
Springer Nature Computer Science manuscript No.
(will be inserted by the editor)

Model-Driven Engineering of Process-Aware Information
Systems

Imke Drave · Judith Michael* · Erik Müller · Bernhard Rumpe ·
Simon Varga

Received: date / Accepted: date

Abstract Enterprise information systems created
with model-driven software engineering methods

need to handle not only data but also business
processes in an automated way. This paper shows
how to engineer process-aware information systems

following the model-driven and generative software
engineering paradigms. Existing approaches realize
either the generation of automated or manual ac-
tivities but do not employ model-driven engineering

of all system aspects through systematic language
composition. A generative approach that additionally
uses process modeling languages allows developers

to evolve generated data-centric information systems
into process-aware information systems. To be usable
within our generation process, we have developed

a textual BPMN version and according language
tooling to check the soundness of the models. We
have included these process models into the generation
process of an information system together with other

domain-specific modeling languages, e.g., for data
structures, and generate an extendable, process-aware

Imke Drave
Software Engineering, RWTH Aachen University, Germany
E-mail: drave@se-rwth.de

� Judith Michael
Software Engineering, RWTH Aachen University, Germany
E-mail: michael@se-rwth.de

Erik Müller
Software Engineering, RWTH Aachen University, Germany
E-mail: erik.mueller@rwth-aachen.de

Bernhard Rumpe
Software Engineering, RWTH Aachen University, Germany
E-mail: rumpe@se-rwth.de

Simon Varga
Software Engineering, RWTH Aachen University, Germany
E-mail: varga@se-rwth.de

information system that is open for continuous regen-
eration and hand-written additions. This approach

allows us to lift a generated data-centric information
system to a process-aware information system. Agile
development enabled through the opportunity to

validate assumptions automatically and adapt changes
efficiently, enhances the engineering process as well as
the generated systems themselves.

Keywords Model-Driven Software Engineering ·
Business Processes · Domain-Specific Modeling
Languages · Code Generation · Process-Aware

Information System.

1 Introduction

Motivation and relevance. Model-Driven Software Engi-

neering (MDSE) uses models as primary artifacts to de-
rive code, tests and documentation and has established
as a paradigm in software engineering throughout the
past decades. Therein, the use of models instead of, for

example code, narrows the conceptual gap between the
problem domain and the solution domain [26].

Enterprise Information System (EIS) are software
systems that collect, store, and assimilate data and in-
formation, and also provide feedback [68]. By nature,
these systems are highly complex and evolve continu-
ously making them a predestined application domain
for MDSE. Part of the complexity of engineering such
systems arises from the fact that there are multiple and
heterogeneous aspects [18] when it comes to engineering
EISs. Examples for such aspects are the Graphical User
Interface (GUI) and the data structures. Here, MDSE
enables engineers to use tailored modeling languages

for specifying these aspects, while model-to-code trans-
formations enable generating an application that inte-

[DMM+22] I. Drave, J. Michael, E. Müller, B. Rumpe, S. Varga: 
Model-Driven Engineering of Process-Aware Information Systems. 
In: Springer Nature Computer Science Journal, Volume 3, Springer, November 2022. 
www.se-rwth.de/publications/



grates all modeled aspects automatically. Since 2016, we

are developing a full-size real world application for the

financial controlling of small and medium sized univer-

sity chairs called Management Cockpit for Controlling

(MaCoCo) [28]. It is used by more than 160 chairs of

the university and has a code base of app. 9.000 Line

of Code (LOC) in models, app. 390.000 LOC generated

and 115.000 LOC hand-written code. Employing MDSE

methods has proven to increase development efficiency

and quality of the final application significantly.

However, through the demand for new or adapted

functionalities, not only the system evolves continu-

ously but also the set of modeling languages and code

generators employed in the development process [18].

Technology stacks and development processes therefore

need to be amenable for change. New requirements,

especially for larger organizations, have triggered the

transition from data-centric EIS to Process-Aware

Information System (PAIS), which apart from data,

provide support for structured processes. Processes

have therefore become another aspect of the applica-

tion under development and integrating model-driven

process development into existing model-driven de-

velopment processes of EISs has become subject to

ongoing research. Doing so, requires suitable modeling

languages for specifying processes as a chain of tasks

or steps performed by humans or other systems with

specific roles in the organization, that enable to refer-

ence elements of the existing data structures to specify

the inputs and outputs of the process tasks or steps.

Common languages to describe such processes are,

e.g., Business Process Model and Notation (BPMN)

or UML Activity Diagrams, typically employed using

the graphical notation proposed by their respective

standards [57,56]. To support the transition process

from an EIS to a PAIS, process models and respective

generators need to be integrated in the technological

landscape and methodology of model-driven EIS

development. However, generating information systems

using behavior models and integrating them with

hand-written code is still a challenge. This paper pro-

poses a textual notation of BPMN and its integration

into an existing technology stack employed in the

ongoing EIS development of MaCoCo [28].

In this paper, we show how to engineer process-

aware information systems following the model-driven

and generative software engineering paradigms. Our ap-

proach combines both, the generative use of process

models, e.g., written in BPMN, as well as the inter-

pretation of these models at run-time.

Approach and main results. This paper presents

our generative approach to engineering PAIS that uses,

among others, process models as input to generate the

code base that integrates a process engine in the system

architecture. For the implementation of all languages

mentioned in this paper, we used MontiCore [37], a

language workbench for Domain-Specific Languages

(DSLs), which generates language infrastructure from

a context-free grammar and provides mechanisms for

integrating hand-written code. Thus, we propose a

textual notation for BPMN, suited for code generation

with MontiCore. Our BPMN DSL covers all relevant

concepts for code generation, which is 88.4% of the

common executable BPMN elements and enables

the definition of additional data structures. For the

generation process of the PAIS, we have extended the

generator framework MontiGem [28,2], which, so far,

has used structural models to generate a data-centric

application such as MaCoCo. The extension allows to

generate a PAIS from UML Class Diagrams (CDs),

Object Constraint Language (OCL) expressions, mod-

els for the GUIs, tagging models, and BPMN models.

This approach makes it possible to create a PAIS

automatically from a set of models and still allows for

hand-written extensions and continuous re-generation

of the resulting application.

Outline. The next Section 2 shows our vision of gen-

erating PAIS. Section 3 discusses relevant preliminaries:

the language workbench MontiCore for creating differ-

ent DSLs, the generator framework MontiGem to cre-

ate the PAIS, the used DSLs such as the process lan-

guage BPMN and our running example from the qual-

ity assurance process of a manufacturing plant. Sec-

tion 4 presents our textual BPMN DSL and the process

for model validation. Section 5 describes the process-

related extensions to the run-time environment as well

as the generation process using the generator frame-

work MontiGem and our BPMN DSL. Section 6 shows

example models, the generation results as well as an

overview of the generated and hand-written artifacts.

Section 7 discusses related work. Section 8 shows lim-

itations, and strengths of our approach and the last

section concludes this paper.

2 Towards Generated Process-Aware

Information Systems

Nowadays, the focus of EIS development has shifted

from data to process orientation [66] which gives rise to

so called PAISs. According to [1,19], a PAIS is a soft-

ware system that uses process models to manage and

execute operational processes involving people, appli-

cations and/or information sources. When it comes to

defining business processes, their implementation and

integration within an existing EIS is a major challenge.

MDSE provides means to overcome this challenge by



introducing models as the main development artifacts

that serve as a communication basis and enable code

generation at the same time.

A Vision Towards Generating PAIS. Process modeling

languages, such as BPMN enable to describe business

process models by abstracting from the implementa-

tion platform. Further, there exist various techniques

to analyze, interpret and transform business process

models based on mathematical theory in the literature,

e.g., [77,75,81]. Tailoring PAISs for a specific applica-

tion domain thereby becomes much easier, because it

enables engineers to translate customer requirements

into a model that abstracts from the implementation

platform that is also amenable for automatic process-

ing such as code generation. Therefore, we envision to

utilize models in a formal process modeling language for

generating the process-related functionality of a PAIS.

As in MaCoCo, engineering PAISs will most likely

be brownfield development, where an existing (data-

centric) EIS needs to be “lifted” to a PAIS that inte-

grates the process related functionality. Following the

trend of entrepreneurial software to integrate existing

pieces of software to obtain an implementation of an

application, rather than to implement an entire appli-

cation from scratch, we envision to obtain a generative

approach to engineering PAISs by integrating genera-

tive engineering of business processes with generative

engineering of EISs.

Requirements for Process Modeling. In MDSE, mod-

els are the primary development artifacts. To enable

this, the models must be comprehensive and intuitive
for all model users. At the same time, the models that

are used for communication and those that are used

for code generation should be the same or obtained

from automatic transformations. Standardized model-

ing languages such as BPMN have established in the

domain of business process engineering [12]. Stakehold-

ers whose background is not necessarily related to com-

puter science are therefore familiar with the language

and able to read and understand it. Further, various

techniques to analyze, interpret and transform business

process models based on mathematical theory exist in

the literature, e.g., [77,75,81]. These techniques pro-

vide a conceptual basis for generative engineering of

PAISs. Hence, we require to reuse the BPMN standard

for defining the modeling language and existing tech-

niques or tools to process BPMN models.

For modeling the input and outputs of tasks, pro-

cess models need to reference the data classes modeled

in a data model of the system and the generation pro-

cess must assure that the type of a task’s input is given

by a corresponding class generated from the data mod-

els. These are two respective aspects in the sense of [18]

the system and both may be relevant for other aspects.

To keep models readable and to maintain their pur-

pose, these aspects need to be modeled using appropri-

ate languages. We require a composed process modeling

language. The infrastructure generated by MontiCore,

for example, offers means to compose languages effi-

ciently [34,37].

Requirements for Code Generation. Generating code

from a process model will not produce an expected

outcome if the model does not adhere certain Context

Conditionss (CoCos) [37] and it will fail, e.g., if the

transformation of the model into code will produce

a deadlock. To enable efficient modeling, we require

automatic verification of soundness and such CoCos.

