
Model Centered Architecture

Heinrich C. Mayr[0000-0001-5770-8091], Judith Michael[0000-0002-4999-2544],
Suneth Ranasinghe[0000-0002-6716-7206], Vladimir A.

Shekhovtsov[0000-0003-0227-5000], Claudia Steinberger[0000-0002-5111-2286]

Alpen-Adria-Universität Klagenfurt,
Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria

{heinrich.mayr, judith.michael, suneth.ranasinghe,
volodymyr.shekhovtsov, claudia.steinberger}@aau.at

Abstract. This paper advocates a rigorous model focused paradigm of
information system development and use. We introduce the concept of
“Model Centered Architecture” that sees an information system to be a
compound of various networked models, each of which is formed with
the means of a Domain Specific Modeling Language. This languages are
tailored to the particular circumstances of the respective system aspect.
I.e., from a MOF perspective, MCA focuses on the MOF levels M2 (def-
initions of the DSMLs to be used for the specification of the system
and it’s contexts), M1 (Specification of all System and Data Compo-
nents using the DSMLs) and M0 (the instances, i.e. models of concrete
objects, functions and processes). The transformation of M0 citizens to
the respective implementation concepts (Structure → Data, Function →
Program, Process → Workflow) is delegated to mapping functions de-
fined on M2, restricted on M1 to the particular schemata (in the sense of
mappings between the respective sets of schema instances), and instanti-
ated on M0 for the concrete instances. The paper shows how such model
centered approach may be applied in practice using two real development
projects as running examples.

Keywords: Conceptual Modeling, Model Centered Architecture, Meta
Object Framework, Model Mapping, Model Transformation

1 Introduction

Motivation. Models are the fundamental human instruments for managing
complexity and understanding. As such they play a key role in any scientific
and engineering discipline as well as in everyday life. Many modeling paradigms
evolved over time in the various disciplines leading to a huge variety of mod-
eling languages, methods and tools that came and went. This in particular is
true for Informatics, which is a modeling discipline per se, and since long tries
to systematize the realm of modeling by (1) clarifying the hierarchy of model
layers like e.g. in MOF (meta object framework) [26], (2) introducing ontologi-
cal commitments into model hierarchies for a better semantical grounding, (3)

harmonizing various modeling approaches to unified/universal ones, and (4) pro-
viding a framework for a systematic domain specific modeling method (DSMM)
([9, 23]) design where universal approaches fail.

Since the seventies of the last century, related research and practice focuses
on Conceptual Modeling. This approach basically uses a formal language the
terms of which have an associated semantic interpretation (e.g. by grounding
in an ontology) and a more or less transparent graphical or textual represen-
tation (supporting an efficient linguistic perception [8]). Usually, such language
is embedded in a Model-/Meta-model-Hierarchy. The dimensions of conceptual
modeling languages are structure, dynamics (behavior) and functionality; for
instance, the Entity Relationship Model family focuses on structure, the Busi-
ness Process Modeling Notation (BPMN) on dynamics and the Unified Modeling
Language (UML) on all three dimensions.

A vast wealth of research has been published about conceptual modeling
languages, tools and methodologies, many of them having fallen into oblivion
again. Antoni Olive’s fundamental contributions, however, are still present. We
dedicate this paper to Antoni in deep gratitude for his inspiring work.

Related Work. We start from the observation that despite of all efforts there
is still no comprehensive and consistent use of conceptual modeling in practice.
Often, conceptual models are used merely as prescriptive documents, which -
e.g. in the realm of software development or business process management -
seldom are synchronized with the developed artefact so that reality and model
are stepwise diverging.

There is a huge body of knowledge regarding Conceptual Modeling in general,
and modeling paradigms and methods used for system development in particular.
Thus it is not possible to give a comprehensive overview here. Also we will not
discuss our own related previous research.

Model Driven Architecture (MDA) [16] and Model Driven Software Devel-
opment (MDSD) [6, 19] try to master this challenge by backing model trans-
formation [Li11] from the (conceptual) requirements model, which is defined by
means of a meta-model, down to the implemented code (which clearly again
is a kind of model), see also [7]. MDA can be viewed as an instance of Model
Driven Development (MDD) by using the Object Management Group (OMG)
standards as the core standards; i.e. Unified Modeling Language (UML), Meta
Object Facility (MOF), XML Metadata Interchange (XMI), and the Common
Warehouse Meta-model (CWM).

However, just as UML is not the only object-oriented modeling language,
so also MDA is not the only model driven approach. There are numerous non-
MDA initiatives that continue to advance the state of the art in MDD, e.g.
metaprogramming [32], domain specific modeling [14], generative programming
[5]. However, as there are still obstacles to overcome, e.g. regarding a bidirec-
tional model transformation (in particular, bottom up, which would enhance
synchronization), model completeness on all levels, and easy model checking,

also these approaches did not yet have an unlimited breakthrough into the de-
veloper’s minds.

Models@runtime [3, 4] aims at using models (in a general sense, not specif-
ically conceptual models) as artifacts at runtime; this is related to the wider
promise that the boundary between development time and runtime artifacts
should eventually disappear [2]. Run-time models are intended to enable the
adaptation of a system and its context at run-time by maintaining semantic re-
lationships between the run-time models and the running systems. This allows
for analyzing and planning adaptations on the model-level (see [10] etc).

The Paper’s Aim. What we will propose and illustrate within this paper is,
in some ways, an add-on to the MDA/MDSD and the models@runtime method-
ology that is intended to attract more attention to conceptual modeling in in-
formation system development processes.

