E -'_ E [KMG+23] S. Kriebel, M. Markthaler, C. Granrath, J. Richenhagen, B. Rumpe:

~ Modeling Hardware and Software Integration by an Advanced Digital Twin for Cyber-Physical Systems:

- Applied to the Automotive Domain.

In: Handbook of Model-Based Systems Engineering, A. Madni, N. Augustine, M. Sievers (Eds.), pp. 1-38,
Springer International Publishing, Januar 2023.

www.se-rwth.de/publications/

Check for
updates

Modeling Hardware and Software
Integration by an Advanced Digital Twin
for Cyber-Physical Systems: Applied

to the Automotive Domain

Applied to the Automotive Domain

S. Kriebel, M. Markthaler, C. Granrath, J. Richenhagen, and B. Rumpe

Contents

INtrOAUCHIONottt e et e e 2

SEAEOFTHE ATC. i c s s s s snmmmmmammmanssss s 95 nBEmRmsERTass 550 a8 550 3o BEEEREERARET 45005658 v 4
Systems Engineering: Overcoming the Differences?ccooiiiiiiiiiiiiinain... 4
Model-Based: Unite Engineering Solutions?cooviiiiiiiiiiiiiiiiiiiinaanaan.... 6
Related WOTKt 7

Best Practice Approachooooiiiiiiiiii s 9
Systems Engineering: Merging Engineering Disciplinescoovviiiiiinenaan... 9
The Advanced System Modeloooiiiiiiiiii e 15
The Advanced Digital TWinuiiirii et n 20
Model-Based: More than @ DesCriptionouuiuiutieiiiiieeeeeeeeeiiiiaaanannnn, 23

THUSEAtIVE EXAIPIES wvuiesis s 5 5 5 .5 srmmmmnss & 8 5 5 5 5 satsrsssmasion 5 & + 5 SHEEese s s 5 & 5 5 suEmEmEess 588855 24
Level A: Customer ValUet e e 25
Level B: Operating PrNCIPIS o s« o oo s oo snmmmummmmussmms s 55 5 5 5 5 5.5 s SRismmmseemassn 5 5 5 55 555 5566 26
Level C: Technical SOIUtONooiiiiii e 27
Level D: REAUZAION « « « sumunemmans s o 2 1 55 smmmummanas oo o s 4 » aiwaatsiomas 4o 5 5 4 6 S aaaian s s 6 44 5 53 30

S. Kriebel ()

FEV.io GmbH, Aachen, Germany

BMW Group, Munich, Germany
e-mail: kriebel@fev.io

M. Markthaler
BMW Group, Munich, Germany

Software Engineering, RWTH Aachen University, Aachen, Germany

C. Granrath
FEV.io GmbH, Aachen, Germany

Mechatronics in Mobile Propulsion, RWTH Aachen University, Aachen, Germany

J. Richenhagen
FEV.io GmbH, Aachen, Germany

B. Rumpe
Software Engineering, RWTH Aachen University, Aachen, Germany

© Springer Nature Switzerland AG 2022 1
A. Madni et al. (eds.), Handbook of Model-Based Systems Engineering,
https://doi.org/10.1007/978-3-030-27486-3 21-1

2 S. Kriebel et al.

Chapter Summary and Expected Advancescooiiiiiiiiiiiiii e 31

CrOSS-RE T ENCES . .ottt e e 35

RO T ENICES . vttt ettt e e e e e 35
Abstract

Systems engineering deals with the development of complex systems where
complexity is usually product domain-specific. Thus, it often fails to a large
extent to integrate the mechanical and electrical engineering disciplines with
the computer science discipline, including cultural issues. However, the success
of future cyber-physical systems depends not only on hardware functionality but
also progressively on its integration into distributed software functionality. The
presented Advanced Digital Twin combines the prerequisites for efficient hard-
ware and software integration, particularly for large and complex systems, like
cyber-physical systems. Therefore, it is based on an Advanced System Model
which comprises the respective architectural designs needed by the domains
involved. Based on this resilient integrated architecture, the emerging artifacts
can be reused which makes the application of model-based techniques econom-
ically reasonable. This enables automated quality checks, simulations, application
of artificial intelligence, and big data analysis and serves as a thread through
necessary cultural changes to set up a cross-functional and t-shaped collaboration.

Keywords

Digital twin - Model-based systems engineering - Cyber-physical system -
Hardware-software integration - System architecture - Functional architecture -
Logical architecture - Technical architecture - Automation - Reuse - Diversity -
Cultural change

Introduction

It is common sense that for at least the last 30 years, mechanical systems are
becoming more and more complex. Some say they follow Moore’s law which is
the observation that the number of transistors in dense integrated circuits doubles at
least every 2 years. However, for mechanical systems, this doesn’t mean that they
double parts every 2 years. For cost reasons, it is even vice versa. Actually, it means
the number of provided functions increases exponentially. These functions are
provided jointly by contributions from the mechanic, the electrical/electronic (e/e),
and the computer science domains. In the following, such combined systems are
called cyber-physical.

Cyber-physical systems (CPS) (Broy et al. 2012; Kirchhof et al. 2020) comprise
the most fascinating innovative technical products existing, like cars, planes, trains,
ships, spacecrafts, satellites, etc., including cyber functions like traffic control,
system-to-system communication, and customer information. This means they are
pervasive and contribute to a huge extent to our economic power and advancement.

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 3

Unfortunately, mechanical systems engineering today still seems not well prepared
to cope with the volatile, uncertain, complex, and ambiguous (“VUCA™) product
requirements of today’s CPS.

In the automotive industry, for example, the VUCA gap addressed in this article is
not only caused by modern functions, e.g., driver assistance, communication, and
connectivity like network functionality (car2car) or near environment and backend
communication (car2x). But it also addresses the real new challenge of autonomous
driving with its huge bunch of necessary safe near-field and far-field environmental
cognition and communication functions which shall replace the driver one day.

Additionally, a lot of former pure mechanical functions are today controlled by
software as well, e.g., suspension, steering, braking, and combustion. Furthermore,
these functions are progressively protected by safety and diagnostic functions. For
increased customer comfort and product quality, additional functions are required
like data analytics, big data evaluation, and artificial intelligence. How to cope with
all these functions? How to reliably manage their interactions and dependencies?

Well-known and trained product development cycles for mechanical systems are
not entirely matching the product and market needs any longer. Task forces are
implemented more and more often as a tried and tested but cost-intensive survival
technique of traditional players to achieve the market-driven delivery date. Collateral
new market players are coming up with new product and process visions and are
changing the game. Market pressure increases. The applied survival techniques are
usually matching the schedules but hardly the cost and quality targets.

Economic Darwinism (Read 2010) forces mechanical industries to check their
current product development processes for their applicability to CPS development,
i.e., intensive and reliable integration of hardware and software. In order not to
become a Dinosaur in economic Darwinism, the approach presented in this chapter
introduces a way to continuously adapt the respective product development process
and the required collaboration culture to the current state of the art in CPS Engi-
neering (CPSE) and the new market conditions.

A comprehensive integrated modeling approach is introduced which facilitates
hardware and software integration by an Advanced System Model. It also enables
the optimization of time and budget required for the industrialization of a CPS by a
specifically branched out Advanced Digital Twin. In addition, it increases product
quality by arrogating preventive measures and facilitates the efficient handling of
possibly necessary retrospective measures. The approach is based on function-
oriented systems engineering combined with a solution-oriented model-based
appendage similar to (Kriebel et al. 2017; Kriebel et al. 2018; Drave et al. 2019).

The integrated modeling approach presented in this chapter is named model-
based cyber-physical systems engineering (MBCPSE). It merges the respective
advantages of the underlying disciplines of mechanical and electrical engineering
as well as computer science to overcome the technical and cultural gaps in cooper-
ation and the increasing complexity of CPS. It shall be applied as a domain
overlapping integrated development approach as neither a CPS nor the application
of MBCPSE can be regarded as domain-specific any longer.

4 S. Kriebel et al.

The current challenges of product development processes as well as existing
approaches are presented in section “State of the Art” referring to the automotive
domain as a well-known example. The details of MBCPSE based on the Advanced
System Model and the resulting Advanced Digital Twin are shown in section “Best
Practice Approach”. The required modeling is illustrated in section “Illustrative
Examples” by using an exemplary use case. Finally, in section “Chapter Summary
and Expected Advances”, the content is summarized, and expected future advances
are outlined.

State of the Art

MBCPSE comprises the entire system life cycle starting from the concept phase and
structuring the development phase to system design and analysis to the final disposal
process (ISO International Organization for Standardization 2015; Walden et al.
2015). Furthermore, MBCPSE is an approach for accomplishing cross-disciplinary
systems development. For this purpose, MBCPSE combines a set of cross-
disciplinary architectures with separated development steps and artifacts. Conse-
quently, MBCPSE enables a new approach to systems engineering for complex
systems like CPS.

Systems Engineering: Overcoming the Differences?

As mentioned before, MBCPSE focuses on complex systems like CPS, in this article
the automotive vehicle as a well-known example. A closer look at the term CPS
shows that it addresses the areas “cyber,” “physical,” and “system.” A system is
defined as a “combination of interacting elements organized to achieve one or more
stated purposes” (ISO International Organization for Standardization 2017).

Cyber relates to software systems and is characterized by the culture of computers
and information technology, hence the discipline of computer science. Physical
relates to the operation of natural forces generally, hence the disciplines of mechan-
ical and electrical engineering. A CPS unites all three disciplines and therefore
results in a high degree of system complexity.

Each discipline involved has its different approach to problem-solving and
decision-making, i.e., to culture and psychology. In a CPS, these differences often
lead to misunderstandings, frustration, delays, and consequently increasing devel-
opment time and high costs (Kriebel 2018). To avoid these issues, it is necessary to
identify potential impediments in order to avoid them but also to focus on the
advantages of each discipline in order to keep their benefits. Therefore, the differ-
ences in these disciplines between skills and handling complexity are outlined in the
following section.

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 5

Different Skills and Knowledge

To relate to and to differentiate these three disciplines from one another, it is essential
to understand what mechanical engineers, electrical engineers, and computer scien-
tists learn throughout their studies and particularly what they do professionally. The
disciplines share many of the same intentions and problem-solving processes but in
different dimensions. To identify and solve problems, all of them use many of the
same mathematical and scientific principles.

The main difference is that in computer science, the focus is less on physical
elements, but on dealing with a huge variety of functional solutions and innovations.
Complexity handling techniques such as modeling are used to define suitable
boundary conditions. Thus, computer science developers learn to continuously
optimize boundary conditions and to efficiently manage the evolution of versions
and variants. On the other hand, in mechanical and electrical engineering, the
physical products with their physical laws define the boundary conditions. Once
developed, they are fixed, and the products are continuously optimized within
constant boundary conditions. Engineering developers learn to optimize within
given boundary conditions and to manage efficiently the evolution of parameters.

However, the increasing proportion of software in physical products demands a
product development process integrating the needs of cyber systems development.
To cope with these innovative needs, the development of CPS must merge the
advantages of each discipline. MBCPSE facilitates the separated application of the
different skills and knowledge as outlined in section “Best practice Approach”.