Generating the entire code base of any software

system from models is not possible [67]. In general,

the generated code base needs handwritten extensions

to provide a fully functional system. This requires

mechanisms that enable developers to integrate hand-

written code with the generated code. MontiCore, for

example, offers mechanisms to integrate handwritten

code efficiently [30].

The next section introduces the generator frame-

work MontiGem which already provides a rich set of

code generating functionality for EISs and thereby

provides a powerful tool for efficient model-driven and

generative engineering of these systems. Furthermore,

it allows to implement extensions such as generators

and languages for process models, efficiently. Reusing

MontiGem, therefore, follows our vision of integrating

generative EIS engineering with generative engineering

of business processes. Developing and integrating code

generators for process models into the code generation

procedures of MontiGem further enables to reuse

existing methodologies for generative engineering of

EISs, that have proven effective [2].

3 Preliminaries

In the following sections, this paper presents an

approach that enables agile generative engineering

of PAISs and follows the vision proposed previously.

For implementing the modeling languages, we used

the language workbench MontiCore and adapted the

generator framework MontiGem [2,3]. The process-

awareness of the generated application is established

by including BPMN models during the generation

process. This section, therefore, provides fundamentals

on the concepts of MontiCore, MontiGem, BPMN and



a running example which will serve to illustrate our

approach throughout the paper.

3.1 MontiCore

The language workbench MontiCore [33,35] is a tool

for engineering compositional, textual (modeling) lan-

guages. Therein, engineers specify a language’s concrete

and abstract syntax as context-free grammars in an in-

tegrated way. Model checking and transforming models

in the language into code are greatly facilitated by the

model processing infrastructure, which includes, e.g., a

parser, generated by MontiCore.

So far, MontiCore languages have been applied

for MDSE in multiple domains including automotive,

cloud, smart home, robotics and software engineering.

The UML/P (UML/P) language family [64], a subset

of the UML that is suited for code generation, has been

implemented with MontiCore. The UML/P together

with the methodologies proposed in [65], provide the

linguistic and methodological foundation for pervasive

generative engineering of software products.

To support the adaption of generated code, Mon-

tiCore provides the TOP-mechanism [37]. The mech-

anism relies on the object-oriented principle of inher-

itance to include handwritten extensions of generated

classes. The TOP-mechanism checks for such handwrit-

ten files during the generation process and generates the

code such that the handwritten code is always used in-

stead of the prior generated code. In detail, it checks

if there is already a handwritten source for a given

class and renames the generated file. Thus, the appli-

cation always uses the handwritten extension. Using

MontiCore, allows to separate the generated code from

the handwritten code. Continuous re-generation with-

out loss of information is thereby possible.

3.2 MontiGem and its DSLs

MontiGem [2,3], a generator for EISs, combines

multiple transformations and code generators to

create a widely functional EIS from a set of input

models. It uses templates in the target language(s),

i.e., Java, Typescript and HTML, as well as models

from different DSLs as input. Supported languages are

UML/P CDs [64] to describe data structures, the OCL

(OCL/P (OCL/P)) [64] to specify restrictions on the

data, GUI models [29] to specify user interfaces, or the

Tagging Language [31] to enrich model elements with

additional information, e.g., platform specific data to

concepts from the domain model (see Figure 1).

Fig. 1 The generation process with MontiGem.

The framework supports generating code from

models in these DSLs: It generates the code that

represents data structures from UML/P CDs, the

code that implements the functionalities for data

validation from OCL/P constraints, the code that

implements GUI pages in HTML and Typescript as

described in the GUI models, and the functionality

for communication between the Java back-end and

HTML/Typescript front-end [28]. MontiGem provides

a Run-time Environment (RTE) to support the basic

infrastructure for the application. This includes, e.g.,

GUI components, communication infrastructure, a

security manager and database access. The RTE can

be configured to allow for customization for generated

applications. MontiGem uses a multitude of MontiCore

languages to generate a range of application elements

and provides means to adapt generated code with

MontiCore’s TOP-mechanism [37]. The use of this

combination of multiple languages can produce a

variety of different application parts and minimize the

effort as less handwritten code is needed.

MontiGem is used in the real-world project MaCoCo

for financial management [28], for creating digital twin

cockpits [15], and to support the engineering process of

wind turbines with digital twin cocpits for parameter

management [50]. We use it in projects to create low-

code development platforms for digital twins [14], on



goal modeling in assistive systems [48], and privacy-

preserving information systems [47].

3.3 Business Process Model and Notation (BPMN)

Business Process Management supports the design,

enactment, management, and analysis of business

processes [74] which enables agile and efficient adap-

tation to market needs and changes. The de-facto

standard [12] BPMN [57] provides a graphical notation

that is intuitive to business users yet expressive enough

to capture the technical details of complex business

processes.

BPMN [57] categorizes its graphical elements as

flow objects, connecting objects, data, swimlanes, and

artifacts. Flow objects are the main building blocks

of BPMN models and are linked through connecting

objects. They encompass activities, gateways, and

events. Data captures the physical or digital items that

are created, accessed, or updated during a process.

Swimlanes act as containers to organize and categorize

activities, e.g., by functional departments or organiza-

tional roles. Artifacts display supporting information,

such as comments. Each basic category has variations

to cope with the complexity of business processes. For

modeling data and expressions, BPMN foresees the use

of XML Schema1 and XPath2.

3.4 Running Example using BPMN

In the following sections, we consider a quality assur-

ance process of a manufacturing plant as a running

example for considering processes in an information

system. This can be seen as an extension of a data-

centric information system that provides staff and con-

tract management of a mechanical engineering depart-

ment of the university as well as the material and re-

source management of the associated demo factory. The

running example is used to explain the textual version

of BPMN and in an example application for validation

purposes of our generative approach.

During the daily commissioning of a manufacturing

plant for gear shafts, samples are produced for quality

assurance. After powering up the manufacturing plant,

the engineer needs to adjust the control parameters of

the plant. These parameters influence the quality of the

1 https://www.w3.org/standards/xml/schema, last
accessed: 31.07.2020
2 https://www.w3.org/TR/xpath20/, last accessed:

31.07.2020

manufactured goods. The engineer determines the pa-

rameters by running simulations of the production pro-

cess. Once a suited set of parameters has been deter-

mined, the plant produces the shafts and bearings seats.

Meanwhile, the engineer records the calculated param-

eters. The plant then measures the produced samples.

If the tolerances are not met, the engineer must re-

evaluate the parameters and new samples must be pro-

duced. If the tolerances are met, and if it is Friday, the

engineer creates a weekly report before the plant goes

into regular operation. Figure 2 shows a model of the

process in the graphical notation of BPMN 2.0.

4 A Textual BPMN Notation for MontiCore

To make BPMN models amenable for code generation

with MontiCore, we developed a textual notation

for BPMN. The notation covers private (executable)

BPMN processes, i.e., processes within a single orga-

nization (as opposed to processes spanning multiple

organizations, which are modeled by public BPMN

processes). In addition to the graphical elements, the

textual notation includes non-graphical attributes

usable for code generation such as formal conditions.

BPMN designates XML Schema and XPath as the

default data modeling and expression language [57].

This hinders code generation, as, e.g., types therein

are tied to the lifecycle of the parent process or

sub-process. Our approach, therefore, explicates con-

straints on classes and associations as UML/P CDs

accompanied by OCL/P constraints [64,65]. Therein,

types persist beyond the scope of the process, which

enables to reference data items by their names within

a textual BPMN model which eliminates the graphical

notation’s need for data associations.

To implement this within the textual BPMN, we

took advantage of MontiCore’s mechanisms for system-

atic language composition [33,35]. Listing 1 shows the

running example introduced in Section 3.3 in the tex-

tual BPMN notation. The main difference are the use

of defined data types (l. 2, 14, and 25), the separation

of the tasks (ll. 5-18 and 22-29) and the control flow (ll.

32-48).

Listing 1 Example process in the textual BPMN notation.

1 process ProduceGearShaft {
2 store params:ShaftParameters;
3

4 lane Engineer {
5 task manual PowerUpPlant;
6 task user AdjustParameters {
7 out: params;
8 }
9 task script SimulateParameters until:[true] {

10 in: params;
11 }
12 task user RecordParameters;

https://www.w3.org/standards/xml/schema
https://www.w3.org/TR/xpath20/


Power Up

Plant

Adjust

Parameters

Simulate

Parameters

Record

Parameters

Produce

Shaft

Roll

Bearings

Seats

Check

Bearings

Tolerances

Met?

Is Friday?

Create

Weekly

Report

No

Yes

Yes

No

Parameter

Set

Report

Measurment

M
a
n
u
fa
c
tu
ri
n
g
P
la
n
t

E
n
g
in
e
e
r

W
o
rk
e
r

Fig. 2 Running example: daily commissioning of a manufacturing plant.

13

14 data report:WeeklyReport;
15

16 task user CreateWeeklyReport {
17 out: report;
18 }
19 }
20

21 lane Worker {
22 task manual ProduceShaft;
23 task manual RollBearingSeats;
24

25 data measurement:BearingMeasurements;
26

27 task user CheckBearings {
28 out: measurement;
29 }
30 }
31

32 merge xor RepeatIfAccuracyNotMet;
33

34 split xor CheckIfFriday;
35 merge xor CheckIfFridayMerge;
36

37 event start -> PowerUpPlant ->
↪→ RepeatIfAccuracyNotMet -> AdjustParameters

38 -> SimulateParameters -> split and -> {
39 RecordParameters,
40 ProduceShaft -> RollBearingSeats
41 } -> merge and -> CheckBearings -> split xor -> {
42 [measurement.result > 0.02]

↪→ RepeatIfAccuracyNotMet,
43 [measurement.result <= 0.02] CheckIfFriday
44 };
45

46 CheckIfFriday -> [false] CheckIfFridayMerge;
47 CheckIfFriday -> [true ] CreateWeeklyReport ->

↪→ CheckIfFridayMerge
48 -> event end;
49 }

In our particular setting, the textual notation had

several advantages over graphical notations, to which,

among others, belong, enhanced conciseness, integrata-

bility with existing developer tools and better support

for version management systems.