The main idea is to understand such processes as mere modeling processes
(diverging from [7]) and thus focusing on models (and their meta-models) in any
development step up to the running system. We, therefore, call this paradigm
“Model Centered Architecture (MCA)”. By MCA we will not introduce a new
technology. We just aim at contributing perspectives on the power of conceptual
modeling as has been done, e.g., by Antoni Olivè in [27].

The paper uses the results of two medium-term research endeavors, which
we ran within the last years, as running examples. It is structured as follows.
In section 2, we concentrate on models, their meta-models and Domain Specific
Modeling Languages (DSML) as the key building blocks of knowledge intensive
systems, around which any application and management software can be built.
To make these building blocks comprehensive, the complete ecosystem context
of a planned information system has to be covered. This is illustrated in section
3. In addition to that, sections 4 deals with all interfaces of such systems from a
modeling perspective: the interfaces to the various user groups, to systems to be
coupled, to data and knowledge sources etc. In section 5 we then present a first
set of patterns for a Model Centered Architecture. The paper closes with some
conclusions and an outlook on future research to be done.

2 The Model Centered Perspective

MCA is based on models, their related universal or domain specific meta-models
(MMs together with the modeling languages defined in connection with these
MMs, as well as on mechanisms for the transformation of models into other
representations.

2.1 Background: Models and Metamodels

[11] define several features of models: (1) Mapping: A model stands for something
else (its original), (2) Reduction: models map only those aspects of the original -
and these possibly in a changed form - which are relevant for the given modeling

purpose, (3) Pragmatics: reflects the intended use of a model, i.e. prescription
in the sense of a specification, description for explanations, simulation or formal
evaluation for analysis purposes etc.

Usually, modeling is done in a way that is commonly perceived as “top-down”.
For example, when designing a traditional relational database application, we
start with the Relational Model as a meta-model. Using the associated Data
Definition Language we define a model, the “database schema” which describes all
possible states (sets of concrete tables) of the intended database. I.e., a particular
database state is an extension of such schema, and again is a model: namely a
model of those aspects of the original that where intended to be described by
that database.

However, modeling can also be done “bottom-up”. For example, given several
concrete states of relational database the schema of which is not explicitly avail-
able. So we could mine from that database an Entity-Relationship Model and
represent this graphically. In this case, the data in the database are the originals.

The same data can be extensions of different models, and the same model
may have different representations. As an example for the latter, suppose we
are dealing with the data in a specific application, that are extensions of a, e.g.,
UML class diagram. This data can be represented in both, an ontological form
(e.g. as OWL individuals) and using a graphical notation. These representations
can replace each other depending on the current aim: being a representation
for easier end user validation or a representation for enhanced reasoning. As
they serve for different purposes, they have different properties as the way of
representation.

It is thus clear that the hierarchy of model layers, which first was intro-
duced in the context of Information Resource Dictionary Systems [18] and now
is propagated as Metaobject Framework by [26], is helpful for understanding and
managing the relations between these layers.

Meta-modeling frameworks like ADOxx1 support the definition of Domain
Specific Modeling Languages (DSMLs) and the creation of related modeling
tools. Given these supporting facilities and the work of the Open Models Initia-
tive2, DSMLs and DSML development gain increasing attention [14]. The cre-
ation of a DSML as part of a comprehensive Domain Specific Modeling Method
(DSMM) has been discussed in, e.g., [9] and [23]. [13] and, years ago, [15] ar-
gued modeling methods to consist of several components, that should be taken
under consideration in design processes: (1) the modeling language the a syntax
of which is described by means of a meta-model, the semantics by explanation
or more formal descriptions, and the notation by a set of graphical elements;
(2) the modeling procedure that describes how to apply the modeling language
to create resulting models as well as (3) mechanisms and algorithms that work
with and on these models.

Model transformation is a key technique used in MDA, where one or multiple
target models are automatically generated from one or more source models ac-

1 http://www.adoxx.org
2 http://openmodels.at

cording to a transformation definition [21]. Model merging, where several models
are integrated into one resulting model, is included in this definition.

2.2 MCA: The Concept

The core concept of MCA is to take models not only as representatives of un-
derlying originals but to use them as the core of a system for both the addressed
application functionality and the flexible definition of the system’s interfaces as
is illustrated in Fig.1 based on the MOF hierarchy.

System

User

External

Data

External

Models

Model

Author

External

Metamodels

Metamodel

Author

Fig. 1. Model Centered Architecture: an overview

On the M2 (meta-model) level the concepts of the DSMLs for the applica-
tion domain, the user and device interfaces, and the data exchance interfaces
are defined. This is done using a meta-modeling language provided on level M3
(meta-meta-model, not shown on the picture), and by specifying the symbols
for language representation. The DSMLs thus are extensions of M3 and mod-
els (intensions) for M1. M2 interfaces allow for handling meta-models as MCA
artifacts (meta model management, e.g. using authoring environments) and for
integrating external meta-models (meta-model exchange).

On the M1 (model) level the various M2 meta-models are instantiated for a
concrete application situation; the extension links are shown as dashed arrows.
This leads to a (domain specific) application model, user and device interface
models as well as a data exchange model. Again, for handling models as MCA

artifacts, management (including modeling) and exchange interfaces are defined
for this level, as they are typically provided by a meta-modeling framework.

On the M0 (instance) level, the application itself results from creating exten-
sions of the M1 application model elements (visualized in Fig.1 again by dashed
arrows).

