
Modeling Language Variability

Hans Grönniger, Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de

Abstract. A systematic way of defining variants of a modeling language
is useful for adopting the language to domain or project specific needs.
Variants can be obtained by adopting the syntax or semantics of the
language. In this paper, we take a formal approach to define modeling
language variability and show how this helps to reason about language
variants, models, and their semantics formally. We introduce the notion
of semantic language refinement meaning that one semantics variant is
implied by another.

1 Introduction

It has often been stressed that software is one of the most important drivers for
innovation in many branches of industry. Developers are faced with the challenge
to produce high quality, increasingly complex solutions in a short period of time.

Model-based software development is regarded as one instrument to cope
with the challenges. Standard modeling languages like UML [OMG09] or domain
specific languages (DLSs) are employed to increase the level of abstraction and
automation while at the same time lowering the complexity. Especially in the
context of robust, reliable systems development, the modeling languages used
have to be defined precisely to allow for rigorous analysis of models and correct
code generation.

The precise definition of a modeling language involves syntax and seman-
tics [HR04]. Formal semantics is advantageous because it helps to avoid mis-
understandings between people and may enable interoperability between tools.
But even if a formal modeling language exists, a new class of systems like highly
robust and reliable systems or a specific application domain may require adap-
tation of the language. A language may be changed to incorporate new lan-
guage constructs, to disallow others for methodological or safety reasons, or to
be semantically adjusted to a specific platform. This variability of a modeling
language is subject of the paper.

We provide a formal account on language variability based on our classifi-
cation in [CGR09]. On the one hand, the formalization brings light into how a
language can be adopted to specific requirements. On the other hand, it servers
as a basis to define language variants formally. This allows us to reason about
language (especially semantic) variants.

[GR10] H. Grönniger, B. Rumpe
Modeling Language Variability.
In: Workshop on Modeling, Development and Verification of Adaptive Systems.
(16th Monterey Workshop). Redmond, Microsoft Research, Mar. 31- Apr. 2, 2010
www.se-rwth.de/publications

The paper is structured as follows. The basic constituents (syntax, semantics)
of a modeling language that may be subject to variability are introduced in
Section 2. In Section 3, a formal characterization of language variants and a
method to define variants is presented. As an example application, we outline
how semantic variants can be compared formally in Section 4. In Section 5, we
discuss related work. Section 6 concludes the paper.

2 Language Constituents

A precise definition of a modeling language consists of the following elements,
see also [HR04,CGR09].

Concrete Syntax The concrete syntax is the representation of the model with
which a user interacts. This may be a graphical or textual notation or a mixture
of both. We denote the set of all models of a modeling language in concrete
syntax by CS.

Abstract Syntax The abstract syntax represents the structural essence of a lan-
guage [Wil97]. For a textual syntax this may be given as abstract syntax trees
generated by a parser. In case of graphical models, metamodels (e.g., defined in
MOF [OMG06]) are typically used. The set of all models of a modeling language
in abstract syntax is denoted by AS.

Additionally, a set of well-formedness rules or context conditions are defined
to rule out certain models based on syntactic criteria. We assume a predicate

wellformed : AS → bool

to decide if a model is well-formed. The set of all well-formed models ASwf of a
language hence is

ASwf = {m ∈ AS|wellformedm}

A model in concrete syntax is associated with (or mapped to) a model in abstract
syntax. Since typically not all models from CS are well-formed, we obtain a
partial mapping from concrete to abstract syntax:

p : CS ⇀ ASwf

Reduced Abstract Syntax It is often advisable to reduce the number of language
constructs by further constraining the set ASwf to a subset ASred ⊆ ASwf. For
some models in ASwf there will be a syntactic transformation t to convert it
into the reduced abstract syntax, i.e.,

t : ASwf ⇀ ASred with ASwf ⊇ dom(t) ⊇ ASred

The reduction of the abstract syntax might be useful for several reasons. One is
that is eases semantics definition. A more detailed explanation will be given in
the next section.

Semantic Domain By mapping models to elements of a semantic domain S, the
models obtain their meaning. The semantic domain is required to be well-known
and understood and it should be based on a well-defined mathematical theory.

Our approach to semantics uses the system model [BCGR09a,BCGR09b]
which characterizes the structure, behavior, and interaction of objects in object-
based systems. The definitions are built on simple mathematical concepts like
sets, relations, and functions. It is important to note that one element in the sys-
tem model represents a single, complete object-based system. This means that
the meaning of a model is directly represented as properties of possible imple-
mentations. The system model is underspecified to allow, for example, freedom
of implementation when mapping a model to executable code.