4.1 Syntax

A process (see l. 1 in listing 1) contains the elements

of the process and may use lanes to group elements

(l. 4). Activities use the keyword task (atomic activ-

ity, l. 5) or sub-process (compound activity). Tasks

may specify a task type (user, service, etc.), a looping

behavior for loop or multi-instance activities, or fur-

ther task-specific attributes. Regular sub-processes, as

well as their variants (event-based, transaction, and ad

hoc), are supported. Gateways either split (l. 34) or

merge (l. 35) sequence flows. Mixed gateways, which

merge and split paths at the same time, are not sup-

ported. The gateway type, i.e., the split or merge be-

havior, is specified by the keyword xor (exclusive),

ior (inclusive), and (parallel), event (event-based),

or complex. Events use the keyword event (l. 38) and

may specify an event type (start or end; intermediate if

omitted). The event behavior is controlled by the key-

word receive (catch event) or send (throw event),

followed by the trigger that is being received or sent.

BPMN supports data objects (data, l. 25) tied to the

life-cycle of the parent process and data stores (store,

l. 2) which persist beyond the scope of the process. Data

and payloads carried by event triggers (messages, sig-

nals, errors, etc.) have a name and a type. Types are

captured as a UML/P CD [64], which, as mentioned

above, makes them persist beyond the lifecycle of the

parent process or sub-process.

Activities and events, then, specify inputs and out-

puts by referencing the corresponding data items by

their names.

A sequence flow connects two flow objects (l. 46). It

specifies the name of the source node and the name of

the target node, separated by an arrow ’->’. Multiple

sequence flows can be chained to create a path (ll. 38–

44). In the case of a conditional flow, the condition is

specified within curly braces next to the target of the

sequence flow.

While activities can only be referenced by name,

events and gateways can also be defined in-lined in the

sequence flow (l. 38). In-lined elements are anonymous,

i.e., they do not have a name and cannot be referenced

by other sequence flows. Lastly, so-called block struc-

tures enable the definition of structured process parts.

A block consists of multiple branches. The branching

behavior is controlled by the flow node preceding the



block, e.g., if a parallel gateway precedes the block, all

branches are executed (in parallel). In contrast, if an

exclusive gateway precedes the block, only one branch

is executed. Branch conditions are evaluated to deter-

mine which branch should be executed. In case a block

is not preceded by a gateway, BPMN uncontrolled flow

semantics apply [57, p. 32]. Similarly, the flow node fol-

lowing the block controls the synchronization behavior

of the branches. By combining sequence flow chaining,

in-lined events and gateways, as well as block struc-

tures, it is thus possible to describe complex and arbi-

trary structured sequence flows in a concise manner.

4.2 Model Validation

CoCos impose restrictions on a language’s set of valid

sentences [37], e.g., the source and target of a sequence

flow. BPMN specifies relationships between elements,

but does not define a formal notion of soundness [76].

The concrete and the abstract syntax of the textual

BPMN notation are specified using MontiCore, which

generates model-processing infrastructure, including

support for checking CoCos [37]. Based on this, we

check BPMN models in three stages for (1) well–

formedness, (2) structural, and (3) behavioral CoCos.

A stage is only executed if the previous stage passed

without errors since checks in a stage may require

properties checked in a previous stage. Moreover, later

stages are computationally more expensive.

(1) Well-formedness CoCos subsume the BPMN in-

teraction rules and syntactic constraints [57], e.g., flow

conditions must evaluate to a Boolean value, referenced

elements must exist and the type of a data element must

exist. Moreover, the restrictions specified by the BPMN

standard are checked, e.g., when the use of one element

or attribute requires or prohibits the use of another ele-

ment or attribute, restricted in its number, or when only

certain elements can be connected by a sequence flow.

More than 50 CoCos restrict the set of valid BPMN

models.

(2) Structural CoCos detect violations of the inter-

action rules and structural anomalies. Static analyses

suffice to check this type of context condition, i.e., ex-

ecuting or simulating the BPMN model is not neces-

sary. Structural anomalies can be classified as dead-

locks, lack of synchronization, infinite loops and, dead

activities [40]. They typically result from a mismatch

between an upstream split gateway and a downstream

merge gateway. For example, a deadlock occurs if a par-

allel gateway is used to merge flows that have previously

been split using an exclusive gateway, thus causing pro-

cess execution to block partly or entirely. In contrast,

Fig. 3 Checking soundness for BPMN models.

failing to join (parallel) flows leads to duplicated exe-

cution of downstream process parts, referred to as lack

of synchronization. Anti-patterns typically can only be

used with block-structured processes [42]. Our imple-

mentation detects anomalies by scanning the process

graph for anti-patterns (see [59,43,41]) and supports

arbitrarily structured processes. We use an extended

detection algorithm that eliminates false positives and

false negatives. For example, it correctly detects that

an exclusive gateway lying on a path from a parallel

split gateway to a parallel merge gateway leads to a

deadlock at the merge gateway as the execution may

exit the path and, thus, not reach the merge gateway

(false negative), see Figure 4.

T1

G3

T2

G1

G2

Fig. 4 Structural CoCos: Exclusive split gateway G3 can
cause the flow to exit the parallel control structure causing a
deadlock at the parallel merge gateway G2.

(3) Behavioral context conditions apply Petri net-

based model checking to ensure formal soundness [32] of

the BPMN model. Petri nets [63,52] are a natural can-

didate for this task due to the flow-oriented nature and

the (informal) token-based semantics of BPMN [76].

The notion of soundness defined in the context of Petri

nets [60,63] has been transferred to BPMN [81]. A pro-



cess is sound if (i) a process instance can always com-

plete, (ii) once a process instance completes, all activity

instances have completed, (iii) there exist no activities

that can never be reached [76].

To prove soundness, we transform the BPMN model

to a Petri net and generate a set of Computation Tree

Logic (CTL) formulas [13] that ensures soundness of

the Petri net and, thus, of the BPMN model (see Fig-

ure 3). Formally the set of CTL formulas that need to be

fulfilled are similar to [24,23]. Their fulfillment implies

the absence of deadlocks and livelocks which implies

soundness properties (i), and (ii) as well as liveness of

the WF-net which implies the soundness property (iii).

The BPMN model is, therefore, sound, iff the Petri net

obtained from the BPMN model satisfies the generated

CTL formulas. Essentially, verifying condition (i) comes

down to verifying soundness comes down to verifying

liveness of the final marking and absence of dead tran-

sitions. If either one is not satisfied by the WF-net, the

BPMN model is not sound. We use the model-checker

LoLa [79] for verification. The result enables to identify

errors in the BPMN model that cause dissatisfaction of

the set of CTL formulas.

The transformation is an adaptation of [17] for

BPMN 2.0 and enables the independent checking

of sub-processes as depicted in Figure 3. The trans-

formation takes a BPMN model as input, which is

parsed to obtain its Abstract Syntax Tree (AST)

which is then transformed into a Petri net AST. More

precisely, the resulting Petri net is a WF-net [72,71],

i.e., a specific kind of Petri net that is commonly

used to formally represent and verify correctness of

workflow processes [76]. The transformation algorithm

is an extension of [17] that supports also, e.g., non-

interrupting boundary events, which were introduced

in BPMN 2.0 [57]. From the WF-net AST, we use a

pretty printer to obtain a LoLa-specific representation

which is structurally very similar to the Petri net AST

generated from the BPMN AST, as well as the CTL

formulas that assure soundness. The implementation

hands the LoLa-specific WF-net representation and

the generated CTL formulas to the LoLa checker. The

result is a Boolean, telling whether the input WF-net,

and thus, the BPMN model, are sound, i.e., whether

the WF-net satisfies the input CTL formula.

4.3 Language tooling

The implementation of the textual BPMN includes

additional tooling that facilitates developing function-

alities to generate code from textual BPMN models.

The class WorkflowTool in Figure 5 encapsulates the

functionality provided to code generator developers.

By means of method chaining, developers decide

which steps are necessary for processing BPMN dur-

ing a model-to-code transformation. The methods pro-

vide the following functionalities for processing BPMN

models:

– Loading the model: The method parses a pro-

vided BPMN model, and creates the corresponding

AST as well as the symbol table [37].

– Check CoCos: This method performs an auto-

matic check of the CoCos explained in the previous

section.

– Transformation: Using this method, the applica-

tion developer can modify, add, or delete nodes in

the AST of a BPMN model. An example for such a

transformation is the replacement of sub-processes

by (atomic) tasks.

– Adding Imports: This method allows to add im-

port statements to the generated code, e.g., for in-

tegrating a workflow execution engine.

– Get AST or Symbol Table: This method simply

returns the created AST or symbol table.

– Export to XML: This method stores the BPMN

AST as a model in the BPMN 2.0 XML exchange

format.

– Writing Auxiliary Models: Writes additional

models, such as CDs as specified in the BPMN

model.

Fig. 5 The central classes for loading and manipulating
BPMN models.

The class WorkflowTransformation operates

on an input AST of a BPMN model and its symbol



table resulting in a transformed output AST which can

be used in further steps, e.g., for code generation.

The next section introduces a generative approach

that integrates the BPMN DSL and its tooling to cre-

ate a PAIS. Full coverage of the BPMN standard is not

necessary for this generation process. Minimally, we re-

quire the BPMN DSL to include human and automated

tasks, i.e., user and service tasks, as well as basic gate-

ways and events.

5 Generating Information Systems from

Process Models

An EIS includes multiple different application parts,

which need to be implemented. To better support the

users with their tasks, a process model defines viable

behavior of the system and the user during the process.