If a comprehensive DSML is defined on M2 (i.e., providing concepts for struc-
ture, dynamics and function) and used on M1, then the M0 extension form the
models@runtime which are handled by an interpreter that is orchestrated by
M2. The solid lines in Fig.1 visualize that correlation. Thus, the system compo-
nents are implemented as model consumers and handlers which directly use and
manipulate application domain and interface models to provide the necessary
functionality.

MCA based approaches may work with different kinds of conceptual models
as well as MMs for defining DSMLs and DSMMs. By defining them for each
relevant interface and data core, it is possible to create powerful domain-specific
systems. Also, model transformation is a key mechanism for MCA based ap-
proaches, since different representations, excerpts and aggregations as well as
different purposes exist for models.

2.3 Running examples

To become more concrete, this paper introduces the MCA concept based on our
experiences made in the HBMS3 and QuASE4 projects.

The QuASE project [30] aimed at providing an information system offering
flexible means of harmonizing the stakeholders’ views on communicated infor-
mation (e.g. stored in industrial project repositories such as Issue Management
Systems5 (IMS) databases) in software development projects. These means are
based on terminology adaptation and the support for communication-related
decisions. The core of the QuASE system is a conceptual model of the commu-
nicated information and the communication environment.

The HBMS project [20] aims at deriving support services from integrated
models of abilities, current context and episodic knowledge that an individual
had or has, but has temporarily forgotten. The core of the HBMS system is the
Human Cognitive Model (HCM). It preserves the episodic memory of a person
in the form of conceptual models of behavior linked to context information re-
lated to these activities. The interfaces to activity recognition systems as well
as multimodal user interfaces are again defined via domain specific modeling
languages.

3 funded by the Klaus Tschira Stiftung gGmbH, Germany
4 funded by FFG (Die Österreichische Forschungsförderungsgesellschaft), Austria
5 e.g. Atlassian Jira

3 Models in QuASE and HBMS

3.1 Models in QuASE

Implementing QuASE as a model centered solution was motivated by the fol-
lowing considerations: (1) the knowledge about quality-related communications
varies from company to company so that it should be separately configurable
for a particular deployment site; (2) the communicated information typically is
stored in project repositories (e.g. Jira databases); its conversion into knowledge
(for being exploited by reasoning mechanisms approach) preferably should be
integrated into the site-specific configuration.

As a consequence, a meta-model together with a visual domain-specific mod-
eling language, the QuASE site DSL [29, 30], has been developed which serves for
defining the QuASE site model as the kernel of a deployment. This model also
specifies the mapping between the project repository and the modeling concepts
thus allowing for an automatic generation of the knowledge base instances from
the repository data (see Section 4). The DSL includes the following basic con-
cepts: (1) site: owner of the given QuASE installation, e.g. a software provider;
(2) context: units possessing certain views on communicated information e.g.
projects, organizations, involved stakeholders; (3) content: units shaping com-
municated information e.g. issues/tickets; (4) knowledge: units encapsulating
communicated knowledge.

A QuASE knowledge unit is composed of: (1) ontological foundation: a ref-
erence to the conceptualization of the particular piece of knowledge through
ontological means; (2) representation: the representation of the knowledge unit
in a format that could be perceived by the communicating parties (e.g. plain
text); representation units are also contained in content units; (3) resolution
means: the means of resolving understandability conflicts related to the given
knowledge unit (e.g. textual explanations).

Context units possess capabilities to deal with knowledge units. The capabili-
ties e.g. refer to the ability of understanding a given knowledge unit or explaining
it with resolution means.

The elements of the MOF levels M0-M2 are outlined in Fig.2. Note that M3
has been omitted since a standard subset of UML-like class diagram concepts is
used here which should be intuitively understandable.

The functionality of the QuASE Tool (the end user component) consists of
exploiting the knowledge base by means of queries against the meta-model of the
DSL, i.e. these queries refer only to M2-level concepts. This way, the resulting
solution is truly model centered as it is completely customizable by defining new
site models.

3.2 Models in HBMS

The HBMS MCA is backed by four meta-models: (1) The HBMS Context meta-
model covering all aspects to be taken into account when it is about supporting
a person, (2) the Operating Instruction meta-model that, in connection with the

«Content Unit»

Jira-Issue

(-)(d) creation date:[d]

(-)(d) change date:[d]

(-)(d) key:[s]

(-)(d) resolution date:[d]

(m)(q) time spent:[i]

(m)(q) original estimate:[i]

(m)(d) progress:[n]

(m)(l) customer satisfaction:[n]

(m)(q) status change count:[i]

(m)(q) max comments per status:[i]

(m)(q) number of comments:[i]

(m)(a) customer attitude:[n]

«Context Unit»

Jira user

(-)(d) fullname:[s]

(m)(l) attention to detail:[n]

(m)(d) average attitude to issue:[n]

(m)(d) average attitude to project:[n]

(m)(l) communication ability:[n]

«Content Unit»

Description

1

1

«Content Unit»

Summary

1

1

«Representation Unit»

Plain text fragment

(-)(d) raw text:[s]

0..1

1

0..1

1

«Context Unit»

Project

(-)(d) name:[s]

(m)(i) financing amount:[n]

(-)(d) description:[s]

«Provides knowledge to»

«Knowledge Unit»

Notion

(-)(d) name:[s]

«Ontological Foundation»

Ontological concept

(-)(d) name:[s]

«Resolution Unit»

Plain text explanation

1

0..1

1

0..1

«Generalizes»

0..1 1

0..1

1

«Is able to understand»

