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Abstract

Deploying robotics applications requires expertise from multiple domains, including gen-

eral software engineering and the application domain itself. Consequently, successful

robotics applications are developed by teams of software experts, robotics experts, and

application domain experts. The conceptual gap between application domain challenges

and implementation domain solutions gives rise to accidental complexities from solving

problem domain challenges with programming domain details. This complicates develop-

ment and may lead to failure. Domain and robotics experts are rarely software engineering

experts. Their involvement into the software engineering of reusable robotics applications

requires that they become software experts or that implementation details can be abstracted.

Model-driven engineering reduces the conceptual gap by leveraging models to primary

development artifacts. Models usually are more abstract than programming language

artifacts and enable to use robotics vocabulary or application domain vocabulary. This

supports domain experts in formulating solutions in established known vocabulary. Model

transformations can embody the software engineering expertise required to translate such

models into robust and reusable programming language solutions. Different target tech-

nologies can be addressed by different transformations, which decouples logical robotics

tasks from heterogeneous platforms and ultimately produces deployable solutions. Proper

separation of expert concerns is crucial to enable transformations and ultimately improve

engineering of robotics applications. Component-based software engineering has proven

useful for the integration of domain-specific solutions and system extensibility. Here,

software components encapsulate functionality in reusable black boxes. That these com-

ponents usually are programming language artifacts gives rise to accidental complexities

again. Models of architecture description languages lift components to the model level.

Component models can serve as building blocks of complex systems and can be translated

into implementations for different target technologies as well. Combining model-driven en-

gineering with component-based software engineering enables to provide robotics experts

and domain experts with appropriate modeling languages, as well as software engineering

experts with means to decouple their concerns while ensuring integration of their solutions.

We present a collection of domain-specific languages to describe service robotics appli-

cations. They enable formulating domains, tasks, actions, and properties of a robot and

its environment free of GPL complexities. Their models are translated into component

implementations of a MontiArcAutomaton [RRRW15] software architecture model and

interpreted at system runtime. The architecture executes tasks via their transformation to

Planning Domain Definition Language models, solves these, and executes the resulting

plans with a robotics middleware. Leveraging separation of concerns and abstraction of

modeling languages, this reduces the effort of describing robot tasks, facilitates extension



of the system with new components, and decouples logical task solving from the robot plat-

form. This supports integration of domain experts and reuse of infrastructure constituents

in different contexts and with different platforms.
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Chapter 1

Introduction

As a result of cyber-physical systems permeating all areas of life, challenges for developing

and integrating hardware and software rise. Robotic systems inherently are cyber-physical

and their successful deployment requires integrating expertise of several domains, includ-

ing motion, perception, software engineering, safety, usability, and many more. To handle

the complex integration concerns software plays a key role. It enables, for example, check-

ing a range of integration constraints automatically and fast. However, software itself has

become so complex that the software development process requires decent investigation to

circumvent failure and ensure high quality products. To this effect, modeling languages

aim at better comprehensibility by abstracting from the accidental complexities [FR07] and

notational noise [Wil01] of general purpose programming languages (GPLs) (such as Java

or Python). Models describing system architecture and behavior produce better comprehen-

sibility than GPL code [VSB+13], but they often are only used for communication among

developers and for documentation [WHR14]. Thus, they easily become outdated and

subvert the development process by providing misleading information. To counteract this

effect, model-driven engineering (MDE) [FR07] raises models to first class development

artifacts. Here, models do not only support communication and documentation but they

serve as system specification from which code generators derive the actual software.

Approaches utilizing MDE often employ general-purpose modeling languages, such

as the UML [OMG10, Rum11, Rum16]. While these languages abstract from the target

platforms and GPLs, they are domain agnostic and, hence, often employ a wrong level

of abstraction. For example, experts of participating domains might have different un-

derstandings of the same models since semantics may vary among the domains or the

languages themselves do not match the actual problem domain. Consequently, develop-

ment of perfectly fitting modeling languages for a specific domain seems promising. So

called domain-specific modeling languages (DSMLs) [Fow10] enable domain experts

to model solutions using their own terminology of the problem domain. Since DSMLs

themselves are software, their development suffers from the same threats as traditional

software engineering. For example, original specifications might no longer meet the actual

requirements after some time and first prototypes should be available early to determine

the actual suitability. To this effect, agile development of DSMLs and code generators that

derive high quality software from DSML models has become the aim of modern language

workbenches such as MontiCore [GKR+08]. Thereby, MDE enables development of

software that fulfills today’s complex requirements.
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Chapter 1 Introduction

Many robotics solutions use specific languages addressing the concerns of specific parts

of the robotics domain [NHWW16]. This raises challenges in integrating the languages

and circumventing tight coupling between the solutions to enable better reuse in different

configurations. Consequently, in component-based software engineering (CBSE) [BW98]

software systems are built of components that employ well defined and stable interfaces

for communication. Behind these interfaces components encapsulate functionality. Hence,

CBSE decouples communication from computation and thereby prevents intermixing func-

tionalities and separates concerns of participating experts. Furthermore, it enables reuse of

components in different architectures. Component & connector architecture description

languages (ADLs) [MT00, MLM+13] lift CBSE to model level. Here, software engineers

describe software architectures using abstract component models, their composition, and

their interaction. Experts of different domains provide component implementations and

do not require knowledge about the overall system, its integration or implementation

details of other components. Thereby, reuse and maintainability is supported. Experts

still employ different domain-specific languages (DSLs) or GPLs that require integration,

but an ADL based approach simplifies integration. Instead of integrating the specific

languages with each other, integration efforts reduce to integrating each language with the

ADL [HRW16]. In context of the 3-year iserveU research project funded by the German

Federal Ministry for Education and Research (BMBF), we investigated the feasibility

of pervasive MDE for complex service robotics applications in the domain of transport

applications [HMSNR+15, ABH+16]. The concepts described in this report originate from

this investigation.

In the following, Chapter 2 outlines the development methodology based on the iserveU

DSLs. Chapter 3 motivates the modeling infrastructure by example. Chapter 4 describes

the DSMLs in detail before Chapter 5 specifies the component and connector (C&C) soft-

ware architecture that integrates the domain-specific solutions. Chapter 6 explains how

transformations translate the domain-specific models to the planning domain definition lan-

guage (PDDL) and back to employ an artificial intelligence planning software. Chapter 7

depicts human-robot interfaces (HRIs) and their integration with the software architecture.

Chapter 8 gives a tutorial on deploying and executing the architecture. Chapter 9 discusses

related work in terms of modeling languages, their integration with planning software

and software architectures. Chapter 10 summarizes the main achievements, concludes the

report, and gives an outlook on future work.
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Chapter 2

Methodology

This report describes a collection of DSMLs and their integration with a reference C&C ar-

chitecture for the efficient engineering of service robotics. Using transformations it

employs standardized artificial intelligence planning software for task execution. Code

generators deploy the system to different software platforms dedicated to robotics (e.g.,

SmartSoft [SSL11]). As sketched in [HMSNR+15] this approach enables modeling robot

and world interfaces and tasks to gain separation of concerns and roles. Furthermore, its

loose coupling of different model types empowers their reuse in different contexts and

with different platforms.

Figure 2.1 illustrates the main layers and roles involved. On the model layer, infrastruc-

ture experts model the software C&C architecture while domain experts utilize DSMLs

to specify solutions in their domain. For example, these models could specify tasks for

item transportation in a hospital. Code generators derive the actual system software. Since

generating the complete system is often neither possible nor useful generators enable

integration of handwritten code [GHK+15]. They derive APIs from the components’

stable interfaces against which robot experts and world experts can implement specific

functionality by hand. Thereby, their solutions correctly integrate into the system.

HandcraftedRobot Impl.
domainexpert

robotexpert worldexpertHardware,Frameworks, UIsHandcraftedWorld Impl.
ArchitectureModel Domain Modelsframeworkexpert

«gen»

«hc»

Generated System
«model»

handcraftedgeneratedmodel layerLanguage Integration & Code Generation
Figure 2.1: Combining CBSE and MDE decouples expert roles to facilitate reuse, main-

tainability, flexibility and the system integration of complex systems, here on

the example of the service robotics domain.
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Chapter 2 Methodology

DSLs iserveU-RTE
Artifacts

iserveUArtifacts
Task GoalAction PlannerRobot and WorldInterfaces

Artifacts
MAAArtifacts

MAA-RTE UsageRobot and WorldImplementations SmartSoftCommunicatorCommunicationProtocolKnowledgeBase UIDesktop UITablet UI

GeneratoriserveUCDArtifacts
Models

Artifacts
C&CModels

Application Domain EntityTask Goal LoggerPDDLTransformationPortComponentDataSource Variable
top-levelcomponent and connector architecture

modeling languages forservice robotics applications

ArchitectureStartermodeling frameworkfor C&C models

«create»

MontiArcAutomaton «create»
«use»

«use»
«use»«use»

«use»

runtime environment for generated artifacts

application-specificarchitecture parts
«input»

«input»

«conform»
2

1

5

3

4

Figure 2.2: Overview of the most important components of the system architecture and the

infrastructure for the MDE of service robotics applications.

Figure 2.2 sketches the methodology’s main constituents in greater detail. The numbers

denote the steps in the development process:

1. The systems builds on infrastructure provided by the MontiArcAutomaton runtime

environment (RTE) [RRRW15].

2. Next, the iserveU RTE prescribes the structure of domain-specific artifacts (here,

Tasks, Goals, Actions, etc.).

3. Since the artifacts are GPL-based DSMLs act as frontend for system specification.

A generator translates their models to their GPL representations. The generated

implementation is bound to the MontiArcAutomaton (MAA) infrastructure.

4. Using MAA, a C&C-reference architecture is modeled and translated to an imple-

mentation that handles the generated domain artifacts of step (3). It also makes use

of the domain-specific RTE (2).

5. After creating the infrastructure in the previous steps, this one complements domain-

specific implementations (for example, communication protocols to other system

elements or user interfaces (UIs)).

To separate concerns of application domain experts and C&C experts (cf. Figure 2.1),

models for the service robotics application (3) are separated from the C&C reference

architecture (4). An overall benefit of the separation is an improved reusability of ap-

plication and reference architecture specific models. The dedicated modeling languages

4



(cf. Chapter 4) further decouple the different application concerns and thereby support

reuse. The domain models define the domain-specific types and their provided operations

(e.g., rooms). Application models specify the participating entities (i.e., the actors of the

scenario) consisting of a world entity representing the environment and a robot entity.

Entities reside in their own models of the entity DSML. They explicate their properties

and define actions in the context of the specific domain. Based on these, goal models

describe specific situations using the entities’ and domain’s properties (e.g., that the robot

carries a specific item). A task model defines sequences of goals to specify a reusable

high level operation in the domain (e.g., fetching and delivering an item). The models are

domain-specific and are not bound to any specific robotics platform which empowers their

reuse on different platforms.

The MAA modeling infrastructure transforms a modeled C&C system architecture to a

deployable software system (4). It builds on the MAA RTE (1) and uses the RTE developed

for the DSMLs (2). The latter represents the models at runtime and provides additional

infrastructure (e.g., logging and planning). Generators analyze the domain-specific models

and translate them into runtime artifacts (3) for the C&C architecture. Handcrafted artifacts

(5) provide domain specific additions. They consist of platform specific implementations

(cf. Figure 2.1) for the application domain of the iserveU project. Here, the entities are

bound to SmartSoft [SSL11]. Also, it integrates additional project specific features, such

as dedicated UIs and knowledge base.

5





Chapter 3

Example

Giving an example, this chapter highlights challenges of modern robotics and motivates

the modeling infrastructure showing how companies may benefit from it. A company,

for example, may produce robots for transport services in different indoor contexts (such

as warehousing and nursing (cf. Figure 3.1)). As the various contexts impose different

requirements regarding the deployed robots’ capabilities, the company produces multiple

robot platforms. Although the contexts and platforms vary, the fundamental Indoor

Transport Service (ITS) concepts remain invariant: The service robot has to receive orders,

traverse rooms, and pick up and deploy items.

Figure 3.1: A Robotino31 robot used during the iserveU evaluation in the Katharinen

Hospital in Stuttgart.

Instead of developing multiple infrastructures and code generators for different GPLs,

the company employs model-driven techniques to describe the invariant transport services

on an abstract, better reusable level. To this effect, they decompose a service robotics

applications into the following parts:

• Domain model: the static context in which a transport service robot operates, such

as rooms, items, and their properties.

1Robotino Website: http://www.robotino.de
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Chapter 3 Example

• Entities: abstract descriptions of the employed robot and the context’s environment

(the “world”) comprising actions and properties.

• Tasks: reusable, abstract descriptions of services that the robot provides in the given

domain and world.

• Goals: atomic components of tasks, describing situations the robot must achieve at a

certain point in time.

Separating these concerns by employing artifacts of different modeling languages allows

the company’s software engineers to decouple the actual robots via entities from tasks.

Decomposing tasks into sequences of goals enables the reuse of goals in different tasks.

Furthermore, the overall application logics are decoupled from underlying robotics issues,

such as navigation, object recognition, or human-robot interaction.

For instance, the company’s ITS applications must be able to transport items from one

room to another. With the modeling languages presented in this report, this can be modeled

as depicted in Figure 3.2. For each new deployment, an application model defines the

available robot and world entities. Both relate to an unified modeling language (UML)

class diagram (CD) modeling the domain in which they operate. Goals reference properties

of the robot, the world, and the domain to describe achievements during task executions.

Tasks compose sequences of goals which the robot fulfills one by one to achieve the

complete task.

Room location()Boolean loaded(Item i)-goTo(Room r)pickUp(Item i)unload(Item i) openDoor(Room r)Item
properties

actions

«declares»

«has»

«class diagram»ITSDomain
«uses»

Room
«declares»

Coordinate getPos()
«has»

«task»FetchItem «goal»UnloadedAt«goal»LoadedAt
«uses» «uses»

«uses» «uses»
«application»ITSApplication

«robot entity»ITSRobot «world entity»ITSWorld
robot
entity
model

world entity
model

Figure 3.2: Illustration of models of the different modeling languages and their relations.

They describe an application, a robot and a world, two goals, a task, and the

domain.
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Goal

1 domain ITSDomain;

2 robot ITSRobot as rob;

3 world ITSWorld;

4

5 goal LoadedAt(Room r, Item i) {

6 predicate {

7 rob.location() == r

8 && rob.loaded(i)

9 }

10 }

Listing 3.3: The goal LoadedAt defines a predicate over properties of the

ITSRobot’s properties.

In this example, robots compatible with the company’s ITS must provide at least two

properties (location and loaded) and three actions (goTo, pickUp, and unload).

The realization within the actually employed robot platform is left underspecified: While

a robot with arms may pick up items on its own, a robot without arms might call for

assistance of warehouse laborer instead. The same holds for the world entity. Here, it

provides a single action (openDoor) which might open doors, for example, using an

authorization code or it could require assistance. Actions and Properties refer to types

of the domain model, which is depicted in the center of Figure 3.2. It contains the types

Room and Item. Actions comprise a precondition that describes the circumstances in

which their execution is possible, and a postcondition that must hold after execution. The

planner (cf. Chapter 6) of the reference architecture (cf. Chapter 5) derives sequences of

robot and world actions from goals, which then are executed in the, physical, real world.

Goals describe Boolean conditions over the entities’ properties. At runtime, the planner

tries to derive actions to achieve these properties and thereby fulfill the goal (cf. Chapter 6).

Listing 3.3 shows the textual model of the goal LoadedAt (cf. bottom of Figure 3.2).

After declaring its dependencies to entities and a domain (ll. 1-3), it defines its name and

parameters (l. 5). Its body (ll. 5-10) conjuncts two expressions that reference properties of

the robot and compare these to the passed arguments.

The parameters of goals refer to data types defined in the domain model. They configure

the goal and thereby enable their reuse in different tasks. Tasks must specify corresponding

parameters themselves to configure the involved goals at runtime (cf. Listing 3.4 l. 3).

The textual model of the FetchItem task begins with importing the domain model data

types (l. 1), but omits references to robot entities or world entities (they are transitively

dependent via the referenced goals). After specifying its name (l. 3), the task declares its

parameters: the source room, an item to fetch from the source room, and a destination

room, where the item should be delivered to. The task’s body (ll. 3-6) references two

goals that must be achieved in sequential order for the task to be fulfilled: LoadedAt is

instantiated with the arguments received via task parameters src and i and holds, if the

robot was able to pick up the item i in the room src. The next goal, UnloadedAt holds

9



Chapter 3 Example

Task

1 domain ITSDomain;

2

3 task FetchItem(Room src, Item i, Room dst) {

4 LoadedAt(src,i);

5 UnloadedAt(dst,i);

6 }

Listing 3.4: The task FetchItem must be instantiated with three parameters and uses

these to instantiate two goals. It is considered fulfilled if all goals are

satisfied in the specified order.

when the robot is in room dst and delivered the item i. If the system finishes the task,

the referenced item was successfully transported.

To execute tasks in the real world, engineers map actions and properties of the entity

models to their implementations via concise interfaces. The reference architecture (cf.

Chapter 5) solves tasks by handing their goal decomposition to the planner and executing

the derived actions using the actually employed entity implementations. Being a C&C

architecture, it also provides well defined extension points to add additional functionality.

Employing this modeling infrastructure, the company achieves a better separation of

concerns between robotics experts (who map entities to actual GPL implementations),

domain experts (who describe tasks, goals, and entities), users (who instantiate tasks), and

software engineering experts (who integrate and deploy the reference architecture). Also,

the company can reuse the different models for similar applications. In case the deployed

robot platform changes, only the mapping of the robot model’s actions and properties must

be adapted. In case tasks or goals change while the robot’s and world’s properties and

actions stay sufficient, neither the models of robot or world require adaptation and, hence,

their implementation can be retained as well.
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Chapter 4

Modeling Languages

Modeling service robotics applications such as the ITS (cf. Chapter 3) requires appropriate

DSLs (cf. Chapter 1). To empower separation of concerns, several DSLs are combined as

sketched in [HMSNR+15]. All languages are developed using the MontiCore language

workbench [KRV10]. Section 4.1 presents the application modeling language. Applications

consist of a robot and a world entity operating in a specific domain. CDs (Section 4.2)

model the domain characteristics (e.g., rooms)and how they can be manipulated (e.g.,

openDoor). The entity modeling language (Section 4.3) enables explicating properties of

a modeled entity and its capabilities in form of actions that may manipulate the domain

and the employed entities. In this setup, tasks (Section 4.4) define sequences of goals

(Section 4.5) that must be fulfilled in a given order. Goals are expressions over the

properties of entities and the environment. At runtime, the employed planner (cf. Chapter 6)

calculates action sequences for the entities to execute tasks by achieving their goals (cf.

Chapter 5). Section 4.6 discusses the languages.

4.1 Application Language

An application model defines which entities participate in the modeled service robotics

application. Each application model binds a world entity to a robot entity. This section

presents the language elements and well-formedness rules to model applications.

4.1.1 Language Elements

Listing 4.1 illustrates the definition of a hospital application comprising a Transport-

Robot robot entity and a world entity RoomsWorld. Each application is located in a

package (l. 1). The application definition starts with the keyword application followed

by the application’s name (l. 3). An application definition has a body delimited by curly

brackets (ll. 3-6). The body of an application must contain exactly one reference to a robot

entity and exactly one reference to a world entity. References to robot entities start with

the keyword robot (l. 4) and references to world entities with the keyword world (l. 5).

The keyword is followed by the qualified name of the referenced entity.

11
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Application

1 package hospital.applications;

2

3 application HospitalTransportApp {

4 robot hospital.entities.TransportRobot;

5 world hospital.entities.RoomsWorld;

6 }

Listing 4.1: The HospitalTransportApp application with the robot entity

TransportRobot and the world entity RoomsWorld.

4.1.2 Well-formedness Rules

The well-formedness rules of the application language (Table 4.1) describe the language’s

static semantics and their constraints. They are separated into rules regarding conventions

(AC) and referential integrity (AR). Violation of convention conditions raises warnings,

while violation of referential integrity raises errors.

ID Well-formedness Rule Description

AC-01 The application’s name should start capitalized.

AR-01 All referenced entities exist.

AR-02 The referenced robot is a robot entity.

AR-03 The referenced world is a world entity.

Table 4.1: Well-formedness rules of the application language.

4.2 Domain Modeling

The domain of a robotics application is modeled using UML programmable (UML/P)

CDs [Rum11, Rum12, Sch12]. They express the static properties of domain concerns as

well as supported operations on these.

Figure 4.2 depicts a CD modeling the domain of the ITS application (cf. Chapter 3).

It consists of the three classes Room, Item, and Coordinate. Each class provides

methods to retrieve information and to manipulate its instances. Rooms have a name, a

position in form of a Cartesian coordinate, can be open or closed, and contain a set of

named items.

Using CDs to model the domain of a robotics application enables to describe domain

types of arbitrary complexity. Since CDs are generally well-understood, modeling the

domain types requires no additional effort for learning a new DSML.

4.3 Entity Language

Entities model the actors of an robotics application. This section presents the language

elements and well-formedness rules of the entity language.
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4.3 Entity LanguageCDString getName()Room Item* CoordinateString getName()Coordinate getPos()Boolean isOpen()void open()void addItem(Item i)Item getItem(Item i) 1 int getX()int getY()
Figure 4.2: Exemplary UML/P CD modeling the domain types Room, Item and Coor-

dinate for the ITS application.

4.3.1 Language Elements

An entity models either a robot or an environment (denoted world). They are very similar

in their structure, but represent different parts of the application. We therefore distinguish

between robot entities and world entities. Both kinds operate in the context of a domain

and can reference the other entity.

Listing 4.3 depicts the model of a robot entity. Entity models start with a package

declaration (l. 1). Each entity operates in the context of a domain (l. 2) and may reference

another entity. For instance, the TransportRobot entity (Listing 4.3) references a

world entity (l. 3). After declaring a domain and a potential other entity, the definition of

a new entity begins either with keyword robot for robot entities or world for world

entities (l. 5). The keyword is followed by the entity’s name and a body delimited by curly

brackets (ll. 5-18). A robot entity may only reference a single world entity and, vice versa.