For generating the code base of a PAIS these models

can be used in two different ways: (1) interpreting the

model during run-time and (2) using the model‘s in-

formation during compile-time. The interpretation of

the model yields a process which the application exe-

cutes while offering the user a guideline, what opera-

tions are viable in the current state according to the

process model. Process engines are the common choice

for automatically executing process models. In a gener-

ative approach to PAIS development, a generator uses

the information provided by the model to create infras-

tructure, add resources needed during a process step,

GUI pages, and provide access to the application’s data

structure and data storage. The generated PAIS sup-

ports both human and automated activities. Still, the

developer needs to provide the implementation of the

business logic.

This section outlines how to extend MontiGem to

enact process models and extended the generated infor-

mation system by workflow functionality. The extension

includes additional transformations in the existing gen-

eration process to allow for interoperability with the

existing components and extendability of MontiGem.

With these additions, a process-aware information sys-

tem can be generated.

5.1 Architecture

The generated PAIS is split into a 3-tier architecture

[2] which is illustrated in Figure 6. The back-end (1)

comprises the application logic (1a) and the Camunda

workflow engine (Camunda BPE)3 (1b) for enacting

3 https://camunda.com/products/bpmn-engine, last
accessed: 31.07.2020

the modeled processes, providing the execution of ser-

vice tasks that can be automated. The BPMN models

are exported to the BPMN 2.0 XML exchange format

and executed by the process engine at run-time. The

application logic queries the process instances and en-

gages with them via the services offered by the process

engine. The process engine is responsible for steering

the process instances. Camunda BPE is embedded as

a dedicated component, so it can be easily exchanged

with similar process engines. The business logic is part

of the application logic (1a). When the process exe-

cution reaches a service task, the process engine calls

the appropriate implementation within the separated

application logic. There exists an application database

(2a) and an independent database for the process en-

gine (2b) to store its internal state, including the state

of process instances. Persisting the state of the process

engine enables to restart or pause the back-end and re-

sume the execution of process instances started earlier.

The generated PAIS supports both human and au-

tomated tasks, i.e., user, and service tasks, as well as

basic gateways and events. It supports the evaluation

of OCL conditions and makes use of the application

data. To support user interaction, the front-end (2)

contains parts that supply status information of the

current running process and requests additional infor-

mation provided by the user. The front-end features

a process list, a task list, and task pages to provide

the outputs of user tasks. Tasks can be assigned to ei-

ther individual users or user groups. The user can se-

lect tasks and provide the required data. The commu-

nication between front-end and the process engine is

channeled through the application logic. Thereby the

front-end remains independent from the process engine
during run-time, and the application logic can apply

further filter or validation logic. To transmit the data

and trigger process-related actions, the extended Mon-

tiGem generator framework generates the correspond-

ing Data Transfer Objects (DTOs) and commands in

front-end and back-end.

5.2 Generation process

We separate the generation process in two main parts:

Figure 7 shows the main steps including two separate

generators in detail. A two-step generation strategy has

several advantages over a direct generation of the final

artifacts. At the conceptual level, it enables the reuse

of existing (platform) abstractions and, thus, facilitates

the specification of the system. It facilitates handling

the resulting models in generator one, as those are han-

dled the same way the models written by the user are

https://camunda.com/products/bpmn-engine


App DB

BPE DB

Domain data

Workflow Engine Execution data

Frontend

REST

Backend

«delegate»

RuntimeService

BPE

App Logic

BPMN-Additions

Camunda BPM

1 23

1a

1b

2a

2b

Fig. 6 High-level architecture of the generated PAIS. Separated in (1) back-end, (2) database, and (3) front-end.

Fig. 7 Overview of the 2 step generation process and artifacts.

handled. At the technical level, it enables using mul-

tiple model sources at once and the reuse of existing

code generators, resulting in higher productivity and

more reliable software.

The BPMN generator (4) is responsible to process

all necessary model files (1-3): It takes the CD domain

model (1) defining the data structure, BPMN models

(2) defining the processes and tagging models (3) defin-

ing roles as input and produces for each of the given

BPMN models (2), one or more CD data models and

GUI models (5). The GUI models and CDs are process-

specific: For each user task, a GUI model is created,

that describes the corresponding task page. To support

the communication between the front-end and the back-

end further data structures are generated as CD data

models, e.g., DTOs for the inputs and outputs of user

tasks.

In parallel to the generation process, an optional

model check is possible (see Figure 3). The results of

this check are shown to the developer.

In a second generation step, the MontiGem genera-

tor framework (6) is used to generate the PAIS based

on the domain model (1), further domain specific mod-

els (7), and the generated models from the first step

(5). The PAIS consists of a back-end, front-end, and

databases. The back-end includes the generated classes

and the BPMN 2.0 XML process descriptions derived

from the BPMN models which are executed by the pro-

cess engine at run-time. The domain CD is used to gen-

erate the data structure for the particular domain. GUI

models describe the contents and layout of the pages for

the generated front-end. Additionally, business logic,

e.g., service task implementations, and connections be-

tween the process data and the stored domain data,

has to be provided by handwritten code (8). Any gen-

erated code can be extended by handwritten code in

the respective language using the TOP-mechanism [37]

(see subsection 3.1). For further details on this second

generation step, we refer the reader to [2,29].

Only little intervention from the application devel-

oper is required to get the generated PAIS up and

running, i.e., developers need not provide handwritten

lines of HTML or CSS code. The strategy is consistent

with MDSE principles. The intermediate models gener-



ated in the first step are platform-independent. Hence,

when targeting different platforms, the model transfor-

mations in the first generation step can be reused as-is

and only transformations in the second step have to be

adapted. Moreover, the developer can overwrite a gen-

erated model by placing a handwritten model with the

same name which remains untouched during following

re-generation processes. This allows for agile and itera-

tive application advancement.

To further automate the generation process, we

use Tagging [31] in addition to the textual BPMN

models and CDs for (1) the automatic assignment of

user tasks to system users or roles, which restricts the

group of people who are allowed to perform a task,

and (2) the customization of the generated GUI forms

for user tasks.

The interpretation of the process models during run-

time provides full control over the available tasks a user

can work on. The process models complement the ap-

plication’s logic and provide the means to model it.

Adding additional BPMN models during run-time

is possible if they meet certain requirements, such as

using only existing data types and input GUI. Other-

wise the data type for a resource could not be handled

by the application. Such models have to be provided

during compile-time, so that the type and GUI can be

generated (see section 8).

6 Validation by Example: Manufacturing

For validation, we apply our approach to the manu-

facturing process introduced in subsection 3.4 and ad-

ditional examples from organizational processes, e.g.,

the approval and canceling of holiday requests. Such

a variety of processes are typical for overarching sys-

tems that handle different aspects of an application.

We have demonstrated the feasibility of our approach

by implementing an additional generator (see 4 in Fig-

ure 7) which works together with the generator frame-

work MontiGem. As MontiGem is already used in real-

world full-size projects [28], its practicability is already

demonstrated.

Domain Model. One central element for the

generator is the domain model, as it defines the

domain of the application, e.g., the types used for the

ProduceGearShaft process. A goal of the BPMN

generator is to extend the input domain model with

additional types defined in the BPMN model (Figure 7

step 5). Our textual BPMN notation therefore allows

not only the use, but also the definition of new data

types.

Listing 2 Running example: Excerpt of the class diagram.

1 classdiagram Domain {
2 class Gearbox;
3

4 class ShaftParameters {
5 int numberOfTeeth;
6 String material;
7 ...
8 }
9

10 class BearingMeasurements {
11 Double deltaX;
12 Double deltaY;
13 Double deltaZ;
14 Double result;
15 }
16

17 composition [1] Gearbox ->
18 (gearShaft) ShaftParameter [1];
19 composition [1] Gearbox ->
20 (bearing) BearingMeasurements [1];
21 }

An excerpt of the UML/P CD [64] of our running ex-

ample is shown in Listing 2. The CD shows some of the

classes that are necessary for the ProduceGearShaft
process. The syntax is oriented on Java. Three classes

are defined (ll. 2, 4, and 10) as well as their attributes.

Additional associations (ll. 17-20) are defined to create

a connection between the classes. The language allows

for underspecification to simplify the usability.

BPMN Model(s). For each supported process a

BPMN model has to be created. From the BPMN

models (see Listing 1 for one of the processes), our

generation process including the two generators creates

a PAIS that supports both the engineer and the plant

workers in executing the process. This role information

can be specified by additional tagging models like in
Listing 3.

Tagging Model. In BPMN, lanes are purely informa-

tive; their meaning is up to the modeler [57]. At run-

time, however, it must be clear which system user or

system role is responsible for executing the given task

instance. Tagging allows to add extra information to

a given model. This is used to define additional infor-

mation without changing the original model and can

be used by a generator. The separation of the infor-

mation leads to simpler models and different additional

tagging models can be used in different contexts. We

provide this environment-specific information through

a resource tagging model. Resource tags can be applied

to tasks and lanes. When applied to a lane, the resource

assignment applies to all tasks within the lane.

Listing 3 Resource tagging model

1 tags ResourcesTags for ProduceGearShaft {
2 tag Engineer with Initiator;
3 tag Worker with Role = "admin";



4 }

In Listing 3, the lane Engineer is tagged with the

resource tag Initiator. This ensures that instances

of user tasks contained in the lane Engineer are

automatically assigned to the user (the engineer) who

started the corresponding process instance. Further-

more, the lane Worker is tagged with the resource tag

Role and a value of "admin". Thereby, each member

of the system role "admin" is able to claim and

complete instances of user tasks contained in the lane

Worker. By specifying resource assignments through

a separate tagging model, the BPMN model remains

clean and reusable in different environments (by

providing different resource and form tagging models).

By specifying resource assignments through a separate

tagging model, we avoid mixing environment-specific

and environment-agnostic information within the

BPMN model.

