
Chapter 5
Model-Based Engineering
of Multi-Purpose Digital Twins
in Manufacturing

Malte Heithoff, Nico Jansen, Judith Michael, Florian Rademacher,
and Bernhard Rumpe

5.1 Introduction

Digital Twins (DTs) as software accompanying real-world objects can optimize
behavior, improve the monitoring, simulate and predict behavior, and allow for
design space exploration [1]. Besides their main application domain manufacturing
and production [2–6], one can also find them for the energy system [7], construc-
tion [8], health [9], mining [10], or transportation domain [11, 12]. The multiple
purposes digital twins have to cover can be supported by providing different kinds of
services within digital twins, e.g., for monitoring, analysis, optimization, simulation,
prediction, or visualization. These services use models and specific parts out of the
data available about the real-world object.

Up to now, digital twins are mainly developed in a manual manner which offers
potential for improvement. Model-Driven Engineering (MDE) [13] provides various
techniques to automate software engineering processes based on abstractions of the
reality captured in models. From the abstracting character of models, MDE can lift
several benefits [13]. First, model-based abstraction supports complexity reduction
by omitting details that are irrelevant to a given purpose. For instance, domain
experts naturally care about domain concepts and need not understand the technical
subtleties of a developed software system. Second, models can be automatically
transformed into other artifacts. For example, in the case of model-to-code trans-
formation (usually referred to as “code generation”), source code is derived from
models, which can lead to an increase in development efficiency. Additionally, code
generation fosters (i) portability, because the same model may be translated into
implementations with heterogeneous technology stacks; and (ii) quality, because

M. Heithoff · N. Jansen · J. Michael (�) · F. Rademacher · B. Rumpe
Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: heithoff@se-rwth.de; jansen@se-rwth.de; michael@se-rwth.de; rademacher@se-rwth.de;
rumpe@se-rwth.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Sabri et al. (eds.), Digital Twin, https://doi.org/10.1007/978-3-031-67778-6_5

89

[HJM+24] M. Heithoff, N. Jansen, J. Michael, F. Rademacher, B. Rumpe:
Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing.
In: Digital Twin: Fundamentals and Applications, S. Sabri, K. Alexandridis, N. Lee (Eds.),
pp. 89-126, ISBN 978-3-031-67778-6, Springer Nature Switzerland, Cham, Dec. 2024.

90 M. Heithoff et al.

fixes for quality defects can be retrofitted into code generators so that re-generation
results in source code with fewer defects. Third, models grant reusability. That is,
they are not only processible by technology-diverse code generators but also by,
e.g., model-to-model transformations that gradually refine underspecified models
towards concrete implementations, or bridge between different perspectives on a
system from runtime to design or development. The manufacturing domain is well
suited for the use of MDE methods. Manufacturing processes can be well captured
using sensory information as well as data from third-party applications such as
Manufacturing Execution Systems (MESs) with information about resources and
capacities, or Enterprise Resource Planning (ERP) systems with information about
orders and due dates. Using data-to-model transformations, this data can be useful
within digital twin runtime. Moreover, the manufacturing domain already uses
various modeling methods, e.g., for systems engineering [5, 14]. These models can
be reused for digital twin engineering. Thus, MDE methods could improve and
automize the digital twin engineering process in manufacturing by using models
both, to create them and during runtime.

Within this chapter, we investigate how the engineering of digital twins in
manufacturing can be improved using model-based methods. Our DTs combine
different functionalities, fit multiple purposes, and enable easy integration of new
services. We describe the main architectural components and show how different
parts of DTs and their runtime models could be derived from system models using
MDE. The architectural components are then discussed with concrete use cases
from injection molding. The examples are based on our work in the German Cluster
of Excellence “Internet of Production”. We discuss our approaches in comparison
to the DT reference architecture of the Digital Twin Consortium, in relationship
to low-code approaches, and present our vision for future digital twin engineering
processes.