The body of an entity can contain arbitrary many property and action definitions. The

definition of a property starts with the keyword property followed by a return type, a

name, and a comma separated list of typed parameters enclosed by parentheses. The return

type of the property and the types of the parameters must be either defined in the imported

domain model or must be a primitive type (e.g., Boolean, Integer,or Character).

Here, the robot defines the two properties robotLocation and hasLoaded (ll. 6-7).

The types Room and Item are imported via the entity’s domain LogisticsDomain

(l. 2) (cf. Figure 4.2). The property hasLoaded is parametrized with a single parameter

of type Item and has the return type Boolean, whereas the property robotLocation

is not parametrized and has the return type Room.

The actions of an entity specify its capabilities. Each action has a name, can be

parametrized, can have a precondition, and must specify a postcondition. Entity actions

resemble actions of STRIPS [FN72] and GOLOG [LRL+97]. The precondition of an action

describes the robot and world states that have to be satisfied to be able to execute the action.

The postcondition of an action, on the other hand, describes the modification of the robot

and world states in response to the execution of the action. The planner component uses

the actions’ pre- and postconditions to determine which actions are applicable depending

on the current system state and the goal to achieve (cf. Chapter 6). Later, implementations

of the actions must guarantee the postconditions.
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Entity

1 package hospital.entities;

2 domain hospital.types.LogisticsDomain;

3 world hospital.entities.World;

4

5 robot TransportRobot {

6 property Room robotLocation();

7 property Boolean hasLoaded(Item item);

8

9 action pickUp(Item item, Room room) {

10 pre: World.itemLocation(item, room) &&

11 robotLocation() == room;

12 post: hasLoaded(item) && !World.itemLocation(item, room);

13 }

14

15 action drop(Item item, Room room) {

16 pre: hasLoaded(item) && robotLocation() == room;

17 post: !hasLoaded(item) && World.itemLocation(item, room);

18 }

19 }

Listing 4.3: The robot entity TransportRobot operates in the context of the

LogisticsDomain (l. 2) and relates to the world entity World (l. 3). It

declares two properties (ll. 6-7) using domain data types and defines two

actions pickUp (ll. 9-13) and drop (ll. 15-18).

As shown in Listing 4.3, the TransportRobot defines two actions pickUp (ll. 9-

13) and drop (ll. 15-18). The definition of an action begins with the keyword action,

followed by a name, a list of typed parameters enclosed by parentheses, and a body, which is

surrounded by curly brackets. Similar to properties, types referenced in action parameters

must be either defined in the imported domain or must be part of the Java package

java.lang. The definition of an action’s precondition (l. 10) begins with the token

pre:, followed by a Boolean predicate over the properties of the entity, properties of the

imported entity, and the domain data types passed to the action. If omitted, preconditions

are automatically interpreted as to be always satisfied. The precondition of action drop

(l. 15), for instance, requires the robot to actually have the item loaded and to be in the

target room. In this case, the action can be executed and afterwards guarantees that the item

remains no longer on the robot but is now available in the room. In general, preconditions

act as guards whereas postconditions describe changes of properties.

4.3.2 Well-formedness Rules

Table 4.2 shows the well-formedness rules of the entity language. The well-formedness

rules are separated into rules regarding referential integrity (ER), and uniqueness (EU)

conditions. Violation raises errors.
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ID Well-formedness Rule Description

ER-01 Each data type referenced by a property is defined in the referenced domain

model or is part of the Java package java.lang.

ER-02 Each data type referenced by an action is defined in the referenced domain

model or is part of the Java package java.lang.

ER-03 Entity properties referenced by preconditions and postconditions must be

defined within the respective entity.

ER-04 Methods of domain types referenced by preconditions and postcondition must

be defined on the respective data type of the imported domain.

ER-05 Preconditions and postconditions must evaluate to Boolean.

ER-06 Postconditions do not contain disjunctions.

ER-07 Robot entities reference a single world entity only.

ER-08 World entities reference a single robot entity only.

EU-01 The names of properties and actions are unique.

EU-02 Names of parameters are unique within a property.

EU-03 Names of parameters are unique within an action.

Table 4.2: Well-formedness rules of the entity language.

4.4 Task Language

A task models an ordered sequence of desired situations that should occur one after another.

A situation is the combination of a world state and a robot state. Each desired situation is

modeled as a goal (cf. Section 4.5). Hence, a task model defines a sequence of goals. Tasks

can be parametrized with types of the domain model. A task is assigned its arguments at

runtime and hands them over to its goals that require arguments themselves. Sometimes, it

is useful to denote that multiple goals have to be satisfied simultaneously. For this purpose,

a task model can lock and unlock goals. If a goal is declared locked, the situation modeled

by the locked goal has to be satisfied in addition to the situation modeled by the following

goals until the locked goal becomes unlocked. Goals can become unlocked by unlock

statements or by unlock-all statements. While each unlock statement only unlocks a single

goal, unlock-all statements unlock all currently locked goals at once.

4.4.1 Language Elements

Listing 4.4 shows an example model of a task that fetches an item from a room and delivers

it to another room. It first states its package (l. 1), imports goals (l. 3) and references

the domain it relates to (l. 4). The keyword task introduces the actual task definition

followed by the task’s name FetchItem and a list of parameters enclosed by parenthesis

(l. 6). The task defines the item to fetch as parameter of type Item and the involved

rooms as parameters of type Room. The referenced data types must be defined in the

referenced domain model or must be part of the Java package java.lang. The body

of a task is enclosed by curly brackets (ll. 6-12) and consists of an arbitrary number of

statements separated by semicolons. Each statement either directly references a goal

(goal statement), starts with the keyword lock and is followed by a reference to a goal
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Task

1 package hospital.tasks;

2

3 import hospital.goals.*;

4 domain hospital.types.LogisticsDomain;

5

6 task FetchItem(Room fromRoom, Item item, Room toRoom){

7 At(fromRoom);

8 lock Loaded(item);

9 At(toRoom);

10 unlock Loaded(item);

11 Unloaded(item) unlock-all;

12 }

Listing 4.4: The task model FetchItem fetches a given item from a room and delivers

it to another room by defining a sequence of goals.

(lock statement), starts with the keyword unlock and is followed by a reference to a

goal (unlock statement), or starts with a reference to a goal followed by the keyword

unlock-all (unlock-all statement).

In the example (Listing 4.4), the task FetchItem defines five statements. The first

statement (l. 7) requires the robot to be in the desired starting room (fromRoom). Next,

the robot must load the required item (l. 8). To ensure that the robot does not drop the item,

the goal is locked. Hence, the goal must be satisfied until it is unlocked. The next goal

statement (l. 9) denotes that the robot is positioned in the target room (toRoom). Since

the Loaded goal (l. 8) has been locked, it still must be satisfied in addition to the At

goal. However, it becomes unlocked by the following unlock statement (l. 10). Finally,

the unlock-all statement (l. 11) denotes that the robot does not carry the item anymore

indicating that it has been dropped in the target room. In this case, the unlock-all statement

does not unlock any goals, but ensures that no goal reference remains locked at the end of

the task.

4.4.2 Well-formedness Rules

Table 4.3 presents well-formedness rules for task models. They are separated into rules

regarding conventions (TC), type correctness (TT), uniqueness (TU), and referential

integrity (TR). Violating TC-02 causes warnings. Others raise errors.

4.5 Goal Language

A goal models a situation of a desired state within a robotics application. The latter consists

of the state of the employed robot, the environmental world, and the specific application

domain. Therefore, a goal references types defined by its corresponding domain and
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ID Well-formedness Rule Description

TC-01 The body of each task consists of at least one statement.

TC-02 All parameters of a task must be referenced by at least one statement in the

task’s body.

TC-03 Unlocking a goal requires that it has been locked before.

TC-04 Goals may not remain locked at the end of a task.

TT-01 The arguments of goal references match the referenced goal’s parameters in

type and number.

TU-01 The parameters of a task have unique names.

TR-01 The arguments of goal references must be names of the task’s parameters.

Table 4.3: Well-formedness rules of the task language.

properties of its related entities. To support reuse of goals, they can be parametrized. Goals

may query the properties of their corresponding entities (cf. Section 4.3).

4.5.1 Language Elements

Each goal model specifies a situation definition and may optionally relate to a domain, a

robot, and a world. A domain import is introduced with the keyword domain, followed

by a full qualified name referencing a domain model. If no domain is imported, the goal

is unable to reference domain objects. A robot import starts with the keyword robot,

followed by a full qualified name referencing a robot entity model. A world import is

introduced with the keyword world, followed by a full qualified name referencing a world

entity model. Importing robot or world entities is only required if the goal references their

properties. After the optional world, robot, and domain imports, a goal model must contain

a situation definition. A situation definition starts with the keyword goal, followed by

a name, which defines the name of the goal, a comma separated list of typed parameters

enclosed by parenthesis, and the situation definition’s body, which is surrounded by curly

brackets. The types of the parameters must be defined in the domain imported by the goal.

The body must contain exactly one predicate. A predicate is introduced by the keyword

predicate followed by a situation description, which is enclosed by curly brackets.

The predicate defines a Boolean expression over the properties of the imported robot

and world entities as well as the types defined in the imported domain model. The

Boolean expression may reference properties of the imported entities, which must be

parametrized with constants or with parameters of the modeled goal. Also, the expression

can employ parenthesis (( and )), conjunctions (operator &&), disjunctions (operator ||),

negations (operator !), and comparisons (operator ==).

For instance, Listing 4.5 depicts the model of the goal LoadedAt. The goal declares

its package (l. 1), imports the domain LogisticsDomain (l. 3)), references the robot

entity TransportRobot (l. 4), and references the world entity RoomsWorld (l. 5).

The example assumes that the domain defines the data types Room and Item, whereas the

robot entity defines the queries robotLocation() and hasLoaded(Item). The

world entity defines a query isAccessible(Room), which returns true if the robot
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Goal

1 package hospital.goals;

2

3 domain hospital.types.LogisticsDomain;

4 robot hospital.entities.TransportRobot;

5 world hospital.entities.RoomsWorld;

6

7 goal LoadedAt(Room r, Item i) {

8 predicate {

9 (TransportRobot.robotLocation() == r)

10 && RoomsWorld.isAccessible(r)

11 && TransportRobot.hasLoaded(i)

12 }

13 }

Listing 4.5: The goal model LoadedAt denotes the situation that the Transport-

Robot is at a specific room and carries a specific item.

is allowed to access a certain room. The goal has two parameters (l. 7): r of type Room

and i of type Item. The predicate of the goal (ll. 8-12) checks whether the location

of the robot TransportRobot is equal to the room r (l. 9), and whether the queries

hasLoaded(i) and isAccessible(r) are true (ll. 10-11). In other words, the

goal checks whether the robot is allowed at a specific room and carries a specific item.

4.5.2 Well-formedness Rules

Task models must satisfy the well-formedness rules described in Table 4.4. They consist of

type correctness rules (GT), uniqueness rules (GU), and referential integrity rules (GR).

They all raise errors if violated.

ID Well-formedness Rule Description

GT-01 The predicate expression must evaluate to Boolean.

GU-01 The parameters of a goal must have unique names.

GR-01 Types referenced by goal parameters must be defined within the imported

domain model or must be part of the Java package java.lang.

Table 4.4: Well-formedness rules of the goal language.

4.6 Discussion

The different modeling languages capture distinct aspects of a system and thereby support

separation of concerns. None of the models described in any of the languages is bound to a

specific robotics platform, environmental service, or even hardware. This supports binding

the different languages to specific platforms in late stages of the development process and
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supports reuse by using different bindings for the same model (e.g., Section 5.4 describes

a mapping to a specific platform).

Application models (see Section 4.1) aggregate domain definitions as well as world and

robot entities. Models of the other languages, however, reference their required world

and robot entities. For example, a goal model often expresses a constraint on a robot’s

property. Hence, both cases state on which entities the artifacts depend. This is not

redundant, but is meant as extension point: Introducing abstract entities or entity interfaces

enables better reuse. For example, goal and task models could depend on specific robot

capabilities defined in entity interfaces while the application model could define which

entity implementations are used within the specific application. A new context condition

could validate that the selected entities implement all entity interfaces used by other models.

Hence, the application language enables better decoupling of models and thereby increases

reuse and testability in future work.

Comparing tasks and goals, the most notable difference is that tasks describe linear

sequential lists of situations that must be achieved one by one. On the other hand, goals

are Boolean expression over properties of entities and a domain. Thus, tasks and goals

only specify the intended objectives that a system has to achieve but do not describe how

to fulfill them. An execution to accomplish their specifications is automatically derived by

a planner. It makes use of actions defined in entity models (see Chapter 6) and calculates

which actions lead to the specified situation of a given goal. After executing such a plan,

the goal is achieved and the system may work on the next goal. A goal’s intention is to

describe a specific situation. Fulfilling a goal that the expression holds true and means that

the expressed properties were achieved. Fulfilling a task means that each of the referenced

goals must be achieved one after another. Hence, a goal is part of the solution that a task

describes. This allows reuse and flexible variation to define new tasks using existing goals.

Also, when specifying task models, no knowledge about Boolean expressions is required

since they are encapsulated by goals. This makes the task language usable for non-

technical users. The goal language itself supports more advanced expressions and therefore

its models should be defined by technical staff. Splitting up a task into different goals is

also suitable in cases where the system fails to fulfill a goal. The system can start over

again from the last fulfilled goal instead of planning the task from its beginning.

The task language is intentionally simple to enable non-technical users to define task

models. To this effect, task models may only consist of simple parameters, references to

goals and the lock mechanism (cf. Section 4.4). Consequently, the task language does not

support conditions, loops, parallel execution, generics, or object instantiation.

The locking mechanism helps to avoid boilerplate code in goals because otherwise the

following goals would require adjustments to also denote the expression of the former

goal. Considering different combinations several goals would exist in multiple variants

describing such combinations. Hence, the locking mechanism enables better reuse and

provides flexibility in task definitions.

Tasks and goals refer to a domain, a world, and a robot entity. The system described in

Chapter 5 interprets these references as references to specific entities. As mentioned, it

is possible to abstract over entities and thereby interpret these references as references to
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entity interfaces. This allows better reuse of tasks and goals, because this enables reuse of

different specific robots and worlds that implement the required interface. The languages

would not require any change for this, but the interpretation infrastructure would need to

validate that the specific entities bound by an application model implement all interfaces

used by any task or goal. Nevertheless, changing the entity language could make the

relation between an abstract entity (or entity interface) and an implemented entity explicit.
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Chapter 5

System Architecture

This chapter presents the reference architecture to execute tasks. An overview of the

reference architecture is depicted in Figure 5.1. To this effect, it connects two UIs – one

stationary, the other mounted to the robot – to a plan processor. The latter employs model

transformations to translate goals of tasks into models of PDDL [MGH+98, FL03]. The

Metric-FF [HN01] planner solves each goal and returns a sequence of actions to achieve that

goal. The task processor translates these actions to commands for an employed middleware

to achieve changes in the environment. The communication with the middleware can be

realized in different ways. The communication with SmartSoft [SSL11], for instance, is

realized as client/server communication. Despite that, the task processor is capable of

scheduling different tasks that are executed consecutively.

models
user

interfaces

robotics

middleware

robot

platform

action

planner
execution

system

user

integration
expert

domain
expert

planning
expert

robotics
expert

platform-independent

platform-specific

Figure 5.1: Illustration of the overall software architecture. User interfaces (left) instantiate

tasks models (right) that the task processor divides into goals. The planner

plans a sequence of actions for each goal. These are translated to commands

for the robotics middleware, which then are executed on a robot platform.

This chapter presents the software component models employed in the reference ar-

chitecture. First, Section 5.1 gives an introduction to C&C architectures and MAA, an

infrastructure for the development of C&C architectures in context of cyber phyiscal

21



Chapter 5 System Architecture

systems (CPS). Section 5.2 describes the overall architecture in terms of its component

models and their implementations. Afterwards, Section 5.3 presents the architecture’s

RTE, which consists of the application-independent architecture parts required to execute

an implementation of the reference architecture. Then, Section 5.4 explains the generating

of implementations for component models of the reference architecture from models of

the DSMLs described in Chapter 4. These implementations are specific to the models they

are generated from. Section 5.5 explains the parts of the architecture that are specific to an

application of the reference architecture. The parts include the implementation of the robot

and world interfaces and a realization of the communication to the middleware Smart-

Soft. Section 5.6 demonstrates different excerpts of exemplary architecture executions

in form of UML/P Sequence Diagrams. Section 5.7 concludes the chapter by discussing

the changes required to use the reference architecture with another middleware or in a

different application domain.

5.1 Component & Connector Architecture

C&C architectures enable software engineers to model the conceptual architecture of a

software system, while keeping the specific implementation of the system in separation

[MT00]. Functionality of a complex software system is thereby separated into system

independent components that consist of interfaces for data exchange. A component is a

unit that processes or stores information [MT00]. Each of them can be represented in

models as well as reused in various contexts. In particular, an architecture is a composition

of hierarchically structured and interconnected components, in which each component

represents an abstraction of functionality. The interconnection between components is

realized by means of connectors that represent data channels. They receive information

from a source and deliver them to a destination. A set of participating components

in an architecture and their corresponding connectors is called the configuration of an

architecture. Each configuration describes the inner structure of the current component

level. Related to the development process for software systems, C&C architectures might

be either directly involved or passively used to support development phases such as

analysis, design, implementation, and testing. A direct involvement, for instance, is the use

of models for software architectures in conjunction with a suitable code generator, which

is pursued in model-based software engineering (MBSE) [Rum11, Rum16].

MAA is a modeling infrastructure for C&C architectures [RRW14, RRW15b, RRRW15].

The modeling infrastructure encloses the MAA ADL, which supports encapsulation and

composition of components, connectors, and ports. Components are treated as black boxes,

which process or store information from the environment while hiding the internal structure

and behavior. Therefore, a component consists of directed and typed interfaces, called ports.

Those ports are used for communication with their environment, which is related to an inter-

component communication. The semantics for inter-component communication is based

on FOCUS [BDD+93, BS01], which is a infrastructure for stream based communication

between components. Despite the interfaces, a MAA component is characterized as either

22



5.2 Reference Architecture

atomic, when it performs computations, or composed, when it is composed of other

components. Therefore, atomic components consist of an explicitly defined behavior

while the behavior of composed components is derived by the behavior of its incorporated

components. The MAA language provides the opportunity of behavior embedding by

means of DSMLs [RRW15a], such as the I/Oω automaton language [Rum96]. In MAA,

software engineers are able to define the behavior of atomic ADL models independently of

the targeted platform by using DSMLs models or by supplying handwritten Java artifacts.

Besides the MAA ADL, the modeling infrastructure consists of an infrastructure for model

transformations and code generation [RRRW14]. An accommodated set of code generators

facilitates the process of code generation by providing concepts to translate an internal

representation of MAA models to artifacts in specific GPLs, such as Java.

5.2 Reference Architecture

ReferenceArchitecture

TaskProcessor

,
ResponseListener systemResponse

UserInterface task

prioritizedTask

deleteAllTasks

abortCurrentTask

LoggerisIdle

plan

executedAction

taskSuccess

planState

currentGoal

MAA

Figure 5.2: An overview of the reference architecture and its subcomponents TaskPro-

cessor, UserInterface, ResponseListener, and Logger.

The reference architecture is the concept of the C&C architecture model illustrated in

Figure 5.2. It contains four interconnected conceptual components. These components are

not necessarily realized as MAA components, but represent software modules with well

defined interfaces. The TaskProcessor component controls the execution of tasks and

maintains a prioritized queue of pending tasks. After the translation of a task’s goals into a

list of actions using the Planner component (Section 5.2.5), it delegates the execution of

these actions to an employed middleware. The middleware may confirm the execution with

messages that are handled inside of the ResponseListener component. The latter

translates the middleware messages into a middleware independent representations that can

be handled by the TaskProcessor. The UserInterface component includes the

human-robot interface, which instantiates tasks and sends them to the TaskProcessor
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component. Further, it can send commands to the TaskProcessor, indicating an abort

of a task execution or deletion of a task from the queue of pending tasks. The TaskPro-

cessor component emits status messages that can be handled by the Logger component.

The outgoing port isIdle of the TaskProcessor is additionally connected to the

incoming port isIdle of the UI, to inject an idle task to the TaskProcessor once it

is idle. An idle task is a predefined task that is automatically executed if the robot is idle.

An idle task may, for instance, make the robot move to a charging station. This feature is

optional. Our implementation uses the UI described in Chapter 7, the logger explained in

Section 5.3.3, and the ResponseListener depicted in Section 5.5.2.

5.2.1 Remote Operator

The execution of a task decomposes to a consecutive execution of actions of a plan for

that task. The execution of an action may either be successful or fail. Whereas successful

action execution is straightforward, its failure can be caused by different temporary or

permanent reasons. For instance, a robot moving from one location to another can be

stopped due to a passing person or due to a locked door. While the passing person blocks

the way for seconds only, a locked door can block it longer, or require human interaction

to open it. If the execution of an action fails, the TaskProcessor aborts the execution

of the current task and, after a short period of time, plans it again. Thereby, temporary

causes of failure could be overcome. If the execution of an action fails another time, the

robot is assumed to not be able to overcome the cause of failure on its own. In this case,

the control of the robot is handed over to a person, the remote operator. Depending on the

actual application, this person can have remote or local access to the robot’s sensors and

manipulators to control it. The remote operation again can be successful of fail. If it is

successful, task replanning is performed. If it fails, the current task is discarded.

5.2.2 Task Processor

The composed component TaskProcessor (Figure 5.3) models the system that sched-

ules and manages the execution of tasks. It comprises the subcomponents Controller,

PropertyCalculator, ActionExecuter, PlanVerifier, Planner, and the

InitialStateProvider. The ports task, prioritizedTask, systemRe-

sponse, as well as deleteAllTasks, and abortCurrentTask of component

TaskProcessor are all connected to its subcomponent Controller.