Generated GUIs and functionality. From the task

definition in the BPMN models and the domain class

diagram (Listing 2 ll. 10-15), GUI models for user

tasks are automatically generated and then used by

the MontiGem generator to generate GUIs in the

resulting PAIS. The generated form in Figure 8 shows

an example where the user is asked to fill out a form

for the particular user task, namely entering the

measurement results when checking the bearings. This

streamlines the generation of user tasks, allows for

easy interaction and leads to the user entering all the

required information.

Fig. 8 Example: Task form for entering bearing measure-
ments.

Additionally, a process list is generated which shows

all processes the current system-user is allowed to start.

There, it is also possible to start a new case (instance)

of a process, e.g., to produce a new gear shaft.

A task list (see Figure 9) shows pending task in-

stances (of any case) assigned to the user directly or a

group of which the user is a member (My Tasks and

My Group Tasks) and completed task instances (Com-

pleted). The user can select pending task instances to

complete them. For group tasks, a user may also claim

and drop task instances.

Comparison of handwritten and generated lines of

code. The generated PAIS requires only little devel-

oper intervention to be operational. Table 1 compares

the numbers of handwritten, generated, and run-time

artifacts and lines of code. Handwritten artifacts are

provided by domain experts and developers. Generated

artifacts are derived from the handwritten input mod-

els and the generated intermediate models, and run-

time artifacts are shipped as part of every generated

application. Consequently, the number of generated ar-

tifacts grows with the number of input models and

their complexity, while the number of run-time arti-

facts remains constant. In Table 1, the generated PAIS

includes three processes, the manufacturing process and

two processes for the approval and canceling of holiday

requests. Overall, we manage to generate 9000−170
9000 ≈

98, 1% of the back-end code and 20800−43
20800 ≈ 99, 8% of

the front-end code (excluding run-time artifacts).

To sum up, the example shows that the addition of

BPMN models resulted in a high amount of code that

can be generated. It reduces the need for handwritten

GUI models, as GUI models for user interaction are ad-

ditionally generated and used in the second generation

phase (cf. Figure 7).

The BPMN generator allows for the adaption of ex-

isting applications generated with MontiGem and pro-

vide an easy to use approach to define business pro-

cesses using BPMN models.

7 Related Work

To compare our approach to others, we have inves-

tigated other BPMN and behavior languages as well

as model-driven approaches for workflow and process

engineering. Moreover, we discuss the limitations and

strengths of our approach.

7.1 Process and BPMN Languages

Modeling languages for business processes, exist in a

broad variety. The standards for BPMN [57] and UML

activity diagrams [58] with their graphical notations are

probably most widely known. Application domains For



Fig. 9 Example: Task list with pending user tasks for the production of a new gear shaft.

Table 1 Numbers of handwritten, generated, and run-time lines of code (number of artifacts in brackets).

Models Back-end Front-end

C
D

s

O
C

L

G
U

I

B
P

M
N

T
a
g
s

J
a
v
a

T
y
p

e-
S

cr
ip

t

H
T

M
L

C
S

S

handwritten 53 (2) – 37 (1) 72 (3) 34 (3) 170 (14) 43 (1) –

Generated 369 (11) 9 (1) 524 (9) – 11 (2) 9000 (212) 20800
(419)

4600 (70)

Run-time 45 (6) – 523 (7) – – 31200
(477)

14600
(426)

2700 (15)

BPMN there exists an Extensible Markup Language

(XML)-based exchange format which enables to imple-

ment transformations from graphical to textual rep-

resentations. Therefore, this section reviews only tex-

tual implementations of business process modeling lan-

guages and, in particular, of BPMN.

Process modeling languages with a textual syntax

exist. These do not aim to implement the BPMN stan-

dard and are often applied for creating web services

composition specifications [78,82], rather than for code

generation: Examples are the Business Process Mod-

eling Language (BPML) [5], the Business Process Ex-

ecution Language for Web Services (BPEL4WS) [55],

or the XML Process Definition Language (XPDL) [80].

TN4PM [51] covers common elements of BPMN, UML

activity diagrams, and Role Activity Diagrams. The no-

tation is inspired by the simulation language GPSS/H

and uses the concept of entities but is rather techni-

cal due to programming constructs like if-then-else and

goto, it only deals with the control flow aspect of pro-

cess modeling and coverage of BPMN is limited.

Textual implementations of BPMN are rather rare.

The ones that exist are not suited for a model-driven

and generative approach to engineering PAIS that

is integrative in the sense of section 2: The textual

BPMN-representation of Urzica, Tnase and Florea [70]

facilitates the mapping of BPMN processes to agent

specifications. The notation supports only a few,

further restricted BPMN elements. It lacks support

for data and expressions, does not support graph-

structured processes, and serves as an intermediate

language that is not optimized for business stakehold-

ers. Nalepa, Kluza and Ciaputa [53] propose a textual

BPMN notation for collaborative process modeling in

the context of a semantic wiki. The notation represents

BPMN processes in an object-like syntax similar to

JSON, with keys and values. It is considered easy to

read, and coverage of BPMN is considered high but

lacks support for data objects. S-BPM DSL [38] is a

textual notation for Subject-Oriented BPM (S-BPM),

which is based on the subject-predicate-object pattern

of sentences in natural language. The set of language

elements is much smaller than in BPMN: It lacks



modeling concepts such as events, data, and (formal)

expressions. The structure of models in S-BPM DSL is

comparable to models in our BPMN notation. S-BPM

DSL is implemented as an embedded DSL using Scala.

A textual notation of BPMN with the aim to reduce

modeling efforts to allow for live modeling during

meetings is proposed in [39]. The language is also a

DSL in the sense that it covers those parts of the

BPMN standard relevant for the application domain of

the language. The target application of the language,

however, is not code generation. The plantBPMN [27]

is a textual BPMN notation created with Xtext4 and

similar to ours. The notation plantBPMN focuses on

public processes [57], i.e., process models with multiple

pools. In contrast, our notation focuses on private

executable processes [57], i.e., process models with

a single pool. While plantBPMN has high coverage

in terms of graphical BPMN elements, non-visible

properties were rarely included [27]. In contrast, our

notation includes additional information essential for

code generation, e.g., non-visual attributes, such as

conditions and data types.

Besides languages related with BPMN, there exists

a variety of other textual (software) process languages

and with a broad range of application areas. PML [54] is

an early process scripting language. PML is intended to

model scripted processes comprising people and tools.

It features basic control-flow constructs and embeds

scripts, e.g., HTML markup for manual actions or Perl

scripts for automated actions. PML has no control flow

conditions and does not support graph-structured pro-

cesses. WebWorkFlow [36] is a high-level textual lan-

guage for describing workflows. A workflow consists of

multiple procedures which can be composed. Possible

compositions of procedures are sequential, parallel, it-

eration, or race condition. However, graph-structured

processes are not supported and concepts in WebWork-

Flow broadly differ from BPMN. The Workflow Def-

inition Language (WDL) is another textual workflow

language in the context of the workflow management

system Panta Rhei [21]. WDL is comprehensive, but it

does not support graph-structured processes and the

concepts differ from BPMN. The Information Systems

Modeling Language (ISML) [62] allows for conceptual

modeling and verification of information systems. The

language includes information models (set theory and

first-order logic) as well as process models (Petri nets

with identifiers) and uses an automated theorem prover.

Code generation is not in focus of this language. An

overview of textual process modeling languages or tool-

ing that works with textual notations to extract process

informations is given in [39] or [10].

4 https://www.eclipse.org/Xtext/

7.2 Model-Driven Workflow and Process Engineering

Process models include manual and automated activ-

ities (tasks). Existing approaches can be divided into

supporting either automated activities (automation-

focused) or the process participants in carrying out

manual activities (user-centric). Usually, the former

fail to provide a suitable user interface, while the

latter do not consider the interaction with external

applications and business partners [69].

Other approaches which combine code and processes

are, e.g., iTask [61,49] and ExSpect [73]. iTask gener-

ates a workflow management system from declarative

specifications. However, it lacks a number of key fea-

tures to make it suited for programming GUI appli-

cations. ExSpect is a simulation and animation tool

for hierarchical timed colored Petri nets with priorities.

Simulation is not in focus of our work and we rely on a

web technology for GUIs.

There exists a variety of approaches alongside

Service-Oriented Architecture (SOA) research, which

consider a mapping from BPMN to SoaML, a stan-

dardized UML profile for modeling services within

SOA. Service-oriented frameworks for BPMN, e.g.,

MINERVA [16], generate platform-specific service

implementations from a BPMN model. Nevertheless, it

lacks a solution on how to handle BPMN manual activ-

ities in a web application. Fazziki et al. [25] aligns SOA

and BPM with a MDSE approach. BPMN models and

behavioral UML diagrams are mapped to a component

model. However, the approach lacks information about

the translation into code and on how the components

interact to accomplish the process behavior. Chaâbane
et al. [11] proposes the BPMN extension BPMN4SOA

for specifying web service invocations and data object

manipulations in a platform-independent way in the

BPMN model and provides code generators to Java

and BPEL but their approach does not allow to include

arbitrary business logic or hand-written additions.

Other approaches try to derive (web) applications

from BPMN. The WebRatio BPM platform [7] is

a commercial tool-suite to create process-oriented

web (and mobile) applications based on Java EE.

It combines BPMN for process modeling, WebML

for application modeling, and UML CDs for data

modeling. In contrast to our approach, WebRatio BPM

covers only a small subset of BPMN elements, uses an

extended BPMN notation, and does not use a process

engine for managing the execution of process instances.

Loja et al. [44] discusses a generated PAIS using

three purpose-built meta-models: a business domain,

a user interface, and a business process meta-model

and presents a prototypical process engine to enact

https://www.eclipse.org/Xtext/


the modeled processes without using the BPMN

standard. Torres and Pelechano [69] generates full web

applications from BPMN models, which support both

automated and human activities. The method does not

allow for integration with hand-written code. Further-

more, there exists a variety of approaches that derive

GUIs from BPMN models [4,9,20] or user iterface

flow models [83]. However, these approaches either

do not consider the application logic, persistence, or

communication aspects of process-aware information

systems.