Semantic Mapping The semantic mapping sem finally relates models of the
reduced abstract syntax to elements of the semantic domain. Characteristic of
our loose approach is a set-valued or predicative semantic mapping of the form

sem : ASred → ℘(S)

℘(X) denotes the set of all subsets of X (power set). The semantics of a model
m is therefore the set sem(m) of elements in the domain S. If the system model
is used for S, then the model’s meaning is the set of all possible realizations.

Using the system model as a single semantic domain and the set-valued
semantic mapping enable a straightforward treatment of composition and re-
finement of possibly incomplete and underspecified models of various modeling
languages [Rum96]. For example, the integrated semantics of models m1, . . . ,mn

from possibly different languages is given as sem1(m1) ∩ . . . ∩ semn(mn). In the
same way, a model m′ is a refinement of model m, exactly if sem(m′) ⊆ sem(m).

3 Language Variants

A modeling language should be defined precisely but should not be completely
fixed. Sustaining a certain degree of flexibility regarding a language’s syntax or
semantics allows for adapting it to project or domain specific needs, or to enable
modeling of new classes of systems. This idea has also been incorporated in
the definition of UML where the informal semantics is equipped with semantic
variation points subject to specific interpretation. We take a formal approach to
define the possible variability in a language definition thereby substantiating our
classification in [CGR09]. Afterwards, we present an intuitive way to document
language variants.

3.1 Classification of Language Variability

In the previous section, we defined the constituents of a modeling language and
their relations. To summarize, we have the sequence

CS p
⇀ ASwf t

⇀ ASred sem→ ℘(S)

In this section, we discuss means to define variants of a modeling language by
adopting one or more elements of the above sequence.

Presentation Variability A modeling language may offer presentation options, a
term also coined in the UML standard. Presentation options allow for represent-
ing models differently in concrete syntax without changing a model’s abstract
syntax. Formally, a language contains presentation options, if

∃m1,m2 ∈ CS : m1 6= m2 ∧ p(m1) = p(m2)

For example, we have different ways to represent a public class modifier in UML:
We can use the keyword public but equivalently the symbol +. Variants of pre-
sentation options result in changes of CS and p, say CSv and pv, by introducing,
eliminating or changing existing ones. Models contained in both variants still
have the same abstract syntax:

∀m ∈ CSv ∩ CS : pv(m) = p(m)

Additionally, every model can be expressed without choosing the presentation
option variant:

∀m1 ∈ dom(pv) : ∃m2 ∈ dom(p) : pv(m1) = p(m2)

Another form of presentation variability is what we call abbreviations or
extended constructs: The syntax may contain certain constructs that help to
enhance readability and comfort but which can be eliminated by some syntac-
tic transformation t without loosing expressiveness of the language. All models
which do not use extended constructs remain identical under t, i.e.,

∀m ∈ ASred : t(m) = m

The models that actually get transformed are contained in dom(t)\ASred. Vari-
ability in abbreviations means adapting ASwf and t, to ASwf

v and tv say. Con-
sider, for example, a reduced abstract syntax for Statecharts ASred which con-
tains flat automata only. Hierarchy can be added to or removed from Statecharts
without changing expressiveness [Rum04], but we obtain a larger set of express-
ible models when adding hierarchy, i.e., ASwf

v ⊇ ASred. Models that do not
contain an extended construct variant (e.g., hierarchy) are transformed equally
under tv:

∀m ∈ dom(tv) ∩ dom(t) : tv(m) = t(m)

And we can still represent each model without the abbreviation:

∀m1 ∈ dom(tv) : ∃m2 ∈ dom(t) : tv(m1) = t(m2)

As abbreviations do not show up in the reduced abstract syntax, semantics
of theses constructs is defined in two-step, the first one being the transformation
to ASred for which semantics is defined via the semantic mapping sem. Sum-
marizing, variants of presentation options have an effect on the concrete syntax.
Variants of abbreviations have an effect on the full abstract syntax. Both do not
change the reduced abstract syntax and are called presentation variability.

Syntactic Variability We now consider language variants that also have an im-
pact on the reduced abstract syntax ASred. The syntax of a language may allow
the use of stereotypes. A set of defined stereotypes (e.g., as part of a profile
in case of UML) is a syntactic variant of the language. We assume a function
variant allowedStereotypesv that checks if only the chosen stereotypes are used,
i.e.,

ASred
v = {m ∈ ASred| allowedStereotypesv(m)}

Another form of syntactic variability is given by so called language param-
eters, also termed language embedding in [KRV08]. Consider, for example, the
language of Statecharts in which transitions may be guarded by a precondition.
The language in which this condition is expressed is not specified. Hence, a syn-
tax can be equipped with parameters ASred(p1, . . . , pn). Variants can then be
specified by assigning concrete languages to the parameters p1, . . . , pn.