Subcomponent Controller manages the administration and execution of incoming

tasks. Tasks enter the system via the incoming ports task and prioritizedTask of

component type TaskProcessor. The Controller maintains a prioritized queue

of tasks that are planned to be executed. Prioritized tasks are added to the front of the

queue, whereas tasks entering the architecture via the task port are enqueued at the end

of the queue. The currently executed task is aborted if component TaskProcessor

receives true via port abortCurrentTask. On receipt of true through incoming port

deleteAllTasks, the system deletes all its buffered tasks. The architecture supports

24



5.2 Reference Architecture

TaskProcessor

Controller Planner

Plan

Verifier

,
Property

Calculator

Action

Executer

InitialState

Provider

task

prioritizedTask

systemResponse

deleteAllTasks

abortCurrentTask

currentGoal

plan

executedAction

taskSuccess

planState

getInitialState
query

goalplanIn
plan

action

action queryqueryOut
properties

queryIn actionResponse

actionExecuterResponse

response

response

validPlanplan

validatePlan

validPlan

getInitialState

taskSuccess

planState

clearLockedGoals

initialState

isIdle

allQueriesDone

isIdle

updateSuccess

MAA

Figure 5.3: An overview of all subcomponents of the TaskProcessor component and

their interconnections.

system interrupts, e.g., to execute an emergency stop when a physical button located on

the robot is pressed. The system receives those interrupts via the incoming port sys-

temResponse. A task consists of several goals that have to be satisfied sequentially

(see Section 4.4). To satisfy a goal the robot must perform actions such as moving be-

tween locations or picking up items. To execute a task, the Controller component

subdivides the task into its corresponding goals. To compute a plan, i.e., a sequence

of actions to satisfy the goal, component Controller simultaneously emits the goal

through its port goal and true via its port getInitialState. The latter notifies

the component InitialStateProvider to calculate the current state of dynamic

domain types. Goals may become locked. If a goal is locked, it must be always satisfied

by the planner (see Section 4.5). To unlock all locked goals, component Controller

emits true via its outgoing port clearLockedGoals. The component’s outgoing port

goal is connected to the incoming port goal of component Planner, whereas the

outgoing port getInitialState is connected to the incoming port getInitial-

State of component InitialStateProvider. When component Controller

receives a plan via its incoming port planIn, it forwards the plan via the outgoing port

validatePlan and expects to receive an answer indicating whether the plan is valid

via the incoming port validPlan. If a plan is valid, the component starts executing it.

Otherwise, the component discards it. To execute a plan, the component decomposes the

plan into the corresponding list of actions and tries to execute them in order. To execute

an action, it sends a message through its outgoing port action. Afterwards it expects

to receive a response indicating the result of executing the action via its incoming port

25



Chapter 5 System Architecture

actionExecuterResponse. An action may be executed successfully or aborted.

While planning, the Controller component informs its environment about the current

planning state via its outgoing port planState. If the system is neither planning nor

executing an action, component Controller sends true through port isIdle.

Component Planner calculates and emits plans that can be used to satisfy the goals

it receives. Component Planner uses the world state it receives via its incoming port

initialState as the initial state for calculating a plan. The calculated plan satisfies the

goal the Planner received most recently via its incoming port goal. After calculating

a plan, the component outputs it via port plan. The component additionally sends

information about the plan via its outgoing port response, e.g., information indicating

if the component successfully calculated a plan or if the plan is empty (meaning that the

goal is already fulfilled). Both outgoing ports are connected to component Controller,

while the outgoing port plan is additionally connected to the same named outgoing port

of component type TaskProcessor. When component Planner receives true via

port clearLockedGoals, it unlocks all currently locked goals.

Task Handling

Wait for &choose task
Task handling

Fetch goal &init. planner Calc.plan [failed] [replannings<MAX_REPLANNINGS]Call RemoteOperator
1 [else]

[RO succeeded]
[RO failed]Abort Task[succ.][plan empty] [plan not empty]

Execute next action
[actionavailable][no action available] [execution succeeded] [exec. failed]

[execution aborted]

[more goals available][else]

AD

Figure 5.4: An activity diagram illustrating the activities that are performed by the task

processor at runtime.

This section provides an overview of the activities performed by the task processor

component (Figure 5.3) at runtime. Figure 5.4 depicts an abstract view on the activities
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and their control flow. Once the task processor is initialized, it waits for tasks. As soon as

tasks are present, the task processor starts executing the task with the highest priority. At

first, the task is decomposed into its goals. Afterwards, the system tries to satisfy the goals

one after another by performing the following activities: The system tries to calculate a

plan to achieve the given goal. The planning process may fail or succeed. If it succeeds

and the plan is empty, the task processor is ready to start a new goal. If it succeeds and the

plan is not empty, the system tries to execute the plan. If the planning process fails, the

task processor either tries to calculate a plan again, if the maximum number of replanning

iterations is not reached yet, or calls the remote operator otherwise. In case of a successful

remote operation, the system again starts a replanning process. Otherwise, it aborts the

task execution and dismisses the current task. To execute a plan, its actions are performed

in order of appearance. If the execution of an action fails, the system initiates a replanning

process as described above. If the execution is aborted by a user, the system stops executing

it and dismisses the current task. If an action is successfully executed and its corresponding

plan contains more actions, the system executes the next action. If a successfully executed

action is the last one of a plan, the corresponding goal is satisfied. In this case, the system

tries to satisfy the next goal, if there is any, or starts the execution of a new task, otherwise.

«enumeration»

SystemResponse

«enumeration»

PlannerResponse

PLANNER_SUCCESS

PLANNER_FOUND_EMPTY_PLAN

PLANNER_FAILED

CD

ACTION_SUCCEEDED

ABORT_ACTION

ACTION_FAILED

REMOTE_OPERATOR_SUCCEEDED

REMOTE_OPERATOR_FAILED

INTERRUPTED

ABORTED

EMERGENCY_STOP

UPDATE_SUCCESS

Figure 5.5: A class diagram depicting the types used in the reference architecture. The

enumeration SystemResponse contains all actions and responses from the

environment of the system that the reference architecture is able to respond

to. The enumeration PlannerResponse contains all response types the

Planner component responds with.

5.2.3 Data Types

We use a CD to model all types that serve as data types sent via component ports as depicted

in Figure 5.5. The CD is comprised of two enumeration classes SystemResponse

and PlannerResponse. SystemResponse enumerates all message types that are

commands or feedback from the environment (e.g., the middleware) of the system the

task processor is running on. SystemResponse contains all possible result types of the

action execution. Success of the action execution is represented by ACTION_SUCCEEDED.

The failure of the execution of an action can yield ABORT_ACTION or ACTION_FAILED.

In case of ACTION_FAILED, the current goal is planned again. This is performed up to a

configurable upper bound of consecutive replanning iterations for a specific goal. If that
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bound is exceeded, the system assumes that the robot cannot execute the action on its own,

e.g., because it is stuck, lost orientation, the path to a destination appears to be permanently

blocked, or further similar scenarios (cf. Section 5.6). ACTION_FAILED should be used

by robot and world experts for scenarios, which are either assumed to not permanently

avoid a successful task execution or which may have alternatives (e.g., more than one path

to a certain destination) that could be solved by using another plan. If the upper bound of

replanning iterations is exceeded, the control is handed over to the remote operator who can

manually maneuver the robot out of the situation that caused the failure and decides whether

the failing task should be deleted or planned again. The activities of the remote operator

again can have different outcomes. REMOTE_OPERATOR_SUCCEEDED denotes that the

remote operator managed to solve the blocking event that caused the failure of the execution.

In this case the task is planned and executed again. REMOTE_OPERATOR_FAILED

denotes that the remote operator did not manage to solve the problem. In this case the

failing task is discarded. If the outcome of the action execution is ABORT_ACTION,

the entire task that contains the goal for the failing plan is discarded and no replanning

iterations are performed. This appears in scenarios where the robot or world is assumed to

impede a successful task execution permanently. For example, a task in which the robot

should follow a person who is not registered in the knowledge base. If the Controller

component has aborted the execution of a task, it sends the message ABORTED for further

processing. Besides that, SystemResponse contains messages to immediately stop

(EMERGENCY_STOP) or interrupt (INTERRUPTED) the execution of tasks on the robot

independently of a task. The type UPDATE_SUCCESS is used internally for asynchronous

message and event handling. It is sent when a response or an event that the system is

waiting on has been received or has occurred.

The types of PlannerResponse reflect the different results of the planning process.

PLANNER_SUCCESS denotes that the planner found a non-empty plan to solve a certain

goal. PLANNER_FOUND_EMPTY_PLAN denotes that the desired situation in the goal

that is being planned is already present, i.e., no actions have to be executed by the system

to fulfill that goal. PLANNER_FAILED denotes that the planner was not able to find a

valid order of actions that can solve the current goal.

5.2.4 Controller Component

The Controller component (Figure 5.6) is the central part of the task processor that

interacts with all other components. It keeps track of all information passed through the task

processor and stores a queue with all pending tasks. Internally, the controller is state based.

Figure 5.7 depicts a simplified version of this state machine. Here, depending on the current

state, different values are sent via the outgoing ports, controlling the behavior of all other

components in the task processor. When a component is executed, the MAA infrastructure

periodically computes values for the outgoing ports of all components. We refer to each

of this computation steps as tick. One transition in the automaton depicted in this figure

can fire during a single tick. For simplicity, this figure omits all looping transitions that

have no explicit stimulus and condition (i.e., a tick that does not change any variable
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ControllerTask GoalTask prioritizedTask ActionPlan planIn Boolean getInitialStateBoolean deleteAllTasks Boolean isIdleBoolean abortCurrentTask Plan validatePlanSystemResponse Boolean taskSuccessSystemResponse actionExecuterResponseBoolean validPlanPlannerResponse PlanStateBoolean currentTaskAbortedBoolean allQueriesDone

MAA

Figure 5.6: The Controller component controls the entire task processor. It manages

a queue of pending tasks, controls the planning process, and manages the

execution of actions.

or state). The handling of interrupts via the implementation of InterruptHandler

(see p. 30), is also omitted in this automaton. An interrupt can occur in any state, and

handling an interrupt can change the current state to any other state. The automaton has the

hierarchically decomposed state working and the state emergencyStop. From any

substate of the state working, the automaton can change to state emergencyStop, and

from that state the automaton can change back into the state working, i.e., its substate

waitForNewTask.

Besides controlling the task processor, the controller is responsible for interrupt handling

and interacting with the user (e.g., confirming loading of an item on the tablet UI).

ε/resetTasksAndGoals()

State Machine
[!goalQueue.isEmpty()]ε / goal = goalQueue.poll(),getInitialState= true

[planIn != null &&planIn.getGoal()==currentGoal] ε /validatePlan = planIn

[replannings >=MAX_REPLANNINGS] ε /planState = CALL_RO[replannings <MAX_REPLANNINGS] ε /planState = REPLAN [roSucceeded] ε /replan(), replannings++, planState = REPLAN

[response==PLANNER_FAILED&& replannings>=MAX_REPLANNINGS] ε /replan(),replannings++,planState=CALL_RO

[!roSucceeded] ε /currentTaskAborted = true,taskSuccess = false

[response== EMPTY_PLAN] ε /planState = SUCCESS 

[actionSucceeded &&hasNextAction] ε /currentAction = nextAction,action=currentAction
[actionSucceeded&& !hasNextAction] ε /planState = SUCCESS

[isPlanValid] ε /currentAction = currentPlan.get(0),action = currentAction
[response==  FAILED&& replannings<MAX_REPLANNINGS] ε /replan(), replannings++,planState = REPLAN [!actionSucceeded] ε

emergencyStop
waitForNewTask

executePlanner
waitBeforeReplanning

validatePlan

callRemoteOperator

executeActionworking

Figure 5.7: The Controller component is state-based internally.
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A new task can be added to the controller in two different ways: Normally, the new task

is enqueued to the task queue. A prioritized task can be directly added as first element

of the queue. If the controller receives an interrupt or an abort message via the incoming

port abortCurrentTask, it handles these events first. On start, the controller is in

state waitForNewTask. If the task queue is not empty, it takes the first task of the

queue and starts to process it. Then it changes to state executePlanner. In state

executePlanner, it sends the current goal of the task to the Planner component.

It changes to state validatePlan indicating that the controller waits for the planner

to compute a plan. Next, there are three different cases: If the planner found an empty

plan, which means that no actions need to be executed to fulfill the desired situation, it

changes back to state waitForNewTask and processes the next goal of the current task,

or starts a new task in case there is no next goal in the current task. If the planner failed

finding a valid plan, the controller changes to state waitForNewTask, and increases

the counter that counts the number of replanning iterations for the current goal. Then

it executes the planner with the same goal again. If the number of replanning iterations

exceeds an upper constant bound, it changes to state callRemoteOperator and hands

over the control to the remote operator. If the planner found a valid, non-empty plan, the

controller checks the validity of that plan with component PlanVerifier. In case of

a valid plan, it changes to state executeAction and replans the goal otherwise. In

state executeAction, all actions of the plan are executed consecutively, until either the

end of the list of actions is reached or the execution of an action failed. In the latter case,

the controller changes to state waitBeforeReplanning. In this state the controller

waits a constant time before replanning. This waiting time can be set via the incoming

port waitTimeBeforeReplanning. Without waiting time, the situation probably

has not changed when the action is executed again in comparison to the failing situation.

If all actions of a plan are executed successfully, the controller changes back to state

waitForNewTask and starts to plan the next goal of the task, or a new task if the task

was completely executed. The current planState and the taskSuccess are reported

to the environment via outgoing ports of the component controller.

Interrupt Handling

«interface»InterruptHandler+ ControllerState handleInterrupt()+ Optional<SystemResponse> checkIdleInterrupt()+ void handleROFailed(SystemResponse)+ void handleUserInterrupt()+ void sendAbortMessage()+ void triggerCallRO()
InterruptHandlerFactory+ void setInstance(InterruptHandler)+ InterruptHandler getInstance()

CD
Figure 5.8: The InterruptHandlerFactory stores an instance of the interface In-

terruptHandler. An InterruptHandler provides several methods

for different types of interrupts.
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Some events that occur at runtime of the system require the architecture to react inde-

pendently of its current state. To this effect, the Controller supports interrupts. At

the beginning of each tick the controller checks whether a new interrupt occurred and

handles these before performing anything else. The interface InterruptHandler,

depicted in Figure 5.8, offers several methods to define the handling of different kinds of

interrupts. The implementation of this interface is specific to the used middleware and

should be independent of the reference architecture. The InterruptHandlerFac-

tory of the reference architecture provides the instance of the InterruptHandler,

because the implementation of the current interrupt handling method is not known in

the reference architecture and, thus, is hidden to the controller. In combination with

SmartSoft as middleware, the class SmartSoftCommunicationProtocol imple-

ments the InterruptHandler. The InterruptHandler provides the following

methods:

• The method handleInterrupt() is invoked when an interrupt occurs outside of

the architecture and its UIs. It returns the ControllerState that the controller

changes to.

• triggerCallRO() is invoked if the control over the robot is taken over from

outside the system.

• The implementation of handleROFailed(SystemResponse) determines the

necessary operations to be executed in case the remote operator did not manage to

solve the problem of robot or world. This could be, e.g., that the robot should return

to its home station. However, the current implementation causes the controller to

change to state waitForNewTask (cf. Figure 5.7) and start the execution of the

next queued task.

• The method checkIdleInterrupt() checks whether an interrupt from the

middleware is received while the reference architecture is in idle mode.

• The method sendAbortMessage() is used internally to send an abort message

to all components of the task processor in case tasks are currently in execution when

the control is handed over.

User Interaction

Some task types require interaction with a human, e.g., for loading an item to the robot. For

interaction where the robot needs a person to do something, it asks to confirm the operation

and the response determines the further behavior of the task processor. User response

handling is integrated asynchronously, i.e., the task processor does not wait actively inside

of a single tick for a user response.
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PlannerGoal PlanQuery initialState PlannerResponseBoolean clearLockedGoals
MAA

Figure 5.9: The Planner component obtains a goal and the current state of the robot and

world. Given a set of actions with preconditions and effects, it tries to finds a

valid sequence of actions that lead to the goal situation.

5.2.5 Planner Component

Figure 5.9 depicts the Planner component. For a given goal on the incoming goal

port, it calculates and emits a plan on the outgoing port plan that satisfies the goal. It

uses the world state it receives via its incoming port initialState from component

InitialStateProvider (see Section 5.2.6) as the initial state for calculating a plan

to satisfy the goal it received most recently via its incoming port goal. After calculating

a plan, the component outputs it via port plan. The component additionally sends infor-

mation about the plan via its outgoing port response, e.g., indicating if the component

successfully calculated a plan or if the plan is empty (cf. Figure 5.5). Both outgoing ports

are connected to component Controller, while the outgoing port plan is additionally

connected to the same named outgoing port of component type TaskProcessor. When

component Planner receives true via port clearLockedGoals, it unlocks all locked

goals. Chapter 6 describes the interfaces, classes, and internal behavior of the planner in

more detail.

5.2.6 InitialStateProvider Component

QueryInitialStateProviderBoolean getInitialStateBoolean updateSucces MAA
Figure 5.10: On receipt of a flag, the InitialStateProvider component provides

the planner with the current robot and world state. To do so, it can query

properties from the robot and world interface.

Component type InitialStateProvider, depicted in Figure 5.10, calculates and

provides current robot and world states on request. When the component receives true

via its incoming port getInitialState, it calculates the current world state and

emits it via its outgoing port query, which is connected to port initialState of

component Planner. The InitialStateProvider is implemented to perform the

update asynchronously. This is necessary to decouple the update mechanism, which relies
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on the middleware, from the execution of the architecture. If the component receives

true via the incoming port getInitialState, it updates the robot and world state by

calling queries of the middleware. Once the responses of the queries have been handled,

the controller component sends true via its outgoing port allQueriesDone, which

is connected to the incoming port updateSuccess of the initial state provider. Once

this value has been received the response of the queries, in other words the initial state, is

emitted via the outgoing port. The implementation of the InitialStateProvider is

generated from the robot and world entity models (see Section 5.4).

5.2.7 PlanVerifier Component

PlanVerifierPlan Boolean validPlanMAA
Figure 5.11: The PlanVerifier component checks if a passed plan is valid.

Figure 5.11 depicts the PlanVerifier component that obtains a plan via its incoming

port and outputs a Boolean value indicating whether this plan is valid or not. This concept

enables employment of further plan analysis. For example, it may check several constraints

not reflected in the robot or world interfaces. For example, it can check whether a plan that

results from a replanning process equals the former plan, which led to a failing action. A

valid order of actions, as well as satisfaction of preconditions are already checked in the

Planner component.

5.2.8 ActionExecuter Component

ActionExecuterAction Query queryOutQuery queryIn SystemResponse actionResponseMAA
Figure 5.12: The ActionExecuter component controls the execution of actions.

Figure 5.12 presents the component ActionExecuter that is responsible for the

execution of actions. After receiving an action via its incoming port action, the compo-

nent requests information about the current world state via its outgoing port queryOut.

On receipt of an answer on port queryIn, the component starts to execute the action

by delegating the execution to the employed middleware. The implementation of the

ActionExecuter is generated from the robot and world entities (see Section 5.4). The

implementations of the entity interfaces that are also generated from entity models then
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send the actions to be executed to the middleware of the robot (or the employed world

middleware) and adapt the response from the middleware to SystemResponse mes-

sages that can be further evaluated in the architecture. The component’s outgoing port

queryOut indicates additional information about the action execution.

5.2.9 PropertyCalculator Component

PropertyCalculatorQuery Query propertiesMAA
Figure 5.13: The PropertyCalculator component obtains queries for dynamic prop-

erties of robot and world. It fetches these properties from robot and world

interfaces and returns them via the outgoing port properties.

Component PropertyCalculator, depicted in Figure 5.13, requests properties of

the current robot and world states via the employed middlewares. It has an incoming port

query of type Query and an outgoing port properties, which is of type Query as

well. An object of type Query consists of a list of properties. A single property represents

a map entry mapping a tuple of keys to a single value. For example, an entry may map a

one-tuple consisting of a unique person identifier to a String representing the location of the

person associated with the identifier. On receipt of a query, the component iterates through

all properties the query consists of. While iterating, the component calculates and sets the

values associated with the keys of the properties. Eventually, it emits the modified query.

The implementation of the PropertyCalculator component is generated from robot

and world entity models (Section 5.4).

5.3 Runtime Environment

This section describes the runtime environment of the reference architecture that is invariant

to an actual application’s tasks, domain, entities, and goals. It introduces a logging

mechanism that is used system-wide for logging of errors, and as event bus, e.g., for

asynchronous communication between the task processor and the user interfaces. This

section also explains the interfaces that must be implemented for each robot and each

world entity.

5.3.1 Model Realization Base Classes

Actions, Goals, Plans, and Tasks each correspond to runtime classes that are

extended by the generated classes for each respective model. These runtime classes contain

fields and methods that are required in all instances of the respective model type. The class
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Action contains a variable of type Identifier. Two actions are equal to each other

if their identifiers are equal to each other. The class Goal contains an Identifier

variable as well. Besides that, it has three Boolean variables, indicating if a goal is locked,

unlocked, or parametrized with the command unlockAll. Class Plan extends an

ArrayList of Actions. To identify, which goal a plan belongs to, the constructor

requires it as argument and stores it in a variable of type Goal.

Each Task object again contains an identifier and a List of Goals that have to

be fulfilled to execute this task. Furthermore, each task can have a Map<String,

String> that stores goal parameters as type-value pairs. Queries inside the system

architecture extend the runtime class Query. They are identified by a consecutively

numbered, globally unique Integer value and contain a List of type Property. Each

property is identified by a contained variable of type Identifier.

5.3.2 Robot and World Interfaces

This subsection describes the entity interfaces generator for robot and world entities.

They map properties and actions to middleware specific implementations, for example, to

SmartSoft. In this case, property queries are mapped to tcp-smartsoft calls, which is

described in Section 5.5.3. To keep the entity models of robot and world independent of

the used middleware, only interfaces are generated for the entities. From each entity model

we generate one interface. That means, for one robot and one world entity, we generate one

interface for the world and one for the robot. The interfaces then can be implemented for

different middlewares. This enables to exchange the middleware while assisting to retain

the same functionality and increases reusability of the application independent entities.

An application consists of one robot entity and one world entity. The implementations for

each robot and world interface can be accessed via the generated class EntityManager.