«Provides knowledge to» [1 attr]

«Is able to understand»

«Is related to» [1 attr]

<<Entity>>
Context Unit

<<Relation>>
Context Relation

<<Relation>>
Context-Content Relation

<<Entity>>
Content Unit

<<Relation>>
Content Relation

<<Entity>>
Knowledge Unit

<<Relation>>
Knowledge Relation

<<Entity>>
Resolution

Unit

<<Relation>>
Resolution Relation

<<Entity>>
Representation

Unit

<<Relation>>
Representation Relation

<<Entity>>
Ontological

Foundation Unit

<<Relation>>
Ontological Relation

<<Relation>>
Capability

QuASE
Site DSL

Metamodel

QuASE Site
Model

<owl:NamedIndividual rdf:about="http://www.aau.at/quase/QuOntology.owl#Issue__W__type-6">
 <rdf:type rdf:resource="http://www.aau.at/quase/QuOntology.owl#Issue__W__type"/>
 <Issue__W__type.__numid rdf:datatype="http://www.w3.org/2001/XMLSchema#float">108203.0</Issue__W__type.__numid>
 <Issue__W__type.__id rdf:datatype="http://www.w3.org/2001/XMLSchema#string">6</Issue__W__type.__id>
 <Issue__W__type.__name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">To-do</Issue__W__type.__name>
 <Issue__W__type.__isroot rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</Issue__W__type.__isroot>
 <hasAttribute rdf:resource="http://www.aau.at/quase/QuOntology.owl#Issue__W__type-6.name"/>
 <Issue__W__type.hasAttribute.Issue__W__type.name rdf:resource="http://www.aau.at/quase/
QuOntology.owl#Issue__W__type-6.name"/>
 </owl:NamedIndividual>

QuASE
Knowledge

Base
Individuals

Fig. 2. QuASE MOF Levels (excerpts, simplified)

context meta-model, allows for specifying the functionality of context elements,
(3) the Activity Recognition meta-model which serves for a flexible specification
of the interfaces to arbitrary activity recognition systems [28], and (4) the Multi-
modal Support meta-model that serves for specifying the user/device interfaces
for various device types. Regarding MCA as depicted in Fig.1, the Context and
Operating Instruction meta-models correspond to the Application Domain meta-
model, the Activity Recognition meta-model to the data-exchange meta-model,
and the Multimodal Support meta-model to the user/device meta-model.

Fig.3 visualizes the HBMS MOF hierarchy, the unreadable components will
be subsequently zoomed and explained. Again M3 has been omitted in the figure.

HBMS Context Model. The processing of context information gives humans
the ability to adopt their behavior to the world around them [12]. As HBMS aims
to actively assist individuals in activities of daily living and other situations using
their own episodic knowledge, the relevant aspects of the user’s context have to
be known [25]. The corresponding context meta-model is structured into four
clusters as shown (without details) in Fig.4:

Fig. 3. MOF Levels for the HBMS-System (Meta-Models, Models and Data/Instances)

(1) The Environmental Context of a user: covers the resources that are uti-
lized in operations of the assisted user or are placed as equipment in the spatial
context of the user and participate in operations;

(2) The Personal and Social Context of a user: covers the abilities that a user
holds together with the level of ability fulfilment as well as the social surrounding;

(3) The Spatial Context of a user: covers the location in which the user should
be actively assisted;

(4) The Behavioral Context of a user: covers the user’s relevant behavior in
so-called Behavioral Units (BUs) that describe the possible sequences of actions

(Operations connected by Flows), their Pre- and Post-Conditions as well as their
Goals.

 Behavioral Context

 Environmental Context Spatial Context

 Personal and Social Context

has

uses

changes

1

participates

Goal

Operation Flow*

*

*
out

* User1has

Person

Ability

UserProperty

*

1

*Equipment

1

1
Area

Location

*

Doorway

area2 area1

1
has

*

Thing

name
description

Thing

name
description

* Behavioral
Unit

ResourceResource

Application

Item Fixture

1

Device

relative
Position

*

Function

Custom
Property

name
domain

* *

has

*

* *

*

in

*

1

*

1

*

1

*

1

*1

belongs

to

1*

belongs

to

1*

*
has 1

*
has 1

*
has1

*
has1

has
1

*
has
1

*

Physical ThingPhysical Thing has

Contact-Person

Fig. 4. HCM-L Meta-Model (excerpt)

In sum, the user’s episodic knowledge and the related context is represented
and preserved at level M1 which forms the Human Cognitive Model (HCM).

The HBMS context meta-model is the backbone of the lean domain specific
modeling language HCM-L (Human Cognitive Modeling Language [22]). This
language was designed to be as intuitively understood as possible by the relevant
stakeholders in the active assistance domain [24]. It is supported by the HCM-L
Modeler [1] which allows to work on the HCM.

The use of HCM is twofold: it serves (1) as a conceptual model for communi-
cation and validation purposes between stakeholders and system engineers, and
(2) as a machine readable context representation allowing for retrieval, reasoning,
interoperability and reuse.

4 Model Centered Interfacing

We now proceed to illustrate the concept of model-based interface design as men-
tioned in section 2. The targeted domains are activity recognition, multimodal
support and operating instruction integration.

4.1 Model Centered Interfacing in QuASE

QuASE obtains the data from the project repositories (such as Jira databases)
and converts it into knowledge stored in its knowledge base. To implement this

conversion, it includes the knowledge base builder component which implements
a model centered interface to project repositories.

