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Abstract
Internet of Things (IoT) devices and the software they exe-
cute are often strongly coupled with vendors preinstalling
their software at the factory. Future IoT applications are ex-
pected to be distributed via app stores. A strong coupling
between hard- and software hinders the rise of such app
stores. Existing model-driven approaches for developing IoT
applications focus largely on the behavior specification and
message exchange but generate code that targets a specific
set of devices. By raising the level of abstraction, models can
be utilized to decouple hard- and software and adapt to vari-
ous infrastructures. We present a concept for a model-driven
app store that decouples hardware and software develop-
ment of product lines of IoT applications.

CCS Concepts: • Computer systems organization→ Em-
bedded and cyber-physical systems; • Software and its engi-
neering→ Architecture description languages.

Keywords: Internet of Things, Model-Driven Engineering,
Low-Code, App Store, Architecture Description Language
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1 Introduction
Today, IoT devices and their software are often strongly in-
tertwined: Manufacturers already install the software for
IoT devices in the production process, tying customers to
their proprietary solutions. This is a massive disadvantage
for users, as they are limited to the hardware manufactur-
ers’ software and prevented from installing new software.
Ultimately, it leads to IoT devices becoming e-waste [12]
once the developers stop supporting their software, turn off
necessary cloud services, or actively disable the devices. Up
to now, products from major vendors still do not talk to each
other, probably due to competitive relations [23]. Moreover,
building IoT solutions is complex due to the highly frag-
mented market of IoT building blocks, such as IoT hardware
and communication protocols [13, 35].

For these reasons, we need an IoT app store that provides
a common ground for the variety of software solutions for
IoT devices. Models are suitable for this purpose because
they allow for abstraction [32] and representation of product
lines in variability models [34]. If IoT device customers are
to use such models, we can provide low-code editors that can
handle the different technical backgrounds of the customers.
Recent research about IoT app stores [5, 10, 29] does not
consider model-driven approaches.

Thus, this paper makes the following contributions:
• A concept for an IoT app store for distributing prod-
uct lines of IoT applications based on model-driven
development

• A development methodology for decoupling device
and software development that integrates handwritten
hardware drivers with generated IoT applications
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We apply model-driven techniques to the already existing
idea of IoT app stores (e.g., [10]) to address the specific chal-
lenges of the IoT domain. Our main concept is modeling IoT
applications as product lines and configuring their instan-
tiations via an app store just before the initial deployment
of an instance of an application. Product lines of IoT appli-
cations need to manage a higher degree of heterogeneity
than, for example, smartphones, because IoT devices can be
very different from each other. In particular, the combina-
tion of devices used can (and likely does) vary from user
to user. Through our combination of object constraint lan-
guage (OCL) (for modeling the applications’ components’
requirements), object diagrams (for hardware specification)
and class diagrams (for standardization), we enable hardware
and software developers to be decoupled from each other via
a common standard provided by the IoT app store. We out-
line how models (class diagrams) could be used as first-class
citizens in a standardization of the currently fragmented IoT
market. Using this model-driven approach, we open up the
possibility for future work to leverage the wide range of
research on Unified Modeling Language (UML)-based mod-
eling also in the IoT domain.
The paper is structured as following: The next section

presents preliminaries of the used model-driven technolo-
gies and Sec. 3 requirements for an IoT app store. Sec. 4
describes the IoT app store concept. In Sec. 7, we describe
how the code generated from (architecture) models is linked
to the mostly handwritten code of hardware drivers. Sec. 6
presents an automated process to check if hardware exists
that matches the specifications made for the software using
a Prolog generator. Sec. 5 shows how feature models and
their tagging of software architectures can be used to define
configurations in the IoT app store. In Sec. 8, we show the
solution in a smart home application case study and discuss
it in the following section. Sec. 10 shows related work and
the last section concludes.

2 Preliminaries
This section introduces the MontiThings architecture and
its accompanying ecosystem for deploying IoT applications.
Moreover, we present information on tagging languages.

2.1 MontiThings
MontiThings [27] is a component and connector (C&C)
architecture description language (ADL) for modelling
IoT applications. MontiThings applications consist of
components that can send and receive messages via ports.
The ports of components can be connected to specify more
complex behavior. If a component does not contain and
connect subcomponents to define its behavior, it can define
its behavior using a Java-like embedded language, state-
charts, or handwritten C++ code. Fig. 1 gives an example of
modelling a lawn watering application using MontiThings’
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Controller

Sprinkler
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Figure 1. Exemplary lawn watering application modeled
using MontiThings (adapted from [25]).

graphical syntax. Note that this graphical syntax that we use
throughout this paper is only a visualization of the textual
syntax that MontiThings uses for specifying models.
MontiThings models can be generated to C++ code. Ad-

ditionally, MontiThings generates the necessary scripts to
compile the generated code and package it as (Docker) con-
tainer images. MontiThings, unlike many other IoT ADLs,
also has a feature-rich ecosystem to deploy the generated
applications to IoT devices [24]. In particular, it is possible
for the user to specify rules that impose requirements on
the deployment. These rules mainly relate to the locations
where the IoT devices that are to run the software are placed.
For example, it is possible to require that a certain software
be executed in a certain room. MontiThings internally gen-
erates Prolog code from these rules, which is evaluated to
determine which devices should run which software.

