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Abstract The component and connector modeling paradigm has proven
to be a powerful means for the design of complex systems in engineering
domains like avionics, automotive, and cyber-physical systems. Many
component and connector languages are limited to the description of
static architectures. However, agents like autonomous vehicles living in a
changing world need to be able to adapt themselves to unforeseen situations
and communicate with a steadily changing network of peers. In this work
we present a dynamic event-based reconfiguration modeling framework for
the component and connector-based design of self-adaptive cooperative
agents. Therefore, we introduce the concepts of data-triggered and service-
based reconfiguration and enable modeling controlled dynamic component
creation as well as adaptations of component interfaces without losing
type-safety. The methodology is motivated and explained using a running
example from the domain of cooperating vehicles.

Keywords Component and connector; dynamic reconfiguration; self-adaptive
systems.

1 Introduction
In engineering domains like automotive, Cyber-Physical System (CPS), and robotics
software architectures are composed of a multitude of parts fulfilling tasks from engine
control and sensor fusion to trajectory planning and execution. Each of these parts is
developed by a dedicated team of experts, e.g. control, communication, and mechanical
engineers. Finally, a working solution needs to be assembled by systems engineers. To
handle the complexity of such systems, tools and languages are required, enabling the
decomposition of a large architecture into smaller modules which can be developed
and tested individually until they are eventually composed by means of some clear
interfaces. The Component & Connector (C&C) modeling paradigm has proven to
be a powerful approach for the design of complex engineering systems in research
and industry [BMR+17b]. Self-contained functionality is encapsulated into so called
components, which in turn can receive and send data via typed ports. Communication
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between the components needs to be declared explicitly by connecting two compatible
ports with a so called connector. The possibility to organize component structures
hierarchically makes the C&C paradigm applicable to all granularity levels of a project
and allows the developer to zoom into the system until the desired details are exposed.
Widely used solutions like Simulink [Mat16] offer large component libraries enabling
rapid prototyping and experimentation while still providing type safety and code
generation for production software.

However, C&C modeling languages focus on the design of static systems, i.e.
systems where the architecture is fixed at compile-time. While this is perfectly
sufficient for most domains, novel kinds of applications featuring Internet of Things
(IoT) and CPS technologies may require the ability to restructure and reconfigure
their architectures in accordance with new goals and requirements steadily emerging
at runtime. Consider agent-based systems like cooperative vehicle networks where
participants need to adapt themselves to the driving environment and communicate
with a heterogeneous and steadily changing group of peers to achieve different, often
competing goals. Traffic optimization at intersections or platooning require appropriate
vehicle behavior relying on different communication protocols. In some situations
decisions are made using decentralized schemes while other circumstances require
instruction from a master agent negotiated in advance.

To tackle the design of such applications we propose a framework for the event-
triggered and type-safe runtime reconfiguration of C&C-based systems. As a mo-
tivation, we introduce a running example from the cooperative vehicles domain in
section 2. Next, we derive a set of requirements for a dynamic C&C modeling language
in section 3. In section 4 we discuss state-of-the-art C&C languages and their means
for dynamic architectural reconfiguration. The solution design is presented in section 5
as an extension for the textual C&C modeling language EmbeddedMontiArc (EMA)
and explained using building blocks from a cooperative driving project. The paper is
concluded in section 6.

2 Running Example
To motivate our work, we will look into the domain of cooperative vehicles. Such
vehicles can be regarded as an advanced kind of fully autonomous vehicles using
communication over a vehicle-to-vehicle (V2V) network to optimize the performance
of the traffic system, e.g. with respect to throughput, safety, energy efficiency, and the
like. Each participant of a cooperative vehicle network is an agent pursuing its own
particular goals and possessing an individual knowledge of the environment. Consider
the running example setup in fig. 1 featuring four vehicles labeled with the numbers
1-4. For simplicity of notation, we are going to assume that all vehicles in our example
are identical in terms of both their physical properties as well as their behavior models.
The four vehicles arrive at the intersection simultaneously and we assume there are no
traffic lights. Since the priority to the right rule fails, as well, we obtain a deadlock.
At this point, a new goal emerges for each vehicle i ∈ {1, 2, 3}: resolve intersection
deadlock with x and y or avoid collision with x and y where x, y ∈ {1, 2, 3} \ {i} are the
two vehicles competing with i. Although, there is a whole lot of simple algorithms to
resolve the problem easily without any communication, optimality is only achieved if
the deadlock is detected and resolved way before the vehicles arrive at the intersection.
The vehicle winning the priority can continue driving while the others slow down to
individual velocities. To achieve this functionality, the vehicles need to communicate
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Figure 1 – Cooperative driving example: vehicles are steadily required to adapt their be-
havior to the current situation.

their states, trajectories, and goals to their peers. As soon as conflicting situations
or opportunities for cooperation are detected, an appropriate communication scheme
needs to be set up.

Furthermore, assume that vehicles 1 and 4 have formed a platoon to increase traffic
efficiency, i.e. vehicle 1 is informing vehicle 4 about unforeseen maneuvers, particularly
braking. To enhance throughput optimality, the priority decision should also depend
on the length of the platoon. Obviously, vehicles 2 and 3 can only obtain information
concerning the platoon configuration from vehicle 1.