Different Handling in Complexity

Besides different skills and knowledge, the disciplines use different methods to
handle complexity based on what developers learned. Electrical and mechanical
engineering usually use physical systems decomposition, which is based on (geo-
metrical) components. For this, the decomposition starts with the entire system that
is iteratively decomposed into subsystems until the emerging components are
manageable to be developed independently. For subsequent technical modeling,
CATIA (Dassault Systemes 2020) and MATLAB/Simulink (MathWorks 2019) are
common and often optimized by simulations.

In contrast, computer scientists usually decompose the system according to its
functional behavior. For this, computer scientists recursively break down the system
at different levels of abstraction, until these become simple enough to be solved
independently. For the subsequent structural and behavioral modeling, the Unified
Modeling Language (UML) (OMG Object Management Group 2017) or Systems
Modeling Language (SysML) (OMG Systems Modeling Language (OMG SysML)
2017) is common and often optimized by model-checking and code generation tools.

Figure 1 shows a selection of strengths of the product development techniques of
computer science and mechanical engineering. They are assigned roughly to the
well-known basic V-model (Boehm 1979; Scheithauer and Forsberg 2013).

However, an applicable solution for any systems engineering approach for
complex systems must combine all three disciplines with all its characteristics

6 S. Kriebel et al.

Computer Science Mechanical Engineering

Know why it is done Know how it is done

= Hardware component
focus
« Decomposition of

+ System context focus
» Abstraction of system
functionalities

» Optimization by model N - system hardware
checking \}!; // = Optimization by

+ Independent regularity of \ / simulatipn
system functionalities V-Model—= » Production knowledge

\/

Fig. 1 Strengths of computer science and mechanical engineering in the context of the basic
V-model

mentioned above. Mechanical and electrical engineers focus on hardware compo-
nents, deal with complexity by decomposition of system hardware, optimize the
components by simulations, and have particular knowledge about hardware produc-
tion systems.

In contrast, computer scientists focus on the system context, deal with complexity
by the abstraction of system functionalities optimized by model-checking, and have
particular knowledge about the reuse of independent system functionalities.
MBCPSE incorporates the shown different handling of complexity as outlined in
section “Best practice Approach”.

Model-Based: Unite Engineering Solutions?

Models are found in every named discipline, and modeling takes place even when
the experts are not aware of it. According to (Stachowiak 1973), a model represents
an original, includes only relevant (“seeming”) properties, and always fulfills a
purpose with respect to the original. For example, in mechanical engineering, the
finite element method is model-based and aims on the simulation of the behavior of a
physical system.

Electrical engineering, for example, uses circuit models for a representation of the
electrical system and differential models to describe the aspects of electromagnetism.
Compared to these physical models, the models in computer science mainly serve
the abstraction of these technical details to concentrate on the functional behavior
and describe the logical system, i.e., the operating principle.

Regardless of its purpose, the role of modeling and the quality of models are
extremely important not only within the disciplines but for the development of a CPS
in general. The integration of the different models is difficult, respectively not
possible, because a common “semantic linkage” is missing. The term semantic
linkage encompasses linguistic aspects, such as expressions and the understanding
of words, and also models, architectures, and their elements. For a successful model-
based project, a common spoken language is not enough. In addition to a glossary for

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 7

the precise definition of often-used terms (Walden et al. 2015), the models, archi-
tectures, and their elements such as interfaces, information, etc. must also be defined
and their relationships precisely specified. Otherwise, the misunderstandings and
frustration mentioned above are likely to occur and jeopardize the project success.
Further, if there might be a semantic linkage available, integration of the different
models fails technically due to different modeling languages, modeling guidelines,
modeling focuses, and not aligned architectural principles and interfaces. The effort
in the particular modeling is cost-intensive, while the models are not usable for an
integrated modeling approach. Additionally, the reuse of the models is limited, and
therefore the return of investment is little.

To meet this challenge, MBCPSE integrates all models in a comprehensive
development model, the Advanced System Model introduced in section “Best
practice Approach”. The applied model integration is according to well-known
methods of computer science. The embeddedness with methods of computer science
was chosen because the consistent use of complex models has improved the quality
and efficiency of software development in computer science over the last decades
(Rumpe 2017). This provides a consistent model-based methodology and aims at a
significant raise of the return of investment.

Related Work

This section lists the relevant existing approaches and provides a brief evaluation of
their applicability to CPSE. It also provides an opportunity to acknowledge the
influence of existing research in the field. Even though the automotive industry has
recognized mastering the complexity of CPS, new approaches are still required in the
future (Broy 2006; Whittle et al. 2014; Giusto, and R. S., and S. M 2016). Current
literature reflects that text-based systems engineering is still the status quo (Giusto,
and R. S., and S. M 2016; Liebel et al. 2019). Nevertheless, several approaches exist
for the model-based specification of CPS but are not applied as a standard method-
ology today.

One of the best-known standards in the field of systems engineering is part of the
ISO standard 15,288 systems engineering-system life cycle processes (ISO Interna-
tional Organization for Standardization 2015). The standard can be understood as a
collection of activities that are necessary to achieve the desired result. The philos-
ophy is based on the systems engineer’s ability to divide the given descriptions into a
sequence of activities that are applicable to the problem. At the same time, logical
sequences for determining the sequences of necessary activities are not specified.

Besides the ISO standard 15,288, well-known examples in the automotive indus-
try include OOSEM (Walden et al. 2015), EAST-ADL (EAST-ADL Association
2013), REMSES (Braun et al. 2014), and SPES 2020 (Pohl et al. 2012). These
approaches combine abstraction and decomposition steps which imply for their
applicability that either all individuals or teams have to provide profound integrated
knowledge in all involved disciplines. This is, of course, possible in smaller profes-
sional expert environments but does not usually scale to the needs of the industrial

8 S. Kriebel et al.

product development of large and complex systems. In fact, for applicability reasons,
these approaches seem to focus on a maximum of two disciplines. In contrast,
MBCPSE uses separated steps for abstraction and decomposition and documents
them thoroughly. This allows exploiting the experts’ knowledge of all three involved
disciplines, mechanical engineering, electrical engineering, and computer science in
separate steps as outlined in section “Best practice Approach”. Of course, there is the
need for mutual understanding when defining interfaces and interferences of the
CPS. However, this applies not to all individuals and teams involved in the project
but to a smaller number of necessarily experienced architects.

The object-oriented systems engineering method (OOSEM) (ISO International
Organization for Standardization 2015) is a stepwise approach to system design and
specification. In the first step, the needs of the stakeholders are analyzed. In a second
step, the system requirements are analyzed, followed by the definition of a logical
architecture. In the last step, possible physical system architectures are considered.
All the mentioned steps can be applied to different system hierarchies and run
through iteratively. Overall, OOSEM represents a collection of activities for each
phase of the four-pronged process, which can be used to specity the desired system.
Procedures for the execution of the individual steps must be defined by the user in an
individual application-specific way. Hence, there is no detailed description of the
resulting views. Another difference is that the four steps combine abstraction and
decomposition and the approach is not domain-specific.

EAST-ADL (Electronics Architecture and Software Technology-Architecture
Description Language) is a domain-specific language in the automotive industry
for software and system modeling (EAST-ADL Association 2013). The focus is on
the specification of electrical and electronic vehicle architectures and software
(EAST-ADL Association 2013). The four abstraction levels of vehicle, analysis,
design, and implementation, system descriptions describe the tasks and communi-
cation of the system (EAST-ADL Association 2013). In EAST-ADL, the refinement
mixes abstraction and decomposition, making it difficult to revise the specification/
architecture in the event of a functional or technical change. In addition, the focus is
strongly on e/e and software, which limits the integration of the mechanical
approach.

Another MBSE approach is REMSES (Requirements Engineering and Manage-
ment for software-intensive Embedded Systems) (Braun et al. 2014). REMSES uses
concepts of the UML for the specification of software-intensive embedded systems.
The three abstract and system decomposition layers are divided into a system level,
function group level, and hardware and software level and separate the solution and
problem level (Braun et al. 2014). Orthogonal to this abstraction is a categorization
with views to the categories context, requirements, and draft (Braun et al. 2014).
REMSES is similar to the approach presented here, especially in prioritizing the
functional basis before the technical solution. However, REMSES mainly focuses on
the computer science and e/e disciplines and combines abstraction and decomposi-
tion steps.

A similar methodology is SPES 2020 (Pohl et al. 2012). Similar to the approach
of REMSES, the “decomposition layers” are arranged orthogonally to the

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 9

“viewpoints” requirements, functions, logic, and technology. The decomposition
layers are not predefined besides by a structural characteristic from the layer above.
SPES 2020 is the only approach that combines all three disciplines, but the mechan-
ical, electrical, and technical parts are separated at an early stage, and no order of the
steps is given.

Summed up there are a number of model-based approaches available. However,
they seem to be useful in academics or in an expert environment but are not meeting
the entire needs for an industrial scalable CPS development as discussed above.
Therefore, MBCPSE was developed and applied in the last couple of years as a best
of breed approach within the disciplines involved.

Best Practice Approach

There are plenty of differences in engineering and management between mechanical
engineering, electrical engineering, and computer science. However, the combina-
tion of these three disciplines is fundamental for the interdisciplinary development of
CPS as outlined in the previous sections. In the following, MBCPSE is presented as
an integrated best practice approach in industrial development which makes it
different from the approaches presented in section “State of the Art”.

Systems Engineering: Merging Engineering Disciplines

A generally known, widely spread, and well-proven approach to systems engineer-
ing is the basic V-model mentioned in section “Different Handling in Complexity”,
especially in the automotive industry. It starts with a concept phase, from which
requirements are derived, followed by design and realization of the system. In these
phases, the system is iteratively decomposed and abstracted in each step. Often the
V-model is used to structure the development process by product decomposition
layers but unfortunately neglects documentation at least in daily routines. This
includes requirements and architectural views as well as linked test cases.

The V-model is usually augmented with plenty of domain-specific standards
focusing in more details on relevant procedures. The ISO 26262 (ISO International
Organization for Standardization 2018), for example, is the automotive functional
safety standard and therefore embedded in established development methods for
automotive vehicles. The aim of the ISO 26262 is to minimize risks and therefore
classifies the risks of failure probabilities. To calculate the failure probabilities, the
ISO 26262 proposes to use models describing the failure aspects. It consequently
demands intense documentation as well as systematic linking between requirements,
architecture, and test cases. The ISO 26262 is derived from the IEC 61508 (ISO
International Organization for Standardization 2018), well-known in electrical engi-
neering since 1998.

MBCPSE provides various model-based views as presented in section “The
Advanced System Model”. Thus, it facilitates the integration of specific procedures

10 S. Kriebel et al.

like the failure aspects of the ISO 26262 in the modeling and uses parts of the
V-model for structuring the decomposition layer and the respective artifacts. Addi-
tionally, it enables systematic derivation of test cases out of requirements and
architectural models. It shall be emphasized that the V-model is not used in
MBCPSE as a process model. The applied principal architectural methods are
decomposition and abstraction as introduced in the following. Every step of decom-
position and abstraction is executed separately, inspired by the well-known OSI
model (Zimmermann 1980) where application and communication are consequently
separated. The separated decomposition and abstraction steps greatly simplify doc-
umentation of different architectural views on the CPS.

Starting with the system architecture as the prevailing geometric structure in a
mechanical environment, the functional and logical architectures, prevailing in a
computer science environment, are developed in separate steps but with a clear plan
for integration. This enables to assign the necessary tasks to specialists of the
respective disciplines. The technical architecture integrates the results to a joint
product view and specifies the (hardware and software) component architecture
which prepares for industrialization.