2.2 Tagging Languages
Tagging [20] is a mechanism for enriching a model with ad-
ditional information. As opposed to annotations of a model,
such as via stereotypes [22] in UML, the additional informa-
tion is not contained in the model itself but in a separate
artifact, the tag model. A tag model contains tags that refer
to an element of the original model and add additional infor-
mation to it. The advantage of this is that tagging does not
“pollute” the original model with the additional information,
which is beneficial if a model is used for different purposes
or if different alternative tagging model exist for a given
original model.

To restrict and guide possible tags, the tag model conforms
to a tag schema that defines, which language elements of the
language that the original model conforms to can be tagged
and what they can be tagged with.

For example, to tag features in feature diagrams with class
attributes of a class diagram language, the tag schema has
to define, which language elements of the feature diagram
language are allowed to be tagged. In this example, features
are allowed but, e.g., cross-tree constraints are not allowed
to be tagged. Furthermore, the tag schema defines, what
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features can be tagged with. In this example, features should
be tagged with class attributes and, hence, the tag schema
language has to include syntax for defining the desired kinds
of attributes.
To ensure consistency between the tag model, the tag

schema, and the original model, the languages for these
models have to be integrated. Through this, suitable checks
can be implemented, e.g., to assure that the tags of a tag
model refer to existing elements of the tagged model only
and that these are tagged with valid additional information
as indicated in the tag schema.

3 Requirements & Assumptions
Our concept for an IoT app store is based on the following
requirements:

(R1) The app store shall enable developers to distrib-
ute product lines of applications. The device infras-
tructures of different app store customers can differ
greatly. On the one hand, customers can choose differ-
ent devices on an open market, and on the other hand,
the environments in which the devices are used can
differ greatly. Consequently, IoT applications that are
distributed via an app store and do not enforce a spe-
cific device infrastructure of a specific manufacturer,
as is common today, must be designed as software
product lines. An IoT app store must, therefore, offer
applications a possibility to provide different features
depending on the device infrastructure (or user prefer-
ence) to an even greater extent than classic smartphone
app stores.

(R2) The app store shall enable users to deploy fea-
tures of an IoT application without needing to
understand the technical details of the architec-
ture. Customers, both commercial and consumer, of
IoT applications rarely buy a complete system at once.
Instead, often only some of the existing “things” are
initially replaced or expanded by IoT devices. Such
partial provisioning may prevent an application from
providing all features that could be provided if all avail-
able devices (types) were provisioned. If users should
be able to deploy an IoT application regardless miss-
ing devices, they must be able to deploy a subset of
features. Since users do not know the details of the
software, this selection process needs to abstract from
the development artifacts.

(R3) IoT applications distributed via the app store
shall be deployable to different IoT devices as
long as the devices provide the necessary hard-
ware. An app store is supposed to offer its customers
the possibility to install different applications. Since
IoT infrastructures can be very heterogeneous [17],
and different customers can be expected to own
different devices, the app store must be able to deploy

software to wide range of devices. In particular, this
requirement also enables devices to be repurposed
instead of becoming e-waste [12], for example if a
software vendor discontinues software support. If
vendors stop supporting their software without such a
requirement, IoT devices today can become electronic
waste in extreme cases. Therefore, we demand that the
App Store makes the decision whether a software can
be deployed (from a purely technical point of view)
dependent on the hardware requirements of the app.
Whether a user wants to deploy an IoT application
to all devices that would technically support it is an
independent question.

In addition to these requirements, we make the following
assumptions:
(A1) We assume that IoT devices are capable of exe-

cuting (Docker) containers. Already today, many
IoT applications are built on container technologies.
Examples include Microsoft Azure IoT Edge [2] and
Balena [3]. The latter also offers an IoT-focused light-
weight container engine called balenaEngine. Accord-
ing to the 2022 Eclipse IoT & Edge Developer Sur-
vey [14], containers are the most popular edge comput-
ing artifact (used by 49 % of respondents), with Docker
being the most commonly used container orchestra-
tion technology (used by 43 % of respondents). Future
IoT applications are expected to rely extensively on
container technologies [33]. From a technology per-
spective, containers greatly simplify deployment be-
cause they offer a uniformmethod of downloading and
executing software. In this paper we assume that the
IoT devices support a (Docker-compatible) container
engine to simplify prototype development. With the
corresponding engineering effort, it would of course
also be possible to implement support for devices with-
out a container engine, deploying, e.g., native binaries
instead of containers.

(A2) We assume that the app store is aware of the types
of hardware used by the IoT applications. In or-
der to be able to decide whether an (part of an) IoT
application is compatible with a specific IoT device, it
must be possible to decide whether a hardware com-
ponent (and its driver) fulfills the requirements of the
application to be deployed. In order to create a com-
mon understanding between application developers
and device developers, we assume that the app store is
aware of the possible hardware components. This en-
ables it to impose a common standard on developers on
both sides to describe this hardware. In the same way,
smartphone app stores use a common understanding
of different components such as the camera [1].

With these requirements and assumptions in mind, we
will now discuss our concept for an IoT app store.
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Figure 2. Concept for a model-driven app store. The app store allows device owners to configure app features modeled in a
feature diagram using a webapp. The app store provides a common understanding of hardware in form of an ontology. This
decouples hardware and software development.