In the automotive industry it is common to design vehicle software such as auto-
mated driver assistance systems (ADAS) using the C&C paradigm, for instance using a
modeling tool like Simulink [BMR+17b]. Furthermore, to make the system cooperative
each vehicle needs a communication system for message exchange with other cars.
Thereby, messages received from other vehicles are fed into the input ports of the
ADAS model. On the other hand, messages produced by the ADAS are transmitted
through its output ports back to the communication unit which in turn sends them
to the other vehicles through the vehicle network. Thereby, the number of the input
and output ports depends on the communication partners of the respective vehicle.
Moreover, depending on the situation to cope with, a vehicle may need to reconfigure
its internal architecture. For instance, an intersection management component is only
needed when there actually is an intersection, while a platoon manager is useless if
there is actually no platoon. In both cases the structure depends on the number and
kind of the participants.

3 Background & Requirements
Vehicle development processes aim at delivering safety critical software compliant
with standards like ISO26262. An important part of such processes is the definition
of a logical and a functional architecture abstracting away from technical details of
the final implementation. In this phase, modeling tools and Architecture Description
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Languages (ADLs) play a central role. In particular, the C&C modeling approach
incorporated by tools like Simulink [Mat16], has become the predominant approach
due to properties facilitating the design of complex systems, including the possibility
of hierarchical decomposition, black-box testability, and clear data-flows free of side-
effects [BMR+17b]. First-level citizens of a C&C model are components representing
some self-contained functionality.

Using a C&C language, the design of an autonomous vehicle can be easily divided
into smaller pieces, each developed by a dedicated team of engineers. The resulting
modules, e.g. the situation understanding, the trajectory planning, and the motion
control, can then be assembled to a working system based on the clear, strongly typed
interfaces.

Unfortunately, C&C modeling languages are mostly focused on the description of
static architectures. Architectural changes either cannot be realized at runtime at all or
are limited to small sets of simple modifications. For the design of a cooperative vehicle,
as introduced in section 2, the vehicle behavior steadily needs to be adapted to current
circumstances. Depending on other cooperative traffic participants, a cooperative
vehicle needs to add new data flows and data processing components to its logical
architecture. Furthermore, it needs to exchange components based on environmental
events. The modeling language should allow one to model such architectural changes
accordingly, which leads to our main requirement:

(R0) Architectural reconfiguration The architecture modeling language must
provide means to describe architectural changes of a system at runtime.

Based on our earlier considerations we have derived the following set of requirements on
a dynamically reconfigurable C&C modeling language, which are all sub-requirements
of (R0):

(R1) Dynamic components In cooperative systems the set of components needed
to achieve a goal can change drastically over time. An ADL for dynamic systems
must be able to model the instantiation of new and the removal or deactivation
of unnecessary components.

(R2) Dynamic interfaces To enable data exchange with arbitrary communication
partners the interface of a component should be alterable at runtime, as well. A
dynamic ADL must therefore provide the means to request new and release old
unnecessary ports. Nevertheless, type safety must be guaranteed at any point in
time.

(R3) Internal event-triggerd reconfiguration A component should be able to
initiate a reconfiguration based on events visible in the component’s scope.
Thereby, an event can be data- or architecture-triggered. A data-triggered
event is defined in terms of values present at a component’s ports. In contrast,
architecture-triggered events depend on the creation or deletion of architectural
elements, i.e. ports or components.

(R4) External service-based reconfiguration As opposed to (R3), a dynamic
component should provide a reconfiguration interface, allowing other components
as well as the runtime environment to request reconfigurations explicitly.

(R5) Blackbox reconfiguration A central idea of component-based software en-
gineering is that components can be regarded and reused as blackbox units
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only accessible through their interface. This principle must continue to hold for
dynamic components. That is, a component cannot explicitly request changes
in the internal structure of a subcomponent or a connected component. Con-
sequently, (R4) only applies to interface reconfiguration requests and excludes
invasive component reconfiguration. This also implies that a dynamic component
has full sovereignty over its internal reconfiguration processes including their
quality and duration. Furthermore, no details about the internal structure of a
component are required to use its reconfiguration interface.

The dynamic C&C reconfiguration framework presented in this paper has been
developed as an extension to the EmbeddedMontiArc language family [KRRvW17,
KRSvW18, KRRvW18]. EmbeddedMontiArc is a textual C&C ADL focusing on
modeling CPS by providing a strict matrix-based type system including matrix property
assertions, SI-unit support, and a performance-optimized compiler toolchain. Lines
1-7 in fig. 2 show the basic syntax of EmbeddedMontiArc: first the main component is
defined in line 1 using the component keyword followed by the component type name
BMux4 and optionally generic and/or configuration parameters. Next, the interface
of BMux4, consisting of two input and one output ports, is declared in lines 2-4. Two
of the ports are typed with the generic type parameter T while ctrSig is a scalar
Boolean. Note that the two input ports are actually port arrays of a fixed size given
in square brackets.

In EmbeddedMontiArc the behavior of a component can be modeled either using a
so called implementation modeling languages or as an instantiation and reconnection
of subcomponents. While the former is uninteresting from the architectural point of
view, the latter is a central element for this work: in line 5 a named instance of the
component type BMux2 is created. In lines 6 and 7 the ports of the parent component
are eventually connected to the ports of the subcomponent instance using the connect
keyword.

4 Related Work
The intention of this section is to provide a short introduction to the field of dynamic
C&C-based ADLs (with no claim to completeness). First we are going to introduce
some important representatives one by one. Then, we proceed to a discussion of their
dynamic reconfiguration capabilities according to the requirements derived in section 3.
A tabular overview is given in table 1.

