars, the state space becomes 29-dimensional.
The action space during the decentralized approach stays the
same.

In figure 2, the actor network for the cooperative driving
approach implemented in EMADL is displayed. The simula-
tor state is taken as input and the network produces an action
as output (1.9 and 1.16). The network consists of three fully
connected layers with 500 units for the first, 1000 for the
second and three for the third layer (1.10-15). In particular,
the last layer consists of three units to produce the three
dimensional output. The ReLU function, which is widely
used in deep learning, is used as the activation function
between the fully connected layers. In addition, the Tanh
function is used for the estimation of the final output.

One important part of training successful autopilots using
rei_nforce_ment l_earning is the reward function r(9 = m(,i) +
TS) + rg) + % for vehicle 4. Here, 7, denotes the current
velocity, rg; the steering, r4 distance from the lane and r.
collisions with objects and vehicles. Therefore the vehicle
receives a positive reward if it is close to one of the desired
values and is penalized otherwise.

First the isolated vehicle was trained on random paths
in the map for 2500 episodes and 1200 training steps per
episode. The average reward of the last 100 episodes over

2637

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 27,2024 at 13:40:25 UTC from IEEE Xplore. Restrictions apply.

1 | package de.rwth.montisim.agent.network EMADL]
2 | component AutopilotQNet {

3 ports

4 in Q*{29} state,

5 out Q(-1:1)*{3} action,

6 implementation CNN {

7 state ->

8 FullyConnected (units=500) ->
9 Relu() ->
10 FullyConnected (units=1000) ->
11 Relu() ->
12 FullyConnected (units=3) ->
13 Tanh () ->
14 action;}}

Fig. 2. The used actor network for the cooperative agents implemented in
EMADL.

the course of the training is displayed in figure 3. The reward
progression starts at about -900000 and gradually increases
up to a reward of 200000. The rewards at the start and end
of the training differ from the rewards in the cooperative
trainings due to a slightly different reward function being
used that e.g. does naturally not have the components that
regard to cooperative behavior.

200000 A

—200000 A

—400000 -

—600000 A

—800000 1

Average Reward of last 100 Episodes

1000 1500 2000 2500

Episode

0 500

Fig. 3. The training results for the isolated vehicle.

The cooperative training with mini-steps is trained on 1500
episodes with 1200 training steps per episode. In fact one
vehicle is trained for 600 steps but since two vehicles are
simulated the steps are doubled because of the mini-steps.

The training results, in figure 4, show training success with
a reward increase from under -800000 up to approximately
+400000. Similar to the centralized approach the reward
strongly increases in the first half until it converges in the
second half of the training. It is important to note that the
reward per episode combines the reward for both vehicles
since both vehicles are simulated in every episode. The best
policy has an average reward of +414550 for both vehicles,
indicating results with satisfying driving capabilities.

The decentralized approach with the self-play agent was
trained on 3000 episodes for 600 training steps per episode.
This results in 1500 training episodes per agent for two
vehicles since the trained vehicle and self-play vehicle are

400000

200000 -

04

—200000 -

—400000 A

—600000 -

Average Reward of last 100 Episodes

—800000

0 200 400 600 800 1000 1200 1400
Episode

Fig. 4. The training results for the mini-step approach.

swapped after each episode. A snapshot was created after
50 episodes whereupon the network weights of the self play
agent are updated.

In figure 5, the average reward for the self-play approach
is shown with an almost linear reward increase over the
training. The best policy has an average reward of +297250
for each vehicle. This is clearly higher compared to approx-
imately +207275 per vehicle for the mini-step approach.

300000 -

200000 -

100000

04

—100000

Average Reward of last 100 Episodes

—200000
—300000 -
—400000
—500000 -
0 500 1000 1500 2000 2500
Episode
Fig. 5. The training results for the the self-play approach.

Another interesting metric of training success is the
number of collisions per episode over the training course
displayed in figure 6. During training, collisions decrease,
indicating cooperation between the vehicles. Towards the end
there are even episodes without any collisions at all, which
emphasizes the cooperation between the vehicles.

During execution on the trained scenario, both autopilots
show a cooperative driving behavior since the vehicles do
not collide in the middle of the intersection. Instead they
let each other drive first. This increases the overall driving
safety and efficiency. However, the trained network does not
generalizes well on new untrained scenarios. To achieve an
applicability to different scenarios, the agent needs to be
trained significantly longer and on many different routes.
Since the intersection scenario in this case had the purpose to
demonstrate the functioning of the implemented cooperative
approaches it was only trained on one single scenario.

2638

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 27,2024 at 13:40:25 UTC from IEEE Xplore. Restrictions apply.

MontiSim supports the generation of randomized scenar-
ios during training to achieve an applicability to different
and unknown scenarios, as was used for training of the
isolated agent. Training on randomized routes focuses on
driving unknown routes rather than on cooperation between
vehicles, since they meet irregularly when randomized and
thus learning cooperation is more tedious. To illustrate that
the implemented toolchain can also achieve robustness to
different scenarios two additional randomized trainings with
two vehicles, on 3000 and 5500 episodes, with the self-play
approach were performed. A part of the city of Aachen is
chosen as the training map and a new scenario for both
vehicles is generated on the map in each episode. For 3000
episodes the policy has an average reward of -39850 and for
5500 episodes of +30787.5. This indicates a training success
on randomized scenarios and underlines that longer training
increases the performance. The results are tested on the map
of Aachen with random and therefore unknown routes, which
on average lead to a similar reward as the policy during
training. Moreover, the self-play approach outperforms the

E
o
1

w
o
L

N
o
L

=
o

Number of collisions per episode

0 500 1000

1500
Episode

2000 2500 3000

Fig. 6. The collisions per episode for the self-play approach.

min-step approach not only in the rewards received. It also
decreases the computation time compared to the mini-step
approach. With the mini-step approach, the more cars the
more training steps per episode had to be calculated. In the
self-play approach, this problem does not occur, since only
one car is trained in each episode. Furthermore, the execution
interval of the self-play agent can be adjusted depending on
the number of trained cars, which means that there is no
significant time overhead for a higher number of cars.