4 IoT App Store Concept
App stores offer their users the possibility to equip their
devices with various applications. The concept of app stores
is already widely used today for smartphone and desktop
applications. App stores must be able to handle a certain
variability of the devices of the app store users, e.g., different
sensors (not) available in the smartphone or different proces-
sor architectures. Compared to the highly fragmented IoT
market, however, the problem of variability is still compara-
tively manageable for smartphone and desktop applications.
While smartphone applications can of course differ greatly
from one another, smartphones built on common platforms,
i.e., Apple’s iOS and Google’s Android, even if they naturally
differ in details such as the camera or display quality. In
contrast, there are virtually no common standards for IoT
applications. This is also due to the inherently higher vari-
ance of IoT use cases. While smartphone apps are essentially
GUI applications with touch input, IoT applications lack this
commonality and, instead, can range from lighting control
in a smart home to intelligent plant irrigation in the agricul-
tural sector to parking space monitoring. These drastically

different use cases impose different requirements on avail-
able sensor and actuator hardware, power supply, network
availability, resilience, and the like. Even type-similar hard-
ware can differ greatly from each other: While a smartphone
light may be slightly brighter or dimmer on one model than
another, it remains a flashlight in principle. In IoT, a lamp
can be a small LED or a construction spotlight.
While models are good at abstracting from technical de-

tails, this abstraction can become a problem when it inadver-
tently creates underspecification. When developers create
an application, they often have a specific set of hardware in
mind for which their application is intended. For example,
someone developing a light-based alarm clock will probably
think of it as a small lamp or perhaps ceiling lamp in a smart
home. However, if the application is unexpectedly deployed
on a car, this lamp could (at least in theory) also be a head-
light that could create a safety hazard on the road if actuated
in an uncontrolled manner. For this, the app store needs to
create a common understanding of what properties hardware
components have. In our concept, that is done by a hard-
ware ontology that classifies hardware components (A2). In
accordance with the hardware ontology, device developers
specify their devices and IoT application developers specify
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their requirements. Thereby, it is possible to check whether
a particular application is compatible with a device that has
certain components.
We envision that IoT devices would be certified in com-

mercial implementations of such an app store in a similar
way as smart home devices already prove their compatibility
with different ecosystems (e.g., Apple HomeKit or Amazon
Alexa) today. For this purpose, it provides, in addition to
an ontology of the hardware, the necessary application pro-
gramming interfaces (APIs) with which an application can
access a hardware component. In the context of a model-
driven development process, such common APIs naturally
also help to automate such hardware accesses through a code
generator.
In addition to the differences between different IoT ap-

plications, different instances of the same IoT application
can also be very different from each other. The reason for
this is that the device infrastructures and the environments
in which the devices are deployed can differ from case to
case. In particular, it cannot be assumed that all customers
own all devices that are offered and compatible with the
application. In some cases, for example, to minimize their
financial risk, customers may want to deliberately equip only
part of their environment with IoT devices initially and ex-
pand the system later when the desired applications have
proven themselves. As a result, IoT app stores should enable
applications to be designed as product lines (R1).
From these two aspects, the decoupling of hardware and

software and the product line nature of the applications, we
derive a model-driven concept for an IoT app store. Fig. 2

gives an overview of our app store concept and how it in-
tegrates with the different development processes and its
stakeholders. Additionally, Fig. 3 shows which stakeholders
use which models for which purpose and how these models
are processed to deploy an IoT application. In the remainder
of this section, we describe the individual elements of the
concept. The following sections then detail how the models
are processed.

Application Development. Application development is
based on a model-driven approach. Here, IoT application
developers interact with a (possibly low-code) editor to cre-
ate and manipulate models. In our prototype, we used Git-
Pod1 for this purpose, as it already integrated with major
repository platforms such as GitHub and GitLab. Essentially,
we rely on three types of models here: Feature diagrams
specify how an application is to be understood as a product
line (R1). Class diagrams define the data structures that the
system uses. MontiThings architecture diagrams describe
the business logic and data flows. As per MontiThings’ nor-
mal deployment process [27], these models are versioned in
an online repository, attached to a continuous integration
(CI)/continuous deployment (CD) pipeline that is responsible
for checking themodels for correctness, transforming them if
necessary, generating general-purpose language (GPL) code
from the models, and compiling and packaging the generated
code for deployment as container images (A1). The container
images are pushed to a container registry provided by the
1GitPod product website. [Online]. Available: https://gitpod.io/. Last ac-
cessed: 02.05.2022
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app store. The model transformations can be used, for exam-
ple, to automatically add additional functionalities such as
monitoring [25] or digital twins [26]. A tagging language can
be used to assign hardware requirements to MontiThings
components during development (R3). These hardware re-
quirements are based on the ontology of the app store (A2).
Furthermore, feature diagrams can be used to group com-
ponents of the architecture into high-level features that are
understandable to endusers (R2). The details of the feature
diagram integration are described in Sec. 5.

IoT App Store. The IoT app store provides the hardware
ontology in form of a class diagram (A2). In this class di-
agram, the individual types of hardware components are
represented by classes. Similar hardware can be grouped
using inheritance, e.g., “each distance sensor is a sensor”
or “each VL53L0X Time-of-Flight sensor is a distance sen-
sor”. Attributes can be used to represent properties of the
hardware, such as the fact that a distance sensor can have a
minimum and maximum detectable distance.
In addition to hardware ontology and architecture for

the IoT devices, the app store also offers services that are
provided individually for each app. A container registry pro-
vides the IoT devices with the container images that contain
the (parts of the) respective IoT application. As mentioned,
IoT infrastructures can vary considerably from customer to
customer. Thus, device owners must be involved in decid-
ing which software runs on which device. In particular, this
is not a decision that developers can make on their own,
as personal requirements and wishes of the device owners
can play a role here. For example, a user may wish not to
deploy an audio recording application in the bathroom for
privacy reasons, even if it would be technically possible with
the existing equipment. To this end, the app store offers de-
vice owners a low-code configuration webapp where they
can specify such requirements. These requirements are then
translated into Prolog code and evaluated. The deployment
process and infrastructure for enabling device owners to
adjust their deployments using Prolog code is described in
more detail in [24, 27].