AADL [FG12]: Architecture Analysis & Design Language (AADL) is an ADL
designed and used in the avionics and automotive domains. The language deals
with both soft- and hardware architectures and provides means for analysis and
verification of embedded systems. Reconfiguration can be modeled using modes and
mode transitions defined in a mode finite state machine (FSM). A mode is a self-
contained configuration state. The main purpose of reconfiguration is to switch between
different operational states of an automobile or an aircraft, but also to compensate for
hardware failures.

AutoFocus 3 [AVT+15]: AutoFOCUS 3 is a holistic methodology for the model-
based design of embedded systems covering the development process from the re-
quirement analysis to integration. It is based on the dynamic and static FOCUS
theory [BS12] providing a foundation for formal verification and analysis of static and
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dynamic architectures. Reconfiguration can be modeled using modes governed by
FSMs.

Darwin [MDEK95]: Darwin is a π-calculus-based ADL for the specification of
distributed systems. Dynamic aspects can be modeled in Darwin using lazy or dynamic
instantiation. The former requires all the bindings of the architecture to be defined at
design time. The latter allows the architecture to evolve in arbitrary ways. However,
components cannot be removed or deactivated once they have been instantiated.

MontiArc [HRR12]: MontiArc is a modeling language for distributed architectures
focusing on logical aspects of software architectures. Although the core language is
constrained to static architectures, in later versions an extension supporting modes
was retrofitted [HKR+16]. Similar to AutoFOCUS 3 and AADL, mode transitions are
controlled by FSMs.

ROOM [RSRS99]: Originally developed for the design of telecommunication sys-
tems, ROOM is an ADL suited for the development of any event-driven real-time
systems. It allows the replication of components and ports at runtime to represent
dynamic architectures such as multiline telephone systems.

Simulink [Mat16]: Simulink is a graphical modeling tool widely used in engineer-
ing disciplines such as control and automotive, particularly for prototyping. In a
150% model, Enabled Subsystems and Triggered Subsystems allow the activation and
deactivation of components at runtime based on external signals.

WRIGHT [ADG98]: WRIGHT is an ADL based on the communicating sequential
processes (CSP) formalism. The formal nature allows for automated verification
and consistence checks of architectures and architectural styles. Wright offers the
possibility to reconfigure an architecture using a component setting pre-defined at
runtime. Additionally, architectural elements can be instantiated or removed in an
imperative manner.

In this comparison, we only considered ADLs supporting at least (R0), i.e. at least
some kind of runtime reconfiguration. The actual realization varies from language to
language. We can distinguish between imperative and declarative means of specifying a
reconfiguration. For instance, WRIGHT implements an imperative approach providing
actions such as new and delete to instantiate and remove architectural elements. On
the other hand, declarative languages concentrate on what to do rather than how to
do it. For instance, AutoFocus 3 and MontiArc provide modes governed by FSMs.
Thereby, a mode declares the structure of a component in a specific state and the
FSM describes possible state changes.

Dynamic components (R1) are at least partially supported by most of the
presented languages. A restricted variant of component creation is provided by the
mode concept, e.g. in MontiArc mode descriptions can contain individual component
declarations. However, possible component instances have to be defined at design-
time. Hence, we consider modes as a partial implementation of (R1) as long as
mode transitions can initiate component creation. This is not the case for AADL
and AutoFocus 3 as these languages only allow for a rewiring of the connectors or
parameter changes at runtime. ROOM and WRIGHT are the only ADLs providing
full support for component instantiation. Darwin, although supporting free component
creation, lacks the possibility of component removal and thus fulfills the requirement
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only partially. Simulink allows one to enable and disable components based on signal
values using specialized ports. However, the components are always present in the
model, hence, no component instantiation or removal is modeled.

Dynamic interfaces (R2) are a more invasive means for architectural modifi-
cations and are hence seen in a smaller number of ADLs. In ROOM, ports can be
replicated at runtime, e.g. to handle arbitrary numbers of phone connections. In
Darwin, services provided by dynamically created component instances can be offered
as services of parent components (thereby changing the parent component’s interface).

Internal reconfiguration (R3) Internal reconfiguration is supported by Auto-
Focus 3, MontiArc, and Simulink. In these languages, reconfiguration can be triggered
by an internal trigger, such as an incoming port signal. For instance, in AutoFocus
and MontiArc, a mode transition is activated if a corresponding condition of the
mode FSM depending on some port values is met. In Simulink, signal values can be
used to rewire the architecture using enabled and triggered subsystems. External
reconfiguration can be simulated using internal reconfiguration since signals coming
from other components can be reinterpreted as reconfiguration requests. Therefore,
all languages supporting (R3) automatically support (R4). Darwin and WRIGHT are
the only languages supporting external reconfiguration (R4) exclusively.

Self-directed blackbox reconfiguration (R5) is provided by all the discussed
languages except AADL allowing for a blackbox reuse of dynamic components. In
AADL a component’s mode can be mapped to the mode of its parent component, i.e.
the components’ mode depends directly on the mode of its enclosing scope.
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(R0) - Runtime reconfiguration

√ √ √ √ √ √ √ √

(R1) Dynamic component creation − − p
√

p
√

−
√

(R2) Dynamic interface modification − − p
√

−
√

− −
(R3) Internal reconfiguration −

√
−

√ √
−

√
−

(R4) External reconfiguration ?
√ √ √ √ √ √ √

(R5) Self-determined reconfiguration −
√ √ √ √

?
√ √

Table 1 – Comparison of C&C modeling languages,
√
: yes, p: partially, −: no, ?: un-

known

Further and more complete analysis of dynamic ADLs can be found, e.g. in
[BHK+17,KJKD05]. Alternative approaches for the reconfiguration of robot system
based on variability and feature modeling, meta-modeling, Domain Specific Languages
(DSLs) exist.