The EntityManager contains two static methods to access the current object of the

implementation of the entities. To avoid inconsistencies, the entity manager is the only

way to access the current world and robot entities. Each generated entity interface has an

abstract method void update(), which updates the entity state by requesting relevant

information from its environment, i.e., the middleware. The entity interfaces contain

abstract methods for all actions and properties defined in the entity models.

For each action in the entity model we generate one abstract method without return

type. The implementation then should execute the action by implementing the respective

method from the interface, for instance with calls to the middleware. Action methods in the

interface do not have a return value, since the result of the action execution is checked in

the component ActionExecuter. This decouples the reference architecture’s reaction

on a positive/negative action execution from the call to the middleware. We decouple the

call from the answer handling, because different middlewares can use different forms of

communication with the reference architecture. The storage of the result of the action

execution depends on the application, which contradicts to the application independence

of entity interface. Thus it is not part of the entity interfaces. For each property defined

in an entity model, we generate two abstract methods in the entity interface. Each of
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these methods has the same parameters as the properties in the entity model. The return

value of these methods is of the same type as the property defined in the entity model it is

generated from. One method is used to query the property from the middleware. The other

method that is generated from each entity property is used to determine the current state

of the query that is stored in the entity implementation. This is required for the planner

component. For example, if the robot entity defines that the robot can pick up and deliver

items, the planner requires to have access to all currently loaded items. The world entity

interface also contains methods to query all known objects of each domain type (e.g., items,

rooms, and persons). The planner needs these methods to obtain a finite set of all instances

of the domain types.

5.3.3 System-Wide Logging

The RobotLog class is both used as message logger and event bus. It is implemented

as a singleton class that is observable by java.util.Observers. The messages that

the RobotLog logs are of type LogMessage. Each message is composed of a time

stamp, a LogType, and a String containing a detailed description of the logged event.

A LogType again is comprised of a SeverityLevel and a String prefix and suffix.

The severity level can be ERROR, WARNING, INFO, or DEBUG (in decreasing order of

severity). Each LogType has a default severity level, but the severity level can also be

adjusted individually for each logged event. To prevent unintended ambiguous naming of

LogTypes, each domain should define a class that stores all LogTypes of its domain as

constants. The prefix of a LogType indicates the domain the message originates from,

e.g., PLANNER. It has to be globally unique. The suffix defines the exact message type

and must be unique for a given prefix. Table 5.1 depicts a list of all LogTypes used in

the reference architecture and their default severity level. The LogType prefix LOG can

be used if no domain for a message is specified.

By default, class SysOutLogger observes the RobotLog and prints all log messages

to the console. It can be enabled/disabled with respective methods. Figure 5.14 depicts all

methods of RobotLog and SysOutLogger.

Errors may include an Exception. Besides of the logging of events log messages

are used for testing purposes. Tests can observe the logger and check whether a certain

event has occurred. Additionally, the RobotLog is used for the communication of task

processor and tablet UI. Since both are executed on different machines, using a logger

as event bus is a convenient way to establish simple communication, for instance, for

confirming loading an item to the robot via the dedicated tablet UI.

5.4 Generators for iserveU Models

This section explains which parts of the task processor are generated from entity, task,

and goal models, which are explained in Chapter 4. Section 5.3.2 explains the gen-

eration of entity interfaces and the class EntityManager. Implementations for the
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Prefix Suffix Default Severity

ARCHITECTURE CONTROLLER_STATE DEBUG

IDLE INFO

NEW_TASK INFO

EXECUTING_TASK INFO

ABORTING_TASK INFO

FINISHED_TASK INFO

TASK_SUCCESS INFO

TASK_FAILED WARNING

REPLANNING WARNING

CALL_REMOTE_OPERATOR WARNING

REMOTE_OPERATOR_SUCCESS WARNING

REMOTE_OPERATOR_FAILED WARNING

LOG DEBUG DEBUG

INFO INFO

WARNING WARNING

ERROR ERROR

KB UNKNOWN_PERSON ERROR

UNKNOWN_LOCATION ERROR

UNKNOWN_ITEM ERROR

ROBOT CHARGING INFO

EMERGENCY_STOP WARNING

ITEM_LOADED INFO

ITEM_UNLOADED INFO

SUCCESS INFO

ERROR_UNKNOWN_LOCATION ERROR

ERROR_PATH_BLOCKED ERROR

ERROR_PERSON_LOST ERROR

ERROR_UNKNOWN_PERSON ERROR

ERROR_PERSON_NOT_FOUND ERROR

UNKNOWN_RESPONSE ERROR

SMARTSOFT NOT_RESPONDING ERROR

TCP CONNECTED INFO

DISCONNECTED INFO

CONNECTION_LOST WARNING

USERINTERACTION WAIT_FOR_INTERACTION INFO

OK INFO

ABORT INFO

PLANNER SUCCESS INFO

FAILED ERROR

EMPTY INFO

Table 5.1: All LogTypes of logging messages in iserveU with their default Sever-

ityLevel.

components ActionExecuter, InitialStateProvider, and PropertyCal-

culator are generated. Further, a code generator generates factories that instantiate

the respective generated component implementation. The implementations of these com-
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ERRORWARNINGINFODEBUG
«enumeration»SeverityLevel

RobotLog
- String prefix- String suffixLogType- String message- Date timeStampLogMessage+ String toString()

+ enable()+ disable()+ update(Observable, Object)SysOutLogger«interface»Observer+ addMessage(LogType)+ addMessage(LogType, String)+ addInfo(LogType, String)+ addWarning(LogType, String)+ addError(LogType, String)+ addError(LogType, Exception)+ deleteObservers()
CDObservable

Figure 5.14: The class RobotLog is observable. By default, the SysOutLogger ob-

serves the RobotLog. The robot log logs LogMessages that consist of a

certain LogType, a time stamp, and a String that describes the logged

event. LogType consists of a SeverityLevel, a String prefix indicating

the domain of the logged event, and a suffix String for a detailed description

of the logged event type.

ponents are specific to the models of entities. The implementation of the component

IntialStateProvider makes use of the generated PropertyFactory to create

property objects for all properties defined in the robot and world interfaces. It calls the

generated stateOfX() methods that are contained in the generated entity interfaces to

set the current state in each property object. It adds all created properties to a list and

returns it via its outgoing port, if the component receives true on its incoming port. Similar

to the IntialStateProvider, the implementation of the PropertyCalculator

creates new instances of properties and assigns them their current value from robot and

world interfaces. Whereas the IntialStateProvider queries all available properties

of the domain, the PropertyCalculator returns properties part of a passed query.

The generated implementation of the ActionExecuter contains two methods for

each action that is defined in the entities. One method to execute the action and one to send

a query to the PropertyCalculator. This query is used to obtain the current state of

the properties that are used in parameters of an action. The execute method first checks, if

the responses for all queries are already available, and then checks the precondition of the

respective action. If the precondition holds, the actions’ method of the entity interface is

called. The implementation of this method is responsible to delegate the action execution

to the employed middleware. If the precondition is violated, the implementation of the

action executer returns false via the outgoing port actionResponse. A successful

action execution is never sent from the generated implementation of the action executer. It
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SmartSoftUsageDeployer

TaskProcessortask

prioritizedTask

deleteAllTasks

abortCurrentTask

,

ResponseListener systemResponse

currentGoal

executedAction

taskSuccess

planState

plan

isIdle

MAA

Figure 5.15: The SmartSoftUsageDeployer component is composed of the two

components TaskProcessor and ResponseListener. It is the outer-

most component, which is deployed to the target system and started with class

SmartSoftUsageStarter.

has to be injected into the reference architecture by the implementation of the Respon-

seListener component (see Section 5.5.2). Besides the component implementations,

the generator generates implementations for all action and goal models for and all prop-

erties contained in the entity models. These implementations extend the runtime classes

presented in Section 5.3.1. Additionally, a factory and an enumeration with identifiers for

each model type are generated. The factories create instances of all models of a model

type. For example, there is an ActionFactory that is able to create all types of actions

that are modeled as part of the entire system. For task models, only a factory and an

enumeration type with identifiers is generated.

5.5 Application-Specific Architecture Parts

This section describes the parts of the reference architecture that depend on a specific

underlying middleware for the reference architecture. The middleware that is used for

the implementation is SmartSoft. The section starts with a description of the MAA com-

ponents that are used for this application scenario, the SmartSoftUsageDeployer

and the ResponseListener. Section 5.5.3 explains the robot and world interface

implementations for SmartSoft. The communication between the reference architecture

and SmartSoft is explained in Section 5.5.4 and Section 5.5.5. Afterwards, the generated

data types and the knowledge base (Section 5.5.6) implementations are introduced. The

section ends describing of the architecture starter (Section 5.5.7).
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5.5.1 SmartSoftUsageDeployer Component

Figure 5.15 depicts the SmartSoftUsageDeployer component. It is comprised of the

components TaskProcessor and ResponseListener. The incoming ports task

and prioritizedTask of the component SmartSoftUsageDeployer enable to

add tasks either at the front or at the end of the task processor’s task execution queue.

deleteAllTasks resets this queue, and abortCurrentTask aborts the execution

of the currently executed task. The values of the outgoing ports can be used for ana-

lyzing or monitoring the system state. The outgoing systemResponse port of the

ResponseListener is connected to the systemResponse port of the TaskPro-

cessor. All incoming ports of the SmartSoftUsageDeployer are connected to the

TaskProcessor and all outgoing ports of the TaskProcessor are connected to the

composed component SmartSoftUsageDeployer.

5.5.2 ResponseListener Component

ResponseListener
SystemResponse

MAA

Figure 5.16: The ResponseListener component adapts message responses from the

middleware to values of SystemResponse to be further processed inside

of the TaskProcessor component.

The ResponseListener component, depicted in Figure 5.16, has one outgoing port

systemResponse of the enumeration type SystemResponse (see Section 5.2.3). If

the SmartSoftCommunicationProtocol has obtained a new SystemResponse

as result of communication with SmartSoft, it is set as value of the outgoing port and thus

integrated into the architecture. The value then is further processed in the TaskProces-

sor component.

5.5.3 Robot and World Implementation

Section 5.3.2 explains the robot and world interfaces that have to be implemented by

each specific robot and world entity. This subsection explains the implementation of

these interfaces. For example, the robot can move, load, and unload items and the world

contains a graph with named locations as vertices and edges indicating adjacent locations.

A location is of type Room and has a unique name which it can be identified with. An item

is of type Item and, analog to the room, has a unique name. Besides delivering items,

the robot can guide and follow persons. Each person has a name and a beacon id, and is

identifiable by the beacon id. The domain types Room, Item, and Person are modeled

as CD, from which Java classes are generated. The robot is controlled by the middleware
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SmartSoft that stores a model of the world, which is used to build up the world for the

architecture. Current values of properties reflected in SmartSoft’s domain can be obtained

by sending a SmartSoft query via a TCP connection. The value then is the result being sent

back from SmartSoft. Similar to that, actions can be sent to SmartSoft via TCP. The result

of the action execution is sent back as response to the action. All communication with

SmartSoft is performed by the Communicator (see Section 5.5.4). The implementation

of the entity interface of the world is the class RoomsWorld. It maintains a set of

all Rooms in the world and stores an adjacency map, mapping each room to the set of

rooms it is connected to. The class SmartSoftCommunicationProtocol wraps

the communicator and offers methods to send all possible control commands to SmartSoft,

while adapting the responses of these commands back to architecture-internal messages.

5.5.4 SmartSoft Communicator

The singleton Communicator class maintains the communication to SmartSoft via a

TCP/IP client. The IP address and port it listens on can be set with setter methods to

configure them during deployment of the system. The Communicator implements

the interface Runnable and is executed in a separate thread. It can be started and

stopped. If it is started, it continuously listens and waits for an incoming message from

the iserveUServer. That means, a message is sent from SmartSoft to the server,

which delegates it to the communicator. This is depicted in Figure 5.17. If a message is

present, the communicator enqueues it to a SynchronizedQueue. From that queue,

the message can be further processed by the reference architecture. This processing is

done by the SmartSoftCommunicationProtocol.

5.5.5 Communication Protocol

iserveUServer SmartSoftReference

Architecture

«tcp»«tcp»

Figure 5.17: The reference architecture and SmartSoft contain a TCP client. These clients

communicate with each other via the iserveUServer that delegates all

messages from one client to the other.

This section gives a short overview of all messages that are exchanged between Smart-

Soft and the reference architecture. Figure 5.18 lists all responses from SmartSoft and

their adaptations to SystemResponses used by the architecture. This protocol deter-

mines whether a failure of an action execution with a certain error type (e.g., the loss of a

person) results in ACTION_FAILED or ACTION_ABORTED. ACTION_FAILED results

in replanning of the planner, which in case of multiple consecutive failures eventually

lead to a remote operator call, whereas ACTION_ABORTED discards the task that the

failing action belongs to. The different success messages from SmartSoft are mapped to
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the SystemResponse ACTION_SUCCEEDED. Similarly, the remote operator messages

have respective SystemResponse messages.

SmartSoft Response SystemResponse

(SUCCESS(OK)) ACTION_SUCCEEDED

(SUCCESS NIL) ACTION_SUCCEEDED

(ERROR(UNKNOWN LOCATION)) ACTION_ABORTED

(ERROR(PATH BLOCKED)) ACTION_FAILED

(ERROR(PERSON LOST)) ACTION_ABORTED

(ERROR(UNKNOWN PERSON)) ACTION_ABORTED

(ERROR(PERSON NOT FOUND)) ACTION_ABORTED

(REMOTE-OPERATION-SUCCESS) REMOTE_OPERATOR_SUCCEEDED

(REMOTE-OPERATION-FAILED) REMOTE_OPERATOR_FAILED

Figure 5.18: A list of possible responses from SmartSoft and its adaptions to SystemRe-

sponses that also are processed in the reference architecture.

The architecture communicates with SmartSoft via a TCP connection (see Section 5.5.4)

and follows a strict protocol. SmartSoft and the reference architecture provide commu-

nication interfaces via TCP clients. Both clients are connected to the iserveU server that

delegates all messages from one client to the other one. Figure 5.19 depicts the commands

that are sent to SmartSoft via the CommunicationProtocol, depending on the task

type that is currently executed in the architecture. The right column represents all possible

responses that SmartSoft replies with to the command given in the left column. The

architecture reacts differently on different error types, as depicted in Figure 5.18. Some

commands are parametrized with room names, symbolic location descriptions, or beacons

that belong to a specific person. The values for these parameters are stored to and retrieved

from knowledge bases. The information contained in knowledge bases are requested

from SmartSoft with queries. All SmartSoft queries used by the architecture are listed in

Figure 5.20.

5.5.6 Knowledge Base

The singleton KnowledgeBase class administrates the artifacts of the domain and

information about them. It provides information about all items, their location and carrying

status, and all persons, their location and whether they are currently guided or followed

by the robot, which is not covered by SmartSoft. The knowledge base is a central storage

that the reference architecture and the UIs can read from and write to. For instance, the UI

displays all items from the KnowledgeBase that the robot can deliver. When the robot

delivers the item it changes its location to the new room. The KnowledgeBase provides

two methods to store and restore this data. To store an object, the data is serialized as a

JSON file, which can be deserialized with the restore method. This enables the user to

reuse an existing KnowledgeBase from a previous session (cf. Section 7.1).
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Request Possible Responses

(tcb-deliver-from-to ?from ?to) (SUCCESS NIL)

(ERROR(UNKNOWN LOCATION))

(ERROR(PATH BLOCKED))

(tcb-approach-location ?location) (SUCCESS NIL)

(ERROR(UNKNOWN LOCATION))

(ERROR(PATH BLOCKED))

(tcb-follow-person ?person) (SUCCESS(OK))

(ERROR(PERSON LOST))

(ERROR(UNKNOWN PERSON))

(ERROR(PERSON NOT FOUND))

(tcb-guide-person ?person ?location) (SUCCESS(OK))

(ERROR(PERSON LOST))

(ERROR(UNKNOWN PERSON))

(ERROR(UNKNOWN LOCATION))

(ERROR(PERSON NOT FOUND))

(tcb-joystick-navigation) (SUCCESS NIL)

(tcb-stop-joystick-navigation) (SUCCESS NIL)

(tcb-call-remote-operator) (REMOTE-OPERATION-SUCCESS)

(REMOTE-OPERATION-FAILED)

Figure 5.19: A table containing commands that can be sent to SmartSoft and all possible

responses it replies with. Parameters are denoted with a leading ’?’.

Query Example Result

GET-CURRENT-LOCATION KITCHEN

GET-BATTERY-VOLTAGE 24.1

GET-ALL-LOCATIONS KITCHEN,ROOM1,ROOM2

GET-ADJACENT-LOCATIONS (KITCHEN,ROOM1),(ROOM1, ROOM2)

Figure 5.20: A table with queries that can be sent to SmartSoft. The right column gives

exemplary query result values.

5.5.7 Architecture Starter

The Executer maintains and controls the execution of the SmartSoftUsageDe-

ployer component. It offers methods to start, stop, or run the reference architecture

execution. Additionally, it has methods to inject values into the component’s incoming

ports. This is mainly the case if new tasks are added to the architecture or a task should

be aborted. For the iserveU project, the executer offers the possibility to configure the

reference architecture with different parameters. Among other things, it includes the

configuration of an optional idle task that is executed if the robot is idle for a given time. If

the idle task is enabled, the robot moves to its home station. Otherwise, it does nothing.
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5.6 Exemplary Execution Excerpts

This section presents exemplary excerpts of the architecture information flow at runtime.

Section 5.6.1 describes the setting in which the execution of an exemplary delivery task

takes place. Afterwards, six scenarios explain the information flow in the scenario situ-

ations. The first scenario (Section 5.6.2) is the successful delivery of an item to a target

location. The second scenario (Section 5.6.3) describes a situation in which the path is

blocked with a temporary obstacle, which disappears after a short time. In the third scenario

(Section 5.6.4) the obstacle does not disappear, but a remote operator manages to maneuver

the robot to circumvent it. In the fourth scenario (Section 5.6.5), the remote operator is

not able to circumvent the obstacle. The fifth (Section 5.6.6) and sixth (Section 5.6.7)

scenarios depict situations where the task is aborted via the desktop UI and the tablet UI.

5.6.1 Setting

In all of the following exemplary excerpts, the architecture attempts to execute a deliver

task. The task consists of one goal, and makes the robot deliver a configurable item to

a configurable location. In the following examples, the robot should deliver the item

bandages to room r4043. The robot is initially located in room r4043, while the item

bandages is initially positioned in room seminarraum. To reach room seminarraum from

room r4043, the robot has to traverse room flur. Vice versa, the robot has to traverse room

flur to reach room r4043 from room seminarraum.

5.6.2 Successful Deliver

The sequence diagrams depicted in Figure 5.21, Figure 5.22, Figure 5.23, and Figure 5.24

illustrate an exemplary excerpt of the information flow of the architecture on receipt of a

new task. Further information about the task and the execution environment are given in

Section 5.6.1. In this example, the task is executed successfully without any incidents.

The execution starts with component controller receiving the task (Figure 5.21)

and ends after the task has been completely executed (Figure 5.24). Figure 5.21 il-

lustrates the planning process and the execution of the first action. On receipt of the

deliver(r4043,bandages) delivery task, component controller signalizes

component initialStateProvider to output the current state. Further, it sends the

first goal of the task to component planner. The planner component waits for the

arrival of an initial state when receiving a new goal. Once component planner receives

the initial state from component initialStateProvider, it calculates and outputs

a plan that satisfies the goal under consideration of the initial state it received. In the

next time slice, component controller receives the plan and forwards it to component

planVerifier. After checking the plan, component planVerifier sends a mes-

sage, indicating whether the plan satisfies its requirements to component controller.

In this case, the plan is valid. Since the plan is valid, component controller extracts

the actions that are necessary to fulfill the plan. The component sends the first action,
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:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider

deliver(

r4043,

bandages)

doProvideInitialState()

getPlanDeliver(..)

setInitialState(state)

plan

verify(plan)

true

moveTo(flur)

getRobotLocation()

robotLocation

ACTION_SUCCEED

SDSD

Figure 5.21: The planning process of a delivery task and the successful execution of a

moveTo(flur) action.

which should make the robot move to room flur, to subcomponent actionExecuter.

The actionExecuter has to check if the action’s precondition is satisfied, hence it

emits the corresponding query to component propertyCalculator, which answers

with the appropriate properties. In this case, the action precondition is satisfied, the ac-

tionExecuter successfully executes it, and sends information about the execution to

component controller.

Figure 5.22 depicts the execution of the next two actions. Component controller

tells component actionExecuter to execute the action moveTo(smrRaum). Com-

ponent actionExecuter has to check if the action’s precondition is satisfied, hence

it emits the corresponding query to the propertyCalculator component. The com-

ponent propertyCalculator answers with the appropriate properties. In this case,

the action’s precondition is satisfied, the actionExecuter successfully executes it,

and sends information about the execution to component controller. Next, the con-

troller component initiates the execution of the action pickup(bandages) by

sending an appropriate message to component actionExecuter. The action exe-

cution is successful. Afterwards, component actionExecuter notifies component

controller of the successful execution. In the end, the robot has to drop the item.

The execution of these four actions is analogous to the previously described ones and is

illustrated in Figure 5.23 and Figure 5.24.
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:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider

getRobotLocation()

robotLocation

ACTION_SUCCEED
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getRobotLocation()
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ACTION_SUCCEED

moveTo(smrRaum)

SDSD

Figure 5.22: Successful execution of two tasks.

5.6.3 Path Temporarily Blocked

In this example, the path between room r4043 and room flur is blocked when the robot

tries to move from room r4043 to room flur. After a while, the blockade between the two

rooms is lifted. This situation is depicted in the sequence diagrams Figure 5.25.

In Figure 5.25 the architecture receives a new task and determines the actions to execute.

The execution of the action moveTo(flur) fails because the path between room r4043

and room flur is blocked. On receipt of the task, component controller signalizes com-

ponent initialStateProvider to output the current world state. Further, it sends

the goal of the task to component planner. The planner component waits for the

arrival of an initial state when receiving a new goal. Once component planner receives

the initial state from component initialStateProvider, it calculates and outputs

a plan that satisfies the goal under consideration of the initial state it received. In the

next time slice, component controller receives the plan and forwards it to component

planVerifier. After checking the plan, component planVerifier sends a mes-

sage, indicating whether the plan satisfies its requirements, to component controller.