IoT Device Development. In contrast to the development
of IoT applications, the development of IoT devices is very
close to hardware. The main task of IoT device developers is
to provide access to the hardware in a form compatible with
the app store. In terms of software, IoT devices consist of the
following constituents:

• A container engine that executes the applications’ con-
tainers (A1).

• A set of application containers. These are created by
the IoT application developer (via the CI pipeline) in-
dependently of the IoT devices. Thus, while they are

present at runtime on the devices, the IoT device de-
veloper is unaware of which containers are executed
by the device.

• A message broker that offers an implementation of
a communication protocol between the application
containers and the hardware drivers.

• A hardware access manager that orchestrates the com-
munication between application containers and the
hardware components they access. While this may
seem unnecessary at first sight, because protocols like
MQTT already offer a similar decoupling, it is neces-
sary in some cases, e.g., to prevent two applications
from trying to control the same actuator.

• A set of hardware drivers. These hardware drivers are
developed by the IoT device developer. They provide
access to hardware component in a standardized form.
To this end, every hardware driver also conforms to
the hardware ontology provided by the app store (R3).

• A specification of the device’s hardware properties
(e.g., type, range, frequency, resolution, accuracy, ...)
using an object diagram. The object diagram must
conform to the class diagram provided by the IoT app
store (A2). If an object diagram defines objects that
go beyond the class diagram, IoT applications need
to be aware of this to make use of the information.
Thus, it will likely be ignored by a large number of IoT
applications.

This general structure, including the hardware access man-
ager, is required by the app store. By providing standardized
access to hardware components of IoT devices, the ontol-
ogy and the Hardware Access Manager effectively act as a
hardware abstraction layer for the IoT applications.

IoT Application Development. IoT application develop-
ers define the business logic of an application, i.e., how the
application is supposed to behave. They are responsible for
developing the following artifacts:

• A specification of the application’s requirements us-
ing OCL (R3). The OCL expressions are based on the
class diagram (i.e., hardware ontology) provided by the
app store (A2) and restrict which devices are capable
of executing the individual components of their IoT
application.

• A containerized IoT application (A1). For this, Mon-
tiThings can be used to define IoT applications us-
ing C&C architectures. MontiThings then automati-
cally generates C++ code from these models and builds
(Docker) containers from them [27]. Note that while
we recommend using MontiThings because it gener-
ates the necessary containers out of the box, using
MontiThings is not a requirement for the IoT app
store. As long as each container can be associated
with its hardware requirements and product features,
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other tools and languages can be used instead of Mon-
tiThings.

• High-level product features modeled using feature di-
agrams (R2). The features of the feature diagram are
tagged with the container images that implement each
feature. Providing a feature diagram is not strictly nec-
essary to deploy an application but gives devices own-
ers a greater flexibility to only deploy parts of an ap-
plication.

Application Execution. The application execution con-
sists of both the edge and the cloud. The application contain-
ers are generally executed by IoT devices (A1). Of course,
they can also interact with cloud services where it is useful.
If components do not have any requirements for specific
hardware components, they could of course also be executed
in the cloud. For its part, the cloud can offer services that are
content-related to the application, such as image recognition,
as well as general services such as a device registry for man-
aging the available IoT devices. The deployment manager
decides which device executes which parts of the application
(cf. [24, 27]). Digital twin services and monitoring can help
make the application more understandable. In the process,
end users interact (consciously or unconsciously) with the
IoT devices and thus influence the system. For example, they
park their car in a certain parking space, thus unknowingly
interacting with a parking space monitoring system.

5 Feature Diagramm Tagging
If an application is purchased from the IoT app store, it must
first be decided which features are to be deployed. Feature
models are a popular way to model product lines. Feature
models specify the different features of a product and the
dependencies between the features. By selecting a set of
features, a configuration is formed that can represent, for
example, the features implemented by a concrete product.

5.1 Architecture Feature Tagging
For our app store concept we use feature diagrams in combi-
nation with tagging. The IoT application developers model
on one side a feature diagram that specifies all possible fea-
tures of their product and on the other side use tagging to
relate the features to the components of a C&C architecture.
These models are made available to the app store, which
displays them in web app, that enables endusers to select
features and create a configuration in a graphical user inter-
face (GUI) without working with text files (R2). Of course,
end users may want to select features that do not match
the available hardware. Therefore, this process must be sup-
ported by appropriate analyses (see Sec. 5.2).

When users select a feature, it means that all components
assigned to the feature via tagging must be deployed in the
application. Ideally, application developers model the feature
diagrams in such a way that no valid feature configuration

can be selected, so that a component lacks other compo-
nents it must communicate with in order to implement a
feature. In complex architectures, however, it can be diffi-
cult to recognize how components relate to each other. To
enable application developers to abstract from low-level de-
tails, we automatically assume tagging a component also
includes all subcomponents a component might have. It is,
thus, not possible to end up with half-empty components
that cannot function normally because they miss some of
their subcomponents.
Fig. 4 shows this concept using a fire extinguisher exam-

ple. The FireExtinguisher root feature tags all com-
ponents that need to be present regardless of the feature
configuration. In this example, the fex component, that de-
tects fires and takes appropriate action on its decision. The
features below the root feature in the feature diagram man-
date that every fire extinguisher needs some form of input,
i.e., a smoke or heat detector (or both). The two features
for smoke and heat detection are tagged with the according
smoke and temp components of the architecture. While
every fire extinguisher needs an alarm system (which could
also call the fire department), the sprinklers are optional. In
case a configuration does not use the sprinkler, all messages
the fex sends on its outgoing port will be discarded. In case
a component that provides input to another component is
not mandated, this is treated as if the sending component
never sends a message.
We use the feature configuration to generate rules

according to MontiThings’ Prolog-based deployment
algorithm [27]. For each component X that is tagged by a
feature in the feature configuration, we create a rule that
requires component X to be deployed at any location. If
device owners require more complex rules for distributing
their software across their devices, they can of course still
use MontiThings’ location-based deployment rules to, e.g.,
require the fire extinguisher to be located in the bedroom.