8 Discussion: Limitations and Strengths

We have shown the practicability of our approach us-

ing some real-life examples in a demo-application. The

practicability of the generator framework MontiGem

without the BPMN additions was already shown in the

full-size real-world project MaCoCo [28]. Thus, we dis-

cuss the the extension of the MontiGem framework in

terms of its limitations, strengths and usability in an

already existing application.

8.1 Limitations of the approach

The limitations result from using DSLs and a genera-

tive approach as well as from the requirements of the

generated PAIS.

Technology stack. The use of many DSLs can lead

to interoperability, language-version and language-

migration problems (also called DSL-Babel chal-

lenge) [26]. A common technology stack for the

different DSLs reduces this problem. Therefore, we use

the MontiCore language workbench and the MontiGem

generator framework for the definition of the DSLs.

Concepts in the grammar. Thus, a threat to validity

is the current size of the grammar which includes 89,5%

of the analytic and 86,8% of the executable BPMN el-

ements. Our experiences have indicated, that a smaller

set of concepts might already be sufficient for PAIS gen-

eration. However, further investigations are needed to

find out if a domain-specific version of the language

with a smaller scope or even a simple process modeling

DSL will be sufficient.

Our system requirements do not include an auto-

matic data flow check during run-time and we do not

support message exchange between different organiza-

tions in our BPMN models (and thus the PAIS is not

supporting this). The developed BPMN notation is lim-

ited to internal processes, i.e., processes with a single

pool. It is possible to extend the textual notation to

processes with multiple pools, so-called collaborations

that show the exchange of messages between the differ-

ent parties. This results from the main interest in gen-

erating PAIS for business processes within the confines

of a single organization. However, modeling the mes-

sage exchange would make it necessary to generate the

associated communication infrastructure with external

parties. Thus, a language for collaborations would have

to be added.

Grammar structure. An improvable aspect of the

current solution is the structure of the BPMN language

itself, which is defined in one large-scale grammar.

Clearly, a modular structure of the DSL with several

component grammars would increase the reuseability

and allow for extensions [22] and several domain-

specific variants of the language [8]. The division in

multiple smaller parts would facilitate the exchange

of parts such as how data objects are defined or the

use of another constraint language. Other (parts of)

process languages such as activity diagrams could also

be considered to extend the use of existing tooling.

Use of language concepts in the generation process.

Until now, behavior models are used in MontiGem

only to create PAISs. However, the textual BPMN

DSL could be used for several other purposes, e.g., for

automated regression testing [46] or in combination

with an interpreter instead of a generator [45]. Clearly,

also assistive systems which use human behavior

information gathered from sensor data to support the

users [48], would profit from the proposed approach.

If BPMN is the optimal solution or other behavior

modeling languages might have a better fit needs to be

investigated.

Generative Approach vs. Interpretation. Changes in

business processes require new generation and deploy-

ment of the system which makes our approach less flex-

ible than systems that only interpret BPMN models at

run-time. The data structure and GUI models result-

ing from the generation using the BPMN models could

be written and generated separately, and used by the

process engine during run-time [18]. This would avoid

a need for regeneration, as the necessary environment

would be already generated. This still requires BPMN

models to be transformed to the general BPMN format

before they can be interpreted directly. However, as our

formerly existing application needs the generation step

anyway for changes of the data structure, a generation

need for changing BPMN models is not a deterioration

of the current development process.

Textual vs. Graphical Notation. The generation pro-

cess takes BPMN models in the presented textual no-

tation as input. As BPMN provides an XML-based ex-

change format which most BPMN editors, like e.g.,

Camunda, provide, and since the tooling of our tex-



tual BPMN provides a transformation from this XML-

format to the textual notation, it is also possible to

provide the BPMN models in the graphical notation.

Vice versa, e.g., Camunda, also allows to import BPMN

models in the XML exchange format. Layouting these

models remains a manual task. Since our language tool-

ing also provides an automatic transformation from the

textual BPMN notation to the XML exchange format,

displaying and editing the textual models, e.g., in Ca-

munda is possible.

Automation. As for most generative approaches, the

business logic, such as algorithms to calculate combi-

nations of input data in certain forms, is not repetitive

and, thus, might always need additional hand-written

code. This means that the application can be released

in a fully automated way but cannot be fully used with

the BPMN extension. However, since this is also the

case for the other of the parts of the generated applica-

tion, this is not an impediment.

8.2 Strengths

The strengths of our approach are its scalability, adapt-

ability and the common language infrastructure.

Scalability. The technical scalability is given as sev-

eral models can be used in parallel, both in the sys-

tem generation process as well as during run-time, and

we allow for recursive process calls. Using the BPMN

standard, there is no limitation to a particular domain,

which means domain scalability is given. As we trans-

form our models to the standardized BPMN exchange

format, the modular system allows for exchanging the

process engine with any BPMN-compliant engine.

Adaptability of the application. Our approach explic-

itly allows for the integration with hand-written code

and supports repeated generation and agile, iterative

engineering processes [29]. Together with a high degree

of test, build and release automation, also changes in

the process model can be realized fast and delivered in

a short period of time, which is crucial for real-world

applications.

Common language and tooling infrastructure. Fur-

thermore, the language workbench MontiCore enables

the combined use of heterogeneous languages to de-

scribe orthogonal system aspects in the most appro-

priate language, e.g., BPMN for business processes and

UML CDs and OCL for data. As these languages have

the whole infrastructure in common (AST, symbol table

and CoCos) and allows for imports and reuse of models

in other languages (resolving) it is easy to use a combi-

nation of multiple languages. Translating BPMN mod-

els to a petri net representation enabled to reuse exist-

ing model checkers for implementing the CoCo checks.

As petri nets may not be as intuitive to the develop-

ers, using a petri net language directly would lower the

modeling efficiency. By using a model-to-model trans-

formation, we do not have to sacrifice the intuitiveness

of BPMN while still being able to reuse existing and

well-probed tools for verifying well-formedness.

Process and form consistency. Within the MaCoCo

project that handles more than 160 instances of the ap-

plication, we already generate elements for the UI and

input forms. This allows us to keep the look and feel the

same for the user and avoids styling deviations between

different forms. The same applies to the generated pro-

cesses, as they are used for systematical generated code.

8.3 Challenges for the use in real-world projects

Within this paper, we have shown the application of

our approach in green-field, which means that no prior

application exists. Clearly, this is easier than in a brown

field approach, where the generated application needs

to be aligned with an already existing application and

existing functionalities.

Adding new functionalities vs. replacing function-

alities. Using our approach for the uplifting towards

process-awareness of an already generated application,

which was generated using the same generator base

would not be a challenge for additional functionality, as

this additional generation step does not effect already

existing models or pages in the application. All BPMN,

Tagging-, data- and GUI-models as well as the pages

in the GUI are an addition to existing ones. Relevant

changes may only be necessary for the main naviga-

tion. As this is generated as well, the replacement of

the navigation is not a big issue.

More challenging would be the replacement of exist-

ing functionalities such as input forms where the user

enters specific data. In these cases, already generated

forms in the data-centric application will need to be

replaced: In Figure 7, some GUI models (5), which

were generated by the BPMN generator (4), will replace

some of the hand-written GUI models (7) to generate

the new forms. If hand-written additions (8) already ex-

ist, they might have to be adapted to extend the newly

generated pages and fit to the structure.

Version changes during the development process.

The development of this approach together with a

new DSL took several months. Within this time, the

MontiGem generator project evolved into a new project

structure, e.g., separated projects for the runtime en-

vironment and specific application data. Additionally,

also the language versions evolved. Internal changes

in the generator can affect the generated code and



therefore a synchronization between the projects and

the languages might be necessary.

Variations in processes for different database

instances in MaCoCo. Considering different organi-

zation sizes (small/medium/large chairs with app.

5/30/150 staff members) require different GUIs and

organizational hierarchies within a data-centric ap-

plication. Regarding processes, it might be relevant

to allow different kinds of processes, different process

granularity or not to use specific processes at all. With

our generative approach, it is possible to generate

these different versions of forms and annotate the GUI

models with specific details which settings lead to

showing one or another version in the navigation of

the GUI. The annotation has to be added by hand in

the current version.

Architecture. The current architecture requires two

databases (see Figure 6), one for the domain data

(2a) and one for the execution data of the processes

(2b). Currently, the synchronization between these

two databases is handled by parts of the generated

application back-end to ensure data consistency. This

could be improved if the databases could reference

each other.

9 Conclusion

To sum up, we have introduced an approach that al-

lows for the generative development of enterprise infor-

mation systems with an integrated process engine. For

this, we have developed a novel textual BPMN notation

that is suited for code generation and we have shown

how to use textual BPMN models in the generation

process of process-aware information systems.

Our approach includes two different engineering

phases, namely (1) language engineering including

further evolvement of DSLs and (2) application

engineering including generator engineering, which

are loosely coupled. Thus, the phases could easily

be fulfilled by separate teams which indicates the

suitability of the approach for larger projects. In our

case, both phases were performed by one team.

Current business applications require both, a focus

on storing and representing data as well as the ability

to handle processes within the organization. This shift

from data-centric to process-aware information systems

leads to the requirement to include process modeling

languages within MDSE approaches. The developed

prototype and the strengths of our approach (see sec-

tion 8) has provided us with the necessary information

to consider an application of this approach in full-size

real-world applications, e.g., the MaCoCo project[28].

Additional application areas include assistive services

within generated information systems [48], to generate

process-aware digital twin cockpits [6], or the addition

of assistive services for the human-in-the-loop within

digital twins [15].

This paper constitutes a promising step towards

aligning business and IT. The textual BPMN notation

enables business users and developers to jointly model

and reason about business processes. Moreover, MDSE

provides the technical backbone to generate running

applications from the process models. Business users

and developers can validate their assumptions in a

real application and adapt the process models or the

underlying business processes if necessary. The result

is a collaborative and highly iterative development

process.