This defined self-contained granularity facilitates particularly the application of
agile frameworks like the Scaled Agile Framework (SAFe) (Knaster and Leffingwell
2019) and its suitable agile methods as a process model. In this way, a modern and
sustainable systems engineering culture can be progressively built which is attractive
to young and experienced specialists as they can evolve continuously within the
disciplines during product development.

Decomposition

The purpose of decomposition as an architectural tool is to divide the complexity of a
system into less complex subsystems. This is usually done starting from the root
system element, going through one or more intermediate layers depending on the
system’s complexity until a leaf system element is reached. The appropriate number
of decomposition layers is dependent on the complexity of the product. Thus, it is
possible that a vehicle is decomposed into three to five layers but an aircraft or
spacecraft into more than eight layers. The number of layers is variable and can be
unsymmetrical, if necessary. The resulting view is the system architecture of the
product which is structured by system elements of types root, node, and leaf as
presented subsequently.

Root: In MBCPSE, the decomposition of the system starts with layer 1 which
represents the entire product. It contains one system element of type “root” as it is the
starting point for the entire product decomposition. In the following, the term CPS is
used for the product which is intended to be handed over to the customer. Hence, the
boundaries of the CPS are specified by the root. External functionalities like backend
support are regarded as part of the CPS environment but not of the CPS itself.
Consequently, the CPS can operate in a higher system environment in a system of
systems manner. However, it is perceived as a product on its own by the customer.
The backend part of the root specifies the interface at product level and is specified in

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 11

more details by the subsequent layers ending at component level. The customer
relevant part of the root comprises the necessary content for the product manual.

Node: Usually, several connected intermediate layers are required to enable
functionalities in a CPS. For example, the acceleration of an electric vehicle is a
complex interaction of the chassis, the drive train, the power electronics, the electric
machine, and the high-voltage storage. In MBCPSE, the class of these intermediate
decomposition layers is called “nodes.” Depending on the complexity of a node,
additional decomposition according to the system architecture may lead to subordi-
nate nodes.

Leaf: The system elements of the last decomposition layer are of type “leaf.”
They specify the lowest entities of the system architecture of the CPS under concern,
the components. Leaves are usually subject for subcontracting or internal
manufacturing when the CPS is industrialized. Figure 2 illustrates a cutout of a
vehicle system architecture derived from the decomposition focusing on the torque
functionality as an example.

The expression “function list” in the blocks shown in Fig. 2 may surprise in the
context of a mechanical decomposition. However, it was chosen intentionally to
emphasize that each single element of the system architecture has to provide a
specific functionality regardless of its type, i.e., root, node, or leaf. The complete
but concise specification of the system element functionality is one of the crucial
points in systems engineering and, of course, even more so when dealing with CPS.

Each system element in a layer n can be assigned requirements from layer n-/.
Consequently, not all requirements have to be modeled or implemented in one
specific layer. As an example, the vehicle functions can be experienced by the
clients, i.e., the final customers, whereas timing relevant security and safety func-
tions are usually occurring only in successional layers. In the same way, mechanical

i
Layer 1 ret
decomposition

nodes —,
c drive driver assistance
[e]
= Layer 2 function list m bodywork function list
g J——
5 active cruise
o | Layer 3 control
(] functlon list

L c — leaf
torque high voltage s
Layer 4 adjustment shutdown
function list function list “hot aH system
: elements need the

Rleafs?

— same amount of
Layern ;n € N the amount of layers can be function list decomposition
adapted to the respective leaf layers

system complexity

Fig. 2 Cutout of a vehicle system architecture focusing on torque functionality

12 S. Kriebel et al.

requirements can be dealt with. For example, a power train momentum is specified in
layer n and is further specified in layer n + I to decide whether the momentum is
generated electrically or conventionally by a combustion engine. Of course, they can
use the same gearbox specified as well on layer n + / as contributing to the power
train in level n. Using the hierarchical decomposition of system elements persistently
in a function-oriented manner facilitates an efficient handling of variants.

Out of experience, system inconsistencies usually occur already when specifying
the system elements and their dependencies. The documentation seems to be well
established for root and leaf elements but not for the nodes. This may also be due to
the compulsory approval and homologation procedures which focus basically on the
entire product or the relevant components as the specification of node system
elements is often regarded as internal knowledge. Therefore, it occurs that specifi-
cation of nodes is documented coarsely as this provides apparent efficiencies.
However, if particularly the node system elements of the system architecture are
not subject to a thorough change management, the connection between root and leaf
is lost. Possible side effects through changing cannot be evaluated and tested as
traceability is not established. Knowledge heroes who know why the system is
designed in a certain way and task forces are necessary for the inevitable
reengineering but, unfortunately, more budget and project time as well. Even
worse are the effects when system inconsistencies are not detected at all and the
CPS operation ends up with failure and loss, e.g., the maiden Flight 501 of the
European Launcher Ariane 5 on June 4, 1996 (European Space Agency 2020).

At this point, MBCPSE emphasizes the function-oriented approach according to
the advantages of the engineering disciplines involved and pointed out in Fig. 1. The
knowledge of the heroes mentioned above shall be documented by means well
established in computer science to make CPS organizations sustainably learn their
know-whys to be independent from individuals and well prepared for necessary
changes. The architectural principle for the anchoring of the know-why is the
abstraction presented in the following section.

Abstraction

Based on the system architecture derived from the decomposition presented in the
previous section, the functionality of each system element outlines its requirements.
In particular, the task, the behavior, the interfaces, and the dependencies are speci-
fied. Referring to Fig. 1 and the previous section, the mechanical engineering know-
how of the CPS domain was used to derive the system architecture. The abstraction
introduced in this section applies computer science methods to document the
different views of functionality, as it is not enough to specify the know-why in a
sole collection of textual requirements. Too many aspects of the desired functionality
would not be specified in this way.

Computer science has developed in the last decades several (model-based)
methods and procedures to solve this issue, in response to the software crisis in
the late 1960s and 1970s (Randell 2020; Dahl et al. 1972) and when focusing on new
development processes and process improvement methods in the 1980s (Humphrey
2002) and 1990s (Booch et al. 2005). These fundamental contributions to today’s

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 13

Abstraction [level]

Specification and Design

Integration, Verification and Validation

system element

o) A) 8) 0) B

customer value peralmg prmcnple ﬂechnlcal solution reallzatlon
What to develop? How is the idea? How it is implemented? < Do it!
: v . specific to the specific to the ready for production/
domain-specific function S ; ke
solution industrialization product use

Fig. 3 Specification of a system element: abstraction levels and their purpose

state-of-the art software engineering were also used for the development of agile
methods, e.g., SAFe and the agile manifesto in 2001 (Manifesto 2001).

Within MBCPSE, the functionality is used to integrate decomposition and
abstraction. In contrast to the variable number of decomposition layers, the number
of abstraction levels is defined to four, as shown in Fig. 3. These four abstraction
levels are worked out for each system element as follows.

Customer Value: The purpose of level 4 is to specify the customer value of a
system element by the required functions, resulting in a function list. The environ-
mental conditions and the context conditions are determined for each function. It is
important to point out that these functions are independent of the disciplines required
to develop them. In other words, those functions can be mechanical, mechatronics,
and software functions. For this purpose, level 4 specification elements are realized
by.

* SysML use case diagrams (OMG Systems Modeling Language (OMG SysML)
2017) to provide an overview of the entire system at a high level of abstraction
with services provided from the user’s point of view.

» Textual requirements to supplement the use case diagrams.

The model includes both the diagrams and the textual requirements. The textual
requirements supplement the diagrams with information that cannot or are not
intended to be modeled. Consequently, there must be no redundancy between the
diagrams and the textual requirements. If requirements are required outside the
model, they are exported from the model and are not adapted since the model is
the single source of truth.

Operating Principle: Each function of the function list created at level A4 is
further specified by its operating principle at level B (see Fig. 3). The required
functions are broken down into subordinated functions which are either local, i.e.,
within the system element, or functions of a child system element allocated in the
subsequent decomposition layer. The resulting functions are then logically integrated
at the function level. To achieve functional consistency at the system element level,

14 S. Kriebel et al.

all logically integrated functions of the function list have to be integrated into the
logical architecture.

If possible, the operating principle is not intended to anticipate a technical
solution, although certain product conditions may apply. Such product conditions
can be rather simple but may have a major impact, e.g., a car has four wheels and is
powered by an (electric) engine and not by a turbine. If necessary, they are added as
(textual) requirements. Level B specification elements are realized by.

* SysML activity diagrams (OMG Systems Modeling Language (OMG SysML)
2017) to model sequences of actions.

* SysML state charts (OMG Systems Modeling Language (OMG SysML) 2017) to
model states of the system under consideration and SysML sequence diagrams
(OMG Systems Modeling Language (OMG SysML) 2017) to model the flow of a
use case with the focus on interactions.

» Textual requirements to supplement the SysML diagrams.

Technical Solution: At level C, the function-oriented view of the operating
principle is mapped to the mechanical view of the system, i.e., the functions of the
function list are assigned to the provided technical elements. In other words, it is
identified how the function and its operating principle are technically realized.

Technical elements are the abstract representation of one possible industrializa-
tion. This implies that technical elements correspond to system elements. However,
it is possible that several system elements are bundled in one technical element or
that one system element is distributed over several technical elements in one variant.

For example, a torque adjustment includes the functionality, electronics for
regulation, mechanical parts such as the electrical machine, and software for intel-
ligent control. All these technical elements can be mapped onto one system element,
e.g., a component. Or the electronics and software could be outsourced to another
system element for electromagnetic compatibility reasons. Since the maintenance of
architectures involves effort, it is recommended to match the technical elements 1:1
with the system elements. Otherwise, both the technical and the system architectures
have to be maintained separately, which leads to a significant additional effort and is
prone to inconsistencies.

The required technical elements are further specified locally, i.e., within the
decomposition layer, or using the functionality of a child technical element allocated
in the subsequent decomposition layer. Furthermore, the technical elements deter-
mine which elements are realized in hardware or implemented in software, if the
operating principle in the respective layer is already detailed enough. The resulting
technical architecture integrates all technical elements to achieve technical consis-
tency. Level C specification elements are realized by.

* SysML block definition diagrams to describe the relationships between the
technical elements.

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 15

* SysML internal block diagrams to describe the interfaces and information flows
between the technical elements.
» Textual requirements to supplement the SysML diagrams.

Realization: Based on the technical solution, the realization of the technical
elements is specified at level D. The main focus of this level is to specify and
document the necessary details for hardware and software in order to enable their
efficient industrialization. The structure is called component architecture and
remains local within the decomposition layer of the technical element.

The required components are further specified locally, i.e., within the technical
element, or using the functionality of a child technical element allocated in the
subsequent decomposition layer. The component architecture is consolidated by the
resulting technical solution which integrates all technical elements at the same
decomposition layer to achieve technical consistency.

The transparent and documented refinement and decision-making process from
level A to level D result in the integrated specification of the system element. This
helps to react quickly to change requests in any circumstance and is reusable. In the
case of new technical findings, another type of realization can be quickly chosen
without having to change the basic functionality of the technical elements. By this,
local changes can be tested and approved locally when not changing the interfaces.
This effect has a huge impact on possible cost reductions when industrializing the
product.