5.2 Analyses
With feature models that represent product lines and feature
configurations that specify individual products of the prod-
uct line, a large number of analyses [8] can be formulated.
The combination between feature diagrams and architectural
model enables carrying out various further forms of anal-
yses. This section presents some of these analyses that we
realized. All presented analyses require that a product line is
described by a given feature diagram, the software architec-
ture is modeled as a given component & connector model
and a tagging model (cf. Sec. 2) bridges the two models.

Deployable feature configuration.With a given feature
configuration and a set of hardware components, an auto-
mated analysis can detect whether the feature configuration
is realizable by deploying the software components that are
tagged by features that are part of the feature configuration
to the given hardware. The result of the analysis is either a
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Figure 4. Example of tagging a feature diagram of a fire extinguisher application with components from an according
architecture model. Each blue dotted arrow between the two models represents a tag. Architecture model taken from [26].

deployment configuration that deploys these components to
the given hardware or empty, if no such deployment exists.
A use case in the smart home example would be a user

who owns a certain set of smart home devices and checks
whether a desired set of smart home features is realizable
with the given hardware constellation.

Largest configurations. Given a complete product line
in terms of a feature diagram, a set of software components,
and a set of hardware components, we can calculate differ-
ent forms of largest configurations. In this, a largest config-
uration contains either the maximal number of hardware
components or selects the maximal number of features in a
feature diagram without violating its restrictions. A largest
configuration is not necessarily unique, i.e., there may be dif-
ferent maximal configurations that have an equal number of
features/hardware components. For example, if a mandatory
feature of the feature diagram has two sub features 𝐴 and
𝐵 that mutually exclude each other, there are at least two
maximal feature configurations where one contains 𝐴 and
the other one contains 𝐵.
A largest deployment configuration uses a given prod-

uct line, a given feature configuration, and a given set of
hardware components to calculate deployment configura-
tions that maximize the number of components deployable
to the given hardware. A use case in the smart home exam-
ple would be a user who selects a set of desired smart home
features and owns a set of smart home devices. The largest
deployment configuration indicates, how the components
can be deployed to ensure the greatest redundancy in critical
software components.

Similarly, we can calculate a largest feature configuration
from a given product line and set of available hardware
components. A largest feature configuration contains the

maximal number of features that can be selected for a given
set of hardware components. A use case in the smart home
example would be a user who owns a set of smart home
devices and wants to maximize the number of smart home
features that can be realized with these devices.
Complete to a largest feature configuration. With

partial feature configurations, users can predetermine that a
certain set of features should be included or excluded in a
(full) configuration while making no assumptions on other,
“undecided” features. With such partial feature configura-
tions, we can extend the analysis that calculates the largest
feature configurations by calculating complete configura-
tions from given partial configurations. In the smart home
example, a use case would be a user who owns a set of smart
home devices and has pre-selected certain smart home fea-
tures she intends to have and others that she does not require.
The analysis can complete the given partial selection to a
complete selection of features that, again, is not necessarily
unique.

6 Device Specification and Selection Using
Generated Prolog Code

Both during the feature diagram analyses and the subsequent
deployment, it is necessary to know which IoT devices can
run which software. The automated process of determining
whether hardware exists that matches the specifications
made on the software side is carried out with the aid of a
Prolog generator. The process consists of three steps:

1. object diagrams contributed by IoT device developers
are translated into Prolog facts,

2. the OCL expression created by the IoT application
developer is translated into a Prolog query, and
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% Facts (from object diagram)

deviceType(vL53L0X, "DistanceSensor").

manufacturer(vL53L0X, "ST").

versionNo(vL53L0X, "2").

partNo(vL53L0X, "VL53L0X").

latency__millisecs(vL53L0X, 30).

accuracy__percent(vL53L0X, 97).

range__min(vL53L0X, 2).

range__max(vL53L0X, 2000).

% Ensure __Sensor variable uses a single object

range__min(__Sensor, Sensor__range__min), 

range__max(__Sensor, Sensor__range__max), 

accuracy__percent(__Sensor, Sensor__accuracy__percent),

% Note: Latency is irrelevant for OCL expression

instanceOf(__Sensor, "DistanceSensor"), 

% Evaluate properties of hardware attributes

(

Max is Sensor__range__max, 

Min is Sensor__range__min, 

( 

\+ Max > Min ; 

(

Max - Min > 1000, 

Sensor__accuracy__percent > 90

)

)

).
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exists DistanceSensor sensor:

let max = sensor.range.max; 

min = sensor.range.min

in  max > min 

implies max - min > 1000 &&

sensor.accuracy.percent > 90

1
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4

5
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Figure 5. Example of an app store’s hardware ontology (class
diagram), the specification of the hardware of a device (ob-
ject diagram) and the specification of the requirements of
a component (OCL). Prolog code generated from the object
diagram and OCL expression checks whether a device meets
the requirements of the software.