To support such interface, every conceptual element of a QuASE site model
includes a repository mapping specification. This specification contains a repos-
itory query and a description of the mapping between the attributes to be re-
turned by the query and the custom attributes of the conceptual element. It
is used by the knowledge base builder as follows: during the synchronization of
the knowledge base, the queries specified for the current site model are executed
against the repository, the relational data returned by these queries is converted
into the knowledge base individuals based on the ontological knowledge derived
from the model structure, and the repository mapping specification.

The flexibility of this mapping allows large amounts of existing data to be
integrated automatically. The QuASE system “can be seen as a bridge which
connects end users, the data in project repositories and the (extendable) set of
machine learning and natural language processing techniques” [30, p. 10] which
are applicable to the data after the communication environment is described as
a QuASE site model.

4.2 Model Centered Activity Recognition Interface

The implementation of an Activity Recognition interface was motivated by the
fact that behavior support systems require complete knowledge about the current
user behavior to provide context-aware support to its target users (e.g. elderly
or disabled people in the AAL case). Moreover, in the case of HBMS we aim at
supporting a person on the basis of her/his previous episodic knowledge which is
to be learned via sensor based observation. Because of the limitations of current
Human Activity Recognition (HAR) systems, such complete knowledge can only
be established by using several HAR’s and integrating their outputs. This led us
to provide, for HBMS, a model centered HAR interface that is capable of trans-
forming heterogeneous AR data into a common representation understandable
to the target system.

Fig.5 shows the main concepts of the corresponding meta-model (MOF level
M2) which defines the domain specific modeling language AREM-L (Activity
Recognition Environment Modeling Language):

Recognition

timeStamp

Recognition

timeStamp

Event (Action)

timeStamp

Event (Action)

timeStamp

Thing

Location
timeStamp

Thing

Location
timeStamp

Attribute

type

Attribute

type

RelationshipRelationshiphas>has> <has<hasinvolves>involves>

2..

participates in>participates in>

1.. 1..

Fig. 5. Model centered HAR interface meta-model

Recognition, the top-level concept, comprises (1) a recognized Event/Action
conceptualizing recognized simple or complex activities, (2) observed Things,
i.e., persons or contextual objects that are connected to each other by Relation-
ships and are involved in Actions, e.g., as passive elements or executing actors.
For a concrete HAR to be connected, these concepts are to be instantiated ap-
propriately on level M1. Note that then several “kinds” of events (instances of
the M2 concept event), several kinds of things and relationships etc. may be
defined to meet the particular HAR interface specification. The same is true for
the cardinalities of the (meta-)relationships which are, for a maximum flexibility,
reduced to a minimum on level M2. As an example, recognition kinds might be
specified that have no event part (this is possible as there is no cardinality con-
straint from Recognition to Event), e.g. for covering temperature measurements
of an object. On the other hand, if an event kind is specified on Level M1, it
must belong to at least one Recognition kind.

At run-time, the specified interface models are used to drive the data trans-
formation in the behavior support system.

4.3 Operating Instruction Integration

Operating instructions typically describe the core functions of a resource and give
instructions for its handling. Moreover, warnings as well as typical problem sit-
uations are included. While human readers can sift through complex operating
instruction and are mostly able to understand particular support information
at a glance, search engines, Active Assistance Systems and other digital ser-
vices need extra information to be able to use such information. Therefore, the
intersection of semantic technologies and operating instructions seem to be a
promising approach [31].

Fig.6 shows the refinement of the Environmental Context, describing re-
sources and their components, functions and operating instructions relevant for
HBMS-System.

Components are parts or accessories, which are necessary to prepare or to
assemble the resource or which are required for special resource functions. Func-
tions are specialized into core functions and support functions for maintenance
and setup. Instructions describe how to handle functions and how to interact with
the resource from the user perspective. Every instruction consists of a name and
mostly an instruction text written in a certain language. Instructions that are
more complex can consist of several instruction-steps, which the user is suggested
to follow. Media-Objects like assembly sketches, images, audios or videos can be
associated to instructions as well as to instruction steps. Warnings are operating
instruction elements that are related either to an instruction directly or to the
resource in general. In addition, typical problem situations can be found in an
operating instruction with references to instructions to handle them.

If an operating instruction is provided online by a manufacturer in the form of
structured data (e.g. using schema.org [31]), this data can be collected from the
web, transformed and automatically integrated into the Environmental Context

*0..1 < decribes

MediaObject

Type
Source

*

1

< has
<

h
as

has >
*

1

d
ec

ri
b

es
 >

*

Instruction

Name
InstructionText
Language
Time

*

1

Warning

InstructionText

Warning

InstructionText

InstructionStep

Name
InstructionText

*

1

*

Support
Function

Core
Function

Resource

Name
Id
Type
Modell
Illustration

Function

Name
Description
Objective
FType

Function

Name
Description
Objective
FType

*

*

has >

*

Problem
Situation

Symptom
Description
MediaObject

Component

Name
Image
Amount
ID

Name
Image
Amount
ID

0..1

*

0..1

1

*

*

*

*
knows >

gives >1

*

<
su

cc
e

ss
o

r

Fig. 6. Operating Instruction Meta Model as part of the Environmental Context

Model of HBMS-System using the Environmental Context meta-model for in-
terfacing. The HCM-L Modeler then can be used for visualizing or manipulating
the integrated data.

4.4 Model Centered User Interface

The user interface of a system again can be implemented based on model centered
principles (as a model centered user interface).