Since the plan is valid, component controller extracts the actions that are necessary

to fulfill the plan. The component sends the first action, which should make the robot

move to room flur, to subcomponent actionExecuter. The actionExecuter has

to check if the action’s precondition is satisfied, hence it emits the corresponding query to

the propertyCalculator component, which answers with the appropriate properties.

In this case, the action’s precondition is satisfied, but the actionExecuter fails. The

actionExecuter component sends a message to the controller component to

indicate that the action execution has failed. The controller proceeds by executing

the same task again. This is the same situation as depicted in Figure 5.21, except that the
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:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider
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ACTION_SUCCEED
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Figure 5.23: Successful execution of the tasks moveTo(flur) and moveTo(4043).

controller does not receive the task from an external source, but from an internally

maintained stack. This time, the execution of the action moveTo(flur) is successful

since the blockade is lifted. The remaining architecture behavior to execute the task is

illustrated in Figure 5.22, Figure 5.23, and Figure 5.24, analogous to the first scenario

described in Section 5.6.2.

5.6.4 Path Permanently Blocked, Remote Operator Successful

In this example, the path between room r4043 and room flur is blocked when the robot

tries to move from room r4043 to room flur. Further information about the task and the

execution environment is given in Section 5.6.1. The blockade between the two rooms

exists during the whole execution excerpt. Also, the robot is able to move the other way

around from room flur to room r4043 without any problems. Although the robot cannot

move from room r4043 to room flur by itself, the remote operator can navigate the robot

through that bottleneck.

In Figure 5.25, the architecture receives the task. The action moveTo(flur) fails

because the path from room r4043 to room flur is blocked. The task is planned again,

and because the path is still blocked, the situation described in Figure 5.25 occurs again.

Since the execution of the action failed two times, component controller calls the

remote operator (Figure 5.26). The remote operator is able to navigate the robot through a

bottleneck. The remaining actions that are executed after a further replanning process are

illustrated in Figure 5.21, Figure 5.22, Figure 5.23, and Figure 5.24.
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:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider

drop(bandages)

getRobotLocation()

robotLocation

ACTION_SUCCEED

getLoaded(bandages)
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SDSD

Figure 5.24: Successful execution of the task drop(bandages).

5.6.5 Path Permanently Blocked, Remote Operator Not

Successful

The sequence diagrams depicted in Figure 5.25 and Figure 5.27 illustrate an exemplary

excerpt of the information flow of the architecture on receipt of a new task. Further

information about the task and the execution environment is given in Section 5.6.1. In this

example, the path between room r4043 and room flur is blocked when the robot tries to

move from room r4043 to room flur. The blockade between the two rooms exists during

the whole execution excerpt. Neither the robot can move from room r4043 to room flur by

itself, nor is the remote operator able to make the robot to bypass blockade.

In Figure 5.25, the architecture receives the task. The action moveTo(flur) fails

because the path from room r4043 to room flur is blocked. The task is planned again,

and the action execution fails again because the path is still blocked (Figure 5.25). Since

the execution of the action failed two times, component controller calls the remote

operator (Figure 5.27). The remote operator is not able to make the robot cross over the

blockade, either. Therefore, the controller discards the entire task since it cannot be

executed. Afterwards, the architecture is ready to start executing of a new task.

5.6.6 Abort via Desktop UI

The sequence diagram in Figure 5.28 illustrates an exemplary excerpt of the information

flow of the architecture on receipt of a new task. Further information about the task

and the execution environment is given in Section 5.6.1. In this example, component

controller is instructed to abort the task after it initiated the execution of an action.

On receipt of the task deliver(r4043,bandages), component controller

signalizes component initialStateProvider to output the current world state,

and sends the appropriate goal to component planner. The planner component

waits for the arrival of an initial state when receiving a new goal. Once component
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:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider
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r4043,
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getPlanDeliver(..)

setInitialState(state)

plan

verify(plan)

true

moveTo(flur)

getRobotLocation()

robotLocation

ACTION_FAILED
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Figure 5.25: The planning process of a delivery task and the execution of a

moveTo(flur) action, which fails due to a blocked path.

:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider

callRO()

RO_SUCCEEDED

SDSD

Figure 5.26: In this excerpt, component controller calls the remote operator. The

remote operator succeeds.

planner receives the initial state from component initialStateProvider, it

calculates and outputs a plan that satisfies the goal under consideration of the initial

state it received. In the next time slice, component controller receives the plan

and forwards it to component planVerifier. After checking the plan, component

planVerifier sends a message, indicating whether the plan satisfies its requirements,

to component controller. In this case, the plan is valid. Since the plan is valid,

component controller extracts the actions that are necessary to fulfill the plan. The

component sends the first action, which should make the robot move to room flur, to

subcomponent actionExecuter. Now, two events happen simultaneously. While

component actionExecuter checks if the actions precondition is satisfied by emitting

an appropriate query to component propertyCalculator, component controller

is instructed to abort the execution of the task that is currently executed. To do so, it
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:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider

callRO()

RO_FAILED

SDSD

Figure 5.27: In this excerpt, component controller calls the remote operator. The

remote operator fails.

interacts with an interface that is responsible for the physical realization of the actions

performed by the robot. In this case, the task is aborted successfully. Nevertheless,

component actionExecuter still tries to execute the action moveTo(flur). To

realize the execution, the component interacts with the same interface as component

controller does to abort tasks. The interface informs component actionExecuter

that the task has already been aborted (by component controller). Since the task has

been aborted by component controller, component actionExecuter does not

inform the controller about the result of the action execution. Now, the architecture

is ready for starting a new task.

:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider

deliver(

r4043,

bandages)

doProvideInitialState()

getPlanDeliver(..)

setInitialState(state)

plan

verify(plan)

true

moveTo(flur)

getRobotLocation()

robotLocation

abortCurTask()

abortTask()

ABORTED

SDSD

Figure 5.28: The execution of the task is aborted by the user during execution of the first

action.
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5.6.7 Abort via Tablet UI

The sequence diagrams depicted in Figure 5.21 and Figure 5.29 illustrate an exemplary

excerpt of the information flow of the architecture on receipt of a new task. Further

information about the task and the execution environment is given in Section 5.6.1. In

this example, a user, who has to load the item bandages onto the robot, aborts the task

execution. Figure 5.21 illustrates the necessary operations to make the robot move to room

flur. In Figure 5.29, the user aborts execution of the task.

:Controller :Planner :PlanVerifier :PropertyCalculator :ActionExecuter :InitialStateProvider

getRobotLocation()

robotLocation

ACTION_SUCCEED

pickup(bandages)

getRobotLocation()

robotLocation

ABORT_ACTION

moveTo(smrRaum)

SDSD

Figure 5.29: The execution of the moveto(smrRaum) action succeeds. Afterwards

the execution of the pickup(bandages) action is initiated. As part of a

pickup action, the user is prompted to load an item to the robot. If the user

aborts this prompt, the action execution fails.

In Figure 5.29, component controller tells component actionExecuter to

execute the action moveTo(smrRaum). The actionExecuter has to check if the

actions precondition is satisfied, hence it emits the corresponding query to component

propertyCalculator, which answers with the appropriate properties. In this case,

the actions precondition is satisfied, the actionExecuter successfully executes it,

and sends information about the execution to component controller. Next, the con-

troller component initiates the execution of the action pickup(bandages) by

sending an appropriate message to component actionExecuter. Again, component

actionExecuter has to check if the actions precondition is satisfied. In this case, the

precondition is satisfied and the component starts the execution. As part of the action

execution, a user is prompted to load an item on the robot. The user can either confirm

or deny the loading by pressing one of two buttons on a UI. In this case, the user denies

the loading, which is interpreted as the abortion of the action. Therefore, actionExe-
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cuter aborts the action and indicates that by sending the message ABORT_ACTION to

component controller.

5.7 Discussion

This section discusses, which parts of the architecture belong to robot or world entity

and which parts depend on the used middleware. It explains the parts that have to be

exchanged if a middleware different than SmartSoft is used. In the hospital application, the

robot entity describes a robot that can move, load, and unload items. The task kinds are

delivery, guide, and follow tasks. The world entity describes a graph with named locations

as vertices and edges indicating adjacent locations. A major goal of the generality of the

reference architecture is its independence of specific robot and world entities. If a different

robot entity is used, only few reconfigurations have to be incorporated to the architecture.

For instance, consider an entity that realizes refilling of storage shelves. Besides moving,

the robot entity has to define actions to refill the storage spaces with a manipulator. In this

scenario, the world entity would not consist of rooms and their interconnections, but of

storage shelves that contain storage spaces of different sizes. To change the application

scenario, the robot and world entity models have to be exchanged. The exemplary change

of entities also requires to redefine new tasks, as for instance a task to find an empty storage

shelf/space or a task to perform refilling of an empty space. The implementations of the

new robot and world interfaces have to be handcrafted. Defining new tasks can require to

define new goal models.

Section 5.5 explains which parts of the overall architecture are depending on the used

middleware. If the middleware is exchanged with another middleware, as for instance,

ROS, these parts have to be modified. The parts include, among other things, the com-

munication with the middleware. A protocol for the communication with the middleware

has to be implemented and the responses of the middleware have to be mapped to Sys-

temResponses that the reference architecture can handle. A more detailed description

of the middleware dependent architecture parts is given in Section 8.1. The modeling

languages define platform and middleware independent models. Thus, the models can

remain unchanged when exchanging the middleware.
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Chapter 6

Translating Domain Expert Models

to Robot Plans

Robotics application developers use the modeling languages presented in Chapter 4 to

describe domain knowledge, tasks consisting of sequences of goals, and entities consisting

of properties and actions. Solving tasks requires to derive actions to satisfy their accompa-

nying goals step-by-step. Due to the fact that satisfying goals is a classic planning problem,

we translate entities with actions and properties as well as domain knowledge into a plan-

ning language, use a planner to solve each goal, and transform the results back to models.

While this incorporates two model transformations, it decouples planning functionality

from the other system parts and hence allows independent planner development as well as

an exchange on demand.

PDDL [MGH+98, FL03] is a widely used artificial intelligence planning language for

which sophisticated planners exist. In our implementation of the reference architecture

we employ the Metric-FF [HN01] planner to solve goals. Therefore, our planning infras-

tructure transforms entities, UML/P CDs, and goals to PDDL and supports solving PDDL

problems with the Metric-FF [HN01] planner. The resulting artifacts are compatible to

PDDL version 1.2. This project does not ship with any files of the Metric-FF planning

software. To integrate Metric-FF, the corresponding software has be to installed and

deployed as described in Chapter 8.

The planning infrastructure is well integrated into the system architecture described

in Chapter 5. The Planner component type implementation (Section 5.2.5) uses this

infrastructure to calculate plans for goals. Figure 6.1 overviews the main modules of

the planning infrastructure and their dependencies to each other. At design time, appli-

cation developers define entity models with properties and actions, UML/P CD models,

which specify the domain knowledge utilized by the entities, and goals that represent

desired environmental situations (Chapter 4). The infrastructure uses the parsers of the

entity, UML/P CD, and goal languages for parsing corresponding models to obtain data

structures encoding the abstract syntax of the models, the so called abstract syntax trees

(ASTs). Afterwards, the infrastructure applies several intra-language model-to-model

transformations to the entity ASTs to ensure some uniqueness of names properties for

the PDDL artifacts generated later. Then, it uses the ASTs to create intermediate data

structures which represent complete PDDL domain definitions and partial PDDL problems

definitions. To complete the problem definitions, the infrastructure has to be provided
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ArtifactsEntitymodels
ArtifactsGoal models
ArtifactsUML/P CDmodels

Intra-language pre-transformations Inter-language transformations
ArtifactsPDDLmodels

PDDLtool
RTE – Model Realization Base Class instances

Data structure representing partial PDDL models
EntityparserCDparserGoalparser

EntityASTsCDASTsGoalASTs
EntityASTs

PDDLplanner«use» Plansfor instanceMetricFFprovided byarchitectureat runtime
Figure 6.1: Overview of the transformation infrastructure.

Entity

1 package iserveu.worlds;

2 world transportWorld {

3 action openDoor() { /* ... */ }

4 property Boolean doorOpen(); //...

5 }

Listing 6.2: A world entity model excerpt consisting of a property doorOpen and an

action openDoor(). The property and action transformations have not

been applied to this entity model.

with more information, which is only available at runtime, such as an initial planning state

or arguments for goals. Once these information are available in form of objects that are

instances of RTE classes (Section 5.3.1) corresponding to goals and properties, PDDL

models can be generated and the planning problem defined by these can be solved. The

infrastructure outputs a plan in form of the planner’s output and a mapping from the object

names the planner used for planning to the corresponding instances of the RTE classes.

In the following, Section 6.1 describes intra-language pre-transformations. Based on

their results, Section 6.2 presents the transformations from goal, entity, and domain models

to PDDL. Finally, Section 6.3 discusses the transformations.

6.1 Intra-Language Model-to-Model

Transformations

A single PDDL domain model is generated from two entity models, i.e., a robot entity

and a world entity. To ensure the generated PDDL models are well-formed, an action

transformation and a property transformation have to be applied to the entity ASTs between

parsing and generating. Given a well-formed entity model, the action transformation
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Entity

1 package iserveu.worlds;

2 world transportWorld {

3 action iserveu_worlds_transportWorld_openDoor() {/* ... */}

4 property Boolean iserveu_worlds_transportWorld_doorOpen();

5 }

Listing 6.3: This entity results from applying the property and action transformations to

the world entity model depicted in Listing 6.2. The names of the property

doorOpen and the action openDoor have been extended.

CD

1 classdiagram Items {

2 class Pencil { Location loc; }

3 class ColoredPencil extends Pencil { /* ... */ }

4 class Location { /* ... */ } // ...

5 }

Listing 6.4: A CD of three classes. Each of the classes is transformed to a PDDL type

and used in the PDDL domain definition.

PDDL

1 (define (domain myDomain)

2 (:types

3 Pencil - object

4 ColoredPencil - Pencil

5 Location - object ; ...

6 )

7 (:predicates

8 (Pencil_loc ?pencil - Pencil ?loc - Location) ; ...

9 ) ; ...

10 )

Listing 6.5: A domain containing the types and predicates resulting from transforming

the classes of the CD depicted in Listing 6.4.

Entity

1 world myWorld {

2 property Room personLocation(Person person);

3 property Boolean itemLocation(Item item, Room room); //...

4 }

Listing 6.6: An entity that comprises two properties.
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ensures that there is no action defined in the entity model having the same name as any

other action defined in any other entity model. To this effect, the transformation prefixes

each action name with the full-qualified name of its enclosing entity using underscores (_)

as package delimiters. Similarly to the action transformation, the property transformation

prefixes the full qualified name of the enclosing entity of each property to the name of the

property using underscores (_) as package delimiters. This ensures there are no properties

defined in distinct entity models having the same names. For instance, the entity model

given in Listing 6.2 consists of a property doorOpen and an action openDoor. The

transformation prefixes the names of the property and the action with the full-qualified

names of their enclosing entity using underscores (_) as package delimiters. Listing 6.3

depicts the entity representing the transformed AST.

6.2 Transformations to PDDL

This section presents the transformation of goal, entity, and UML/P CD models to PDDL

models. The transformations are described and exemplary illustrated with the aid of

examples. For simplicity, the examples do not include the AST transformations (see

Section 6.1) that are applied to the entity models beforehand. Additionally, we assume the

reader is familiar with PDDL 1.2 [MGH+98].

6.2.1 Transformation of CD Models to PDDL Types and

Predicates

Each class defined in a CD model is transformed to a PDDL type and each attribute of

each class is transformed to a PDDL predicate. The generated PDDL types preserve the

inheritance relation defined by the class diagrams and have the same names as the classes

they originate from. For instance, the classes of the CD given in Listing 6.4 are transformed

to the PDDL types depicted in Listing 6.5 ll. 2-6. Each attribute of each class of a CD

model is transformed to a PDDL predicate. The name of the predicate is the name of the

corresponding class concatenated to an underscore (_) and the name of the attribute. The

predicate has two variables. The first variable has the type of the class, whereas the second

variable has the type of the attribute. The class Pencil defined by the CD illustrated

in Listing 6.4, for instance, has one attribute loc. Thus, the class defines together with

its attribute loc the binary PDDL predicate (Pencil_loc ?pencil - Pencil

?loc - Location) (Listing 6.5, l. 8).

6.2.2 Transformation of Entity Properties to PDDL Predicates

Each property of each entity is transformed to a PDDL predicate. A property has param-

eters and a return value, whereas PDDL predicates correspond to parametrized Boolean

predicates. Therefore, a property that has n arguments is transformed to a (n + 1)-ary

PDDL predicate. The first n predicate parameters have the PDDL types corresponding
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PDDL

1 (define (domain myDomain)

2 (:predicates

3 (personLocation ?person - Person ?result - Room)

4 (itemLocation ?item - Item ?room - Room ?result - Boolean)

5 ) ; ...

6 )

Listing 6.7: The predicates that result from transforming the properties of the entity

depicted in Listing 6.6.

CD

1 classdiagram {

2 class A { public B attrAB; }

3 class B { public C attrBC; }

4 class C { public Boolean boolOfC; }

5 }

Listing 6.8: The UML/P CD used as basis for the illustration of the transformations

from entity to PDDL models.

Entity

1 action foo(A myA, B myB) {

2 pre: myA.attrAB.attrBC == myB.attrBC; // ...

3 }

Listing 6.9: A precondition that consists of the comparison of two attributes.

PDDL

1 (:action foo

2 :parameters (?myA - A ?myB - B )

3 :precondition (and (exists (?X_0 - B ?X_1 - C )

4 (and (A_attrAB ?myA ?X_0)

5 (B_attrBC ?myB ?X_1)

6 (B_attrBC ?X_0 ?X_1)))) ; ...

7 )

Listing 6.10: The precondition results from transforming the precondition of the entity

model depicted in Listing 6.9.
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Entity

1 action foo(A a1, C c, A a2, B b) {

2 pre: m(a1.attrAB, c, a2.attrAB.attrBC) != b.attrBC.boolOfC;

3 /* ... */

4 }

Listing 6.11: The precondition checks whether the value assigned to an attribute is not

equal to a value assigned to a property.

to the types of the parameters of the property. The last argument of the predicate has the

PDDL type corresponding to the return value type of the property. Each PDDL predicates

has the same name as its corresponding property. For instance, the properties depicted in

Listing 6.6 are transformed to the predicates given in Listing 6.7.

6.2.3 Transformation of Entity Actions to PDDL Actions

Each action of each entity model is transformed to a PDDL action. The parameters and

preconditions of entity actions correspond to parameters and preconditions of PDDL

actions, whereas postcondition of entity actions correspond to PDDL effects. After

transforming an entity’s action, the resulting PDDL action has the same name as the

entity’s action. Further, the parameters of the resulting PDDL action have the same names

and types as the corresponding parameters of the entity’s action. The following exemplarily

illustrates the transformations of preconditions and postconditions by examples. The types

used in the following examples can be found in the CD model presented in Listing 6.8. It

defines three types, each having an attribute of another type.

Transformation of Action Preconditions to PDDL Preconditions

A precondition of an entity’s action is a Boolean expression that consists of logical conjunc-

tions, logical disjunctions, logical negations, and expressions referencing properties as well

as attributes of the enclosing action’s parameters. During the precondition transformation,

logical negations, conjunctions, and disjunctions are preserved. Expressions requesting

property values and referencing attributes of parameters become suitable logical expres-

sions in PDDL. In preconditions, values of attributes and properties may be queried and

compared to parameters of the enclosing action, attributes of objects, or values requested

from properties.

Listing 6.9 and Listing 6.10 illustrate the transformation of expressions comparing

the values of two attributes to each other. The intended meaning of the resulting PDDL

precondition (Listing 6.10) is the following: there must be x0 and x1 (l. 3) such that

x0 = myA.attrAB (l. 4), x1 = myB.attrBC (l. 5), and x0.attrBC = x1 (l. 6).

Listing 6.11 and Listing 6.12 exemplarily illustrates the transformation of an expression

checking whether the value of an attribute does not equal the value of a property. The

resulting PDDL precondition (Listing 6.12) requires there must not be any x0, x2, and
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PDDL

1 (:action entities_MyRobotEntity_foo

2 :parameters (?a1 - A ?c - C ?a2 - A ?b - B )

3 :precondition

4 (not

5 (exists (?X_0 - B ?X_1 - B ?X_2 - C

6 ?X_3 - C ?X_4 - Boolean)

7 (and (A_attrAB ?a1 ?X_0)

8 (A_attrAB ?a2 ?X_1)

9 (B_attrBC ?X_1 ?X_2)

10 (B_attrBC ?b ?X_3)

11 (C_boolOfC ?X_3 ?X_4)

12 (m ?X_0 ?c ?X_2 ?X_4 )))) ; ...

13 )

Listing 6.12: The precondition results from transforming the precondition given in the

entity model that is illustrated in Listing 6.11.

Entity

1 action foo(A myA1, A myA2) {

2 pre: // ...

3 post: myA1.attrAB.attrBC == myA2.attrAB.attrBC;

4 }

Listing 6.13: The postcondition assigns the value of an attribute to another attribute.

x4 (l. 5) such that x0 = a.attrAB (l. 6), x2 = sd.attrDE.attrEF (ll. 7-8), x4 =

g.attrGH.boolOfH (ll. 9-10), and m(x0, c, x2) = x4 (l. 11). Expressions in preconditions

that compare the values of two properties are similarly transformed to PDDL.

Transformation of Action Postconditions to PDDL Effects

A postcondition of an entity action is a Boolean expression that consists of logical con-

junctions and infix expressions over the equality (==) operator. Infix expressions in

postconditions must reference properties, parameters, or their attributes. A postcondition

can be interpreted as a sequence of assignments, where each either assigns a new value

to a property or to an attribute. The transformation preserves logical conjunctions and

transforms infix expressions to PDDL expressions for removing or adding facts. The

following exemplarily illustrates the transformation of postconditions to effects.

The postcondition depicted in Listing 6.13, assigns the value of an attribute to another

attribute. The PDDL effect resulting from the transformation is illustrated in Listing 6.14.