3. the (generated) Prolog query is checked against the
(generated) Prolog facts.

The object diagram and OCL expression are written in
accordance to a class diagram that defines the hardware on-
tology but is not used for code generation. Fig. 5 gives an
example of the artifacts used in this process. This approach
enables hardware and software to remain decoupled until the
deployment process. Thereby, both hardware and software
can be developed independently of each other by different
actors by only agreeing on a common ontology, i.e., class dia-
gram, provided by an IoT app store. The generated facts and
queries are used by MontiThings’ Prolog-based deployment
algorithm to create a deployment [27].
Since Prolog is not an object-oriented programming lan-

guage, generating facts from object diagrams requires trans-
forming the object diagrams. Object diagrams can contain
nested objects, i.e., objects that are included in or referenced
by other objects. We addressed this by generating a sepa-
rate fact for each attribute that has a primitive data type.
The name of the fact is generated so that it can be uniquely
assigned to the original object again. For example, the fact
that the VL53L0X in the object diagram has a reference to a
latency object with the attribute millisecs is translated
into a fact latency__millisecs(vL53L0X, 30).
OCL expressions may evaluate to true or false. The expres-

sions have to adhere to the class diagram shown at the top
of Fig. 5. Since the goal is to check whether a device has the
necessary hardware components required by the software,
the outermost OCL expression of the requirements must al-
ways be an exists-expression. The resulting Prolog query
is always divided into two parts: The first part asserts that
the free variables referring to the object in the query need
to be bound to the same variable. Thereby, we ensure that
the required properties must be fulfilled by the same object,
i.e., piece of hardware, instead of allowing Prolog to mix the
properties of different objects. An example for this can be
seen in lines 11 to 16 in the generated Prolog code in Fig. 5.
The second part of the Prolog code represents the OCL ex-
pression. We traverse the abstract syntax tree of the OCL
expression using the Visitor pattern [18] and transform each
part of the OCL expression in equivalent Prolog terms. The
resulting code can be seen in lines 18 to 29 of the generated
Prolog code in Fig. 5. If the hardware matches the software’s
requirements, the query is able to assign the free variables.
For example, in Fig. 5, the generated Prolog code can assign
the value vL53L0X to the variable __Sensor.
The handling of these expressions is mostly a straight

translation into similar Prolog expressions. Instan-
tiations like DistanceSensor sensor in the
query are translated into instanceOf(__Sensor,
"DistanceSensor"). The instanceOf rule checks if
the sensor has the given deviceType or a deviceType
that inherits from it. The inheritance relationships are given
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Figure 6. Hardware drivers and application components are decoupled via a message broker. The hardware manager assigns
hardware drivers to the components’ ports based on the ports’ requirements and the app store’s hardware ontology.

by the class diagram. Thereby, we support inheritance of
different sensor types.

In our example, Prolog is able to find a valid assignments
for all variables (especially __Sensor = vL53L0X). Ac-
cordingly, the device specified by the object diagram is able
to execute the software whose requirements are given by
the OCL expression.

7 Hardware Access
Once it has been decided which devices should run which
software and the devices have downloaded the necessary con-
tainers, the high-level IoT application still needs to be con-
nected to the hardware drivers. To decouple hardware access
and application development, the two must not know each
other at design time. However, shortly before the start of run-
time, hardware and software must be connected. This raises
the question of how the code generated from (architecture)
models is linked to the mostly handwritten code of hardware
drivers. The components of C&C architectures exchange
data via ports. Accordingly, communication with external
hardware in MontiThings also takes place via ports [27].
However, since the development of the IoT devices and the
applications is decoupled in our app store concept, it is not
intended here that the drivers for a hardware component are
stored directly in a port. To break this link, the hardware dri-
vers are deployed as standalone binaries on the IoT devices,
which then exchange data via a message broker with the
code generated from the architecture models (Fig. 6). One
advantage of decoupling the hardware drivers from the code

generated from the architecture is that the drivers do not
necessarily have to be written in the same programming
language as the generated code. All that is required is that
they can exchange objects, i.e., (de)serialize, via a common
data format. In commercial implementations, libraries such
as Google Protobuf2 offer consistent (de)serialization across
multiple GPLs.
There is a Hardware Access Manager on each IoT device

that coordinates access to the hardware drivers. As soon as
a hardware driver is started on an IoT device, it informs the
Hardware Access Manager about its existence. In particular,
it also informs the Hardware Access Manager of its specifi-
cation according to the hardware ontology of the app store.
The architecture behaves in a similar way and informs the
Hardware Access Manager for which of its ports it requires
hardware drivers with which specification. The Hardware
Access Manager uses these requests from the components
and offers from the hardware drivers to determine, based on
the ontology, whether the offered hardware can fulfill the
requests. The Hardware Access Manager tells the compo-
nents which topics they can use to communicate with the
hardware drivers assigned to them.

8 Smart Home Application Case Study
To validate our concept, we modeled a smart home applica-
tion that could be deployed via an IoT app store. Technically,
the case study was carried out using mainly Microsoft Azure.

2Google Protocol Buffers. [Online]. Available: https://developers.google.
com/protocol-buffers. Last accessed: 02.05.2022
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We used the an Azure IoT Hub for device management, a
virtual machine for executing the configuration web app,
three virtual machines representing the IoT devices using
mocked sensors and actuators, and an Azure Container Reg-
istry for providing the applications’ Docker images of to the
IoT devices.