As a last form of syntactic variability, we consider general language con-
straints. A language is further constrained to disallow certain models syntacti-
cally. It may be the case that this results is a less expressive language. Formally,
a variant ASred

v is given by models which fulfill further constraints stated, for
example, in the predicate constrv:

ASred
v = {m ∈ ASred| constrv(m)}

The expressiveness of the language is preserved if

∀m1 ∈ ASred
v : ∃m2 ∈ ASred : sem(m1) = sem(m2)

It is, for example, the goal of modeling or programming guidelines [Mat07,MIS]
to restrict the use of certain (e.g., unsafe) language constructs while preserving
the expressiveness. Restricting the expressiveness might be useful in situations in
which a target platform may not be powerful enough to implement the models.

Semantic Variability While UML only uses the term semantic variation point,
we further subdivide semantic variability into semantic mapping variability and
semantic domain variability. A helpful analogy might be to see the variability
of the semantic mapping similar to configuration options of a code generator
while variability of the semantic domain has its analogy with properties of an
underlying run-time system or target platform.

By selecting variants for the semantic domain S, we obtain an adapted do-
main Sv in which elements have certain additional properties, for example, en-
coded in a predicate propv:

Sv = {s ∈ S|propv(s)}

Regarding semantic domain variability, the system model already contains ex-
plicit variability in form of extensions through optional definitions. It provides,
for instance, different notions of type-safe method overriding or optional con-
straints to allow single inheritance only.

Variants of a semantic mapping arise as alternative definitions of (parts of)
the semantic mapping, for example

semv1, semv2 : ASred → ℘(S)

Considering a Statecharts semantics again, a mapping variant could be the
different choices of representing Statecharts states (syntax) as, for example, a
simple enumeration in a class or using the state pattern [GHJV95].

Note that semantic variability is transparent to the modeler. But it may be
necessary to allow the modeler to select one or the other interpretation of a con-
struct. We propose to model these interpretation choices as syntactic variability
by providing corresponding stereotypes. A modeler can then select the semantics
of certain constructs by using appropriate stereotypes. With this approach, we
transfer semantic variation points to syntactic ones.

3.2 Documentation of Language Variability

We propose to model variation points and variants in a language by feature dia-
grams [CE00]. Fig. 1 contains a feature diagram representing a generic structure
to model variants of a language L. We do not show concrete variants which de-
pend on a specific language and which would be inserted under the corresponding
nodes.

LSyntax

LLanguage-
Parameter

LLanguage-
Constraints

feature diagram

LStereotypes

Legend:

optional feature

L

LPresentation

......

LSemantics

LPresenataion-
Options

LAbbreviations
LSemantic-

Mapping
LSemantic-

Domain

...

Fig. 1. Template to document variability of a language L

A supplement description of the variability can be given to explain their
raison d’être and to point to formal definitions of the variants or other docu-
mentation.

4 Comparison of Semantic Variants

Using our formal notion of language variants, it is possible to compare language
variants formally and derive properties of the (relationship between) variants.

Consider two semantic variants of the same language, e.g.,

semv1 : ASred → ℘(Sv1)
semv2 : ASred → ℘(Sv2)

An interesting property is if variant v2 is a semantic language refinement of
the semantic variant v1. Note that we discuss language refinement here and do
not talk about refinement of models or the modeled system.

We define that language variant v2 is a semantic language refinement of
variant v1 exactly if for all models the sets generated by the respective semantic
mapping are in a subset relation, i.e.,

∀m ∈ ASred : semv1(m) ⊇ semv2(m)

This implies that all properties φ of a model m which hold in variant v1 are
preserved in variant v2:

∀s ∈ semv1(m) : φ(s) =⇒ ∀s ∈ semv2(m) : φ(s)

Semantic language refinement is an important property if we consider for exam-
ple tool integration. Assume that one tool for formal analysis uses (and correctly
implements) language variant v1. Another tool for code generation correctly im-
plements variant v2. If we show that variant v1 is a language refinement of v2
then we can be sure that analysis results obtained by the first tool are preserved
in the second tool.