The Advanced System Model
The Advanced System Model is the essential systems engineering element within

MBCPSE. It provides all necessary architectural views and information of the CPS.
It comprises the system architecture, the functional architecture, the logical

system functional | : technical
architecture archjtectyﬂtegr ““*”‘Q;hitecture

over all

decomposition
layers results in the
Advanced System
: A 280 . 2e) o)
3 e P I L S A :
9 function logical technical component
o | Layer 3 list architecture solution i

2 y T g J Uarchltecture
(one) operating functions are technical solution

principle mapped to is mapped to

Layer 4 per function technical solution components

Abstraction

Fig. 4 The Advanced System Model

16 S. Kriebel et al.

architecture, the technical architecture, and the component architecture and parts of
the e/e architecture, as shown in Fig. 4. Thus, the Advanced System Model provides
the semantic link for the integration of all the disciplines involved as mentioned in
section “Model-Based: Unite Engineering Solutions?”.

Each system element is defined by the decomposition presented in section
“Decomposition” and specified by the abstraction introduced in section “Abstrac-
tion”. Figure 4 illustrates the orthogonality of abstraction and decomposition of the
Advanced System Model. The development of the advanced system architecture is
outlined in this section.

In order to initially apply MBCPSE within an organization which has already
developed a prevailing system architecture, this structure can be modeled as the
system architecture of MBCPSE by an initial decomposition of the CPS as presented
in section “Decomposition”. The system architecture represents a primary abstract
mechanical decomposition of the CPS and provides the system elements of types
root, node, and leaf. The requirements for each system element are clustered
according to its functionality. As an example, the decomposition of the root vehicle
function list in Fig. 2 is partitioned into the nodes drive function list, chassis function
list, body function list, and driver assistance function list. The further decomposed
node (sub-)functions are then partitioned into further subfunctions until reaching the
leaf functions in the leaf system element which provide pure hardware and software
functions. Hence, a function list structures and specifies a system element. Conse-
quently, the mechanical hardware focus is integrated with the functional focus of
computer science, which provides the necessary semantic linkage between the two
disciplines.

In this way, the customer value (level 4) of the CPS is specified by several
function lists, one for each system element. However, this would lead to system
inconsistency as the specified function lists are worked out independently and are
still not consolidated, i.e., there is no integration plan or architecture applied yet. To
derive the functional architecture from the set of function lists, they have to be
made consistent. Within MBCPSE, the principle of parental communication is
applied. Each function of a function list shall be fully specified either internally
within the system element or using the functions of a child system element only. In
other words, each function serves the customer, the parent system element (see
section “Decomposition”), or other functions of the same system element.

It is essential that the functions of different system elements of the same layer do
not communicate directly but are controlled by the parent function of the layer
above. The objective is again system consistency. The functions of the system
element in layer n would not notice the information exchange of the functions of
different system elements in layer n + / which may cause a state change of the CPS,
and the entire system would risk inconsistent behavior. Needless to emphasize, this
is one of the main sources for task forces, additional cost for rework, and system
failure. In addition, applying the parental communication principle provides a design
criterion for the functional architecture. The number of indirect communications
between functions of the same decomposition layer via their parent functions shall
be as small as possible.

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 17

The functional architecture may give the impression of over-specification or
being too complex at first glimpse. Still, it provides system consistency and facili-
tates (re-)structuring and (re-)integration (particularly after changing) of the respec-
tive functions. This means individual parts of the system can be flexibly separated
and reused without having to detach them from the entire network. Depending on the
quality of the functional architecture, reuse can be deployed to a large extent at any
layer. This provides a quite large leverage for cost savings at any stage of the product
life cycle. Particularly in the automotive domain, this feature additionally contributes
to customer satisfaction and risk minimization when applied to necessary changes in
operative use.

Furthermore, the quality of the functional architecture can be measured by the
parental communication principle. If, for example, an active cruise control function
in Fig. 2 directly communicates with the torque adjustment function, this commu-
nication must communicate over five system elements. Consequently, it must be
evaluated whether these functions are optimally deployed in the functional architec-
ture or the system architecture, respectively.

For the specification of the customer value, it is also necessary to determine the
customer. There are different kinds of customers possible. Most important is the end
user, of course, when specifying the root system element. Specifying the other
system elements, the functions of the function list of the parent system element are
regarded as a customer. The third kind of customer is external stakeholders like legal
regulations, standard specifications, and company standards which can occur in all
decomposition layers. This also means that requirements can either be propagated
through the Advanced System Model or be directly assigned to one system element.
Requirement’s consistency has to be checked continuously throughout the sequence
of development phases, e.g., sprints or milestones.

Corresponding to the functional architecture, the underlying operating principle
of each function (level B) shall be made consistent. This leads to the logical
architecture of each function list, respectively the system element. The logical
architecture also clusters and aligns various model elements of the different func-
tions specified. Required data are to be aligned in resolution, timing, accuracy,
repetition frequency, etc., e.g., speed information and engine state. This facilitates
identifying commonalities and redundancies as well as reducing the development
effort. Thus, information and data consistency are provided already at an early phase
of the product development to avoid later cost-intensive troubleshooting when
integrating the components. The operating principle shall be highly independent of
technical influences to facilitate reuse.

Therefore, the principle of the lowest technical definition is introduced. It means
that a detailed technical solution of a system element shall be defined by the child
system elements in the lowest decomposition layer possible. The system elements of
higher decomposition layers can, of course, limit the spectrum of technical solutions
when technically necessary. As an example, the principle of the brake system of a
vehicle has to be decided already at the root level as it has a major impact on all other
parts of the system when using a brake parachute instead of an (electromagnetic)
friction brake. It might be different, for example, for the power train when using an

18 S. Kriebel et al.

integrated combustion engine and/or an electric power train with or without fuel
cells. If the different types of power trains fit into the same geometric and electrical
interfaces, they can be gathered together as variants of a system element in the
Advanced System Model.

It appears that in organizations developing complex systems, the hierarchical
structure of the organization is mirrored to the system architecture in order to have
assigned a one-on-one responsibility (Manifesto 2001). Of course, this effect can
facilitate efficiencies by easier decision-making and correspondingly adapted pro-
cesses. Nevertheless, it impedes overlapping innovation and technology changes as
well as entraps to neglect thorough documentation. Particularly the structured and
integrated modeling of the functional and logical architecture is a prerequisite for
sustainable and efficient systems engineering.

At this stage of MBCPSE, the system architecture, the functional architecture,
and the logical architecture of the CPS are consistently modeled and well
documented. However, the system architecture is still a primary abstract mechanical
decomposition as mentioned at the beginning of this section and has to be further
technically detailed to be applicable for industrialization. The system architecture is
therefore mapped to the technmical architecture, i.e., the system elements are
mapped to technical elements in all decomposition layers as outlined in the follow-
ing. This implies that there are technical elements of type root, node, and leaf in
analogy to the system elements and the mapping remains in the same decomposition
layer.

There are three possibilities for how the mapping can take place. Firstly, the
system elements can be mapped 1:1 to the technical elements. This means the
technical solution for all system elements which is the entire CPS is defined from
the beginning. This is suitable if the product doesn’t change or innovate but in the
given system elements. Secondly, the system elements can be mapped n:1 to the
technical elements. This means a technical element integrates a number of system
elements. This contributes particularly to savings of material costs. However, the
additional cost for the more complex integration may not be planned. Thirdly, the
system elements are mapped 1:m to the technical elements. This means the system is
further decomposed and additional technical interfaces are introduced. It has to be
particularly made sure that these interfaces are not affecting the functional and
technical consistency of the CPS.

It is important to mention that all three mapping possibilities can be applied to
different parts of the system architecture as this is a major asset of MBCPSE. There
may be less innovative parts within the CPS that are already well established for
industrialization where modeling efficiencies can support cost savings. For these
parts, the details of the technical elements are integrated into the technical solution of
the system elements. The principle of the lowest technical definition is broken
intentionally for cost savings. For more innovative parts of the system architecture,
the functional and logical architecture can be used to check whether the technical
innovation under concern can be consistently integrated. However, the principle of
the lowest technical definition shall be applied in general, allowing the mentioned
exceptions. For CPS consistency reasons, the mapping of system elements to

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 19

technical elements has to be checked when changing interfaces of the technical
architecture.

After the mapping of the system elements to the technical elements, the technical
elements are further specified locally and by the technical elements of the child
technical element of the next lower decomposition layer. In this way, a consistent and
complete technical architecture is created. If the technical element is of type leaf, the
technical solution at level C is further detailed to the component architecture,
which comprises the realization at level D for each technical element. The compo-
nent architecture contains the requirements for subcontracting the components
production and assembly.

According to the technical architecture and the component architecture, the
industrialization of all parts of the CPS, inclusively their assembly, shall be made
consistent. For all mechanical technical elements, the overlapping of constructed
space 1s avoided by the thorough model-based specification of the technical archi-
tecture and the subsequent computer-aided geometric integration. For the
mechatronics components, including pure computational components, additionally,
the e/e architecture has to be developed.

In any case, the e/e architecture is a topic in CPS development on its own.
However, the thorough specification of the functional and logical architecture at
levels A and B and the technical and geometric architecture at levels C and D provide
all necessary specifications to measure and evaluate possible e/e solutions. It is worth
to be mentioned again that without a complete and consistent functional and logical
architecture, the performance of an e/e architecture can only be evaluated after
industrialization when finally approving the CPS itself, accompanied with additional
time and budget needs for the required rework.

The abstraction and decomposition steps are performed and repeated multiple
times until the CPS is fully specified and designed. If the requirements of any
abstraction level in any decomposition layer cannot be met, the higher-level or
higher-layer solution shall be reworked iteratively. This accelerates the development
and helps to achieve an early cross-system consensus for the entire system, with all
its system elements because the specification is consolidated before industrialization.
Like this, the consistency and completeness of the Advanced System Model can be
evaluated in early development phases. This early evaluation of the entire CPS can
be done by continuously testing the CPS against the model views of the Advanced
System Model.

Summed up, the Advanced System Model is the overarching element of
MBCPSE. It comprises the required architectural views for the disciplines involved
with an integrated semantic linkage of all models. Different technological solutions
and variants for a deliberate technical element of the technical architecture can be
easily added to the Advanced System Model as long as its interface is not changed.

Furthermore, the Advanced System Model extends the analysis, organization,
checking, and derivation of elements for automated procedures. This includes
simulations, test case generation, and model-checking as well as failure mode and
effects analysis (FMEA). As the CPS is entirely and consistently structured by the
technical architecture, all engineering procedures can be applied to a specific

20 S. Kriebel et al.

technical element. This facilitates the assignment of specialized teams and increases
the quality of the results. Hence, it connects people through common interfaces and
languages. In addition, the unified data sets enable big data approaches, e.g., digital
shadowing (Bibow et al. 2020). With digital shadowing, the system and functional
behavior can be checked according to its data without a predefined use case and
requirement such as defined in the customer value. The behavior is tested on stored
data and use cases from the field which is not feasible in this number of use cases by
individuals. For this and further applications, structured data as presented in
MBCPSE is necessary.

This consistent model view of MBCPSE facilitates a so-called 150% parts list. Of
course, not all variants of the Advanced System Model are industrialized in one
specific CPS version. Functional variants can be efficiently managed due to the
system view of the functional architecture. Mechanical and electrical variants can be
efficiently managed due to the technical architecture at level C and the component
architecture at level D. Hardware and software solutions within the component
architecture are to be realized specifically only. For this purpose, the realization
uses different tools to (generate) code, design hardware, and integrate software and
hardware.