The intended meaning of the PDDL postcondition is the following: for all values x0,

x1, and x3 (l. 5) such that x0 = myA1.attrAB (l. 6), x1 = myA1.attrAB.attrBC

(l. 7), x3 = myA2.attrAb.attrBC (ll. 8-9), and x1 6= x3 (l. 10), then delete the fact

x1 = myA1.attrAB.attrBC (l. 12) and add the fact x3 = myA1.attrAB.attrBC (l. 13).

59



Chapter 6 Translating Domain Expert Models to Robot Plans

PDDL

1 (:action foo

2 :parameters (?myA1 - A ?myA2 - A )

3 :precondition ; ...

4 :effect

5 (and (forall (?X_0 - B ?X_1 - C ?X_2 - B ?X_3 - C )

6 (when (and (A_attrAB ?myA1 ?X_0)

7 (B_attrBC ?X_0 ?X_1)

8 (A_attrAB ?myA2 ?X_2)

9 (B_attrBC ?X_2 ?X_3)

10 (not (= ?X_1 ?X_3))

11 )

12 (and (not (B_attrBC ?X_0 ?X_1))

13 (B_attrBC ?X_0 ?X_3)))))) ; ...

14 )

Listing 6.14: Effect resulting from transforming the postcondition in Listing 6.13.

Goal

1 world entities.RoomsWorld;

2 // ...

3 goal Deliver(Item item, Room room) {

4 predicate { RoomsWorld.itemLocation(item, room) }

5 }

Listing 6.15: The goal Deliver contains a predicate querying the value of a property.

If myA1.attrAB.attrBC = myA2.attrAB.attrBC holds before action execution, the

precondition does not have to be executed, as it would not change the planning state. There-

fore, on the one hand, the requirement x1 6= x3 (l. 10) ensures the effect does not change

the planning state in case equality already holds before action execution. On the other

hand, the requirement ensures that myA1.attrAB.attrBC = myA2.attrAB.attrBC is

not unintentionally deleted (l. 12) in case the values of the attributes are already equal to

each other before executing the action. Expressions used in postconditions that assign the

value of a property to another property or assign the value of a property to an attribute, and

vice versa, are transformed similarly.

6.2.4 Transformation of Goals to PDDL Problems

Each goal is transformed to a PDDL problem. Unlike PDDL problems, goals can be

parametrized. Therefore, a goal only partially defines a PDDL problem. Additionally, goals

neither contain information about existing objects, nor about currently valid properties. In

contrast, each PDDL problem defines a set of existing objects and an initial state consisting

of facts relating objects (i.e., the corresponding domain’s predicates).
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PDDL

1 (define (problem Deliver)

2 (:objects

3 classtypesItem1412322831 - Item

4 classtypesItem1495608502 - Item

5 classtypesRoom412788346 - Room)

6 (:init

7 (entities_RoomsWorld_itemLocation

8 classtypesItem1412322831

9 classtypesRoom412788346 true)

10 (entities_RoomsWorld_itemLocation

11 classtypesItem1495608502

12 classtypesRoom412788346 true)

13 (entities_TransportRobot_robotLocation

14 classtypesRoom412788346 true))

15 (:goal

16 (exists

17 (?item - Item ?room - Room)

18 (and

19 (= ?item classtypesItem1495608502)

20 (= ?room classtypesRoom412788346)

21 (and

22 (entities_RoomsWorld_itemLocation ?item ?room true)

23 ))))

24 )

Listing 6.16: This PDDL problem was derived from the goal model (cf. Listing 6.15).

For these reasons, PDDL problem models are not generated directly after parsing, but

during runtime when the current world and robot states are known, i.e., it is known which

objects exist and which properties are valid at a certain point in time. Given a list of

Property class (Section 5.3) instances, which encode facts holding at a certain point in

time, and a Goal class (Section 5.3) instance, which assigns values to parameters of the

corresponding goal, at runtime, a well-formed, complete PDDL problem can be generated.

The remainder of this section describes the transformation of goals to PDDL problems.

The PDDL problem depicted in Listing 6.16, for instance, was derived at runtime from

the goal model given in Listing 6.15, a list of Property class (Section 5.3) instances,

and a Goal class (Section 5.3) instance. Given a list of Property class instance, a goal

model, and a corresponding Goal instance, a PDDL problem is generated as follows:

1. Each attribute of each Property instance becomes an object in the PDDL problem

(ll. 2-6). The identifier of each object is determined as follows: concatenate the

parts of the full qualified class name of the object to the String “class” and suffix the

objects hash-code to the result of the concatenation.
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2. Each Property instance becomes an initial fact in the PDDL problem (ll. 7-19).

The name of the fact is the full qualified name of the class of the Property

instance where underscores (_) are used as package delimiters. Each attribute of

the Property instance becomes a parameter of the fact. The identifier of the

parameter is determined as in (1.). Since these facts are valid in the beginning, the

last parameters of each fact is the object true of type Boolean, which is defined

in the PDDL domain.

3. The goal formula of the PDDL problem (ll. 20-28) is generated from the predicate

of the goal model, and the attributes of the Goal instance. The attributes of the

Goal instance instantiate the parameters of the goal model. Therefore, the goal of

the PDDL problem results from applying the following two transformation steps:

First, transform the predicate given in the goal model the same way as preconditions

of actions are transformed to PDDL preconditions (l. 26). Afterwards, enclose the

result of the former transformation by a term that binds the goal’s parameters by

existential quantification (ll. 21-22) and require equality to the values defined by the

attributes of the Goal instance (ll. 23-25).

6.3 Discussion

Section 6.1 described the intra-language pre-transformations that are applied to entity

models to achieve well-formedness of generated PDDL artifacts. Based on their results,

Section 6.2 presented the transformations from goal, entity, and domain models to PDDL.

This section summarizes the functionality provided by the infrastructure, discusses the

decoupling from application specific parts of the architecture (Section 5.5), points out its

limitations, and suggests possible enhancements.

Functionality Overview

Altogether, the infrastructure is capable of calculating plans for solving problems defined

by a static environmental description, a description of the currently available dynamic

environmental conditions, and a desired environmental situation. Technically, the resulting

plans are tuples of the output from external planning software for PDDL problems and

a mapping from identifiers used by the planner to instances of the corresponding objects

used by the architecture. The static environmental description is represented by a robot

and a world entity model with actions and properties (Section 4.3), a UML/P CD modeling

the domain utilized by the entities (Section 4.2), and a set of goal models defined for the

entities (Section 4.5). The dynamic environmental conditions are represented by a list

of property instances (cf. Section 5.3.1) that conform to the properties defined by the

entities. The desired environmental situation is a list of goal instances (cf. Section 5.3.1)

that conform to the goal models and are to be satisfied.
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Decoupling from Application Specific Classes

One important design goal was to completely decouple the infrastructure from the genera-

tors for the languages presented in Chapter 4, i.e., the implementation of the transformation

infrastructure is completely independent from the artifacts generated from entities, UML/P

CD, and goals. On the one hand, this independence obviously ensures that changes in the

generators do not affect the transformation infrastructure implementation. Further, the

decoupling enables to reuse the transformation infrastructure in other contexts, e.g., in

implementations produced by other generators. On the other hand, the strict separation

between this infrastructure and the language generators has a disadvantage: The infrastruc-

ture has no knowledge about any generated code. Thus, it does not provide functionality

for transforming plans calculated for PDDL problems to the appropriate data structure

used by the reference architecture (Chapter 5), i.e., plans which are lists of action instances

(cf. Section 5.3.1). Therefore, these transformations have to be realized by the architecture,

i.e., the Planner component type implementation (Section 5.2.5).

Limitations and Possible Enhancements

The planning infrastructure transforms entity, UML/P CD, and goal models to PDDL

models compatible to version 1.2. PDDL 3.1 [HDKN12] introduces object-fluents to

the language, i.e., functions ranging over any object type. A possible enhancement is to

integrate these into the transformation infrastructure. On the one hand, the integration

possibly eases the necessary transformations to PDDL since property definitions could

be transformed to object fluents, which have a similar signature, and thus would not

necessarily have to be transformed to predicates anymore. On the other hand, the majority

of existing planners do not support PDDL version 3.1 or are not as efficient as well

established planners supporting previous versions of PDDL1.

1International Planning Competition 2014 website: https://helios.hud.ac.uk/scommv/

IPC-14/planners_actual.html
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Chapter 7

Human-Robot Interaction

The reference architecture (Section 5.2) employs two UIs to control the robot. One is

stationary and resides on a desktop PC, while the other uses a tablet mounted to the robot

(cf. Figure 7.1). Section 7.1 presents the desktop UI, which provides an administrative

interface (e.g., to manipulate the system’s knowledge base). Afterwards, Section 7.2

describes the tablet UI, which enables interaction between humans and the robot (e.g.,

during task execution).

Figure 7.1: Illustration of a human-robot interaction within the iserveU project. The

medical staff assigned tasks to a nearby robot using the tablet UI.

7.1 Desktop User Interface

The desktop UI (Figure 7.2) is responsible for administrating the knowledge base (Sec-

tion 5.5.6), task initialization, and observing the logs (Section 5.3.3). Therefore, it has

access to the overall architecture (e.g., the KnowledgeBase, RobotLog, and the robot

and world implementations). For instance, it bears the possibility to define, store, or

load knowledge bases during runtime. Knowledge bases reflect the current state of the
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StatusView

TaskView

KnowledgeBaseView LogView

Figure 7.2: The desktop UI enables administrative users to instantiate tasks, change

the knowledge base, or view the logged messages. This functionality

is comprised in four views: InstanceTaskView, Knowledgebase-

FillView, LogView, and StatusView.

environment with information about its available items, locations, and persons. The UI

is capable of tracking changes in the knowledge base and the state of the robot. Thereby,

users can observe changes at runtime and may adapt the knowledge base or some specific

execution parameters such as the time for replanning (Section 5.2.4) or whether the robot

should return home when idling. Nevertheless, its fundamental functionality is to initialize

and forward tasks to the robot. For instance, a user initializes the deliver task by choosing

an item and a destination from the knowledge base. This feature is available in both UIs

and synchronized between them. Concurrent instantiation of a task is prohibited.

The desktop UI is based on JavaFX1 and consists of different views (e.g., for the task

management, robot and task state, knowledge base, and event logging). Each of these views

is managed by the InstanceTaskGUI, which handles the UI, the corresponding con-

trollers, and the data used by the desktop UI. Additionally, the component has an observer

that tracks messages of the RobotLog (Section 5.3.3). Some messages trigger changes in

1JavaFX: http://docs.oracle.com/javafx/
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7.1 Desktop User Interface

the desktop UIs settings and others are informational. The InstanceTaskGUILogger

stores and provides relevant log messages for the corresponding views.

The Component InstanceTaskGUI

The component InstanceTaskGUI initializes and manages all relevant views of the

desktop UI. Therefore, it provides methods to switch between the different views, knows

available tasks and their possible parameters based on the knowledge base. By observing

the RobotLog it reacts to specific events and might change 1. the visibility of specific

buttons and 2. the states of various connection and activity indicators.

The Component InstanceTaskView

show LogView
availabletask types

trigger nextstep for taskinstantiationStatusView

InstanceTaskView

configure theknowledgebase
connection andremote accessnotifier
reconfigurewaiting time

Figure 7.3: The InstanceTaskView is the main view for task instantiation and pro-

vides the user with various settings.

Figure 7.3 presents the view for submitting tasks to the robot. Initially, it displays the

list of available tasks. Depending on the user’s selection it asks her to provide the required

task parameters by displaying corresponding input forms (e.g., to select the item and room

for the delivery task). If all parameters are set, the view controller calls the task factory to

create a task. Thereon, the view controller calls the Executer (Section 5.5.7) component

to execute it.

The view does not allow to initialize a task if the tablet UI is currently in use. Further-

more, it configures the waiting time until replanning proceeds, the waiting time until the

robot is considered idle, and whether the robot should return to its home station, if idle.

Besides the task initialization, the view enables to trigger the LogView with the “Log”

button in the top-left and the KnowledgeBaseView with the “Wissensbasis” button
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in the bottom-left border. Furthermore, the actual connection state to the tablet UI, the

last two messages of the robot log, and whether the the robot is controlled by the remote

operator are shown.

The Component KnowledgebaseFillView

knowledgebases
current itemsof the selectedknowledgebase

accept ordiscard changesStatusView

KnowledgebaseFillView

load or store aknowledgebase
add new item removeselected item

Figure 7.4: The KnowledgebaseFillView view provides various options for knowl-

edge base manipulation.

Figure 7.4 shows the KnowledgebaseFillView that enables the manipulation of

the knowledge base. Each knowledge base is depicted in the top-left corner in form of a

tab. Two explicit buttons “Neues Item” and “Item löschen” enable to add a new item to the

selected knowledge base or to remove a selected item from the knowledge base. Changes

do not take effect immediately, but users may discard them, explicitly apply them, or export

them to a file. Buttons to load and store knowledge bases are provided in the bottom-left

border while the buttons for the abortion and confirmation of changes are displayed at the

bottom-right border. Changes are always tracked to warn about unsaved changes when

trying to exit the view.

The Components InstanceTaskGUILogger, LogView, and StatusView

The desktop UI observes the RobotLog to track relevant messages. The StatusView

displays the recent two log messages. The view is displayed simultaneously to the other

views, e.g., InstanceTaskView. Additionally, a LogView (Figure 7.5) displays

administration-relevant log messages stored by component InstanceTaskGUILog-

ger. This view enables users to filter them by severities (e.g., error, warning, and info).

Memory usage is thereby reduced by storing only the last 100 messages.
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filter logson severity
list of logs

return toInstanceTaskView

StatusView

LogView

Figure 7.5: The LogView displays the last 100 log messages and enables to filter them by

different severities.

7.2 Tablet User Interface

The tablet UI (see Figure 7.6) is an Android2 application deployed on a tablet mounted to

the robot. It is responsible for direct interactions with users and enables to assign tasks

to the robot while it is nearby. For instance, during the deliver task the robot requests the

user to load an item to the robot. The user is able to confirm or cancel this request locally.

Therefore, the tablet UI is optimized for a simple and fast access. The design is separated

into top, center, and bottom areas (e.g., the MainActivity in Figure 7.6). At the top of

each activity is an actionbar that is divided into three parts: a button on the left forwards

to the LogActivity in each activity, a notification bar in the center, and a button for

further settings. A list for available tasks is presented at the center of the activity. An item

of this list has to be chosen until a task can be further processed. To get to the next activity

or back to the previous one, the activities provide corresponding buttons at the bottom.

7.2.1 Activities in Different Scenarios

For an improved understanding of how the various Android activities are designed and

applied, it is beneficial to examine the activities based on common application scenarios.

Three different scenarios have to be mentioned: the start of the application, the creation of

a task, and the notification about the current state of a task.

2Android: https://www.android.com/
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open Logactivity opensettingsavailabletasks
triggernextactivity

mainactivity
Figure 7.6: The MainActivity is the core of the tablet UI and allows user to select a

task, to open the LogActivity, or to switch to the SettingsActivity.

Starting the Application

Starting the tablet UI triggers an InitialActivity. It serves as a waiting screen that

displays the application name on screen while it protects the user from an inaccurate utiliza-

tion before the Text-To-Speech service, which is used for acoustic task notifications,

and the ConnectionHandlerService service have been initialized. Afterwards, the

activity forwards to the MainActivity (Figure 7.6).

Task Creation

Figure 7.7 depicts an excerpt of a possible activity call sequence to create a task. The

MainActivity serves as initial starting point for interacting with the robot. In the

MainActivity, the user is able to select between four possible tasks: deliver an item,

guide a person, follow a person, and move to a room. Pressing the “Weiter” button invokes

the LoadingActivity.

The LoadingActivity serves as a mediator between the activities for human inter-

action. Therefore, it contains a reference to the previous activity that triggered the call and

requests the specific data list with respect to the previous activity. A request between the

LoadingActivity and the connection service is handled via inter-process com-

munication. During this request operation the user is notified that the UI is requesting

item from the server. If the LoadingActivity receives an item list, it triggers the next

activity call.

The SupplyActivity (Figure 7.8) is triggered by the LoadingActivity if the

user selected a delivery task in the main activity. In this activity, the list comprises the

available items that might be delivered to a location. Therefore, the user is able to select a

specific item in this interaction activity. Additionally, the bottom section of the design is

enhanced by a “Zurück” button that forwards to the previous activity. If the user presses the
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7.2 Tablet User InterfaceStarting a TaskInitialActivity MainActivitySupplyActivity
GoalActivity

MoveActivity
LoadingActivityPersonActivityLoadingActivity GoalActivityLoadingActivity

[supply] [move] [follow || guide]
[follow] [guide]

ADAD

Figure 7.7: This activity diagram displays the sequences of activity calls, which are nec-

essary to start a task on the tablet. Possible tasks in this scenario are move,

supply, follow, and guide tasks.

“Weiter” button, the activity triggers the LoadingActivity with a request for rooms.

Finally, the LoadingActivity triggers the GoalActivity.

The GoalActivity might be either triggered for a deliver or a guide task. Previously

selected information for those respective tasks are enhanced by the destination location.

Since the activity receives the accumulated information for its current task, it is able to

decide whether the information are for a deliver or for a guide task. As a result, the

information are forwarded to the connection service to create the task. Section 7.2.2

presents how the communication of the connection service is handled.

If a user selects a movement task in the MainActivity, the LoadingActivity

requests a list of all reachable rooms from the knowledge base and triggers the MoveAc-

tivity. This activity differs from the previously mentioned ones by its forwarding

button in the right corner at the bottom. This button ensures that a room is chosen and the

necessary information for a movement task is transmitted.

The PersonActivity is used for the follow and guide tasks. Both require the

user to select one person from a list. Further processing and forwarding in this activity

depends on the selected task in the MainActivity. When the required information for

a follow task are complete, the “Weiter” button forwards the task information directly

to the connection service. Otherwise, the gathered information is forwarded to the

LoadingActivity that triggers a further GoalActivity call.
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open Logactivity return toMain activityitem to bedelivered
triggerGoal activityback topreviousactivity

Supplyactivity
Figure 7.8: The SupplyActivity is used to select an item that has to be delivered to a

specific destination, which has to be chosen in a further activity. Therefore, the

activity provides the possibilities to trigger the LogActivity activity, return

to MainActivity or previous activity, and to trigger the GoalActivity

for further supply task processing.Receiving Task NotificationsConnectionHandler-Service receives task MainActivityforwards message
Return toMainActivity Start WorkingActivitywith task description[task finished] [task started] Start WorkingActivitywith interaction process[waitforinteraction] ConnectionHandler-Service sends answer[not answered] [answered]

ADAD

Figure 7.9: The activity diagram represents the activities for receiving task notifications

when a task is executed. The ConnectionService service receives mes-

sages with information about the current state. These information are forwarded

to the MainActivity via background communication (Section 7.2.2). The

MainActivity immediately triggers the WorkingActivity with re-

spect to the content.

Task Notification

The last scenario is the notification for the state of a running task. This provides the

users information about the current task and signalizes that an interaction with the robot is

required. Since the robotics platform does not contain a dedicated display, the interaction

with the user is handled by the tablet UI. The entire inter-process communication between
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activities is processed in the background and does not affect most of the activities. This is

guaranteed by a lock and release agreement between the desktop and tablet UIs. Figure 7.9

represents a possible activity diagram for this scenario.

The ConnectionHandlerService receives messages from the desktop UI and

forwards them to a message handler of the MainActivity. Based on the received

content, the handler decides which activity has to be started. The set of possible messages

that have to be handled consists of task started, task finished, and wait

for interaction messages. A task finished message always triggers a Main-

Activity call while task creation and wait for interaction trigger a

WorkingActivity call. These calls are performed regardless of the current state of the

table UI.

name of thedestination
task stateabort currenttask execution

name of theitem to bedelivered
Figure 7.10: The WorkingActivity is responsible for human-robot interaction during

task execution. The depicted state of the activity provides information about

a deliver task, which are the robot’s destination and the item it delivers. The

user is able to abort task execution.

The WorkingActivity (Figure 7.10) bears two functionalities: it provides informa-

tion about the currently executed task and handles interactions between user and robot

during task execution. For the first functionality, the activity displays the current task on

screen as long as no human interaction is required. The WorkingActivity instances

do not change their state themselves. Instead, another WorkingActivity is stacked

onto the previous activity whereas a finished task message empties the stack. Thus,

there is a stack of WorkingActivity calls for a deliver task. Starting with a task

started message, the activity displays the information of the tasks until it receives a

wait for interaction message. These messages trigger a new WorkingActiv-

ity call, which notifies the user via Text-To-Speech and a text message on the screen

to interact with the tablet. An interaction is handled with a confirmation whether the user

was able to fulfill the task. Note, if the users do not interact with the tablet UI in a given

time, the current task is automatically aborted. Thereon, the confirmation is forwarded to

the desktop UI by the connection service. The tablet UI switches back to the previous
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Command Parameter Description

1 req;item Requests all items

2 req;room Requests all rooms

3 req;person Requests all persons

4 req;log Requests last 50 logs

5 inst;deliver ?item;?room Instantiates task to deliver the item to the room

6 inst;follow ?person Instantiates a task to follow a person

7 inst;lead ?person;?room Instantiates a task to leads a person to a room

8 inst;move ?room Instantiates a task to go to the specified room

9 ui ?response Delegates ui response (true or false)

10 taskabort Stops the current task

11 tabletInUse Blocks actions on desktop UI

12 tabletIsIdle Release actions on desktop UI

Table 7.1: Communication protocol between the ConnectionHandlerService on

the tablet and the ConnectionHandler class on the server side.

WorkingActivity call. This might be done several times until a finish call empties the

stack and forwards to the MainActivity.

7.2.2 Tablet Communication

Due to the fact that the tablet is used in a dynamic environment, the tablet UI has to

adapt to environmental changes at runtime. These changes might be invoked by new

available network hotspots as well as changes in the respective knowledge bases. Thus,

the communication between tablet and its environment has to be dynamic and reliable. A

suitable model for this kind of network is the client-server model, which is established via

a reliable TCP network protocol. Therefore, non-blocking socket channels are used for the

tablet-desktop communication. While the desktop UI and its responsible Connection-

Handler are assigned the server role, the ConnectionHandlerService remains

as thin client that receives the live content of the environment from the server. Therefore,

the ConnectionHandler observes the RobotLog, filters relevant data, and stores

them in a queue. The ConnectionHandler also processes the data accordingly to its

appearance. Nevertheless, each data entry might trigger various communication operations.