Compliance with ethical standards

Conflict of Interest: The authors declare that they have

no conflict of interest.

References

1. van der Aalst, W.M.P.: Process-Aware Information Sys-
tems: Lessons to Be Learned from Process Mining, pp.
1–26. Springer Berlin Heidelberg (2009)

2. Adam, K., Michael, J., Netz, L., Rumpe, B., Varga, S.:
Enterprise Information Systems in Academia and Prac-
tice: Lessons learned from a MBSE Project. In: 40 Years
EMISA: Digital Ecosystems of the Future: Methodology,
Techniques and Applications (EMISA’19), LNI, vol. P-
304, pp. 59–66. Gesellschaft für Informatik e.V. (2020)

3. Adam, K., Netz, L., Varga, S., Michael, J., Rumpe, B.,
Heuser, P., Letmathe, P.: Model-Based Generation of En-
terprise Information Systems. In: M. Fellmann, K. Sand-
kuhl (eds.) Enterprise Modeling and Information Sys-
tems Architectures (EMISA’18), CEUR Workshop Pro-
ceedings, vol. 2097, pp. 75–79. CEUR-WS.org (2018)

4. Alfonso Hoyos, J.P., Restrepo-Calle, F.: Automatic
Source Code Generation for Web-Based Process-Oriented
Information Systems. In: Conf. on Evaluation of Novel
Approaches to Software Engineering (ENASE 17) (2017)

5. Arkin, A.: Business Process Modeling Language.
http://xml.coverpages.org/BPML-2002.pdf (2002)

6. Bano, D., Michael, J., Rumpe, B., Varga, S., Weske,
M.: Process-Aware Digital Twin Cockpit Synthesis from
Event Logs. Journal of Computer Languages (COLA) 70
(2022). DOI 10.1016/j.cola.2022.101121

7. Brambilla, M., Butti, S., Fraternali, P.: WebRatio BPM:
A tool for designing and deploying business processes on
the web. In: Int. Conf. on Web Engineering (2010)

8. Butting, A., Eikermann, R., Kautz, O., Rumpe, B., Wort-
mann, A.: Systematic Composition of Independent Lan-
guage Features. Journal of Systems and Software 152,
50–69 (2019). DOI 10.1016/j.jss.2019.02.026

9. Calegari, D., Delgado, A.: Model-Driven Generation
of a BPMS Portal Based on Interaction Flow Mod-
eling Language Models. In: Int. WS on Interplay of



Model-Driven and Component-Based Software Engineer-
ing (ModComp17), pp. 31–37 (2017)

10. Ceri, S., Brambilla, M., Fraternali, P.: The History of
WebML Lessons Learned from 10 Years of Model-Driven
Development of Web-Applications. Conceptual Model-
ing: Foundations and Applications 5600 (2009)

11. Chaâbane, A., Turki, S.H., Charfi, A., Bouaziz, R.: From
Platform Independent Service Composition Model in
BPMN4SOA to Executable Service Compositions. In:
Conf. on Information Integration and Web-Based Appli-
cations & Services (2010)

12. Chinosi, M., Trombetta, A.: BPMN: An introduction to
the standard. Comput. Stand. Interfaces 34(1) (2012)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Check-
ing. MIT Press (1999)

14. Dalibor, M., Heithoff, M., Michael, J., Netz, L., Pfeif-
fer, J., Rumpe, B., Varga, S., Wortmann, A.: Generating
Customized Low-Code Development Platforms for Digi-
tal Twins. Journal of Computer Languages (COLA) 70
(2022). DOI 10.1016/j.cola.2022.101117

15. Dalibor, M., Michael, J., Rumpe, B., Varga, S., Wort-
mann, A.: Towards a Model-Driven Architecture for In-
teractive Digital Twin Cockpits. In: G. Dobbie, U. Frank,
G. Kappel, S.W. Liddle, H.C. Mayr (eds.) Conceptual
Modeling, pp. 377–387. Springer International Publish-
ing (2020). DOI 10.1007/978-3-030-62522-1 28

16. Delgado, A., Ruiz, F., de Guzmán, I.G.R., Piattini, M.:
MINERVA: Model drIveN and sErvice oRiented Frame-
work for the Continuous Business Process improVement
and relAted Tools. In: Conf. on Service-Oriented Comp.
(ICSOC’09) (2009)

17. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and
analysis of business process models in BPMN. Inf. Softw.
Technol. 50(12), 1281–1294 (2008)

18. Drave, I., Gerasimov, A., Michael, J., Netz, L., Rumpe,
B., Varga, S.: A Methodology for Retrofitting Genera-
tive Aspects in Existing Applications. Journal of Object
Technology 20, 1–24 (2021). DOI 10.5381/jot.2021.20.2.
a7

19. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.:
Introduction. In: Process-Aware Information Systems,
chap. 1, pp. 1–20. John Wiley & Sons, Ltd (2005)

20. Dı́az, E., Panach, J.I., Rueda, S., Distante, D.: A family
of experiments to generate graphical user interfaces from
bpmn models with stereotypes. Journal of Systems and
Software 173, 110883 (2021). DOI 10.1016/j.jss.2020.
110883

21. Eder, J., Groiss, H., Liebhart, W.: The Work-
flow Management System Panta Rhei, pp. 129–144.
Springer Berlin Heidelberg (1998). DOI 10.1007/
978-3-642-58908-9 7

22. Erdweg, S., Rieger, F.: A Framework for Extensible Lan-
guages. In: Proc. of the 12th International Conference
on Generative Programming: Concepts and Experiences,
GPCE ’13, p. 3–12. ACM (2013). DOI 10.1145/2517208.
2517210

23. Fahland, D., Favre, C., Jobstmann, B., Koehler, J.,
Lohmann, N., Völzer, H., Wolf, K.: Instantaneous Sound-
ness Checking of Industrial Business Process Models.
In: 7th International Conference on Business Process
Management, BPM 2009, pp. 278–293. Springer-Verlag,
Ulm, Germany (2009). DOI 10.1007/978-3-642-03848-8\
%00819

24. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer,
H., Wolf, K.: Analysis on Demand: Instantaneous Sound-
ness Checking of Industrial Business Process Models.

Data Knowl. Eng. 70(5), 448–466 (2011). DOI 10.1016/
j.datak.2011.01.004

25. Fazziki, A.E., Lakhrissi, H., Yetognon, K., Sadgal, M.:
A Service Oriented Information System: A Model Driven
Approach. In: Int. Conf. on Signal Image Technology and
Internet Based Systems (SITIS ’12) (2012)

26. France, R., Rumpe, B.: Model-driven Development of
Complex Software: A Research Roadmap. Future of Soft-
ware Engineering (FOSE ’07) pp. 37–54 (2007)

27. Freund, N.: Development of a Text-Based Representation
of BPMN Models. Master’s thesis, Leibniz Universität
Hannover, Hannover, Germany (2018)

28. Gerasimov, A., Heuser, P., Ketteniß, H., Letmathe, P.,
Michael, J., Netz, L., Rumpe, B., Varga, S.: Generated
Enterprise Information Systems: MDSE for Maintainable
Co-Development of Frontend and Backend. In: Compan-
ion Proceedings of Modellierung 2020 Short, Workshop
and Tools & Demo Papers, pp. 22–30. CEUR Workshop
Proceedings (2020)

29. Gerasimov, A., Michael, J., Netz, L., Rumpe, B., Varga,
S.: Continuous Transition from Model-Driven Prototype
to Full-Size Real-World Enterprise Information Systems.
In: B. Anderson, J. Thatcher, R. Meservy (eds.) 25th
Americas Conference on Information Systems (AMCIS
2020), AIS Electronic Library (AISeL), pp. 1–10. Associ-
ation for Information Systems (AIS) (2020)

30. Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M.,
Mir Seyed Nazari, P., Müller, K., Navarro Perez, A.,
Plotnikov, D., Reiß, D., Roth, A., Rumpe, B., Schindler,
M., Wortmann, A.: Integration of Handwritten and Gen-
erated Object-Oriented Code. In: Model-Driven Engi-
neering and Software Development, Communications in
Computer and Information Science, vol. 580, pp. 112–
132. Springer (2015)

31. Greifenberg, T., Look, M., Roidl, S., Rumpe, B.: En-
gineering Tagging Languages for DSLs. In: Conference
on Model Driven Engineering Languages and Systems
(MODELS’15), pp. 34–43. ACM/IEEE (2015)

32. Groefsema, H., Bucur, D.: A Survey of Formal Business
Process Verification: From Soundness to Variability. In:
3rd International Symposium on Business Modeling and
Software Design, BMSD 2013 (2013)

33. Haber, A., Look, M., Mir Seyed Nazari, P.,
Navarro Perez, A., Rumpe, B., Völkel, S., Wortmann, A.:
Composition of Heterogeneous Modeling Languages. In:
Model-Driven Engineering and Software Development,
Communications in Computer and Information Science,
vol. 580, pp. 45–66. Springer (2015)

34. Haber, A., Look, M., Mir Seyed Nazari, P.,
Navarro Perez, A., Rumpe, B., Völkel, S., Wortmann, A.:
Integration of Heterogeneous Modeling Languages via
Extensible and Composable Language Components. In:
Model-Driven Engineering and Software Development
Conference (MODELSWARD’15), pp. 19–31. SciTePress
(2015)

35. Heim, R., Mir Seyed Nazari, P., Rumpe, B., Wort-
mann, A.: Compositional Language Engineering using
Generated, Extensible, Static Type Safe Visitors. In:
Conference on Modelling Foundations and Applications
(ECMFA), LNCS 9764, pp. 67–82. Springer (2016)

36. Hemel, Z., Verhaaf, R., Visser, E.: WebWorkFlow: An
object-oriented workflow modeling language for web ap-
plications. In: Model Driven Engineering Languages and
Systems (Models ’08), pp. 113–127. Springer, Toulouse,
France (2008)