In particular, the models@runtime paradigm is an important approach for the design
of self-adaptive agents. Models@runtime-based systems usually consist of a managed
core system as well as a reconfiguration framework which uses models to reason about
the system’s state and to adapt it if needed [BFCA14]. The reconfiguration space is
highly dependent on the application.

For instance, a QoS-aware approach describing variability of UML MARTE models
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[SG13] for robotics uses feature models [BCMT18] to describe the reconfiguration
space. Feature modeling is a higher-level approach to reconfiguration focusing on
available modules. Similar to modes, all possible feature configurations are provided
in a static feature model.

In another self-adaptation framework a meta-controller evaluates the controller
performance and reconfigures it when needed [HBAS18]. Thereby, the meta-controller
uses a runtime model of the controller based on an ontology modeling the robot’s mis-
sions and the controller architecture. Hence, there is no self-determined reconfiguration
by the controller itself.

In contrast to the models@runtime approach, reconfiguration handled in this work
is domain-independent and targets exclusively the system’s C&C architecture. Thereby,
possible reconfigurations are modeled (implicitly) at compile-time and neither require
system models or model reasoning at runtime, nor a resource consuming reconfiguration
framework. Reconfiguration is self-determined according to (R5).

5 EmbeddedMontiArc Dynamics
In this section we are going to present the main contribution of this work, namely,
EmbeddedMontiArc Dynamics (EMAD), an extension of the MontiCore-based [HR17]
C&C language family EmbeddedMontiArc by concepts allowing for the modeling
of dynamic runtime reconfigurations. The aim of the extension is to fulfill the
requirements elicited in section 3 and hence to enable modeling of interconnected
systems as described in section 2.

EmbeddedMontiArc Execution Semantics EmbeddedMontiArc distinguishes
between distributed architectures and self-contained software architectures. In a dis-
tributed architecture model components can be basically mapped to standalone
processes. In our running example, a component might represent a cooperative vehicle.
Connectors represent data-flows between the distributed actors of the overall system,
e.g. status messages sent between the vehicles over a network. Communication and
execution are handled by a middleware which can be provided explicitly in a separate
middleware model [HKKR19]. The execution semantics of such a distributed model
depends on the chosen middleware, but is in general asynchronous: each component is
executed completely independently of other parts of the overall architecture with an
individual resolution and frequency.

On the other hand, self-contained software architectures describe the structure of
a single process, i.e. the components and data-flows inside the cooperative vehicle.
Components present in a self-contained architecture model might range from high-
level blocks such as trajectory planners, controllers, and platoon managers to low
level elements including logical gates. This modus operandi most resembles the
Simulink approach of modeling technical systems. A model is supposed to be run
in a single process, hence, in this use case EmbeddedMontiArc has a synchronized,
weakly causal execution semantics compatible to Simulink: at compile-time, an
execution order based on the dataflow is computed. At runtime, the components
of the architecture are executed sequentially in this order. Thereby, values at the
output ports of a component computed in an execution cycle n are made available
to successor components immediately (in contrast to asynchronous strongly causal
architectures, where components are executed in parallel and thus the results of a
component computed in the execution cycle n are only available to other components
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in the succeeding execution cycle n+ 1). This semantics is more natural and efficient
in the absence of inter-process communication.
1component BMux4<T>{  

2 ports in T inSig[4],

3 in B ctrSig[2],

4 out T outSig;

5 instance BMux2<T> mux2;

6 connect ctrSig[1]    -> mux2.ctrSig;

7 connect mux2.outSig  -> outSig;

8 @ ctrSig[2]::value(true) {

9 connect inSig[3]  -> mux2.inSig[1]; 

10 connect inSig[4]  -> mux2.inSig[2];

11 }

12 @ ctrSig[2]::value(false) {

13 connect inSig[1]  -> mux2.inSig[1]; 

14 connect inSig[2]  -> mux2.inSig[2]; 

15 }
16 }

mode condition

Value-triggered
reconfiguration

Alternative 
reconfiguration

default behavior of  component

Figure 2 – A four multiplexer component as an example for a reconfigurable component.

In a full system model defined in EmbeddedMontiArc it is natural to combine the
two execution variants: while top level components represent nodes of a distributed
architecture requiring a complex and expensive communication scheme, e.g. using
a middleware such as ROS [QCG+09], their subcomponents can be generated to
tightly coupled code. The EmbeddedMontiArc-to-C++ generator realizes connectors
of synchronous components as simple C++ function calls [KRSvW18].

To enable reconfiguration and to support dynamically evolving architectures, we
adapt the execution semantics of EmbeddedMontiArc by introducing a reconfiguration
phase. In both types of architectures, we define the reconfiguration phase to take
place directly before the execution of the component’s code. Thereby, based on
the requirements presented in section 3, we distinguish between three fundamental
reconfiguration approaches in our work:

1. Data-triggered reconfiguration,

2. Service-based reconfiguration,

3. Modes.

Modes Since modes are a well-known means for architectural reconfigurations
supported by many ADLs, we don’t want to cover them in detail. Instead we want
to use them as a reference for the discussion of the two other approaches. Modes
are particularly well-suited to model systems choosing their behavior from a given
static set of states pre-defined at compile-time. Thus, a natural way to describe states
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and their transitions is by using FSMs or related modeling techniques such as state
charts and to assign a concrete configuration to each of the states. Consequently, the
activation of a particular mode is not triggered solely by the occurrence of an event,
but also depends on the actual state of the mode FSM.