The following communication protocols ensure a proper way of communication between

server and client.

Protocol for Client to Server Communication

Table 7.1 depicts the applied ConnectionHandlerService to ConnectionHan-

dler protocol. These commands are concatenations of fixed command Strings and their

corresponding parameters, which are denoted by a "?" sign. For instance, rows 1 to 4

consist of four kinds of data requests that might be sent during an activity swap. In this

case, the used commands are fixed and require no further input. Task instantiation is

possible with previously requested data of the environment. Besides the fixed commands,
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the respective commands in row 5 to 8 expect further input necessary to create a task on

the server side. If the ConnectionHandler receives these commands, it splits the

task information in their essential parts, creates a task with the specific task factory, and

forwards the task to the task executer. Additionally, the tablet is used for specific tasks

that require human-robot interaction such as the delivery task. The interaction during task

execution is restricted to Boolean responses, the used command in row 9 is enhanced

by a Boolean value represented by a String. The ConnectionHandler processes

this value to a specific log message and adds it to the RobotLog. Moreover, the tablet

user is allowed to abort the current task during execution with the taskabort command,

which triggers the Executer (Section 5.5.7) on the server side. To ensure that concurrent

actions of desktop and tablet user do not interfere with each other, the tablet is able to

lock and unlock the desktop UI with the commands in lines 11 and 12. For instance, the

desktop UI is blocked if a user interacts with the tablet UI. This ensures that no task is

instantiated and executed from the desktop UI until the interaction has been finished.

Protocol for Server to Client Communication

The server side of this communication model is responsible for providing live data as well

as processing the received data from the tablet. Therefore, the ConnectionHandler

uses specific commands for communication.

Command Parameter Description

1 items ?entry1;?entry2;... Response with a list of items

2 persons ?entry1;?entry2;... Response with a list of persons

3 rooms ?entry1;?entry2;... Response with a list of rooms

4 logs ?entry1;?entry2;... Response with a list of the last 50 logs

5 uiinteraction ?textMessage Sends an UI request to the tablet with an specific

message

6 task ?taskDescription Sends the active task description to the tablet

7 ro;call Notifies that the remote operator starts maintenance

8 ro;success Informs that remote operation succeeded

9 ro;fail Informs that remote operation failed

10 ok Used to check for connection issues

Table 7.2: Protocol for the communication between the ConnectionHandler class and

the ConnectionHandlerService service. This table depicts the protocol

for direction server to client.

These commands are represented in Table 7.2. The first four rows depict the commands

and parameters that correspond to the first four request commands of Table 7.1. These

commands are concatenated with all respective data entries, each delimited by a semicolon.

The next two rows represent commands that are used for displaying task execution on the

tablet as well as requesting user input. Both commands are extended with a respective

message for the user interaction or task description and passed immediately to the tablet.

This ensures a proper and live notification on the tablet for new tasks and user interactions.

Moreover, row 7 to 9 are used for maintenance information of the remote operator. These
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commands trigger an immediate change to the maintenance activity of the tablet UI.

Further, the ok command is used for detection of connection issues. The command is sent

in constant, short time intervals to ensure a timed connection issue detection.
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Deployment

The previous chapters introduced modeling languages (Chapter 4), described the reference

architecture (Chapter 5), and its UIs (Chapter 7). Based on these, Section 8.1 presents a

use case scenario and demonstrates the integration of domain-specific handcrafted code.

The remaining sections show how to deploy and launch the reference architecture using

Robotino robots. The robots are controlled via the SmartSoft1 middleware. Therefore,

Section 8.2 explains launching a SmartSoft deployment. Afterwards, Section 8.3 shows

how to deploy the reference architecture and how to start the UIs.

Figure 8.1: Illustration of a Robotino3 platform that is moving and interacting within a

dynamic hospital environment during the iserveU evaluation.

8.1 Deployment Scenario

This section presents a use case scenario employing the developed DSLs supplemented

with handcrafted Java code. The scenario includes an autonomously driving robot that is

capable of guiding and following persons carrying a beacon as well as transporting items

(e.g., bandages and medicine) between rooms in a hospital environment (cf. Figure 8.1).

The corresponding robot entity, domain, task, and goal models abstract from application

domain-specific (here the hospital environment) world entity information. Hence, they

are reusable in combination with world entities requiring guide and follow as well as

transportation capabilities.

Figure 8.2 overviews the necessary steps and tool infrastructure for using the system.

Domain experts develop task, goal, domain, application, and entity models. Then, the

1SmartSoft Website: http://www.servicerobotik-ulm.de/drupal/?q=node/19
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Figure 8.2: Overview of the development process: Task, goal, entity, application models,

and the dependencies between each other are modeled at design time. The

generators then produce parts of an executable system from these models

as further described in Section 5.4. The generated classes are assisted in

providing their functionality by the RTE infrastructure (Section 5.3.1). Since

the generated code is not complete, it has to be complemented with handcrafted

robot and world implementations.

corresponding generators produce parts of an executable system as stated in Section 5.4.

They generate, inter alia, classes representing actions of entities, goals, properties, and

domains. Additionally, as further explained in Section 5.3.2, for each entity model, the

generator produces an interface (Figure 8.2, IWorld and IRobot) consisting of a method

for each action and for each property of the entity. The interface generated for a world

entity model additionally contains a method for each class of the domain imported by

the entity. Intuitively, invoking such a method generated for an action should result in

physically executing the action. The invocation of such a method generated for a property

should yield information about the current world and robot states regarding the property

and the currently existing objects (which are instances of the classes described in the

domain model). The methods generated for the classes modeled by the domain should

return subsets of objects that are relevant for planning. Technically, these objects are of the

type Query, which is described in details in Section 5.3.1.

Since the generated code is missing robot and world specific domain knowledge, the

generated code is not complete. It has to be complemented with handcrafted world and

robot implementations (Figure 8.2, RobotImpl and WorldImpl) that must implement

the interfaces generated for the entity models (IWorld and IRobot). The following

sections present specific domain, entity, task, application, and goal models and illustrate

the integration of handcrafted code.
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8.1.1 Logistics Domain

Figure 8.3 depicts a CD modeling the domain of the scenario presented in this chapter.

For the representation of items, rooms, and persons, the CD consists of the three classes

Item, Room, and Person. Each has an attribute name of type String, while the

class Person additionally has an attribute beaconID of type String. Items, rooms

and persons can be identified by their names. In the scenario presented in this chapter,

persons must carry electronic beacons to be localized by the robot. Each beacon has a

unique identifier. The beaconID attribute of a Person encodes which beacon, if any,

the person carries. CDPerson+Person()+Person(String name, String beaconID)String nameString beaconIDRoom+Room()+Room(String name)String nameItem+Item()+Item(String name)String name CD
Figure 8.3: CD modeling the domain of the scenario presented in this chapter.

8.1.2 Rooms World Entity

Listing 8.4 depicts the RoomsWorld entity model. The world entity states the domain

LogisticsDomain (l. 3) and therefore imports the data types defined by the domain

model. Further, the entity consists of five properties and does not contain any action. The

property itemLocation(Item item, Room room) (l. 6) indicates whether the

current position of item is room. Querying the property personLocation(Person

person) (l. 7) yields the current position of person. To keep track of the persons,

which have already been followed by the robot, the entity contains the properties was-

Followed(Person person) (l. 9) and wasGuided(Person person, Room

room) (l. 8). The former indicates whether person was followed at least once, whereas

the latter shows whether person was guided to room at least once. The property

adjacent(Room r1, Room r2) (l. 10) indicates whether the rooms r1 and r2 are

adjacent to each other.

8.1.3 Transport Robot Entity

Listing 8.5 depicts the TransportRobot entity model. The robot entity states the

domain LogisticsDomain (l. 2) and the world entity RoomsWorld (l. 3). It consists

of actions for managing concerns regarding robot movement (ll. 9-13), item handling

(ll. 15-26), and guide and follow initiation (ll. 28-36). Querying the property robotLo-

cation() (l. 6) yields the robot’s current position. The robot moves between adjacent

rooms by executing a move(Room from, Room to) action (ll. 9-13). The action can

only be executed if the robots’ current position is room from and the rooms from and
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Entity

1 package smartsoftusage.entities;

2

3 domain smartsoftusage.types.LogisticsDomain;

4

5 world RoomsWorld {

6 property Boolean itemLocation(Item item, Room room);

7 property Room personLocation(Person person);

8 property Boolean wasGuided(Person person, Room room);

9 property Boolean wasFollowed(Person person);

10 property Boolean adjacent(Room r1, Room r2);

11 }

Listing 8.4: The world entity model RoomsWorld. The entity imports the domain

LogisticsDomain (l. 3) and contains five properties (ll. 6-10) for

querying item (l. 6) and person locations (l. 7), querying if a person was

guided (l. 8) or followed (l. 9) by the robot, and for querying if two rooms

are adjacent to each other (l. 10).

to are adjacent to each other (l. 11). This supports the planner in calculating a proper

path for the robot’s movement at runtime. Executing the action changes the position of

the robot to room to (l. 12). The property hasLoaded(Item item) (l. 7) indicates

whether the robot has loaded a specific item. The action pickUp(Item item, Room

room) (ll. 15-20) can be executed when the robot’s current position as well as the position

of item is room (ll. 16-17). On action execution, the item is loaded onto the robot and

therefore removed from room (l. 19). Analogously, when the robot has loaded a specific

item and its current position is room, the robot is able to execute the action drop(Item

item, Room room) (ll. 22-26), which results in the robot unloading the item in

room (l. 25). The precondition of action follow(Person person) (ll. 28-31) is

always true. Hence, it can always be executed spontaneously without any restrictions2.

Executing the action results in setting the wasFollowed property of the world entity

to reflect the robot has followed person (l. 30). Similarly, the action guide(Person

person, Room room) can be executed spontaneously and executing it results in set-

ting the wasGuided property of the world entity to reflect the robot has guided person

to room (l. 35).

8.1.4 Transport Tasks

This section presents two parametrized tasks. They operate in the context of the Lo-

gisticsDomain described in Section 8.1.1. The execution of a DeliverItem task

(Listing 8.6) results in the placement of the given item into the specified room. To this

effect, the task requires the satisfaction of a Deliver goal (l. 5). It has one parameter

item of type Item and one parameter room of type Room (l. 4). The task Follow-

2Note that the planner optimizes solutions, so these actions only occur when required.
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Entity

1 package smartsoftusage.entities;

2 domain smartsoftusage.types.LogisticsDomain;

3 world smartsoftusage.entities.RoomsWorld;

4

5 robot TransportRobot {

6 property Room robotLocation();

7 property Boolean hasLoaded(Item item);

8

9 action move(Room from, Room to) {

10 pre: robotLocation() == from &&

11 RoomsWorld.adjacent(from, to);

12 post: robotLocation() == to;

13 }

14

15 action pickUp(Item item, Room room) {

16 pre: RoomsWorld.itemLocation(item, room) &&

17 robotLocation() == room;

18 post: hasLoaded(item) && !RoomsWorld.itemLocation(item,

room);

19 }

20

21 action drop(Item item, Room room) {

22 pre: hasLoaded(item) && robotLocation() == room;

23 post: !hasLoaded(item) &&

24 RoomsWorld.itemLocation(item, room);

25 }

26

27 action follow(Person person) {

28 pre: true;

29 post: RoomsWorld.wasFollowed(person);

30 }

31

32 action guide(Person person, Room room) {

33 pre: true;

34 post: RoomsWorld.wasGuided(person, room);

35 }

36 }

Listing 8.5: A simplified version of the TransportRobot entity model.
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Task

1 import smartsoftusage.goals.*;

2 domain smartsoftusage.types.LogisticsDomain;

3

4 task DeliverItem(Item item, Room room) {

5 Deliver(item, room);

6 }

Listing 8.6: The tasks DeliverItem, which imports the LogisticsDomain,

defines two parameters and uses one Deliver goal.

Task

1 package smartsoftusage.tasks;

2

3 import smartsoftusage.goals.*;

4 domain smartsoftusage.types.LogisticsDomain;

5

6 task FollowPerson(Person person) {

7 Followed(person);

8 }

Listing 8.7: The tasks FollowPerson, which imports the LogisticsDomain,

defines one parameter and contains one Followed goal.

Person(Person person) (Listing 8.7) leads the robot to follow person. To meet

this requirement, it consists of one parameter person of type Person (l. 4) and requires

the satisfaction of a Followed goal (l. 5).

8.1.5 Transport Goals

This section presents the goals Deliver (Listing 8.8) and Followed (Listing 8.9)

utilized by the tasks DeliverItem (Listing 8.6) and FollowPerson (Listing 8.7),

which are described in Section 8.1.4. Both goals refer to the LogisticsDomain

(Figure 8.3) as well as the entities TransportRobot (Listing 8.5) and RoomsWorld

(Listing 8.4). Each of them consists of a predicate that references a property defined

in the RoomsWorld entity. The Deliver goal (Listing 8.8) has one parameter item

of type Item and one parameter room of type Room (l. 7). It requires the satisfaction

of the predicate RoomsWorld.itemLocation(item, room) (ll. 8-10), which is

satisfied if the current location of the item is room. The Followed goal (Listing 8.7)

has one parameter person of type Person (l. 7) and contains the predicate Rooms-

World.wasFollowed(person) (ll. 8-10), which is satisfied if the robot started and

finished following the person.
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Goal

1 package smartsoftusage.goals;

2

3 domain smartsoftusage.types.LogisticsDomain;

4 robot smartsoftusage.entities.TransportRobot;

5 world smartsoftusage.entities.RoomsWorld;

6

7 goal Deliver(Item item, Room room) {

8 predicate {

9 RoomsWorld.itemLocation(item, room)

10 }

11 }

Listing 8.8: The goal Deliver depends on the LogisticsDomain, the robot entity

TransportRobot, and the world entity RoomsWorld. It defines two

parameters and contains a predicate over the world state.

Goal

1 package smartsoftusage.goals;

2

3 domain smartsoftusage.types.LogisticsDomain;

4 robot smartsoftusage.entities.TransportRobot;

5 world smartsoftusage.entities.RoomsWorld;

6

7 goal Followed(Person person) {

8 predicate {

9 RoomsWorld.wasFollowed(person)

10 }

11 }

Listing 8.9: The goal Followed depends on the LogisticsDomain, the robot

entity TransportRobot, and the world entity RoomsWorld. It defines

one parameter and contains a predicate over the world state.
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8.1.6 Integrating Handcrafted Code

As illustrated in Figure 8.2, the code produced by the generators has to be complemented

with handcrafted code. To complete it, users have to create robot and world implementa-

tions for the generated interfaces IWorld and IRobot. The names of the handcrafted

classes must be equal to names of their corresponding entity models. Further, entity

models and their corresponding classes must be placed in the same package. For instance,

considering the entities presented in Listing 8.5, the name of the corresponding handcrafted

class has to be TransportRobot (cf. RobotImpl (Figure 8.2)) and the class has to

be placed in the package smartsoftusage.entities. The interfaces generated

from the entities TransportRobot (Listing 8.5) and RoomsWorld (Listing 8.4) as

well as the handcrafted classes TransportRobot and RobotWorld are illustrated in

Figure 8.10.

The interface IRobot as given in Figure 8.10 is generated from the TransportRobot

entity (Listing 8.5). It contains one method for each action and two methods for each

property of the corresponding entity. Each method generated for an action has the return

type void, the same name as the action, and one parameter for each parameter of the

action. The parameters have the same names and types as the parameters of the correspond-

ing action. For instance, the method void drop(Item item, Room room) (Fig-

ure 8.10) is generated for the action drop(Item item, Room room) (Listing 8.5,

ll. 20-23). Similar to the methods generated for actions, the first method generated for

a property has the same name and signature as the property, as for instance Boolean

hasLoaded(Item item) (Figure 8.10, interface IRobot and Listing 8.5, l. 7). The

second method generated for a property has no parameters and has the name of the property

starting with an uppercase letter, prefixed with the String "stateOf". Its return type is a

set of tuples representing all information about the relation defined by the corresponding

property. The tuples arity is equal to one plus the number of the parameters of the query.

The type of the first parameter of the tuple is bound to the type of the query. The other

type parameters of the tuple are bound to the types of the parameters of the query. The

method Set<Pair<Boolean, Item>> stateOfHasLoaded() (Figure 8.10, in-

terface IRobot), for instance, is generated from Boolean hasLoaded(Item tem)

(Listing 8.5, l. 7).

The interface IWorld as given in Figure 8.10 is generated from the entity RoomsWorld

(Listing 8.4). Analog to the generated interface IRobot, the IWorld interface contains

one method for each action and two methods for each property of its corresponding entity.

Additionally, it contains one method for each class of its corresponding domain. The

methods generated for the domain are expected to return all instances of the corresponding

class that are relevant to the planner. They do not define any parameters and their names are

equal to the name of the corresponding classes starting with an uppercase letter, prefixed

with the String "getAll". The return type of such a method is Set<X> where X is

the name of the class the method is generated from. The method Set<Item> getAl-

lItem() (Figure 8.10, interface IWorld), for example, is generated for the class Item

(Figure 8.3).
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«interface»IRobot «interface»IWorld
+void drop(Item item,Room room)+void follow(Person person)+void pickUp(Item item,Room room)+void move(Room from,Room to)+void guide(Person person,Room room)+Boolean hasLoaded(Item item)+Room robotLocation()+Set<Unit<Room>> stateOfRobotLocation()+Set<Pair<Boolean, Item>> stateOfHasLoaded()
generated from robot
entity TransportRobot

generated from world entity
RoomsWorld and domain LogisticsDomain

actions

properties

properties

classes
modeled
by domain

TransportRobot RoomsWorld

CDCD+Boolean wasGuided(Person person, Room room);+Boolean itemLocation(Item item, Room room);+Room personLocation(Person person);+Boolean wasFollowed(Person person);+Boolean adjacent(Room w1, Room w2);+Set<Triplet<Boolean, Person, Room>> stateOfWasGuided();+Set<Pair<Room, Person>> stateOfPersonLocation();+Set<Triplet<Boolean, Room, Room>> stateOfAdjacent();+Set<Pair<Boolean, Person>> stateOfWasFollowed();+Set<Triplet<Boolean, Item, Room>> stateOfItemLocation();+Set<Person> getAllPerson();+Set<Room> getAllRoom();+Set<Item> getAllItem();
Figure 8.10: The interfaces IRobot and IWorld generated from the entities Trans-

portRobot and RoomsWorld are implemented by the handcrafted classes

TransportRobot and RoomsWorld.

Bash

1 $ sudo sh start-deployment.sh menu

Listing 8.11: Bash command to start the SmartSoft deployment.

8.2 Starting SmartSoft

This section describes how to start the SmartSoft3 deployment. First, one has to connect

via VNC to the robot. To start the deployment the bash command depicted in Listing 8.11

has to be executed in folder /root/tmp/Deployment from the robot. Executing the

command opens a separate window for each SmartSoft component.

In the scenario control window (Figure 8.12) Start Scenario has to be selected.

To choose the desired scenario, the SmartLispServer window requires to be opened

(Figure 8.13). The SmartLispServer processes the commands that are sent to Smart-

Soft. For instance, it maps the symbolic positions (e.g., a room’s name) to coordinates.

The coordinates are used to navigate the robot to the desired symbolic destination.

8.3 Deployment of Architecture and User Interfaces

SmartSoft provides a high level interface that serves as communication endpoint. The

reference architecture connects to it via the iserveU server (cf. Section 5.5.4). This section

describes how to deploy, and start the iserveU server (Section 8.3.1), the architecture, the

desktop UI (Section 8.3.2), and the tablet UI (Section 8.3.3). To deploy or start these

components, one has to download the latest build as zip file from our website4. Its folder

3SmartSoft Website: http://www.servicerobotik-ulm.de/drupal/?q=node/20
4Reference architecture desktop UI: http://www.se-rwth.de/materials/iserveu/
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Figure 8.12: The SmartSoft Scenario Control window with options to start, stop or quit

the deployment.

structure is depicted in Figure 8.14. Afterwards, Metric-FF [Met] in version 1.0 has to

be installed to the folder smartsoft-usage/src/main/resources/Metric-

FF/Metric-FF-PLATFORM-BUILD/ (Figure 8.14) of the previously downloaded zip

file. Finally, the iserveU server has to be downloaded from our companion website5.

8.3.1 Starting the iserveU Server

To start the iserveU server, its jar file has to be copied to a target device (e.g., the robotics

platform). The server is the first deployment component to start and runs on the Robotino.

It is deployed automatically with the SmartSoft deployment and by default the server is

expecting messages via port 20021. This port needs to be accessible and open on the

device. It is possible to change it by launching the server with command line argument as

depicted in Listing 8.15.

8.3.2 Deploying Reference Architecture and Desktop UI

The reference architecture is always started together with the desktop UI. For starting the

desktop UI and the reference architecture, one has to enter the folder of the previously

downloaded zip file. The folder contains two starter jars, two knowledge base json files,

a source folder with all required models and Metric-FF files. The desktop UI and the

reference architecture can be started as depicted in Listing 8.16. Afterwards, the knowledge

base selection window is displayed (Figure 8.17). Section 7.1 describes how to operate the

desktop UI.

5iserveU server: http://www.se-rwth.de/materials/iserveu/
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Figure 8.13: LispServer component window with three scenarios.

8.3.3 Starting the Tablet User Interface

The Android app supports user interaction at runtime. Executing the following steps is

necessary before starting the app. First of all, the “app-release.apk”6 has to be deployed to

an Android device. The app requires a minimum Android version of 4.0.4 (Figure 8.18).

Starting the app requires the server as well as the reference architecture and the desktop UI

to run and to be in the same local network. After the launch, the app tries to connect to the

desktop UI. The default port is configured as 20024 and can be configured together with

the IP (Section 7.2).