Model Centered User Interface in QuASE. The QuASE system provides
a model centered integration of user interface fragments into the user interface of
industry issue management systems (IMS) such as Jira thus enabling Jira users
to access QuASE support scenarios. This support includes (1) the concepts of
the QuASE site DSL for describing the subset of model elements to be integrated
into the IMS; (2) an IMS extension (e.g. Jira plug-in) which forms the control
requests and transfers these to the QuASE tool; (3) the functionality of the
QuASE tool for accepting IMS requests and rendering the QuASE UI fragment
according to the request.

Multimodal Support Interface in HBMS. The HBMS Support Engine
provides assistance to a person based on matching the person’s observed actions
with the current knowledge base HCM. For transmitting assistive information to

this person and for interaction purposes, a multimodal user interface is provided
that works with different media types (audio, handheld, beamer, Laserpointer,
light sources, etc.). Again, this interface is intended to be defined according to
the MCA paradigm by introducing a domain specific modeling language; such
language is currently under development in the context of a PhD work.

5 MCA: Patterns and Implementation Examples

5.1 Architectural Patterns for MCA solutions

Based on the concepts defined in the previous sections, we identify a set of
architectural patterns to be implemented by the components of a MCA-based
system (Fig.7).

MCA

based

system

System

Runtime

Modeling

Tool

Model

transfer

interface

Model

adapter
Model storage

manager

Model

Author

Model

storage

User Interface

Model

consumer 1

System

User

Model

consumer N
...

...

Data

adapter

Data

storage

Data

transfer

interface External

Data

Fig. 7. Architectural patterns for MCA-based systems

1. The modeling tool pattern describes the means used by the model authors to
create and manipulate models according to the given DSML; such tools are
driven by given DSML’s meta-model describing; they can be either custom
built or generated using an existing meta-modeling framework.

2. The model transfer interface pattern describes components responsible for
transferring models to runtime components.

3. The model adapter pattern describes components transforming the trans-
ferred models into the format understood by the rest of the system.

4. Both model storage and model storage manager patterns describe compo-
nents enabling model persistence; the former describes the storage itself, the
latter describes the runtime component responsible for accessing this storage.

5. The data adapter pattern describes those components that use models to
drive the conversion of external data into the internal (system standard)
representation.

6. The model consumer pattern describes the components which use the
adapted models to provide the functionality of the MCA-based solution.

5.2 Concrete MCA: Pattern Usage in Development Processes

QuASE Architecture. The result of the implementation activities of the
QuASE project was a software solution which utilizes MCA paradigm to provide
for flexibility in dealing with the variable structure of communication environ-
ments in IT companies. Its architecture is shown on Fig.8. It implements MCA
patterns as follows:

1. The site modeler tool implements the modeling tool pattern. It supports the
site modeling language (QuASE-SML) for describing site-specific communi-
cation environments. It communicates with runtime by means of an interface
that implements the model transfer interface pattern.

2. The ontology builder and the knowledge base builder utilities implement, re-
spectively, the model adapter and data adapter patterns. The former trans-
forms QuASE-SML models into the site ontology, the latter converts the data
from project repositories into individuals corresponding to that ontology.

3. The knowledge base implements the model storage pattern. It is a triple store
containing OWL2 representation of the site ontology and knowledge base in-
dividuals. The QuASE tool communicates with the knowledge base through
the storage management module which implements the model storage man-
ager pattern.

4. The components of the interactive web-based QuASE tool implement the
model consumer pattern. They access the knowledge base to implement the
end-user support scenarios aimed at harmonizing stakeholders’ views.

Issue

Manage-

ment

System

QuASE

System
QuASE

Tool

QuASE

Kernel

QuASE Data Management Subsystem

<<Modeling tool>>

QuASE Site

Modeler

Interface:

administration

Admin

Admin client

Know-

ledge

client

QuASE site

ontology

<<model transfer

interface>>

QuASE

model

transfer <<Model

adapter>>

QuASE

Ontology

Builder

<<Model storage manager>>

QuASE Storage

Management Module

Deployment

manager

<Model storage>>

QuASE KB

(triple store)
QuASE Tbox

(site ontology)
QuASE Abox

(site KB)

Interface:

know-

ledge

QuASE site

model

<<Data

adapter>>

QuASE

Knowledge

Base

Builder

QuASE repository

mapping specification

QuASE KB

knowledge

Interface:

repository data

transfer

raw project

data

SQL

Analysis client
Understandability

management client

Interface:

understandability management

Interface:

analysis

<<Model consumer>>

QuASE Understand-
ability Management

Module

<<Model consumer>>

QuASE
Analysis
Module

QuASE

IMS

Integration

Module

QuASE

user

IMS user

Project

repository
Project

repository

understandability

management client data

analysis client

data

understandablity

management queries

analysis

queries

control
requests

corresponds to

<<Model consumer>>

Admin module

<<Model consumer>>

Admin module

Knowledge

supplier

 Interface: model handler

Fig. 8. QuASE system architecture as MCA implementation

HBMS Architecture. Within the realm of the HBMS project a flexible MCA
based Ambient Assisted Living (AAL) system has been developed which is ca-
pable of learning a person’s behavioral knowledge for later use when that person

needs support. The HBMS system implements the MCA patterns as follows (see
Fig.9):

1. The modeling tool implements the modeling tool pattern. It is used for creat-
ing and maintaining HCM-L and AREM-L models, and communicates with
the HBMS kernel by means of the model transfer interface implementing the
related pattern.

2. The HCM-L-OWL converter implements the model adapter pattern. It
transforms HCM-L models into OWL2 representation used by the HBMS
kernel.