Data-triggered internal reconfiguration A straight-forward way to model recon-
figuration is the data-triggered approach. The idea is to activate architectural elements
as long as a condition is satisfied. This resembles best electronic and mechanic systems:
a diode is active as long as the applied voltage is higher than the threshold voltage; a
vehicle’s charging electronics is active as long as a connector of the charging station is
plugged in; highway driving assist is active as long as the vehicle’s sensors perceive a
highway ride.

To define data-triggered reconfiguration, we extend the body of an Embedded-
montiArc component definition by an arbitrarily long sequence of reconfiguration
definitions. A reconfiguration definition is initiated by the reconfiguration head, rep-
resenting the event causing the reconfiguration, and followed by the reconfiguration
body containing the architectural changes to be realized.

The example in fig. 2 contains two such reconfigurations each initiated with an @
symbol. Reconfiguration conditions are defined as boolean expressions. Thereby, we
provide the possibility to query the port value using the port::value() function, where
port is a placeholder for a port name visible in the component’s scope. This means,
a component can query its own ports as well as ports of its direct subcomponents,
but no ports of its parent’s components or its subsubcomponents thereby ensuring a
self-directed blackbox reconfiguration.

To take into account past values at the port, i.e. to initiate a reconfiguration only
if a certain value sequence has been observed at the port, it is possible to compare
the port value with a sequence. For instance, the condition ctrSig[2]::value() ==
[true,false,true] evaluates to true at execution cycle n if the value at this port was
true at n− 2, false at n− 1 and is true at n again.

The reconfiguration bodies in lines 9 and 10 for the first reconfiguration and 13
and 14 for the second one contain ordinary connect declarations as we use them in
static EmbeddedMontiArc body syntax. The behavior behind this example model is
interpreted as follows: the component instance mux2 of type BMux2 is a multiplexer
with two data input ports inSig[1] and inSig[2] of a generic type T. Furthermore it
has a Boolean control input ctrSig, cf. line 6, choosing which of the two data inputs
to forward to its output port signalOut. The component instance mux2 is wrapped by
BMux4 having four data input ports. Its second control port ctrSig[2] is used in the
two reconfiguration conditions (lines 8 and 12) to choose which two of the four data
ports to connect with the inner component mux2. A graphical representation of the
model is depicted in fig. 3. The configuration on the left is used whenever the value at
the controlIn[2] port is true. The architecture on the right is active otherwise.

This example shows the basics behind EmbeddedMontiArc Dynamics, but only has
static reconfiguration elements: all possible architectural states of BMux4 are explicitly
given in the model. The same behavior can be modeled using modes. A corresponding
mode FSM has two states corresponding to the given reconfigurations with transition
guards equivalent to the respective reconfiguration conditions. In this case using
modes has the advantage of having an explicit FSM facilitating model analysis, e.g.
looking for unreachable states or underspecified state transitions, i.e. checking for
determinism. On the other hand, the notation presented here is much more convenient
if several subcomponents need to be activated and deactivated independently. A mode
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BMux4

@ controlIn[2]::value == true

signalOutcontrolIn[1]

mux2

controlIn

signalOut

signalIn[1]

signalIn[2]

signalIn[1]

signalIn[2]

BMux4

@ controlIn[2]::value == false

signalOutcontrolIn[1]

mux2

controlIn

signalOut

signalIn[1]

signalIn[2]

signalIn[1]

signalIn[2]

Component name Reconfiguration condition

Port

Connector Subcomponent

signalIn[3]

signalIn[4]

signalIn[3]

signalIn[4]

Figure 3 – The two architectural states of the BMux component.

automaton would loose expressiveness and become difficult to maintain. We therefore
recommend using the two approaches interchangeably depending on the concrete
modeling task if only static reconfigurations are necessary.

Service-based reconfiguration Statically sized component and port arrays were
introduced in EmbeddedMontiArc in order to facilitate modeling of large systems.
For instance, if we wanted to model each vehicle of a vehicle network by a dedicated
component, we could do so by using an array of vehicle components. If a single vehicle
needs to receive messages from a set of peers, the interface can be defined using a port
array where each port in the array is assigned to a particular peer.

A central element of our reconfiguration framework is the introduction of dynamic
component and port arrays. In most real world situations we do not know at design-
time, how many vehicles will appear in a certain region of interest at a particular
point in time. Hence, we need to be able to create and delete components and ports
on demand.

Consider CollisionSystem component depicted in fig. 4. In lines 3 and 4 we have
a definition of dynamic port arrays marked with the keyword dynamic. Note that
in contrast to fig. 2 where an integer number in square brackets denotes the number
of ports in the array, in the dynamic case we specify a size range. The port arrays
otherStatus and otherTrajectory receiving status and trajectory messages from
surrounding cooperative vehicles can thus have up to 32 entries. If no other vehicles
are around, the port array can be empty, as well. A similar syntax is used to denote
component instance arrays. For each vehicle, an individual CollisionCalculator
component is created in line 6. At runtime, when the collision system is instantiated,
the minimum number of components and ports is instantiated, since only this minimum
number of components is in the scope of the initial set up, i.e. available for connectors
(cf. connect statement). Note that although an unlimited range can be easily modeled
in EmbeddedMontiArc using the infinity symbol oo, we forbid such architectures at
compile-time by context conditions. In embedded systems, we often need to deal
with limited resources and therefore force the system designer to explicitly model the
system’s limits.