In addition, with the self-play approach all network ar-
chitectures are compatible. This is not the case for the mini-
step approach, where recurrent neural networks do not work.
The reason for this is, that recurrent neural networks rely on
the previous state for some computations. Here, however, the
state does not belong to the same but to the previous vehicle.

VI. CONCLUSION

In this work we presented a holistic simulation toolchain
for the multi-agent reinforcement learning of autonomously

driving vehicles by extending MontiSim. We compared dif-
ferent modes of learning including a standard isolated, a
mini-step and a self-play approach. The learning models have
been implemented in the MontiSim simulator and evaluated
successfully based on intersection scenarios. Thereby, we
showed the success of MontiSim as a training environment
on the one hand, as well as the fact that the self-play ap-
proach not only outperforms the mini-step approach in terms
of rewards, but also decreases the needed computational
resources.

REFERENCES

[1] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the open racing car simulator,” Software available
at http://torcs. sourceforge. net, vol. 4, no. 6, p. 2, 2000.

[2] N. Gatto, E. Kusmenko, and B. Rumpe, “Modeling Deep Reinforce-
ment Learning Based Architectures for Cyber-Physical Systems,” in
MODELS 2019. Workshop MDE Intelligence, September 2019, pp.
196-202.

[3] K. W Axhausen, A. Horni, and K. Nagel, The multi-agent transport
simulation MATSim. Ubiquity Press, 2016.

[4] E. Kusmenko, A. Roth, B. Rumpe, and M. von Wenckstern, “Modeling
Architectures of Cyber-Physical Systems,” in ECMFA’17, ser. LNCS
10376. Springer, July 2017, pp. 34-50.

[5] E. Kusmenko, B. Rumpe, S. Schneiders, and M. von
Wenckstern, “Highly-Optimizing and Multi-Target Compiler for
Embedded System Models: C++ Compiler Toolchain for the
Component and Connector Language EmbeddedMontiAre,” in
Conference on Model Driven Engineering Languages and Systems
(MODELS’18). ACM, October 2018, pp. 447 — 457. [Online].
Available: http://www.se-rwth.de/publications/Highly-Optimizing-
and-Multi-Target-Compiler-for-Embedded-System-Models.pdf

[6] E. Kusmenko, S. Nickels, S. Pavlitskaya, B. Rumpe, and T. Timmer-
manns, “Modeling and Training of Neural Processing Systems,” in
MODELS’19. 1EEE, September 2019, pp. 283-293.

[71 T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] E. Kusmenko, S. Pavlitskaya, B. Rumpe, and S. Stiiber, “On the
Engineering of Al-Powered Systems,” in ASE’19. Workshop SE In-
telligence. 1EEE, November 2019, pp. 126—133.

[9] F. Grazioli, E. Kusmenko, A. Roth, B. Rumpe, and M. von Wenck-
stern, “Simulation Framework for Executing Component and Connec-
tor Models of Self-Driving Vehicles,” in Proceedings of MODELS
2017. Workshop EXE, ser. CEUR 2019, September 2017.

[10] J. C. Kirchhof, E. Kusmenko, B. Rumpe, and H. Zhang, “Simulation
as a Service for Cooperative Vehicles,” in MODELS 2019. Workshop
MASE. 1EEE, September 2019, pp. 28-37.

[11] C. Frohn, P. Ilov, S. Kriebel, E. Kusmenko, B. Rumpe, and A. Ryndin,
“Distributed Simulation of Cooperatively Interacting Vehicles,” in
ITSC’18. IEEE, 2018, pp. 596-601.

[12] M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive computing, vol. 7, no. 4, pp. 12-18, 2008.

[13] J. C. Kirchhof, E. Kusmenko, J. Meurice, and B. Rumpe, “Simulation
of Model Execution for Embedded Systems,” in MODELS 2019.
Workshop MLE. 1EEE, September 2019, pp. 331-338.

[14] M. Hoppe, J. C. Kirchhof, E. Kusmenko, C. Y. Lee, and
B. Rumpe, “Agent-Based Autonomous Vehicle Simulation with
Hardware Emulation in the Loop,” in 2022 IEEE Intelligent Vehicles
Symposium (IV’22). 1EEE, June 2022, pp. 16-21. [Online]. Avail-
able: http://www.se-rwth.de/publications/Agent-Based-Autonomous-
Vehicle-Simulation-with-Hardware-Emulation-in-the-Loop.pdf

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[16] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering
chess and shogi by self-play with a general reinforcement learning
algorithm,” arXiv preprint arXiv:1712.01815, 2017.

2639

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 27,2024 at 13:40:25 UTC from IEEE Xplore. Restrictions apply.