3. The knowledge base implements the model storage pattern being a triple
store holding HCM and behavioral data. The kernel communicates with it
through the Data Management Subsystem that implements themodel storage
manager pattern.

4. The activity recognition system (ARS) adapter is a middleware listening to
the data coming from an ARS and making it HBMS-compliant. It imple-
ments the data adapter pattern being driven by the AREM-L description of
the particular ARS interface;

5. The HBMS kernel contains the following components implementing the
model consumer pattern: (1) Observation Engine: responsible for communi-
cating to ARS through the ARS adapter; (2) Behavior Engine: responsible
for handling the behavior data arriving from the Observation Engine in con-
text of the current HCM; (3) Support Engine: responsible for controlling the
behavior of the assisted users through the multimodal user interface.

MCA support infrastructure. Within the context of the HBMS and QuASE
projects we established a flexible software development infrastructure to back
MCA-based applications. This infrastructure is subdivided into:

1. modeling tool infrastructure: the infrastructural elements assisting the de-
velopers of meta-models to be used for defining MCA models such as the
means for selecting the subset of the models to be transferred to the runtime
components;

2. model transfer interface infrastructure: the elements assisting the developers
of the model transfer interface such as (1) the transfer script callable from
the modeling tool (it converts the selected models into the transfer format
and uploads them to the system runtime), (2) the Java implementation of
the model listener : a component of the kernel which listens to the commu-
nication port used for uploading the models, captures the uploaded models,
and makes them available to the rest of the kernel;

3. kernel infrastructure: the elements assisting the developers of the kernel com-
ponents such as the implementation of (1) the model mapper transforming
models into a set of internal objects to be used by the rest of the kernel,
and (2) the model serializer transforming OWL2 model representations into
a triple store.

 Observation

 Engine<<Data adapter>>

HBMS

ARS Adapter

HBMS

System

HBMS

Kernel <<Model

consumer>>

HBMS

Behavior

Engine

<<Model

consumer>>

HBMS

Support

Engine

<<Model

consumer>>

HBMS

Support

Engine

Target
User

Structural Context
Behavioral

Context

Integration client

Interface:

Support

<<Model

consumer>>

HBMS

Observation

Engine

HBMS-OI
Interface:

Integration

Inter-

face:

Admin

Caregiver

Admin

client

Simu-

lator

client

Support clientsupport

session

support

session
Support clientsupport

session
Support clientSupport client

Admin

Smart Home
Environment

Care-

giver

client

Activity Recognition System /

Environment Modeling Middleware

Interface:

Simulator

Interface:

Modeler

<<Model

consumer>>

Admin

module

Interface: ARS

...

Interface:

Caregiver

<<Model

consumer>>

Care-

giver

mo-dule

HBMS Data Management Subsystem

<<Modeling tool>>
HBMS Modeling
Tool
• HCM-L

• AREM-L

 Interface: model handler

HCM
(OWL

representation)

<<model
transfer

interface>>

HBMS
model

transfer

<<Model

adapter>>

HCM-L-

OWL

converter

<<Model storage manager>>

HCM Storage Management

External
stored

knowledgeModeler

<Model storage>>

HBMS Data

(OWL/triple store)
HCM storage

domain

ontology
situation

cache

Interface:

KnowledgeHCM-L
(ADOXML

representation)

case base

AREM-L
specification

Fig. 9. HBMS system architecture as MCA implementation

Applied in the development process, this infrastructure decreases the devel-
opment effort by taking the responsibility for the technical issues related to the
implementation of MCA-based solutions: from defining the models to utilizing
the models at runtime.

6 Outlook

With the MCA paradigm we want to contribute to a more comprehensive use
of conceptual modeling in practice. The paradigm provides transparent means
of synchronizing models and developed artifacts on all software development
stages, and also in the running system. By applying this paradigm, the con-
ceptual models are not restricted to being the prescriptive documents which
eventually diverge from what is used by the running system, instead, they are
considered as crucial system artifacts directly influencing the functioning of the
system interfaces and components at runtime. In fact, they become "first-class
citizens" of the running system.

The MCA paradigm allows for increasing the adaptability of software so-
lutions by providing DSMLs as application specific and flexible means of (1)
specifying the application context and the relevant interfaces comprehensively,
and (2) driving the runtime behavior of the system.

The MCA paradigm could be extended in future along the following direc-
tions:

– To investigate in more detail the ingredients of interface modeling languages;
possible research topics here could be the formalization of such languages,
related quality characteristics etc.

– To review the traditional notions of quality for conceptual models w.r.t. their
validity in the MCA realm.

– To investigate the adaptability of the MCA paradigm in agile software de-
velopment.