So how can the remaining dynamic ports and components be instantiated and
used? As mentioned in (R4) we need a reconfiguration service interface allowing
external components to request reconfigurations. Imagine a vehicle’s communication
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1dynamic component CollisionSystem {  

2 ports in Trajectory ownTrajectory,

3 dynamic in StatusMsg otherStatus [0:32],

4 dynamic in TrajectoryMsg otherTrajectory [0:32],

5 out CollisionMsg msgOut;

6 instance CollisionCalculator cc[0:32];

7 instance CollisionMessageBuilder cmb;

8 connect cmb.msgOut -> msgOut;

9 @ otherStatus::connect && otherTrajectory::connect {

10 connect ownTrajectory -> cc[?].ownTraj;

11 connect otherStatus[?] -> cc[?].otherStatus;

12 connect otherTrajectory[?] -> cc[?].otherTraj;

13 connect cc[?].collisionOut -> cmb.collisionIn[?];

14 }

/* other modes & connections */ }

indicates component with dynamic interface and behavior

keyword dynamic number range

dynamic 
ports

dynamic instances

dynamic number range

port connection event

new dynamic cc instance

new dynamic port from condition

new dynamic port in cmb instance

Figure 4 – Collision system of autopilot which calculates all collisions with other vehicles
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system reading beacon messages from a broadcast channel. At some point the decoder
finds messages from a new traffic participant in this stream and needs to inform
the CollisionSystem that from now on there is a new peer whose StatusMsg and
CollisionMsg it would like to forward to a dedicated port of the CollisionSystem
component.

To provide the means for such an interaction, the CollisionSystem has a recon-
figuration definition given in lines 9-14. In its basic structure it is similar to the
reconfiguration blocks of the BMux4 component discussed above. However, instead of
querying the value of a port, we employ the port::connect event in this condition.
A port::connect event is activated if the designated port receives a connect request
(outgoing or incoming) or if a connector is actually attached to this port, e.g. if a
parent component connects to it in a reconfiguration block. For instance, lines 9 and
10 in fig. 3 cause a connect event for the inSig ports of mux2. Consequently, mux2
could catch this event in its own reconfiguration blocks and react to it if it needed to.

The reconfiguration condition in line 9 of fig. 4 implicitly declares a reconfiguration
interface for the CollisionSystem component. A reconfiguration can only be initiated
if the whole condition is fulfilled. In our example this means that a connection request
to an otherStatus and to an otherTrajectory port have to be present. Note that
these port arrays are declared as dynamic and thus have a dynamic size. The semantics
of the reconfiguration realized by the EmbeddedMontiArc Dynamics compiler boils
down to the following steps:

1. Request: an external component sends a set of connect requests. These connect
requests might arise from the requester’s own events (i.e. from connect statements
in an event body) or from the C++ API of the generated code (stay tuned).

2. Reservation: The receiving component checks if the requested ports are available,
i.e. if the corresponding dynamic port arrays do not violate their respective
upper limit constraint. If yes, the component returns IDs for the new ports,
i.e. the newly allocated array indices, to the requester so that explicit access is
possible in the future. Otherwise, the requester is informed that its request has
been rejected.

3. Reconfiguration: at the reconfiguration phase of the component, the reconfigu-
ration bodies of all valid reconfiguration requests, i.e. those complying with a
reconnection conditions are realized (lines 10-13 in the CollisionSystem exam-
ple). Consequently, the component reacts to the external reconfiguration event
by internal self-modifications.

4. Follow-up request: possibly, the reconfiguration instructions of the previous step
contain the creation of new ports and/or subcomponents, as well. In this case,
the component becomes a requester itself initiating a follow-up reconfiguration
in its sub-components or external components.

Modeling access to new dynamic ports and components is made easy using
the ?-operator. While otherStatus[n] denotes an access to the n-th port of the
otherStatus port array, otherStatus[?], cf. line 11 in fig. 4, indicates access to a
new port in the array. Modeling the array access in this way abstracts away from
the actual element position in the port (or component) array making the syntax
independent from the technical realization. Indexing and inserting new elements is
delegated to the reconfiguration code generated by the EmbeddedMontiArc compiler.
It is important to note that the ?-operator has a scope similar to a local variable: there
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are four references to the dynamic component cc[?] in lines 10-13. All of them denote
the same new CollisionCalculator component created in this reconfiguration block.
Note that for the sake of simplicity, we omit an explicit mention of the ?-operator in
the reconfiguration condition.