The decision which variants shall be deployed is made for the industrialization of
a specific version of the CPS for which the Advanced Digital Twin is derived from
the Advanced System Model as outlined in the following section.

The Advanced Digital Twin

“A digital twin of a system consists of a set of models of the system, a set of digital
shadows, and provides a set of services to use the data and models purposefully with
respect to the original system” (Bibow et al. 2020).

The digital twin introduced in this section is the outcome of MBCPSE and
comprises the complete, consolidated, and comprehensive model-based documen-
tation of the specified version of the CPS to be industrialized. The set of models of
the CPS is structured by semantically linked architectures which specify the relevant
characteristics and functions of the CPS, as outlined in section “The Advanced
System Model”. Further, it provides a set of services to use data and models
purposefully. For this, the Advanced Digital Twin of MBCPSE is derived from the
Advanced System Model, presented in the previous section. As an enormous
advantage, MBCPSE integrates the different architectures explicitly. Thus, each
discipline integrates its architectural and technical assets, contributing the respective
added value.

The functional and logical architectures are structured according to the system
architecture, i.e., to the system elements, as this is ensured by the semantic linkage
(see section “Systems Engineering: Merging Engineering Disciplines”). They pro-
vide the architectural aspects respectively the behavioral models representing the
computer science point of view. The functional architecture models the consolidated
and consistent customer value. It enables deriving specific development artifacts

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 21

such as test cases for system and acceptance testing. The logical architecture
specifies, consolidates, and integrates the respective operating principles. It facili-
tates, for example, the development of interface testing.

The technical and component architecture are initially structured according to the
system architecture, i.e., to the system elements, as well. The system elements are
then further mapped to the technical elements to decouple the mechanical and
electrical point of view from the functional point of view. With this structured and
reversible decoupling, MBCPSE provides a semantic linkage between the computer
science and engineering disciplines. The technical elements provide the architectural
aspects, respectively, the mechanical and electrical models, representing the engi-
neering point of view, including the e/e architecture for the design of the vehicle
electrical system. The technical architecture models the consolidated and consistent
technical solution. It enables deriving specific development artifacts such as test
cases for system test, e.g., crash test and onboard communication as well as
component testing. The component architecture further specifies, consolidates, and
integrates the respective requirements for subcontracting and industrialization.

Nonetheless, as already mentioned in section “Introduction”, modeling has no
economic purpose on its own. The nontechnical objectives of modeling a digital twin
are to minimize the required time and budget for industrialization and operative use
of the CPS. Thus, generating an Advanced Digital Twin is the phase of MBCPSE
where the not neglectable additional effort for modeling the Advanced System
Model shall pay off. Particularly, multiple generations of different Advanced Digital
Twins, i.e., the reuse of the Advanced System Model, lead to a major increase in cost
savings and customer satisfaction.

Based on a complete, consistent, and tested Advanced System Model, an
Advanced Digital Twin can be efficiently branched out. For each technical element,
the required variants are selected to set up the Advanced Digital Twin.

The maturity and quality of the technical elements may vary depending on the
number of previous usages in earlier industrializations. However, adequate risk
management covers possible maturity and quality issues by introducing effective
measures for risk mitigation. The technical architecture shall not be changed at
branching out or afterward. With such basic conditions, the respective industrializa-
tion shall remain in time and budget.

Since all product-relevant data is proven to be complete and coherent as well as
available in a common pattern, i.e., semantically linked, the Advanced Digital Twin
intrinsically provides consistency for integrated engineering, production, and oper-
ational approaches, as shown in Fig. 5.

Figure 5 shows how all elements of MBCPSE are connected, providing the
systems engineering framework. It shows how decomposition and abstraction span
the documentation of the CPS. Based on the structure of the basic V-model, the
system elements are well defined by the Advanced System Model. The diagonal in
Fig. 5 shows the apparent cost-saving mentioned in section “The Advanced System
Model”, i.e., the decomposition and abstraction steps are worked out and
documented in one step. This doesn’t enable iterative development due to the
complexity of each step. Hence, the “diagonal development™ skips at least 75% of

22 S. Kriebel et al.

requirements Abstraction
o Advanced %ystem Model
--------- . system element
S HW design ;
»D)&@SW design) !
15 . /& E/E design / |
2 E/E: electrical / electronic
3 HW: hardware
8 —— SW: software
@
a
A AN
abstraction and decomposition of the specfﬁcatfon in the V-model
are combined steps for decomposition and refinement i
[@ p» 4 Advanced Digital Twin 3% %]

Fig.5 The Advanced Digital Twin is branched out from the reusable Advanced System Model and
provides all information and documentation for an efficient industrialization of one specific version
of the CPS

the development steps and therefore seems to be efficient, but it is not sustainable.
The similarity to the so-called waterfall model is obvious. With such coarse docu-
mentation, the reusability of the development artifacts is not feasible with respect to
robust testing and approval.

In contrast to the diagonal path, the separated steps of abstraction and decompo-
sition in MBCPSE is not only about refining but also about being able to pull the
elements apart again for modifications or technical replacements. Therefore, it is
necessary to specify the entire abstraction and decomposition matrix of Fig. 5 with
all its system elements.

Furthermore, the different system elements of the Advanced System Model, e.g.,
layer 2/level 4 and layer 3/level C, may be subject to different development styles,
e.g., agile or conventional, as long as its interfaces and documentation results are not
affected. A further crucial point is, of course, that all structural changes are to be
done within the Advanced System Model and not within the Advanced Digital Twin,
i.e., after having branched it out.

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 23

Model-Based: More than a Description

The sustainable management of any applied systems engineering and development
methodology needs a cross-disciplinary base for communication. This cross-disci-
plinary base is preferably model-based to have a reliable basis for agile and fast
processes. Reliable means that the model is the single source of truth and the
necessary information for the system is included in the model. Since the costs and
benefits of modeling must always be weighed up, the additional information has to
be limited. This counts, of course, also for textual requirements.

Furthermore, it is important that once the modeling has started, the information
from the model remains model-based. This means that a model is never converted
into textual requirements and vice versa. This rule is applied because the conversion
from model to text and back to model bears high risks of redundancies as well as the
loss of information and must be avoided. Nevertheless, this procedure is still a
common practice in model-based approaches. The requirements are adopted and
satisfied depending on the depth of detail of the layer and level. Consequently, the
model is not overloaded with unnecessary information and can be reused. Such a
model has to support the top-down approach to reduce complexity and to enable an
intellectual cross-disciplinary understanding of complex correlations. For this rea-
son, the model needs a language that is

* Unambiguous.

* Domain-specific.

* Machine-readable.

» Understandable for people working in systems development.

An unambiguous and common language is necessary for the cross-disciplinary
approach since the operating principles and technical solutions need to be under-
standable and comparable for every discipline. Otherwise, the interdisciplinary
cooperation with its interaction between the disciplines will be lost within single
models. The practical application of modeling shows that previously separated tasks
elaborated separated teams building silos inside an organization are solved together
in a cross-functional team in order to clarify all open questions, which are triggered
by needs of explicit modeling. Hence, modeling especially fosters a cultural change
from the strict division of labor into more agile organizations where each team
member establishes its t-shaped profile through collaboration with others (Johnston
1978). A useful starting point for an unambiguous and common language is general-
purpose modeling languages like SysML (OMG Systems Modeling Language
(OMG SysML) 2017).

Based on a systems engineering method and an established modeling method,
efficiencies can be improved with a domain-specific language (DSL). A DSL is less
expressive than general-purpose modeling languages and limits the modeling
options, but it is expressive enough to represent and address the problems and
solutions for the specific domain (Brambilla et al. 2012). However, if the specifica-
tion of a DSL is considered, experience with MBSE is required. This is because the

24 S. Kriebel et al.

scope and requirements of the desired DSL have to be communicated to experienced
DSL developers. With the DSL, fewer redundancies, declarative descriptions, easier
readability, and easier learnability due to the limited language set increases
efficiency.

Additionally, the DSL has to be machine-readable to support all parties involved
in the project with automated steps to monetize the development more efficiently. An
illustrative example is the checking of functional dependencies using model-
checking, automated functional safety checks, or automated test case creation
(Drave et al. 2019; Drave et al. 2018; Holldobler et al. 2019).

The unambiguous, domain-specific, and machine-readable language shall also be
legible and comprehensible for people working actively in systems development.
The project participants include modelers, system engineers, testers, functional
safety engineers, and developers from various disciplines. All these groups must
be able to rely on the information and automatically generated elements from the
model. Furthermore, the model represents the status and process of the current
project situation that affects various involved groups. A change in the operating
principle possibly affects the subsequent development steps as well as integrating,
verifying, and validating steps.

lllustrative Examples

The following section illustrates a best practice modeling approach for specifying
CPS as presented in section “Best Practice Approach”. As an example, the devel-
opment of a Lane Keep Assist (LKA) function is shown. The LKA is a (product)
function that is developed across domains and therefore has interdisciplinary
requirements. For this purpose, the levels of abstraction according to section
“Abstraction” respectively different views within the chosen SysML framework
are exemplified.

The decomposition layer can either be of type node which means that the LKA
function is part of a CPS or of type root which means the LKA function is the CPS by
itself. It cannot be of type leaf as the components are not specified sufficiently. In any
case, as an example, the following modeling represents an arbitrary decomposition
layer representing the LKA perspective which would have to be integrated into an
Advanced System Model of a CPS at the adequate decomposition layer. In other
words, the function LKA is integrated firstly into the functional architecture and then
secondly in the system architecture.

The content represents a sample version of the development artifacts and aims to
illustrate the modeling methodology of MBCPSE without claiming completeness of
the function information.

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 25

o ftee | Acaton
SYS1 1 Customer Value
SYS2 The system shall activate the functionality only when it is explicity requested by the System

driver during the operation of the vehicle.

SYS3 The system shall inform the driver at all times if the functionality is active, on stand-by System
or deactivated

Automated Driving System

Provide steering
ovetrride capability

<<actor>>

Steering
System

- <<extend>>

/|

Deactivate lane

centering of vehicle Driver

1
<<extend>>
1

A

I<<include>>

<<actor>> .
—1) Provide lane
Center vehicle '} _ _ _ __ _ centering
Road in lane i
i assist status
<<include>>
.) <<actor>>
1 ’
¥ j<<include>> Vehicle
—| Chasis
<<actor>> Activate lane
Environ- Cemir.mlg Gl
mental venicie
Context

Fig. 6 The customer value of the Lane Keep Assist is modeled by use case diagrams augmented
with textual requirements

Level A: Customer Value

The customer value of abstraction is expressed as a black box view and represents
the most abstract description of the function. A consideration of the inner operation
of the function to fulfill its requirements is not part of this level. The focus is on the
definition of clear function boundaries, the identification of all interacting functions
and stakeholders, and the specification of black box requirements for the function.
These requirements form the central basis for the further development of the
function, since the fulfillment of these customer (refer to section 3.1.3) requirements
contributes decisively to the success and acceptance of the function to be developed.
Further, the requirements of the customer value provide a founded and reusable test
basis for system and acceptance tests (Fig. 6).