References

1. Al Machot, F., Mayr, H.C., Michael, J.: Behavior Modeling and Reasoning for
Ambient Support: HCM-L Modeler. In: Proc. of the International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent Systems,
IEA-AIE (2014)

2. Baresi, L., Ghezzi, C.: The Disappearing Boundary Between Development-Time
and Run-Time. In: Proceedings of the FSE/SDP workshop on Future of software
engineering research, pp. 17-22. ACM (2010)

3. Bencomo, N., France, R.B., Cheng, B.H., Aßmann, U.: Models@ run. time: Foun-
dations, Applications, and Roadmaps, LNCS, Vol. 8378. Springer (2014)

4. Blair, G., Bencomo, N., France, R.: Models@ run. time. Computer 10, 22-27 (2009)
5. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools,and Ap-

plications. Addison-Wesley Professional, Boston, Massachussets, USA (2000)
6. Embley, D.W., Kurtz, B.D., Woodfield, S.N.: Object-oriented Systems Analysis: A

Model-Driven Approach. Prentice-Hall, Englewood Cliffs, New Jersey (1992)
7. Embley, D.W., Liddle, S.W., Pastor, O.: Conceptual-Model Programming: a Man-

ifesto. In: Handbook of Conceptual Modeling, pp. 3-16. Springer (2011)
8. von Foerster, H.: Perception of the Future and the Future of Perception. Instruc-

tional Science 1, 31-43 (1972)
9. Frank, U.: Domain-Specific Modeling Languages: Requirements Analysis and De-

sign Guidelines. In: Reinhartz-Berger, I. et al. (eds.): Domain Engineering. pp.
133-157, Springer (2013)

10. Heinrich, R. et al.: Runtime Architecture Models for Dynamic Adaptation and
Evolution of Cloud Applications. Universität Kiel (2015)

11. Hesse, W., Mayr, H.C.: Modellierung in der Softwaretechnik. eine Bestandsauf-
nahme. Informatik-Spektrum, 31, 377-393 (2008)

12. Hoareau, C., Satoh, I.: Modeling and Processing Information for Context-Aware
Computing. A Survey. New Gener. Comput. 27(3), pp. 177-196 (2009)

13. Karagiannis, D., Kühn. H.: Metamodelling Platforms. In E-Commerce and Web
Technologies, K. Bauknecht, A. M. Tjoa and G. Quirchmayr, Eds. LNCS. Springer,
Berlin, Heidelberg, p. 182 (2002)

14. Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain-Specific Conceptual
Modeling: Concepts, Methods and Tools. Springer (2016)

15. Kaschek, R., Mayr, H.C.: A Characterization of OOA Tools. Assessment of Soft-
ware Tools, 1996., Proceedings of the Fourth International Symposium on, pp.
59-67. IEEE (1996)

16. Kleppe, A.G., Warmer, J.B., Bast, W.: MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.
(2003)

17. Lewis, P.R. et al.: Architectural Aspects of Self-Aware and Self-Expressive Com-
puting Systems: From psychology to engineering. Computer 48, 62-70 (2015)

18. Leymann, F., Altenhuber, W.: Managing Business Processes as an Information
Resource. IBM systems journal 33, 326-348 (1994)

19. Liddle, S.W.: Model-Driven Software Development. In Handbook of Conceptual
Modeling, pp. 17-54. Springer Berlin Heidelberg (2011)

20. Mayr, H. C. et al.: HCM-L: Domain-Specific Modeling for Active and Assisted
Living. In: Karagiannis, D.; Mayr, H. C.; Mylopoulos, J. (eds.): Domain-specific
conceptual modeling. Concepts, methods and tools. pp. 527-552, Springer (2016)

21. Mens, T.; Czarnecki, K.; van Gorp, P.: A Taxonomy of Model Transformation.
Proc. Dagstuhl Seminar on "Language Engineering for Model-Driven Software De-
velopment". Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl (2005)

22. Michael, J., Mayr, H.C.: Conceptual Modeling for Ambient Assistance. In: Ng,
W., Storey, V.C., Trujillo, J. (eds.): Conceptual Modeling - ER 2013, pp. 403-413.
Springer (2013)

23. Michael, J., Mayr, H.C.: Creating a Domain Specific Modeling Method for Ambient
Assistance. In: International Conference on Advances in ICT for Emerging Regions
(ICTer2015). IEEE (2015)

24. Michael, J., Mayr, H.C.: Intuitive Understanding of a Modeling Language. In:
Proc. of the Australasian Computer Science Week Multi-conference (ACSW’17),
Asia Pacific Conference on Conceptual Modeling (APCCM), pp. 1-10. ACM (2017)

25. Michael, J., Steinberger, C.: Context Modeling for Active Assistance, submitted
for publication

26. Object Management Group OMG: Meta Object Facility™ (MOF™) Core, URL:
http://www.omg.org/spec/MOF/, last accessed 09.08.2016

27. Olivé, A., Cabot, J.: A Research Agenda for Conceptual Schema-Centric Develop-
ment. In: Conceptual Modelling in Information Systems Engineering, pp. 319-334.
Springer (2007)

28. Ranasinghe, S., Al Machot, F., Mayr, H.C.: A Review on Applications of Activity
Recognition Systems with Regard to Performance and Evaluation. International
Journal of Distributed Sensor Networks 12, (2016)

29. Shekhovtsov, V.A., Mayr, H.C., Kop C.: Facilitating Effective Stakeholder Commu-
nication in Software Development Processes. In: Nurcan, S., Pimenidis, E. (eds.):
Information Systems Engineering in Complex Environments, LNBIP, Vol. 204, pp.
116-132. Springer (2015)

30. Shekhovtsov, V.A., Mayr, H.C.: View Harmonization in Software Processes: from
the Idea to QuASE. In: Mayr, H.C., Pinzger, M. (Hrsg.). INFORMATIK 2016,
26.–30. September 2016, Klagenfurt, Österreich. Proceedings, pp. 111-123, LNI,
Vol. P-259, GI, (2016)

31. Steinberger, C., Michael, J.: Semantic Mark-Up of Operating Instructions for Ac-
tive Assistance, submitted for publication

32. Štuikys, V., Damaševičius, R.: Meta-Programming and Model-Driven Meta-
Program Development: Principles, Processes and Techniques, Springer (2012)