In contrast to value-triggered reconfiguration, service-based reconfiguration is
persistent in the sense that a requested connection remains present in the following
execution cycles even if the port is not requested again. However, a dynamic port
also provides a port::free interface allowing to remove it from the architecture.
The port::free interface cannot be modeled explicitly, but is used implicitly to
remove dynamic ports once the respective creation condition is invalidated. If, for
instance, a communication partner has disappeared or canceled the connection, the
vehicle’s communication system will not find messages from this vehicle in its input
signal any more. The corresponding data-driven reconfiguration condition will cease
to hold. This will cause a reverse reconfiguration, i.e. the connectors, ports, and
components created due to this data-driven event will be unrolled. This process
propagates to all other components that were involved in the original reconfiguration
sequence, e.g. subcomponents of CollisionSystem, due to some follow-up service-
based reconfiguration events triggering their reconfigurations to be undone as well.
An exception are outgoing ports: since an outgoing port can have multiple connectors
attached to it, we only remove it when all of its leaving connectors have been removed.
This mechanism ensures that an architecture can always return to any state it has
been in before, no matter how many reconfigurations have taken place. This is in
contrast to languages like Darwin, where components cannot been removed from an
architecture once they have been created.

For the targeted domain, the combination of a service-based persistent creation
and a data-driven activation of dynamic architectural elements turns out to be a
powerful symbiosis. In particular, the combination boils down to a simple architectural
pattern: usually a data-driven event is used as an origin for a complex reconfiguration
while a chain of service-based follow-up events creates the required architectural
infrastructure. Once the original trigger disappears, the changes are unrolled to the
initial state. To illustrate this reconfiguration chaining mechanism, let’s have a closer
look at the parent component of the CollisionSystem, namely the CoOpAutopilot
component responsible for driving decisions. To provide basic driving functionality,
the CoOpAutopilot receives sensor signals through the corresponding sensor ports. To
enable cooperative interaction with other traffic participants we introduce three other
message types: CollisionMsg contains detected collision and priority information.
This message type is used to resolve conflicting situations. The TrajectoryMsg type
contains planned trajectory information of the vehicle. It can be used by other vehicles
to compute potential collisions. The StatusMsg contains information about the sender,
including current position, velocity, and other sensor information.

Each cooperative agent produces messages of these types and broadcasts them
to all other traffic participants. Hence, each cooperative agent receives a status,
trajectory, and collision messages from many participants. These messages cannot be
exchanged by CoOpAutopilot components directly. Instead, we need a communication
system, i.e. an antenna and further processing, to receive and send messages over a
vehicle-to-vehicle network. We hence can assume that the input and output ports
related to vehicle messages are connected to a communication component. The task
of such a component is to receive and send messages, but also to forward received
messages to the correct, indexed (or qualified) input ports of the CoOpAutopilot.
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Once a signal received by the communication component contains the signature of
a new vehicle, a data-driven event is triggered and as a consequence a connection
to each of the three dynamic ports of the CoOpAutopilot is created. The induced
reconfiguration is depicted graphically in fig. 5.

Graphical Notation The corresponding reconfiguration is depicted in fig. 5 as a
graphical model, more precisely as a reconfiguration view. Views are generally used
in C&C modeling to emphasize particular structural aspects of a system, i.e. the
hierarchical relation of several components or information flows [BMR+17a,MMR+17,
KKRvW18]. We introduce reconfiguration views as an extension to static C&C
diagrams, e.g. SysML internal block diagrams, to cover the reconfiguration procedures
of an architecture. The diagram syntax is straight-forward: a reconfiguration condition
is given as Boolean expression below the component name at the top. The graphical
part depicts newly created architectural elements with dashed lines, namely the
message ports from the condition, their respective connectors, as well as the target
ports of the CollisionSystem and the PlatoonManager components (to be precise,
the latter are not created, but requested during the reconfiguration).

As is inherent for views, only the parts relevant for the depicted reconfiguration
are shown in the diagram. In particular, no architectural elements are shown that
are not affected by the reconfiguration in some way. For instance, components of
the CoOpAutopilot responsible for trajectory planning and control are omitted in
fig. 5. This ensures a clean encapsulation and separation of concerns in graphical
reconfiguration modeling.

Since the CollisionSystem itself performs a kind of an aggregation operation, the
reconfiguration chain does not affect any output ports which is why no output ports
or outgoing connectors are depicted in fig. 5. The reconfiguration chain is completed
after this reconfiguration.

A chain of similar reconfigurations involving inner component reconfiguration and
the creation of new output ports is depicted in fig. 6. The idea is that once a vehicle
spots another vehicle it wants to follow in a platoon, it starts generating platoon
messages. Similarly to the collision avoidance case described above, this causes the
communication system to request a new port for platoon messages, but also forces the
followed vehicle to produce platoon messages on its own, as well. This leads to the
reconfiguration depicted in the left sub-diagram of fig. 6: a connector is created and
connected to a dynamic port of the subcomponent PlatoonManager.

The reaction of the PlatoonManager is hidden from the CoOpAutopilot due to
our blackbox assumption. However, the reconfiguration in the right subdiagram is
obviously a reaction to changes inside the PlatoonManager.

Until now, we have discussed event-based data-driven reconfiguration, and service-
based reconfiguration, cf. fig. 3 and fig. 5, respectively. The reconfiguration in the
right part of fig. 6, however, is event-based and architecture-driven: in contrast to
the left subdiagram and fig. 5 it is triggered by the creation of a subcomponent port
by this very subcomponent. The reaction is once again the creation of a connector
as well as a new output port. The latter might trigger further reconfigurations in an
observing parent component.

Generative Aspects of EmbeddedMontiArc Dynamics We have not modeled
the communication system of the cooperative vehicle as an EmbeddedMontiArc
component to illustrate another concept: integration of EmbeddedMontiArc-based
architectures into arbitrary environments. EmbeddedMontiArc models are generated
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as C++ code and middleware adapters if necessary. Consequently, the code generated
from the models can be integrated into any software project using the native C++
interfaces or the chosen middleware, e.g. to set port inputs or read port outputs.