The LKA function interacts with the driver, the environment (e.g., the road), and
the components of the vehicle, such as the steering system, to center the vehicle
within the lane. In addition, the actors impose requirements on the function for
activation and deactivation, display of the current status, and manual override of the
function. The model-based specification is done with a SysML use case diagram and
allows good visualization of the interrelations and dependencies of actuators and use
cases. The specification of requirements has to be done as part of the diagrams as

26 S. Kriebel et al.

SYs4 2 Operating Principle

SY58 The system shall activate the funcionality only if the lane centerning assist request is System
true and the vehicle speed is greater than or equal to the minimuem vehicle speed.

5Ys57 The system shall deactivate the functionalityif the driver override signal is true. System

(mn&h [VehSpd < VehSpditin] ,<-‘> 1 4-<‘>
' n oA
i [»x WehSpdMin] , | y
' e o ! .
[EnerpySupply==0] | Lane courye |
@ ! W X T i ook
N ctiviiyfinal : ST

[LaneDetect == 0] 1

1
:

' @

i Actraity®inal

[BoundCondf ulfiled == 0]

Activtylntul :

Fig.7 The operating principle of the Lane Keep Assist is modeled by activity diagrams augmented
with textual requirements

well as textual. As an optional aspect, there are advantages for machine post-
processing if textual requirements are specified in a formalized manner.

Level B: Operating Principle

The next step of abstraction is the specification of the operating principle at level B. It
is expressed in a first phase as a white box view and provides a solution-neutral
description of the function, the LKA in this case. Consequently, the inner operation
of the function is considered without predefining its technical implementation.
Especially functional dependencies, decision paths, function states, and information
flows are focused by this form of specification. For the considered example, the
operating principle is modeled in the form of an activity diagram and again described
by additional textual requirements (see Fig. 7).

It is especially important to note that there shall be only one master of the
specification. Even if additional textual requirements exist, they have to be a part
of the function model and shall be automatically extractable from the function
model. This avoids version conflicts and reduces consolidation and consistency
issues, i.e., the well-known but inefficient additional rework effort which comes
along with additive cost can be avoided. The actions included in the activity diagram

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 27

are formulated solution-neutral to enable its reuse independently of the technical
implementation.

For example, the determination and verification of the vehicle speed can be
performed by GPS measurement or by means of built-in sensors but is not further
specified in detail within the LKA. Figure 7 illustrates actions according to the places
of execution in different colors. The highlighting allows identifying those actions
that are executed by different components on leaf-level but are necessary for the
modeled functionality. Overall, this model-based description represents an ideal
functional behavior without considering any kind of functional misbehavior.

The essential substitute behavior in case of functional misbehavior is specified
in the second phase of the operating principle. In order to consider different kinds of
functional misbehavior, a stepwise extension (in accordance to (Granrath et al.
2019)) of the previously modeled desired behavior is added to the model of the
first phase (see Fig. 7).

The first aspect is the function diagnestics. To ensure that the LKA works fine, all
sensors shall be clean. Therefore, an example of the diagnostic aspect is the detection
of a not properly cleaned sensor, which requires cleaning to ensure impeccable
operation.

The second aspect considered is degradation. Here, the ideal behavior with
maximum availability of the function is maintained by suitable substitute reactions.
An example is the prevention of termination of the LKA due to a not detectable lane,
for which purpose the pursuit of another vehicle can be used to stay in line.

The third aspect is the consideration of safety-relevant topics. For example, the
plausibility check of the current position of the vehicle must be performed for the
LKA in order to ensure the safety of the occupants and the environment.

The fourth aspect is security. This factor is of particular importance in the field of
automotive driving, as there is a high risk of external control of the own or other
vehicles, e.g., the LKA must ensure that the leading vehicle is trustworthy; other-
wise, the function shall be terminated. If this aspect is not given, there would be a
high risk in the vehicle pursuit mode that a risky and unwanted behavior occurs.

Besides the presented supplementary aspects of the operating principle, this level
shall also be used to specify additional functionality necessary for the application of
big data analyses and incorporated artificial intelligence algorithms.

The presented stepwise model-based system specification allows especially good
complexity handling by continuously adding new aspects during development. In
addition, this procedure allows for good cross-functional, i.e., interdisciplinary,
collaboration, because depending on the development aspects under consideration,
the necessary experts can be involved in a targeted manner, thus reducing high
communication efforts caused by excessively large teams.

Level C: Technical Solution

The third level is the technical solution. This level is again divided into two phases.
The first phase addresses the assignment of the system elements specified by the

28 S. Kriebel et al.

bt e rraptitde ArtvEyRegion

- i

tretrring | | chean] ,-’_ ! [Werspd « Vehtpdin
: e t e B < By P ot e
activation iequet | i eruan e peieng : R v y
|Energpytupoly 2 |
[i el :
(" Terminsatane
[verdea
\ we WghSpantin] \ tninl-!‘umr
e | - | y r [V R o O
[Determing predictive V| e\ i A
5\ Lisrer 0 J | ol
Shigyind - - = _ detection) Iuehibva Y - i e
| e E0Y | { went
@ 3 . "-:"' ¢ esetunitys " . _ deactbration status J
o e b - Uvahaste trust |
i Letivityt (" Determinedeving) \ werthineus ef -
\ irapriory ; n —
', . > La -t‘:-_ et : \ -)
Wipphy enrLy)| ¥ L ' #
| - - ALt reTyF
A RN {7 Cobeulate steering | : v
] \ e ,) i = | el il e 0
7 Dvaluste -
\
. _conditioms ./
Y T, lnecestering | |
Acirvityirvtil wunis
[devisticr] ! -
- [BoundCionds ulliled os 1 requevt | '
_ X <
{7 Ativaielane dabwer
conlder ovenide | T
\ u-.u."f
- - - £ i
=2 i e Enevgy bepply | fi\
Sarviation { Dhplaylame 2 Intorrupted
» MAnANCH] centering st Activity
h sthvation statun /

Fig. 8 The operating principle model of the Lane Keep Assist extended with functional
misbehavior

functional architecture to the technical elements of the technical architecture within
the respective decomposition layer. For this purpose, the functional actions with the
corresponding functional requirements are allocated to the full extent. This can be
realized, for example, by partitions in the activity diagram of the operating principle.
Consequently, in this phase, the system architecture in the form of interacting
technical elements is further specified. In other words, the desired functional behav-
ior is assigned to each technical element, and, even more important, the behavior of
all technical elements is consistent with the specified operating principle.

However, the technical implementation of the technical elements is still not
necessarily defined in this phase, following the rule of the lowest technical definition
set up in section “Abstraction”. This facilitates improved reuse of specification
artifacts since the detailed specification of the technical elements in this phase is
still independent of the realization. It allows an efficient mastering of the manage-
ment of system variants and versions.

In the case of the LKA, the functional actions for the determination of the vehicle
speed and for the digitalization of the measured raw values are assigned to a
technical element “environment sensing” (see Fig. 8). For the realization of interac-
tions between these technical elements, control flows and object flows are used,
whereas the latter only represent information flows (Fig. 9).

In the second phase, the system architecture for the considered decomposition
layer is defined if necessary, for further system design, again following the rule of the
lowest technical definition. Each defined technical element is assigned either a
technical element of the next decomposition layer or a unique type of realization
intended for the product, i.e., a component. Thus, in the case of the LKA, the
decision is made that the functional architecture element environment sensing is

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 29

(0 [Ten
SYS5 3 Technical Solution
SYS8 The Environment Sensing component shall determine the current vehicle speed raw @
measurement value for each wheel. 5
SYS9 :ed Sensor
SYS10 CuU 1

1 realizes
I

alrace»
|

= Measuremén «blocks ergy SupplyStraces]
digital vafue 8 Speed Sensor e
et e i vl

'

P,

@
li
0

PR — |
<<energy flow>>
Energy Supply

e — -l

I . :
1 =3
e " .
I
s wtracen |
compae e syt «blocks | o176 | 12VBordnet Energy Supply I
—— EME"Suppl‘y Fepeaviginil |
it ystam :
wtraces J'

.
ActiveiyFnal

u

Frecepilon Frocessing

Fig. 9 The technical solution of the Lane Keep Assist is modeled by activity diagrams and internal
block diagrams augmented with textual requirements with the objective to provide the functional
behavior specified by the functional architecture and mapped to the technical elements

executed by physical components (e.g., two wheel speed sensors). More detailed
consideration and specification of the wheel speed sensor component are given as
part of the following decomposition layer of type “leaf.” However, the functional
and electrical interfaces have to be specified here.

To illustrate the system architecture, a representation in an internal block diagram
is used. Functional and nonfunctional information requirements (e.g., resolution of
information, timing) are additionally specified in textual form. After completion of
the architecture definition, which contains decisions about the components to be
technically realized and their interfaces, the details of the implementation and
manufacturing of the individual components are defined. This includes all relevant
functional and technical details of software and hardware components. For the
realization of a software component, for example, the integration target to be used
must be defined. For hardware components, details about materials like dimensions,
resistance, and stability or manufacturing processes to be used have to be specified,
for example.

Before the transition to the realization and the concluding industrialization of the
system, the technical elements of the technical architecture defined here are mutually
consolidated first and then considered and specified individually. When working on
the decomposition layer of type leaf, a unique realization must be defined for each

30 S. Kriebel et al.

(hardware or software) component. After completion of the final specification, level
D follows.

Level D: Realization

The last level of the abstraction is the detailed specification of each component of the
system architecture assigned to the decomposition layer under concern, independent
from whether it is realized in hardware or in software. The detailed specification is
then used as the base for industrialization, i.e., as a specification for internal
production or for subcontracting.

For this purpose, software models, e.g., with SysML or UML for discrete func-
tionalities in combination with MATLAB/Simulink for continuous functionalities, and
hardware models with computer-aided design are created. Based on the software
models, software code can be generated automatically or completed by handwritten
code. Once the code is generated, it is linked to the technical elements of the technical
solution at level C as a valid realization and can be verified and validated virtually
using the SysML specification.

It is important that the models used in this development step are completely
different from the models made with SysML in the previous abstraction levels. No
shortcuts are possible as the purpose of the models is different!

(o[en
SYst1 4 Realization
SYS13 The Perception Processing component shall calculate the current vehicle speed asthe External ECU 1
average of the individual vehicle speed raw measurement values of the individual
wheels.
SYS514 The Wheel Speed Sensor shall have a target weight of 0,02kg max Wheel Speed Sensor
I
Software i Hardware
——— |
I
=3 T \ I
— '
=l |
= Wit s |
ot I
M I
|
1
1
I
1
I
I

Fig. 10 The realization models the implementation and production results of a technical element
augmented with textual requirements and specifies the requirements for industrialization

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 31

In close conjunction with the software realization, the hardware is designed and
virtually tested. Based on the virtual designs, first prototypes are produced and
evaluated. The easily adaptable solutions fit into the previously specified system
architecture due to the clearly defined interfaces at all (abstraction) levels and
(decomposition) layers. As a result, integration, variation, and validation are facil-
itated and reduce the possibility of unpleasant surprises due to unpredictable inter-
faces and communication problems. Each software and hardware prototype is
verified and validated with test cases derived from the specification on the
corresponding levels and layers within the Advanced System Model. The integration
of the components is similarly verified and validated with test cases from preceding
specified elements, e.g., the integration of the electric drive system is tested against
the test cases of the operating principle to confirm the maturity of functions (Kriebel
et al. 2018; Zimmermann 1980) (Fig. 10).