8.4 Generalizing the Infrastructure

A collection of specific models has been created that describe tasks to deliver items,

guide persons, and follow persons for a movable robot in a hospital domain. As the

implementation abstracts from technology and domains, it can be applied to different

domains and platforms with little effort. Section 8.4.1 describes how to generalize models

to other domains. Section 8.4.2 explains the required modifications in an application with

a different robotics middleware.

6Android tablet UI: http://www.se-rwth.de/materials/iserveu/
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smartsoft-usage/

HLISimulation.json

Krankenhaus.json

starter.jar

starterWithHLI.jar

src/

main/

models/

...

resources/

Metric-FF/

Metric-FF-LINUX-BUILD/

Metric-FF-WINDOWS-BUILD/

*.exe

Figure 8.14: Folder structure of the downloaded zip. It contains two knowledge base files,

two executable jars, a models folder and a folder Metric-FF where Metric-FF

has to be installed too.

Bash

1 $ java -jar iserveu-server.jar -port <port>

Listing 8.15: Bash command to start the iserveU server.

8.4.1 Adapting Models

The iserveU models (cf. Section 8.1) define tasks, goals, entities, and domain types. To

change the world domain the robot is used in, or to use the tasks defined for a robot entity

on another robot platform, the entity models can be adapted or exchanged. Also, for a

specific world and robot, the domain of tasks can be altered. This section describes the

changes that an adaption of domain, entity, task, and goal models entail. Figure 8.19

depicts the corresponding model modifications.

Models serve as abstraction from specific domains, and a change in the models may

require to adapt handcrafted implementations. Domain types are modeled as UML/P CDs

[Rum11]. If the domain changes, the knowledge base, which stores and maintains the

domain types, has to be adapted to support new types. The domain types may be used in

entity, task, and goal models. To support the domain type’s usage in the models, these

Bash

1 $ java -jar starter.jar -robip <server host>

2 -robport <server port>

3 -appport <port of appservices>

Listing 8.16: Bash command to start the reference architecture.
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Figure 8.17: The knowledge base selection window (Section 7.1) is displayed after execu-

tion of the starter jar.

Figure 8.18: Install the iserveU app from the Android file explorer.

models have to be adapted. Besides that, domain types can affect the communication. If

this is the case, the implementation of robot and/or world interfaces has to be adapted.

The desktop UI enables to exchange and to load and store different knowledge bases. The

domain types in the tasks are adapted from task models automatically. The following

describes the changes that have to be made if an existing model is modified or a new model

is added to the application. This is also depicted in Figure 8.19.

For the addition of a new task, a new task model has to be created. If a task model is

modified, the application has to be modified at different locations. Whereas the desktop UI

queries the available task types from the models automatically, new task types have to be

added to the tablet UI manually. This results in adapting the task view and modifying the

instantiation of new task objects. Besides that, the interrupt handling in the implementation

of the interface InterruptHandler (Section 5.2.4) is responsible to instantiate task

objects in case the robot should execute an idle task.

A modification of an existing goal model affects the task models that reference this goal.

Besides that, test cases have to be adapted. The implementation of new test cases that
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cover the added and modified functionality of the goal model is strongly recommended.

To add a new goal to the application, the goal model has to be implemented and referenced

from a task model.

If the robot or world entity model is altered, the robot, respectively world, interface

implementations have to be modified accordingly to support new or modified properties

and actions. The remaining parts of an application do not rely on implementations of the

interfaces rather than the generated interfaces themselves. Considering the complexity and

interweaving of the parts of an application, these changes are rather small.

The effort a modification of existing models entails is very little. In case of task, goal,

action, and domain models, only models that refer to the modified model have to be adapted.

Entity models require adapting the implementation of the generated entity interfaces.

8.4.2 Transfer to Other PlatformsModel ModificationAdapttask modelAdaptentity model
Adaptdomain modelAdaptgoal model Adapt entityimplementationModifytablet UI Modify interrupthandling

ExecutegeneratorUse in task modelUse in other models

AD

Figure 8.19: Changes entailed by modifications to different model kinds.

The implementation described in this chapter uses SmartSoft as middleware for con-

trolling the robot. SmartSoft is a robotics middleware that enables to execute high-level

commands on the robot. The architecture abstracts from the middleware and acts on

symbolic actions. Only the implementation of the entities’ interfaces interacts with the

middleware. These interfaces define methods that execute certain actions or query cer-

tain properties that are defined in the entity models. They are responsible for invoking

the employed middleware. The implementation of the middleware interactions could be

defined in different ways. For SmartSoft as middleware, iserveU uses a fixed protocol

and communicates with the middleware via TCP/IP (see Section 5.5.5 and Section 5.5.4).

TCP/IP communication enables to execute the architecture on a different platform than the

robot platform. The robot platform thus only has to run SmartSoft. Different middlewares

can have different ways to notify whether a command has been executed successfully or not.
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These responses received from the middleware have to be adapted to SystemResponse

(see Section 5.2.3). The resulting system responses have to be provided to the reference

architecture via the implementation of component ResponseListener (explained in

Section 5.2 and Section 5.5.2).
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Related Work

This section highlights work related to the three aspects of our contribution. First, Sec-

tion 9.1 discusses related modeling languages. Afterwards, Section 9.2 examines related

approaches to integrated MDE with planning. Finally, Section 9.3 investigates related

software architectures.

9.1 Modeling Languages

A textual DSML for modeling robot abilities is presented in [RHP+10]. The language

enables to define sequences of actions, which are independent from specific robot platforms.

The DSML provides the concepts resource component, action, and variable. A resource

component contains a set of actions. Actions describe abstract abilities of a robot and are

attached to resource components. Variables are globally available and can store action

results. With this infrastructure, tasks are programmed imperatively and there is no

decoupling between the tasks of a domain and robot abilities. In contrast to the approach

presented in this report, actions are bound to specific robot platforms via specific code

generators. This requires that robot experts develop proper code generators, which they

should not be burdened with.

In [DPMH12], an ontology to describe a robot behavior is presented. It focuses on

service robotics in health care, where the most important concepts are objects, robots and

persons. These concepts are ordered hierarchically with objects being the most general

kind of concept. They are also subject to inheritance. Relations between concepts are

either actions that are executed on the robot, other objects, or senses. Robots can use the

latter to recognize an object’s properties. The approach also supports control structures

that decide whether an action or a sense is used, and ultimately describe the behavior of the

robot. Actions, senses, and control structures are described in textual tables, which can be

utilized to implement a robot platform at a subsequent date. In our approach, robots also

provide actions. However, the properties of domain objects are available on the model level

and, thus, there are no sense models necessary. Instead, the implementation of sensing is

subject to the individual platform and transparent to the domain expert. Also, the modeling

languages (cf. Chapter 4) omit control structures and the presented reference architecture

(cf. Chapter 5) delegates task solving to a sophisticated planner instead.
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9.2 Integrating Modeling Languages with Planning

The presented reference architecture (cf. Chapter 5) uses PDDL [MGH+98], which could

be used to model tasks, goals, actions, and properties without the developed DSMLs

(cf. Chapter 4). PDDL provides predicates with typed parameters and safety conditions.

Domains can extend other domains and define types, constants, predicates, and actions.

Actions have preconditions and effects. A problem implements a domain and describes

an initial state as well as a goal state. With PDDL, modelers can describe planning

domains and their constituents of arbitrary complexity - something the presented DSMLs

(cf. Chapter 4) protect developers from. Furthermore, translation from sequences of actions

to effects in the real world (e.g., by mapping actions to robot API calls) is not foreseen with

PDDL. The same issues hold for the KPLANNER language [HL09], which can generate

plans with loops, and Readylog [FL08], which is a behavior modeling language with

underspecification that extends GOLOG [LRL+97].

9.3 Robotics Reference Architectures

Due to the heterogeneity of robotics, there are only few reference architectures [LOC00,

GRH+09], but various architectural styles [QGC+09, SSL11, BKH+13]. The three layer

reference architecture presented in [LOC00] aims to facilitate extensibility. The first layer is

the deliberate layer, which is connected to a HRI from which it receives commands (which

resemble tasks). Based on the commands, an integrated planner component calculates a

state change, which is sent to the middle layer. This task execution layer maps the received

state to a behavior which can be processed by the underlying reactive layer. The reactive

layer calculates control signals for the robot hardware based on the robot’s position and

the requested behavior, for instance, to avoid collisions. The architecture can be easily

extended by adding new behaviors. The architecture presented in this report (cf. Chapter 5)

also has a UI to receive tasks. These tasks are composed of goals which are processed by a

planner. The planner calculates a solution for the task at hand that consists of a sequence

of actions. These actions are sent to the middleware that derives the actual control signals.

Applications developed with this infrastructure can be easily expanded by adding more

tasks, goals or extending the entity models. Additionally, the architecture itself is not tied

to a specific hardware, which facilitates to reuse it with further platforms.

The Care-O-Bot [GRH+09] is a service robot that supports caregivers. It is controlled via

an integrated HRI that enables the user to select commands for the robot. The command is

passed to a symbolic planner, which calculates a list of actions to fulfill the given command.

The current world state is stored in a SQL database and the planner receives necessary

information about the environment from it. The Care-O-Bot architecture is tied to a specific

platform and does not decompose tasks into goals.
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Conclusion

We presented a modeling infrastructure to facilitate engineering of complex service robotics

applications while retaining a separation of concerns between domain experts, integration

experts, and robotics experts. To this effect, we introduced abstract models describing tasks,

goals, domain types, and entities. These models support domain experts in describing

requirements to the system (for instance in form of expected robot entity properties) and

their causalities liberated from the notational noise and accidental complexity of a GPL.

Integration of domain-specific models benefits from the same abstraction by modeling

large parts of the execution infrastructure using the MAA C&C ADL. The MAA reference

architecture also facilitates execution infrastructure extension via well-defined interfaces

for additional components. Sophisticated code generation automatically translates tasks,

goals, and entities of the domain, as well as architecture models into integrated executable

artifacts. These include entity interfaces produced for robot and world experts to implement

and hence ground the abstract actions and causalities of the models into reality. The

resulting reference architecture implementation can easily be extended by handcrafted user

interfaces and employs state of the art planning from tasks to sequences of actions. The

latter are interpreted in the context of robot and world entities that decouple logical actions

from their platform specific implementations. Ultimately, this integration supports easy

reuse of tasks, goals, and entities in different contexts and hence facilitates service robotics

application engineering.
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Related Interesting Work from the SE Group, RWTH

Aachen

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an exe-

cutable, yet abstract and multi-view modeling language for modeling, designing and programming

still allows to use an agile development process.” Modeling will be used in development projects

much more, if the benefits become evident early, e.g with executable UML [Rum02] and tests

[Rum03]. In [GKRS06], for example, we concentrate on the integration of models and ordinary

programming code. In [Rum12] and [Rum16], the UML/P, a variant of the UML especially de-

signed for programming, refactoring and evolution, is defined. The language workbench MontiCore

[GKR+06, GKR+08] is used to realize the UML/P [Sch12]. Links to further research, e.g., include

a general discussion of how to manage and evolve models [LRSS10], a precise definition for

model composition as well as model languages [HKR+09] and refactoring in various modeling and

programming languages [PR03]. In [FHR08] we describe a set of general requirements for model

quality. Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based

software development project. In [CEG+14] we discuss how to improve reliability of adaptivity

through models at runtime, which will allow developers to delay design decisions to runtime

adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound

derivative of the UML designed for product and test code generation. [Sch12] describes a flexi-

ble generator for the UML/P based on the MontiCore language workbench [KRV10, GKR+06,

GKR+08]. In [KRV06], we discuss additional roles necessary in a model-based software devel-

opment project. In [GKRS06] we discuss mechanisms to keep generated and handwritten code

separated. In [Wei12] demonstrate how to systematically derive a transformation language in

concrete syntax. To understand the implications of executability for UML, we discuss needs and

advantages of executable modeling with UML in agile projects in [Rum04], how to apply UML for

testing in [Rum03] and the advantages and perils of using modeling languages for programming in

[Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99]

many of our contributions build on the UML/P variant, which is described in the two books [Rum16]

and [Rum12] implemented in [Sch12]. Semantic variation points of the UML are discussed in

[GR11]. We discuss formal semantics for UML [BHP+98] and describe UML semantics using

the “System Model” [BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic variation

points have, e.g., been applied to define class diagram semantics [CGR08]. A precisely defined

semantics for variations is applied, when checking variants of class diagrams [MRR11c] and objects

diagrams [MRR11d] or the consistency of both kinds of diagrams [MRR11e]. We also apply these

concepts to activity diagrams [MRR11b] which allows us to check for semantic differences of
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activity diagrams [MRR11a]. The basic semantics for ADs and their semantic variation points

is given in [GRR10]. We also discuss how to ensure and identify model quality [FHR08], how

models, views and the system under development correlate to each other [BGH+98] and how to

use modeling in agile development projects [Rum04], [Rum02]. The question how to adapt and

extend the UML is discussed in [PFR02] describing product line annotations for UML and more

general discussions and insights on how to use meta-modeling for defining and adapting the UML

are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need

appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10, GKR+08]

allows the specification of an integrated abstract and concrete syntax format [KRV07b] for easy

development. New languages and tools can be defined in modular forms [KRV08, GKR+07, Völ11]

and can, thus, easily be reused. [Wei12] presents a tool that allows to create transformation rules

tailored to an underlying DSL. Variability in DSL definitions has been examined in [GR11]. A

successful application has been carried out in the Air Traffic Management domain [ZPK+11].

Based on the concepts described above, meta modeling, model analyses and model evolution have

been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions for defining views

[GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for DSLs [KRV07a]

complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language

components, we adopt an engineering viewpoint on these techniques. General ideas on how to

engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15]. As said, the

MontiCore language workbench provides techniques for an integrated definition of languages

[KRV07b, Kra10, KRV10]. In [SRVK10] we discuss the possibilities and the challenges using

metamodels for language definition. Modular composition, however, is a core concept to reuse lan-

guage components like in MontiCore for the frontend [Völ11, KRV08] and the backend [RRRW15]].

Language derivation is to our believe a promising technique to develop new languages for a specific

purpose that rely on existing basic languages. How to automatically derive such a transformation

language using concrete syntax of the base language is described in [HRW15, Wei12] and suc-

cessfully applied to various DSLs. We also applied the language derivation technique to tagging

languages that decorate a base language [GLRR15] and delta languages [HHK+15a, HHK+13],

where a delta language is derived from a base language to be able to constructively describe

differences between model variants usable to build feature sets.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams

of telephone or video data, method invocation, or data structures passed between software services.

We use streams, statemachines and components [BR07] as well as expressive forms of composition

and refinement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called
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MontiArc [HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was ex-

tended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and evolution on deltas

[HRRS12]. [GHK+07] and [GHK+08] close the gap between the requirements and the logical

architecture and [GKPR08] extends it to model variants. [MRR14] provides a precise technique

to verify consistency of architectural views [Rin14, MRR13] against a complete architecture in

order to increase reusability. Co-evolution of architecture is discussed in [MMR10] and a modeling

technique to describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling.

The mechanisms for distributed systems are shown in [BR07] and algebraically underpinned in

[HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to the language

workbench MontiCore [KRV10] that can even be used to develop modeling tools in a compositional

form. A set of DSL design guidelines incorporates reuse through this form of composition

[KKP+09]. [Völ11] examines the composition of context conditions respectively the underlying

infrastructure of the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15]

applies compositionality to Robotics control. [CBCR15] (published in [CCF+15]) summarizes our

approach to composition and remaining challenges in form of a conceptual model of the “globalized”

use of DSLs. As a new form of decomposition of model information we have developed the concept

of tagging languages in [GLRR15]. It allows to describe additional information for model elements

in separated documents, facilitates reuse, and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and

detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by

using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version

especially suited for the UML is given in [BCGR09b] and in [BCGR09a] its rationale is discussed.

[BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in [CGR08]. To

better understand the effect of an evolved design, detection of semantic differencing as opposed

to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b] encode a part of the

semantics to handle semantic differences of activity diagrams and [MRR11e] compares class

and object diagrams with regard to their semantics. In [BR07], a simplified mathematical model

for distributed systems based on black-box behaviors of components is defined. Meta-modeling

semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the

description of an exemplary object interaction, today called sequence diagram. [BGH+98] discusses

the relationships between a system, a view and a complete model in the context of the UML. [GR11]

and [CGR09] discuss general requirements for a framework to describe semantic and syntactic

variations of a modeling language. We apply these on class and object diagrams in [MRR11e] as

well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test

case generation, refactoring and evolution techniques. [LRSS10] discusses evolution and related

issues in greater detail.
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Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially

correct and need to be changed, evolved and maintained over time. Model transformation is

therefore essential to effectively deal with models. Many concrete model transformation problems

are discussed: evolution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactor-

ing [Rum12, PR03], translating models from one language into another [MRR11c, Rum12] and

systematic model transformation language development [Wei12]. [Rum04] describes how compre-

hensible sets of such transformations support software development and maintenance [LRSS10],

technologies for evolving models within a language and across languages, and mapping archi-

tecture descriptions to their implementation [MMR10]. Automaton refinement is discussed in

[PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99]. Refactorings of mod-

els are important for model driven engineering as discussed in [PR01, PR03, Rum12]. Translation

between languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing class

diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer

develops several products with many similarities but also many variations. Variants are managed in

a Software Product Line (SPL) that captures product commonalities as well as differences. Feature

diagrams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08]

using 150% models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta

modeling is a bottom up technique starting with a small, but complete base variant. Features are

additive, but also can modify the core. A set of commonly applicable deltas configures a system

variant. We discuss the application of this technique to Delta-MontiArc [HRR+11, HRR+11] and

to Delta-Simulink [HKM+13]. Deltas can not only describe spacial variability but also temporal

variability which allows for using them for software product line evolution [HRRS12]. [HHK+13]

and [HRW15] describe an approach to systematically derive delta languages. We also apply

variability to modeling languages in order to describe syntactic and semantic variation points, e.g.,

in UML for frameworks [PFR02]. Furthermore, we specified a systematic way to define variants of

modeling languages [CGR09] and applied this as a semantic language refinement on Statecharts in

[GR11].

Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical

entities. Contributions for individual aspects range from requirements [GRJA12], complete product

lines [HRRW12], the improvement of engineering for distributed automotive systems [HRR12]

and autonomous driving [BR12a] to processes and tools to improve the development as well as the

product itself [BBR07]. In the aviation domain, a modeling language for uncertainty and safety

events was developed, which is of interest for the European airspace [ZPK+11]. A component

and connector architecture description language suitable for the specific challenges in robotics is

discussed in [RRW13b, RRW14]. Monitoring for smart and energy efficient buildings is developed

as Energy Navigator toolset [KPR12, FPPR12, KLPR12].
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State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including

Petri nets or temporal logics. Software engineering is particularly interested in using statemachines

for modeling systems. Our contributions to state based modeling can currently be split into three

parts: (1) understanding how to model object-oriented and distributed software using statemachines

resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement

[PR94, RK96, Rum96] and composition [GR95] of statemachines, and (3) applying statemachines

for modeling systems. In [Rum96] constructive transformation rules for refining automata behavior

are given and proven correct. This theory is applied to features in [KPR97]. Statemachines

are embedded in the composition and behavioral specification concepts of Focus [BR07]. We

apply these techniques, e.g., in MontiArcAutomaton [RRW13a, RRW14] as well as in building

management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an

inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of

robotics applications requires composition and interaction of diverse distributed software modules.

This usually leads to complex monolithic software solutions hardly reusable, maintainable, and

comprehensible, which hampers broad propagation of robotics applications. The MontiArcAu-

tomaton language [RRW13a] extends ADL MontiArc and integrates various implemented behavior

modeling languages using MontiCore [RRW13b, RRW14, RRRW15] that perfectly fit Robotic

architectural modeling. The LightRocks [THR+13] framework allows robotics experts and laymen

to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication

systems as well as advanced active and passive safety-systems result in complex embedded systems.

As these feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of

distinct variants needs to be managed, developed and tested. A consistent requirements management

that connects requirements with features in all phases of the development for the automotive domain

is described in [GRJA12]. The conceptual gap between requirements and the logical architecture

of a car is closed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for

Simulink [HKM+13]. [HRRW12] discusses means to extract a well-defined Software Product Line

from a set of copy and paste variants. [RSW+15] describes an approach to use model checking

techniques to identify behavioral differences of Simulink models. Quality assurance, especially

of safety-related functions, is a highly important task. In the Carolo project [BR12a, BR12b],

we developed a rigorous test infrastructure for intelligent, sensor-based functions through fully-

automatic simulation [BBR07]. This technique allows a dramatic speedup in development and

evolution of autonomous car functionality, and thus enables us to develop software in an agile way

[BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and evolution

on a more general level by considering any kind of critical system that relies on architectural

descriptions. As tooling infrastructure, the SSELab storage, versioning and management services

[HKR12] are essential for many projects.
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Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions

is an important challenge. Thus, energy management in buildings as well as in neighborhoods

becomes equally important to efficiently use the generated energy. Within several research projects,

we developed methodologies and solutions for integrating heterogeneous systems at different

scales. During the design phase, the Energy Navigators Active Functional Specification (AFS)

[FPPR12, KPR12] is used for technical specification of building services already. We adapted the

well-known concept of statemachines to be able to describe different states of a facility and to

validate it against the monitored values [FLP+11]. We show how our data model, the constraint

rules and the evaluation approach to compare sensor data can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-

based application and service architectures with high complexity, criticality and new application

domains. It promises to enable new business models, to lower the barrier for web-based innovations

and to increase the efficiency and cost-effectiveness of web development [KRR14]. Application

classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15b], Big Data, App and

Service Ecosystems bring attention to aspects like responsiveness, privacy and open platforms.

Regardless of the application domain, developers of such systems are in need for robust methods

and efficient, easy-to-use languages and tools [KRS12]. We tackle these challenges by perusing

a model-based, generative approach [NPR13]. The core of this approach are different modeling

languages that describe different aspects of a cloud-based system in a concise and technology-

agnostic way. Software architecture and infrastructure models describe the system and its physical

distribution on a large scale. We apply cloud technology for the services we develop, e.g., the

SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators

and our own development platforms. New services, e.g., collecting data from temperature, cars etc.

can now easily be developed.
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