Integration with non-model-driven legacy software is an important feature, par-
ticularly for large-scale projects and must continue to hold for EmbeddedMontiArc
Dynamics, as well. Therefore, we extend the generated interfaces to support service-
based reconfiguration, i.e. an external piece of software is enabled to request ports by
invoking the connect interface of a dynamic port. In contrast to EmbeddedMontiArc
Dynamics syntax, the generated C++ interface allows for an explicit removal of a port
or connection by calling the port’s free(id:int)-interface. This is necessary, since a
service-based reconfiguration initiated by an external caller is the first reconfiguration
in the event chain and has no means to be undone otherwise. Note that requesting re-
configurations via the C++ interfaces triggers the same events as if the reconfiguration
was defined in the model. If our external communication system requests new ports of
the types StatusMsg, CollisionMsg, and TrajectoryMsg, the CoOpAutopilot would
react as if the request came from an other EmbeddedMontiArc component.

Remarks on Architectural Consistency Dynamic reconfiguration of software
architectures imposes issues concerning model consistency and correctness not present
in static architectures. Avoiding such inconsistencies requires constraining the available
reconfiguration space. We ensure this by several architectural checks at compile-time.
First, the creation of a subcomponent is only allowed if the same reconfiguration
block contains a minimum set of connectors required by this component. This ensures
that an architecture never creates orphan components not having any inputs or
outputs. Second, explicit removal of any architectural elements is forbidden in the
reconfiguration model. Instead, reconfigurations are seen as atomic procedures and
are also unrolled as atomic procedures if a required condition is invalidated.

Third, reconfigurations involving port request to subcomponents are checked against
the reconfiguration interface of the respective subcomponents. For instance, in fig. 5
the CoOpAutopilot provides a reconfiguration condition requiring three ports to be
connected at one go. If its parent component defined a reconfiguration only involving
one or two of these ports, the reconfiguration would be invalidated by the compiler.
This is trickier to ensure if the generated C++ code of the dynamic architecture is
interfaced by external software as discussed in the previous paragraph. The generated
C++ level interfaces must forbid reconfiguration requests unsupported by the model.
While the most intuitive solution is to generate a connectPortName() function for
each dynamic port of the model, this solution would require our communication
system to call the functions connectCollisionMsg(), connectTrajectoryMsg(),
connectStatusMsg() in a sequence in order to trigger fig. 5. A type-safe solution
guaranteeing correct port requests at compile-time is to generate a single method
for the reconfiguration condition. This leads us to the constraint forbidding the or
operator in reconfiguration conditions. Otherwise the combinatorial complexity would
explode for large models with many dynamic ports. This however is not a problem,
since alternatives are difficult to handle in a single reconfiguration block. Instead, we
split conditions of the form a∧ (b∨ c) in three distinct reconfiguration events a∧ b∧¬c,
a ∧ ¬b ∧ c, and a ∧ b ∧ c with clear individual reconfiguration semantics.
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CoOpAutopilot
@ trajectoryMsgIn::connect && statusMsgIn::connect && collisionMsgIn::connect

PlatoonManager

statusMsg[0:1]

CollisionSystem

otherSatus[0:64]

otherTrajectory[0:64]

otherCollision[0:64]

statusMsgIn [0:64]

trajectoryMsgIn [0:64]

collisionMsgIn [0:64]

Figure 5 – Reconfiguration view of the CoOpAutopilot component depicting the dynamic
ports and connectors created when a new cooperative vehicle is spotted. Static archi-
tectural elements are omitted in reconfiguration views to maintain readability.

CoOpAutopilot
@ platoonMsgIn::connect

platoonMsgIn[0:1]
PlatoonManager

platoonMsgIn[0:1]

CoOpAutopilot
@ platoonManager.platoonMsg::connect

platoonMsg[0:1]

PlatoonManager
platoonMsg[0:1]

Figure 6 – A reconfiguration chain involving in and output ports of the PlatoonManager
component. An arriving platoon message causes the creation of new input ports in the
diagram on the left. Follow-up reconfigurations inside the PlatoonManager result in
a new output port and a new outgoing connector as depicted in the diagram on the
right.
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6 Conclusion
In this work we designed a dynamic reconfiguration framework for component-and-
connector architecture description languages. The methodology combines event-
triggered events with service-oriented reconfiguration interfaces to enable a declarative
modeling of dynamic self-adaptation of cyber-physical systems. The concepts are
implemented as an add-on to EmbeddedMontiArc, a language family for model-based
architecture-centric system design and demonstrated using model excerpts from a
cooperative driving project. Thereby, we introduced dynamic component arrays and
interfaces enabling the creation of new component instances and ports at runtime.
These concepts can be easily used in the same way as standard EmbeddedMontiArc
architectural elements in a declarative manner. Despite a high degree of flexibility,
model consistency can be guaranteed by a variety of compile-time checks. A seamless
integration with external software is made possible by generating reconfiguration
interfaces for the target platform.

We believe that, enabling a natural modeling of self-adaptive cooperating systems,
a reconfiguration system as the one presented in this work can be a valuable extension
to component-and-connector modeling tools widely used in engineering disciplines
like automotive. The introduced graphical notation can be employed for graphical
solutions like Simulink to keep the design expressive and maintain a high degree of
separation of concerns.
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