Chapter Summary and Expected Advances

The approach presented in this chapter is called MBCPSE. This is a rather bulky
abbreviation for something rather smooth and intelligent. However, each of the three
master issues integrated, i.e., model-based (MB), cyber-physical (CP), and systems
engineering (SE), demands particular prerequisites, comes along with different
requirements, and provides different possibilities. The core is an integrated systems
engineering approach, particularly when developing and industrializing a cyber-
physical system (CPS). As shown in section “State of the Art”, there are multiple
systems engineering approaches available in the disciplines of mechanical and
electrical engineering as well as in computer science.

Each discipline focuses mainly on its specific requirements, product maturity
steps, and culture. The necessary partner disciplines are hardly integrated with
respect to intermediate results, milestones, reuse, error tolerance, and decision-
making — not to mention the different ways of supplier management. This issue
may be made more tangible by checking how and by whom decisions are made in
the respective professional environment. It is an easy way to determine the core
discipline and may lead the attention to other disciplines, as “diversity” is not meant
to be only gender-specific or referring to nationalities. Diversity is indeed also
focusing on disciplines as pointed out in the description of t-shaped profiles and
cross-functional teams (Johnston 1978).

Before starting to create complex systems, it has to be made sure the people
involved in the project are well trained on the same systems engineering approach
and have the same understanding, the documentation is well defined, and most
importantly they use the same language with respect to the systems engineering
approach applied. This can be evaluated by asking a team to set up a glossary with
common terms and definitions starting with “function,” “model,” and “system.”

To handle very complex systems like today’s CPS, MBCPSE provides an adjust-
able approach applicable for existing and completely new CPS developments. The
adaptability is achieved through system elements derived from mechanical

32 S. Kriebel et al.

decomposition, their functional abstraction, their mapping onto technical elements,
and the respective properly organized architecture, i.e., the architectures are seman-
tically linked.

With the decomposition introduced in section “Decomposition”, a reduction in
complexity is achieved by dividing the system into system elements in subordinated
layers. Starting from the root system element, the system is decomposed layer by
layer into different nodes until the leaves are assigned to component elements. This
approach ensures that all system-relevant relationships of the CPS are consistently
and completely specified and documented and comprehensively modeled. Thus, side
effects can be understood early in the development process or when changes are to
be made within the system elements.

The root, each node, and each leaf demand specific functional requirements of the
system, i.e., behavior and interfaces. To meet these functional requirements, they are
clustered in functions for each system element which are specified by abstraction, as
pointed out in section “Abstraction”. The carried-out abstraction steps are separated
from the decomposition steps to provide the semantic linkage, which integrates the
engineering point of view with the computer science point of view. Like this, the
specific design steps of each discipline can be performed independently and distin-
guished in terms of modeling and comprehensibility. Further, it provides the possi-
bility to avoid side effects when modifying a function of a system element. Hence,
the semantic linkage provides the mechanisms for an efficient local adaptation
reinforced by the principles of model-based systems engineering.

The abstraction is divided into four levels and starts with level 4 the customer
value. At level 4, the environment and context conditions for each function are
specified, resulting in the function list mentioned above. These functions are further
broken down into internal functions and functions provided by a child system
element resulting in the operating principle at level B. The operating principle
provides a solution-neutral description of the function. At the next level, i.e., level
C (technical solution), the functions of the operating principle are further technically
specified and mapped to the technical elements which are used for industrialization.
Subsequently, at level D (realization), this technical solution is further refined and
documented for component realization in order to enable efficient industrialization.
The results of all decomposition and abstraction steps span the Advanced System
Model presented in section “The Advanced System Model”.

By this, the Advanced System Model comprises the system architecture, the
functional and logical architecture, as well as the technical and component architec-
ture. As these architectures are semantically linked, the Advanced System Model
provides all necessary documentation consistently for its augmentation with further
relevant integrated system parts, e.g., the vehicle electric system or the integrated
cooling system.

It may be criticized that MBCPSE leads to a large number of documents to be
managed. However, based on a sound systems engineering approach, this helps to
cope with the high complexity of a CPS as its architecture comprises the function-
oriented view of a computer scientist (abstraction levels) and the engineering views
of a mechanical and electrical engineer (decomposition layers, abstraction levels

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 33

C and D). Particularly it replaces the rather unstructured discussion during require-
ment elicitation which causes many industry projects to be delayed already in early
project phases. All developers are guided by a systematic approach in an integrated
architectural framework which is semantically linked, the Advanced System Model.
There is an additional positive effect caused by the MBCPSE documentation. As all
model interfaces of a CPS are well defined, the different technical elements are
behaving like black boxes to each other. Thus, they can be internally changed
without causing side effects in other parts of the CPS as long as their interface is
not changed and behaves as before. All interface tests and other parts of the CPS can
be (re)used as outlined before.

A further advantage is the complete and consistent Advanced Digital Twin
obtained from the Advanced System Model as detailed in section “The Advanced
Digital Twin”. Since the Advanced Digital Twin contains all implemented architec-
tures of the Advanced System Model, it creates a consistency for integrated engi-
neering, production, and operational approaches. This facilitates, for example,
industrialization, appropriate, flexible, and efficient responses to product changes
and development of interface testing. Nevertheless, modeling a digital twin is always
cost-intensive and needs special knowledge and, as a matter of fact, a lot of
experiences as discussed in section “Model-Based: More than a Description”.
Domain experts in the mechanical industry, e.g., the automotive industry, often
have little knowledge about standardized modeling languages for discrete systems
like SysML and UML but excellent knowledge in modeling dynamical systems, e.g.,
with MATLAB/Simulink. Vice versa, computer scientists are usually not prepared to
specify CPS beyond the functional architecture. Since experts who master mechan-
ical and electrical engineering as well as computer science are rare, large CPS
projects usually fail to meet their objectives as pointed out in section “Introduction”.

Nonetheless, due to the high dependency of the functional and the technical
architecture, MBCPSE also requires a few experts who master all three disciplines,
the CPS architects. These CPS architects are the key players for a successful system
architecture. However, the CPS architects shall not have to deal with the specific
technical details but with the interfaces and the interferences of the parts of the
Advanced System Model only, as outlined in section 3.1.3. The details of the
functional architecture are assigned to a cross-functional team with a focus on
computer science knowledge and the development of the technical architecture to
a cross-functional team with a focus on engineering expertise. The realization of
hardware and software is assigned to the respective expert teams. This leads to an
easier exchange of expert knowledge. Furthermore, the independence of all devel-
opment results within the CPS architecture enables simultaneous engineering and
continuous integration which are the prerequisites for agile development, e.g.,
according to the SAFe framework. These modern working methods appeal to
young people and emerging young disciplines, and these will again further develop
the system’s method.

In order to achieve such an integrated development environment, the system
architecture of the Advanced Digital Twin enables implementing MBCPSE in every
organization, by modeling the prevailing mechanical structure of the CPS.

34 S. Kriebel et al.

Development processes can be optimized in accordance with the system architecture
as long as product changes stay within the underlying framework, e.g., technology
updates or innovations. Next to the process, often the hierarchical organization is
also following the system architecture. This may impede flexibility for necessary
product advancements and innovations which can be taken further when applying
MBCPSE, as it enables the adaptation of product, organization, and culture within an
existing system architecture.

What at first sight seems like an anachronism, because modern approaches start
on a greenfield with the functional architecture and leave the system architecture
open at the beginning (see section “Related Work™), is at second sight a suitable
approach to address existing organizations (brownfield systems) (Hopkins and
Jenkins 2008). However, the adoption of a prevailing system architecture, which
often reflects the organizational structure (Colfer and Baldwin 2016), limits the
functional and technical architecture. This circumstance can be overcome by con-
sistently applying MBCPSE starting with the prevailing system architecture, seman-
tically linking it to the functional architecture, and resulting in a technical
architecture for industrialization (see Fig. 4).

The function-oriented view will additionally provide new potentials for efficien-
cies which can lead to a completely different approach to structure processes and
organization. In conclusion, it can be observed that since the last decades the product
decomposition in engineering domains is usually structured by geometric interfaces.
Due to countless optimization steps, this led to mirrored structures in organization
and responsibilities. All other “minor” disciplines involved had to follow this
prevailing structure and to bow their architectural needs and requirements to the
still ongoing economic success story. This subordination led to relatively weak
results in the product contributions of the electric engineering and computer science
domain.

If the entire development organization shall be changed to follow an effective
function-oriented approach, MBCPSE supports this objective by smoothly transfer-
ring the system architecture to the technical architecture. The iterative and agile
application of MBCPSE development cycles leads to a function-oriented product
development process. At this stage, the functions are developed at level 4 and level
B, and level C and level D take continuously over for the technical solution. Hence,
the technical architecture substitutes the not any longer needed initial system archi-
tecture. The functional architecture is free of initial technical limitations, as required
by the mentioned greenfield approaches. It is a question of economic efficiency to
adapt the organization to the function-oriented systems engineering approach.

In any case, such an extensive technical change implies an extensive cultural
change that takes a serious amount of time and budget. In addition, it also requires a
huge amount of discipline and management commitment to stay with the applied
architecture and to incorporate upcoming changes properly. However, the applica-
tion of MBCPSE definitely pays off when the Advanced System Model is reused in
order to develop a couple of Advanced Digital Twins, by which the time to market is
reduced significantly and task forces are avoided. Most importantly, it prevents an
organization from becoming a Dinosaur. Modern agile processes are implemented,

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 35

and the continuous achievement of reachable targets is mutually recognized and
appreciated. The efficiency and effectiveness of each individual work are increasing
as personnel continuously evolve within a cooperative agile culture.

Last but not least, the customer will appreciate the consistent and reliable
behavior of the CPS which can be functionally continuously maintained and
extended over the air avoiding cost-intensive major defects and failure.

Cross-References

Condition Based Maintenance using Digital Twins

Exploiting Digital Twins in MBSE to Enhance System Modeling and Life Cycle
Coverage

MBSE for Systems and SoS Integration / MBSE for Network Systems
Model-Based Hardware-Software Integration

Model-Based Requirement Elicitation and Tradeoff Analysis

References

P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalzing, M. Schmitz,
A. Wortmann Model-Driven Development of a Digital Twin for Injection Molding, Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE'20), ser. Lecture
Notes in Computer Science, S. Dustdar, E. Yu, C. Salinesi, D. Rieu, V. Pant, 12127. Springer
International Publishing, 2020. 85-100.

B. W. Boehm, “Guidelines for Verifying and Validating Software Requirements and Design
Specifications, Euro IFIP 79, P. A. Samet North Holland, 1979, 711-719.

G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language user guide: Covers UML
2.0 ; thoroughly updated, the ultimate tutorial to the UML from the original designers, 2nd ed.,
ser. Safari Books Online. Upper Saddle River, NJ: Addison-Wesley, 2005. [Online]. Available:
http://proquest.tech.safaribooksonline.de/032126797426

M. Brambilla, M. Wimmer, and J. Cabot, Model-driven software engineering in practice, ser.
Synthesis lectures on software engineering. San Rafael, Calif.Morgan & Claypool, 2012, 1.

P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Miiller, B. Penzenstadler, K. Pohl, and T. Weyer,
“Guiding requirements engineering for software-intensive embedded systems in the automotive
industry: The REMSES approach,” Computer Science - Research and Development, vol. 29, no.
1, pp. 2143, 2014.