5 Related Work

Presentation and semantic variants are also covered informally in the UML stan-
dard [OMG09]. We state precisely what kinds of variability may be found in a
modeling language and document variants using feature diagrams. Feature di-
agrams are also used in [Völ08] to define a family of architecture description
languages. Formal semantics is not addressed. In the area of semantics, seman-
tic variability is covered to some extent. Template semantics [NAD03] as well
as templatable metamodels [CMTG07] can be used to describe semantics with
variation points. Non of the mentioned work discusses the possibility to compare
language variants. [TA06] examines different variants of formal Statecharts se-
mantics but does not address formal relationships between the variants. Informal
comparisons of Statecharts variants can, for example, be found in [Bee94,CD07].

6 Conclusion

We have formally described the constituents of a modeling language and how
they can be varied to obtain modeling language variants. As an example appli-
cation of precise modeling language variants, we have introduced the notion of
semantic language refinement. Given two semantics variants of a language this

notion defines if it is safe to use the one instead of the other variant. Future
work is concerned with investigating other relationships between language vari-
ants. Additionally, this work needs to be applied to, for example, the UML, or
to various domain specific languages and needs to be brought into practice by
appropriate tool support.

References

[BCGR09a] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Considerations and Rationale for a UML System Model. In Kevin
Lano, editor, UML 2 Semantics and Applications. John Wiley & Sons,
2009.

[BCGR09b] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Definition of the System Model. In Kevin Lano, editor, UML 2
Semantics and Applications. John Wiley & Sons, 2009.

[Bee94] Michael von der Beeck. A Comparison of Statecharts Variants. In For-
mal Techniques in Real-Time and Fault-Tolerant Systems (Proceedings),
volume 863 of LNCS, pages 128–148. Springer, 1994.

[CD07] Michelle L. Crane and Jürgen Dingel. UML vs. classical vs. rhapsody stat-
echarts: not all models are created equal. Software and System Modeling,
6(4):415–435, 2007.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[CGR09] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variabil-
ity within Modeling Language Definitions. In Model Driven Engineering
Languages and Systems (MoDELS) 2009 (Proceedings), volume 5795 of
LNCS, pages 670–684. Springer, 2009.

[CMTG07] Arnaud Cuccuru, Chokri Mraidha, François Terrier, and Sébastien Gérard.
Enhancing UML Extensions with Operational Semantics. In Model Driven
Engineering Languages and Systems (MoDELS) 2007 (Proceedings), vol-
ume 4735 of LNCS, pages 271–285. Springer, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of “Semantics“? IEEE Computer, 37(10):64–72, 2004.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: Modular
Development of Textual Domain Specific Languages. In Objects, Compo-
nents, Models and Patterns, TOOLS EUROPE 2008 (Proceedings), vol-
ume 11 of Lecture Notes in Business Information Processing, pages 297–
315. Springer, 2008.

[Mat07] MathWorks Automotive Advisory Board (MAAB). Con-
trol Alogrithm Modeling Guidlines Using Matlab,
Simulink, and Stateflow – Version 2.1, July 2007.
http://www.mathworks.com/automotive/standards/maab.html.

[MIS] MISRA C Website, http://www.misra-c2.com/.
[NAD03] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Template Semantics

for Model-Based Notations. IEEE Trans. Software Eng., 29(10):866–882,
2003.

[OMG06] Object Management Group. Meta Object Facility Version 2.0 (2006-01-
01), January 2006. http://www.omg.org/spec/MOF/2.0.

[OMG09] Object Management Group. Unified Modeling Language:
Superstructure Version 2.2 (2009-02-02), February 2009.
http://www.omg.org/spec/UML/2.2.

[Rum96] Bernahard Rumpe. Formale Methodik des Entwurfs verteilter objektorien-
tierter Systeme. Doktorarbeit, Technische Universität München, 1996.

[Rum04] Bernhard Rumpe. Modellierung mit UML. Springer, 2004.
[TA06] Ali Taleghani and Joanne M. Atlee. Semantic Variations Among UML

StateMachines. In Model Driven Engineering Languages and Systems
(MoDELS) 2006 (Proceedings), volume 4199 of LNCS, pages 245–259.
Springer, 2006.

[Völ08] Markus Völter. A Family of Languages for Architecture Description. In
8th OOPSLA Workshop on Domain-Specific Modeling (DSM) 2008 (Pro-
ceedings), pages 86–93. University of Alabama at Birmingham, 2008.

[Wil97] David S. Wile. Toward a calculus for abstract syntax trees. In Proceedings
of the IFIP TC 2 WG 2.1 international workshop on Algorithmic languages
and calculi, pages 324–353, London, UK, UK, 1997. Chapman & Hall, Ltd.