37. Hölldobler, K., Kautz, O., Rumpe, B.: MontiCore
Language Workbench and Library Handbook: Edition



2021. Aachener Informatik-Berichte, Software Engineer-
ing, Band 48. Shaker Verlag (2021). URL http://www.
monticore.de/handbook.pdf

38. Höver, K.M., Borgert, S., Mühlhäuser, M.: A domain spe-
cific language for describing S-BPM processes. In: S-BPM
ONE - Running Processes. Springer (2013)

39. Ivanchikj, A., Serbout, S., Pautasso, C.: From text to vi-
sual bpmn process models: Design and evaluation. In:
Proceedings of the 23rd ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Sys-
tems (2020)

40. Kim, G.W., Lee, J.H., Son, J.H.: Classification and anal-
yses of business process anomalies. In: Conf. on Comm.
Software and Networks (ICCSN’09). IEEE (2009)

41. Koehler, J., Vanhatalo, J.: Process anti-patterns: How to
avoid the common traps of business process modeling.
IBM WebSphere Developer Technical Journal 10 (2007)

42. Kühne, S., Kern, H., Gruhn, V., Laue, R.: Business pro-
cess modelling with continuous validation. In: Business
Process Management Workshops (2009)

43. Liu, R., Kumar, A.: An analysis and taxonomy of un-
structured workflows. In: Conf. on Business Process Man-
agement, LNCS, vol. 3649. Springer (2005)

44. Loja, L.F.B., Neto, V.V.G., da Costa, S.L., de Oliveira,
J.L.: A business process metamodel for Enterprise In-
formation Systems automatic generation. In: Anais Do
I Congresso Brasileiro de Software: Teoria e Prática-i
Workshop Brasileiro de Desenvolvimento de Software Di-
rigido Por Modelos, vol. 8 (2010)

45. López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., We-
ber, I.: Interpreted Execution of Business Process Models
on Blockchain. In: IEEE 23rd International Enterprise
Distributed Object Computing Conference (EDOC), pp.
206–215 (2019)

46. Makki, M., Van Landuyt, D., Joosen, W.: Automated
Regression Testing of BPMN 2.0 Processes: A Capture
and Replay Framework for Continuous Delivery. In:
Proc. of the 2016 ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Ex-
periences, GPCE 2016, p. 178–189. ACM (2016). DOI
10.1145/2993236.2993257

47. Michael, J., Netz, L., Rumpe, B., Varga, S.: Towards
Privacy-Preserving IoT Systems Using Model Driven En-
gineering. In: N. Ferry, A. Cicchetti, F. Ciccozzi, A. Sol-
berg, M. Wimmer, A. Wortmann (eds.) Proceedings
of MODELS 2019. Workshop MDE4IoT, pp. 595–614.
CEUR Workshop Proceedings (2019)

48. Michael, J., Rumpe, B., Varga, S.: Human behavior, goals
and model-driven software engineering for assistive sys-
tems. In: A. Koschmider, J. Michael, B. Thalheim (eds.)
Enterprise Modeling and Information Systems Architec-
tures (EMSIA 2020), vol. 2628, pp. 11–18. CEUR Work-
shop Proceedings (2020)

49. Michels, S., Plasmeijer, R., Achten, P.: iTask as a New
Paradigm for Building GUI Applications. In: J. Hage,
M.T. Morazán (eds.) Implementation and Application of
Functional Languages, pp. 153–168. Springer Berlin Hei-
delberg (2011)

50. Generating Digital Twin Cockpits for Parameter Man-
agement in the Engineering of Wind Turbines. In: Mod-
ellierung 2022, LNI. GI (2022)

51. Mogos, A.H., Urzica, A.: TN4PM: A textual notation for
process modelling. In: G.A. Papadopoulos, C. Badica
(eds.) Intelligent Distributed Computing III (2009)

52. Murata, T.: Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE 77 (1989)

53. Nalepa, G.J., Kluza, K., Ciaputa, U.: Proposal of au-
tomation of the collaborative modeling and evaluation of
business processes using a semantic wiki. In: 17th Int.
Conf. on Emerging Technologies & Factory Automation
(ETFA 2012) (2012)

54. Noll, J., Scacchi, W.: Specifying process-oriented hyper-
text for organizational computing. J. Netw. Comput.
Appl. 24(1), 39–61 (2001)

55. OASIS: Web services business process execution language
version 2.0. Specification (2017)

56. Object Management Group: Omg unified modeling lan-
guage, v2.5.1 (2017)

57. OMG: Business Process Model and Notation (BPMN),
Version 2.0.2. Tech. rep., Object Management Group
(2013)

58. OMG: OMG Unified Modeling Language (OMG UML),
Version 2.5.1. Specification, Object Management Group
(2017)

59. Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.: Defini-
tion of deadlock patterns for business processes workflow
models. In: 32nd Hawaii Int. Conf. on System Sciences
(HICSS-32) (1999)

60. Peterson, J.L.: Petri Net Theory and the Modeling of
Systems. Prentice Hall (1981)

61. Plasmeijer, R., Achten, P., Koopman, P., Lijnse, B., van
Noort, T.: An iTask Case Study: A Conference Manage-
ment System, pp. 306–329. Springer Berlin Heidelberg
(2009). DOI 10.1007/978-3-642-04652-0 7

62. Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S.,
Brouwers, R.: Information Systems Modeling: Language,
Verification, and Tool Support. In: P. Giorgini, B. Weber
(eds.) Advanced Information Systems Engineering, pp.
194–212. Springer International Publishing (2019)

63. Reisig, W.: Petri Nets: An Introduction. Springer-Verlag
Berlin Heidelberg (1985)

64. Rumpe, B.: Modeling with UML: Language, Concepts,
Methods. Springer International (2016). URL http:
//www.se-rwth.de/mbse/

65. Rumpe, B.: Agile Modeling with UML: Code Generation,
Testing, Refactoring. Springer International (2017). URL
http://www.se-rwth.de/mbse/

66. Rychkova, I., Le Grand, B., Souveyet, C.: Towards Ex-
ecutable Specifications for Case Management Processes.
Springer International Publishing (2017)

67. Stahl, T., Völter, M.: Model-Driven Software Develop-
ment: Technology, Engineering, Management. Wiley
(2006)

68. Stair, R., Reynolds, G.: Principles of Information Sys-
tems. Cengage Learning (2020)

69. Torres, V., Pelechano, V.: Building business process
driven web applications. In: Int. Conf. on Business Pro-
cess Management (2006)

70. Urzica, A., Tanase, C., Florea, A.M.: Bridging the gap
between business experts and software agents: BPMN to
AUML transformation. UPB Scientific Bulletin, Series
C: Electrical Engineering 72 (2010)

71. van der Aalst, W.M.P.: Verification of workflow nets. In:
Proceedings of the 18th International Conference on Ap-
plication and Theory of Petri Nets, ICATPN ’97, pp. 407–
426. Springer-Verlag, Berlin, Heidelberg (1997)

72. van der Aalst, W.M.P.: The application of petri nets to
workflow management. Journal of Circuits, Systems, and
Computers 8 (1998)

73. van der Aalst, W.M.P., de Crom, P.J.N., Goverde,
R.R.H.M.J., van Hee, K.M., Hofman, W.J., Reijers, H.A.,
van der Toorn, R.A.: ExSpect 6.4 An Executable Spec-
ification Tool for Hierarchical Colored Petri Nets. In:

http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.se-rwth.de/mbse/
http://www.se-rwth.de/mbse/
http://www.se-rwth.de/mbse/


M. Nielsen, D. Simpson (eds.) Application and Theory
of Petri Nets 2000, pp. 455–464. Springer Berlin Heidel-
berg (2000)

74. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.:
Business Process Management: A Survey. In: Business
Process Management (2003)

75. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede,
A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M.,
Wynn, M.T.: Formal Aspects of Computing Soundness
of workflow nets: classification, decidability, and analy-
sis. Formal Aspects of Computing 23 (2011)

76. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede,
A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M.,
Wynn, M.T.: Soundness of workflow nets: Classification,
decidability, and analysis. Form. Asp. Comput. 23 (2011)

77. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst,
W.M.P.: PM2 : A process mining project methodology.
In: Advanced Information Systems Engineering, pp. 297–
313. Springer International Publishing (2015)

78. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hof-
stede, A.H.M.: Analysis of web services composition lan-
guages: The case of bpel4ws. In: I.Y. Song, S.W. Liddle,
T.W. Ling, P. Scheuermann (eds.) Conceptual Modeling -
ER 2003, pp. 200–215. Springer Berlin Heidelberg (2003)

79. Wolf, K.: Petri net model checking with LoLA 2. In:
Int. Conf. on Application and Theory of Petri Nets and
Concurrency (2018)

80. Workflow Management Coalition (WfMC): Process defi-
nition interface - XML process definition language. Spec-
ification WFMC-TC-1025, The Workflow Management
Coalition (2005)

81. Wynn, M.T., Verbeek, H.M., van der Aalst, W.M., ter
Hofstede, A.H., Edmond, D.: Business process verifica-
tion - Finally a reality! Business Process Management
Journal 15(1) (2009)

82. Yang, H., Shi, W.: Research on modeling and transfor-
mation method of web service composition based on petri
net. In: 2021 6th International Conference on Intelligent
Computing and Signal Processing (ICSP) (2021)

83. Yongchareon, S., Liu, C., Zhao, X., Yu, J., Ngamakeur,
K., Xu, J.: Deriving user interface flow models for
artifact-centric business processes. Computers in Indus-
try 96, 66–85 (2018). DOI 10.1016/j.compind.2017.11.
001


	Introduction
	Towards Generated Process-Aware Information Systems
	Preliminaries
	A Textual BPMN Notation for MontiCore
	Generating Information Systems from Process Models
	Validation by Example: Manufacturing
	Related Work
	Discussion: Limitations and Strengths
	Conclusion