To develop the models, the application developer can use
a web-based development environment. We have chosen Git-
Pod for this purpose. In GitPod, developers get a VSCode-like
development environment in their web browser, where we
provide necessary tools for code generation or compilation.
We chose a VSCode-like web interface to provide developers
with an environment they are already familiar with from
traditional application development.
At design time the IoT application developers create the

following artifacts:
• the MontiThings models which describe the business
logic,

• a feature digram which describes the high-level fea-
tures from a user perspective,

• a tagging model which connects feature diagram and
MontiThings components,

• OCL expressions which specify the MontiThings com-
ponents’ requirements.

Fig. 7 shows an excerpt of themodels used in the case study.
Especially it shows the outermost MontiThings component,
the feature diagram and tagging model to give a high-level
overview of the application. Furthermore, the figure shows
an OCL expression requiring a camera and an object diagram
describing the Raspberry Pi CameraModule v23 that matches
this requirement.
The IoT device developers create an object diagram for

each IoT device that specifies the device’s capabilities. The
IoT application and IoT device developers are decoupled in
creating these models. Their only connection is a class dia-
gram defining the IoT app store’s hardware ontology. This
class diagram can be provided by the app store to unify the
modeling of capabilities in the object diagrams, enablingOCL
queries to be written against the class diagramwithout know-
ing the object diagrams. For example, the IoT application
developer can request a camera with at least 4 megapixels
(l. 2 of the OCL expression in Fig. 7) without knowing what
specific camera the IoT device will be equipped with.

Once the device owners, i.e., the app store customers, have
decided on an application, they can configure it via a configu-
rationweb app (which is also developedmodel-driven [4, 19]).
This web app could be provided by the app store or be de-
ployed on a computer of the device owner. In this web app
they can see the features that have been developed in the
feature diagram. The view of device owners is very different

3Raspberry Pi Documentation—Camera. [Online]. Available: https://www.
raspberrypi.com/documentation/accessories/camera.html. Last accessed:
28.07.2022
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Figure 7. Excerpt of the models used in the case study. The
smart home is based on the application in [25].

from the view for developers. Instead of an IDE, customers
are presented with a web app that enables them to select
features via checkboxes and buttons and perform analyses
such as the largest possible configuration. The device owners
proceeded as follows.

After asking theweb app to validate its (still empty) feature
configuration, the tool indicates that the configuration is cur-
rently invalid. The device owners now calculate the largest
valid configuration and see that all features are selected here.
Unfortunately, the configuration is not deployable like this,
because they lack the keyboard hardware necessary to de-
ploy the keyboard component. Since they are not willing
to buy a keyboard, they next calculate the maximum deploy-
able configuration with our existing hardware. As a result,
all features except the KeyboardInput are selected. Since
there is only one possible largest deployable configuration
in this case, we decide to use this configuration.
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In the background, this causes the web app to communi-
cate with the IoT devices and request them to download the
Docker images needed to run the application. The details of
this process are described in [24]. Once a component gets
started on an IoT device, it tries to connect to the sensors
and actuators on the respective IoT devices. The hardware
access manager preinstalled on the devices assigns corre-
sponding instances of hardware drivers to each component
or port that wants to communicate with hardware. Commu-
nication takes place via an message queue telemetry trans-
port (MQTT) broker installed locally on the devices. This
completes the deployment of the application and end users
could now interact with the IoT devices.

9 Discussion
We are aware that the app store concept presented in this
paper is focused on the deployment aspects of IoT app stores.
Our prototype implementation is, thus, not exhaustive and
neglects aspects like, e.g., payment of the applications. We
see our concept as a template for later commercial imple-
mentations to show how model-driven development can
contribute to certain aspects of the development of such
app stores. The market landscape of IoT hardware is very
fragmented. Therefore, it is hardly possible to specify an
all-encompassing ontology without neglecting certain hard-
ware components. We expect that future IoT app stores will
also have to impose certain restrictions on hardware manu-
facturers in this respect and will not be able to support every
arbitrarily unusual hardware part type.
The definitions of the data types that can be exchanged

with the hardware components also move in this area of
tension. Eclipse UPM4 is already trying to provide a library
with which access to widely used sensors and actuators can
be standardized. The problem here is that it is necessarily
necessary to abstract from the specifics of a sensor. Some
(more complex) IoT components offer fine-grained setting
options in this respect, for example to balance the reading
speed of an RFID reader against the accuracy of the read-
ing. Often this is done by very close to the hardware, for
example, by setting a certain value in a memory register.
Since these setting options can also differ greatly between
similar hardware, abstraction must necessarily neglect some
functionalities here. We therefore decided not to abstract di-
rectly from hardware access in our app store concept, but to
let device developers implement the hardware drivers with
handwritten code and to subject only the values exchanged
with the application to the app store’s ontology.