M. Broy, “Challenges in Automotive Software EngineeringProceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006,
pp. 33-42.

M. Broy, M. V. Cengarle, and E. Geisberger, "Cyber-Physical Systems: Imminent ChallengesLarge-
scale complex IT systems, ser. Lecture Notes in Computer Science, R. Calinescu D. Garlan,
Berlin: Springer, 2012,. 7539, 1-28.

L. J. Colfer and C. Y. Baldwin, "The mirroring hypothesis: Theory, evidence, and exceptions,”
Industrial and Corporate Change, vol. 25, no. 5, pp. 709-738, 2016.

0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured programming. GBR: Academic Press
Ltd, 1972.

Dassault Systemes. 03.11.2020. Catia - Computer Aided Three-Dimensional Interactive Applica-
tion: https://www.3ds.com/de/produkte-und-services/catia/.

36 S. Kriebel et al.

I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, E. Kusmenko, M. Markthaler, P. Orth, K. S.
Salman, J. Richenhagen, B. Rumpe, C. Schulze, M. Wenckstern, and A. Wortmann, “SMArDT
modeling for automotive software testing,” Software: Practice and Experience, vol. 49, no.
2, pp. 301-328, 2019.

I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, M. Markthaler, B. Rumpe, and
A. Wortmann,“Model-Based Testing of Software-Based System Functions,” Conference on
Software Engineering and Advanced Applications (SEAA’18), 2018, 146-153.

EAST-ADL Association. 2013. EAST-ADL Domain Model Specification version V2.1.12.
[Online]. Available: http://www.east-adl.info/Specification.html

European Space Agency. 03.11.2020. Ariane-5: Learning from Flight 501 and Preparing for 502.
[Online]. Available: www.esa.int/esapub/bulletin/bullet89/dalma89.htm

P. Giusto, R. S., and S. M., “Modeling and Analysis of Automotive Systems: Current Approaches
and Future Trends, Proceedings of the 4th International Conference on Model-Driven Engi-
neering and Software Development. SCITEPRESS - Science and Technology Publications,
2016, pp. 704-710.

Granrath, C., et al. The next generation of electrified powertrains: Smart digital systems engineering
for safe and reliable products,SIA PARIS 2019 - Power Train & Electronics, 2019.

K. Hélldobler, J. Michael, J. O. Ringert, B. Rumpe, and A. Wortmann, "Innovations in model-based
software and systems engineering," The Journal of Object Technology, vol. 18, no. 1, pp.
1-60, 2019.

R. Hopkins K. Jenkins, Eating the IT elephant: Moving from greenfield development to brownfield,
ser. Safari Books Online. Upper Saddle River, N.J: IBM Press/Pearson plc, 2008.

W. S. Humphrey, Managing the software process, 28th ed., ser. The SEI series in software
engineering. Boston: Addison-Wesley, 2002.

ISO International Organization for Standardization, “ISO/IEC/IEEE 15288-1:2015-05 Systems
and software engineering: System life cycle processes,” Berlin, 2015.

ISO International Organization for Standardization, “ISO/IEC/IEEE 24765:2017—-09: Systems and
software engineering | Vocabulary,” Berlin, 2017.

ISO International Organization for Standardization. 2018. ISO 26262-10:2018: Road vehicles -
Functional safety - Part 10: Guidelines on ISO 26262 Berlin

D. L. Johnston, “Scientists become managers-the ‘t’-shaped man,” IEEE Engineering Management
Review, 6, 3, 67-68, 1978.

J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, A. Wortmann,“Model-driven Digital Twin
Construction: Synthesizing the Integration of Cyber-Physical Systems with Their Information
Systems,” Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. ACM, 2020, 90-101.

R. Knaster and D. Leffingwell, SAFe 4.5 distilled: Applying the scaled agile framework for lean
enterprises. Boston: Addison-Wesley, 2019.

S. Kriebel. 2018. Pains in Modeling: SysML-based Deployment in an Engineering Domain: Invited
Talk at 1st Workshop on Pains in Model-Driven Engineering Practice, Conference on Model
Driven Engineering Languages and Systems (MODELS' 18): https://sites.google.com/view/
pains-2018/home. Copenhagen, Denmark.

S. Kriebel, V. Moyses, G. Strobl, J. Richenhagen, P. Orth, S. Pischinger, C. Schulze, T. Greifenberg,
and B. Rumpe, "The next generation of BMW's electrified powertrains: Providing software
features quickly by model-based system design,"26th Aachen colloquium automobile and
engine technology, 2017.

S. Kriebel, J. Richenhagen, C. Granrath, and C. Kugler, “Systems engineering with SysML the path
to the future?” MTZ worldwide, 79, 5, 4447, 2018.

G. Liebel, M. Tichy, and E. Knauss, “Use, potential, and showstoppers of models in automotive
requirements engineering,” Software & Systems Modeling, vol. 18, no. 4, pp. 2587-2607, 2019.

A. Manifesto,Agile manifesto,Haettu, 14, 2012, 2001.

MathWorks. 02.07.2019. Simulink - Simulation und Model-Based Design: https://de.mathworks.
com/products/simulink.html.

Modeling Hardware and Software Integration by an Advanced Digital Twin. .. 37

OMG Object Management Group. OMG Unified Modeling Language, v2.5.1: Version 2.5.1 2017.
[Online]. Available: http://www.omg.org/spec/UML/2.5.1

OMG Systems Modeling Language (OMG SysML): Version 1.5. 2017. [Online]. Available: http://
www.omg.org/spec/SysML/1.5/

K. Pohl, H. Honninger, R. Achatz, and M. Broy, Model-based engineering of embedded systems:
The SPES 2020 methodology. Berlin and Heidelberg: Springer, 2012.

B. Randell. 03.11.2020. NATO Software Engineering Conference 1968. Schloss Dagstuhl.
[Online]. Available: http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/

C. Read, “Dinosaurs and economic Darwinism,” in The rise and fall of an economic empire: With
lessons for aspiring economies. London: Palgrave Macmillan UK, 2010, pp. 256-270.

B. Rumpe, Agile Modeling with UML: Code generation, Testing, Refactoring. Springer
International, 2017.

D. Scheithauer K. Forsberg, “4.5.3 V-Model Views,” INCOSE International Symposium, 23, 1,.
502-516, 2013.

H. Stachowiak, “Allgemeine Modelltheorie,” Wien: Springer, 1973.

D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, and T. M. Shortell, Systems engineering
handbook: A guide for system life cycle processes and activities, 4th ed. Hoboken, NJ:
Wiley, 2015.

J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-driven engineering,”
IEEE Software, vol. 31, no. 3, pp. 79-85, 2014.

H. Zimmermann, “OSI reference model-the ISO model of architecture for open systems intercon-
nection,” IEEE Transactions on Communications, vol. 28, no. 4, pp. 425432, 1980.

Stefan Kriebel is technical director in the Business Unit Intelligent Mobility & Software and
responsible for Future Mobility SW & EE Platforms at FEV Europe GmbH, Aachen, Germany. He
studied Computer Science at TU Munich and received his Ph.D. from TU Munich with his thesis
done on behalf of the Joint Research Centre (JRC) of the European Commission in Ispra, Italy, on
time series analysis with artificial neural networks. He was with the BMW Group in various
innovative projects assigned as responsible manager to several fields like electric power train,
driving dynamics software, driver assistance software, and systems engineering. Earlier he was
responsible manager for the software test of smart cards at Giesecke & Devrient GmbH, Munich,
and with the Software Quality Department of the European Space Agency (ESA) at the European
Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands.

His main interest is state-of-the-art systems engineering integrating engineering and computer
science disciplines, enhanced by digital transformation, agile transformation, and cyber-physical
systems engineering. He is the author and co-author of several articles on these topics.

Matthias Markthaler is a function specialist at the BMW Group responsible for the test and
integration of the vehicle energy system and the e/e architecture. He is currently pursuing a Ph.D.
degree with his thesis on “model-based method for automated test case creation in the automotive
industry based on a systems engineering approach” on behalf of the BMW Group as a Ph.D. fellow
and the Department of Software Engineering at the RWTH Aachen University.

Since 2016, he has been working in different departments of integration and testing at the BMW
Group. During this time, he was jointly responsible for the development and rollout of a model-
based systems engineering method in the area of the electric drive system. He studied at the Federal
University of Sdo Jodo del-Rei, Brazil, and at the Munich University of Applied Sciences, Germany,
where he received his B.Sc. and M.Sc. degree in electrical engineering and information technology.
His current research interests include the cooperation of the different disciplines in model-based
systems engineering, the transformation to model-driven systems engineering, and cyber-physical
systems engineering. He is the author and co-author of several articles on these topics.

38 S. Kriebel et al.

Christian Granrath received his B.Sc. degree in mechanical engineering in 2014 and his M.Sc.
degree in energy engineering in 2016 from RWTH Aachen University, Aachen, Germany. He is
currently pursuing the Ph.D. degree in software and systems engineering at the Junior Professorship
for Mechatronic Systems for Combustion Engines, RWTH Aachen University. As group leader at
RWTH Aachen University, he is supporting the lecture “Software Development for Combustion
Engines.” In 2019, as a research associate at the University of Applied Sciences Aachen, he
conducted a scientific training in systems engineering and agile development within the project
“ERASMUS+ UNITED” to realize a knowledge transfer between European and Indonesian
universities. His research interests include the fields of model-based and feature-driven systems
engineering, agile software engineering, software architecture development and evaluation, as well
as simulation model development for XiL. applications in the automotive domain.

Johannes Richenhagen is vice president of Intelligent Mobility & Software at FEV Europe
GmbH, where he previously held a number of responsible management positions. He studied
mechanical engineering at the RWTH Aachen University, Germany, where he also received his
Ph.D. with a thesis “Control Software Development for Automotive Powertrains with Agile
Methods.” He is assigned as associate lecturer on Software Development at the Junior Professorship
for Mechatronic Systems for Combustion Engines, RWTH Aachen University.

His main interest is state-of-the-art systems engineering integrating engineering and computer
science disciplines, enhanced by digital transformation, agile transformation, and cyber-physical
systems engineering. He is the author and coauthor of several articles on these topics.

Bernhard Rumpe is heading the Software Engineering Department at the RWTH Aachen
University, Germany. Earlier he had positions at INRIA/IRISA, Rennes, Colorado State University,
TU Braunschweig, Vanderbilt University, Nashville, and TU Munich.

His main interests are rigorous and practical software and systems development methods based
on adequate modeling techniques. This includes agile development methods like XP and SCRUM
as well as model engineering based on UML-like notations and domain-specific languages. He has
contributed to many modeling techniques, including the UML standardization. He also applies
modeling, for example, to autonomous cars, human brain simulation, BIM energy management,
juristical contract digitalization, production automation, cloud, and many more. In his projects, he
intensively collaborates with all large German car manufacturers, energy companies, insurance and
banking companies, a major aircraft company, a space company, as well as innovative start-ups in
the [T-related domains.

He is author and editor of 36 books and editor in chief of the Springer international journal
Software and Systems Modeling (www.sosym.org). His newest books Agile Modeling with UML:
Code Generation, Testing, Refactoring and Engineering Modeling Languages: Turning Domain
Knowledge into Tools were published in 2016 and 2017, respectively.