Our use of (Docker) containers (A1) undoubtedly cre-
ates some overhead. The same applies to the message bro-
ker used locally on the IoT devices. We are of the opinion
that this path is nevertheless promising for the future, since

4Eclipse UPM GitHub Projekt. [Online]. Available: https://github.com/
eclipse/upm. Last accessed: 02.05.2022

1. the performance of IoT hardware continues to increase
and 2. corresponding technologies are becoming more and
more resource-efficient and IoT-friendly. For example, the
balenaEngine5, an Docker-compatible container engine fo-
cussed on IoT devices, has a considerably smaller memory
footprint than Docker CE. In general, it is expected that fu-
ture IoT applications will be based increasingly on container
technologies [33]. Nevertheless, we want to emphasize that
our assumption to use Docker containers was only made
to keep the focus of this paper on the high-level concepts
instead of discussing how to cross-compile and copy binaries
to IoT devices.
Based on our use of Docker containers, it follows that

strongly resource-constrained devices, e.g., Arduino or
ESP32, cannot be updated with new software by our
prototype. To include such devices in the application, we
envision an approach similar to the approach of Amazon
web services (AWS) Greengrass: If the resource-constraint
device can connect to a more powerful gateway device,
it could act as a port of the gateway device by directly
connecting to its Hardware Access Manager. Thus, the
capabilities of the resource-constraint extend the capa-
bilities of the gateway device. The code generated from
MontiThings applications can of course also be deployed
without (Docker) containers given that the target devices
provide the necessary libraries. Overall, however, we
consider this approach only as a transitional method and
assume that IoT devices will rely much more on container
technologies in the future. We refer readers interested in
deploying software to resource-constraint devices to the
GeneSIS project [15–17].

10 Related Work
Multiple authors have proposed IoT focussed app stores,
e.g., [5, 10, 29]. While these approaches share with us the
general problem of decoupling hardware and software, we
are the first to explore the potential of holistic model-driven
development in this regard. Our use of feature diagrams
also allows us to focus more clearly on product lines of IoT
applications. Due to the great heterogeneity and variability
of IoT infrastructures, we think considering IoT applications
as product lines is an important but understudied aspect.
A theoretical approach to deploying IoT applications us-

ing feature diagrams has also been studied in [11]. Unlike
our approach, it is focussed on developers optimizing an
IoT application according to metrics (such as latency) for a
specific infrastructure by modeling both software features
and (hard- and software) infrastructure using feature dia-
grams. It does not take into account the app store use case of
device owners (without a technical background) who want

5balenaEngine Product Website. [Online]. Available: https://www.balena.
io/engine/. Last accessed: 02.05.2022
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to deploy software without first modeling their device in-
frastructure and without involving developers. Furthermore,
using OCL and object diagrams for specifying requirements
and device capabilities, instead of only feature diagrams, our
approach enables specifying more expressive requirements.
Lastly, our approach goes beyond purely theoretical deploy-
ment calculations by also considering the decoupling of the
software and device development process and providing the
code generators to produce executable applications.

Academia and industry have proposed a large number of
IoT domain-specific languages (DSLs) over the last decade.
The of the two most prominent examples are ThingML [21,
28] and Calvin [6, 30, 31]. ThingML itself does not pro-
vide mechanisms for large-scale deployment of IoT software.
The GeneSIS project [15–17] extends ThingML with deploy-
ment functionalities. However, GeneSIS focuses on the tech-
nical aspects of deployment. Aspects such as a reasoner,
which decides which devices should run which software, are
not considered. To connect different hardware components,
ThingML often relies on developing different components
for different platforms (e.g., a component specifically for an
Arduino device6). Unlike our approach, however, the hard-
ware is already specified at design time. An app store with
such a strong coupling would only be possible to a very lim-
ited extent because the app store can deliver corresponding
components for all conceivable combinations of platforms
and hardware. Ericsson’s Calvin is also an IoT-focussed C&C
ADL. Calvin comes out-of-the-box with a deployment mech-
anism. Components can serialize their state and send it on to
neighboring devices to be deserialized and instantiated there.
This creates a distributed network of IoT devices without
a central instance. However, the lack of a central instance
means that no IoT device has global knowledge about the
network of IoT devices. Accordingly, it is not possible to
define deployment rules that affect the network as a whole.
For example, it is possible to require that software be de-
ployed to every device in the bathroom because each device
can decide for itself whether it is in the bathroom, but it is
not possible to require that software be deployed to 3 devices
in the bathroom.

To connect legacy devices, Calvin uses a mechanism sim-
ilar to CapeCode’s [9] accessor pattern. A component is
written as a wrapper around the service or hardware to be
connected. In a sense, the hardware drivers in our concept
serve a similar purpose. However, our concept differs in that
1. are based on the app store’s ontology and thus decouple
device and application, whereas accessors are just regular
components of the architecture, 2. the hardware drivers are
developed by the device developer, not by the application
programmer, and 3. are also decoupled from the generated
6Code example from ThingML’s GitHub repository. [Online]. Available:
https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/
src/main/thingml/sos2/hardware/arduino/arduino.thingml. Last accessed:
02.05.2022

code on the IoT devices, i.e., can be programmed in different
programming languages.
A large number of IoT ontologies already exist in the lit-

erature [7]. Many of these build on the W3 Semantic Sensor
Network Ontology. Unfortunately, there is still no sign of
a common standard emerging from the various ontologies.
We have, therefore, avoided proposing a concrete ontology
for IoT app stores to avoid giving the impression of defin-
ing yet another ontology. Instead, we recommend future IoT
app store operators to base their ontologies on the existing
solutions. By defining ontologies using class diagrams, we
enable future them to use existing solutions but also adapt
them to their needs if necessary.

11 Conclusion
Within this paper, we have introduced a model-driven ap-
proach for creating IoT app stores and have shown the ap-
plication of the approach for a smart home case study. Using
web applications, such IoT app stores enable device own-
ers to configure features of the IoT software. An underlying
ontology of hardware components ensures that the specifi-
cation of devices by device developers and the specification
of requirements by IoT application developers fit together.

The presented approach decouples hardware and software
facilitating the creation of IoT app stores and providing IoT
device owners with more freedom in their software choices.

Source Code
MontiThings is available on GitHub:
https://github.com/MontiCore/montithings
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