The chapter is structured as follows: Section 5.2 introduces our understanding
of digital twins, provides background and the state-of-the-art for using MDE for
DT engineering, reference architectures, and our used technology stack. Section 5.3
introduces the main DT components used in our MDE approach. Section 5.4
provides an overview of different MDE methods that can be applied. Section 5.5
describes five use cases for DTs and their relation to the described architectural
components. Section 5.6 discusses our approach and outlines future research. The
last section concludes.

5.2 Background and Related Work

For a better understanding of our MDE approaches, we describe our understanding
of digital twins as software systems accompanying an original system and related
terms, provide insights into current approaches for MDE, and models at runtime of
digital twins, and introduce the technology used to realize these approaches.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 91

5.2.1 Definitions and Background

To improve the clarity of this chapter, we provide concise definitions of its core
notions and elaborate on our previous research leading to our understanding of these
notions.

In our definitions, we use the term “original system” broadly to include physical
systems, Cyber-Physical System (CPS), and engineered systems, but also natural
or biological systems, civil structures, and (immaterial) human, robotic, and/or
computational processes. We can also imagine a DT of a pure software system.

Digital Shadows
A common property complex systems share is that relevant aspects can be mon-
itored, sensed, actuated, and controlled. Sensing with IoT devices creates a large
amount of heterogeneous data making its handling and processing challenging.
Kritzinger et al. [15] state that digital shadows have an “automated one-way data
flow between the state of an existing physical object and a digital object” [15].
Following this idea, using all the data produced by IoT devices would not allow
a software system to deliver results in a meaningful time. Thus, the concept of
Digital Shadow (DS) can be used to structure, aggregate, and abstract to relevant
data needed [16]. Within the Cluster of Excellence “Internet of Production”, we
came up with the following definition to further specify the concepts that are part of
a digital shadow.

Definition 5.1 (Digital Shadow) “A DS includes

• a set of contextual data traces and/or
• their aggregation and abstraction collected concerning an original system for a

specific purpose w.r.t. the original system.” [17]

We derived our notion of digital shadow from the insight that there exist numer-
ous publications for digital twins in manufacturing, e.g., [18–20], that conceive
digital twins and their data structures in an ad hoc fashion for specific use cases
like CNC machining [21], injection molding [22], monitoring [23], and fatigue
testing [24].

With the notion of digital shadow, we provide a conceptual foundation for
data processed by digital twins and, more precisely, its description, abstraction,
aggregation, and relation. The resulting conceptual model [17] considers a DS to (i)
consist of data traces as a subset of data accessible from the context of the original
system enriched by metadata. Data traces represent sequences of data consisting of
one or more data points. A DS (ii) stands for an asset, i.e. the original system, it (iii)
fulfills a clearly defined and well-understood purpose, and (iv) relies on models.1

Models are pragmatic means to reduce real-world objects to aspects that are
relevant for selected purposes [26]. This characteristic is crucial, as it enables the

1 We refer the readers to [17, 25] for a more detailed explanation of the concepts within the
conceptual model of the digital shadow.

92 M. Heithoff et al.

Fig. 5.1 Overview of the concept digital twin of an original system from the MDE perspective

description and analysis of a digital shadow’s context in a concise fashion, thereby
facilitating the reasoning about changes in data points and relating these changes
to contextual events. Second, a model may add information to the asset a digital
shadow stands for, e.g., to characterize the data provided by the asset. Third, the
digital twin may itself be modeled and/or be derived from models. In this case, given
that models adhere to selected purposes, they are likely aligned with the purpose of
the DS.

Digital Twins
Digital shadows need active software components to create and use them
(see Fig. 5.1). This could be, e.g., services within digital twins. During runtime
of the DT, DSs are populated with relevant data from the original system, and the
DT can send condensed information or control to the original system. The following
definition has been refined in the scope of the Cluster of Excellence “Internet of
Production” [6, 16, 27, 28] and is an updated version after a Dagstuhl seminar on
MDE of DTs.2

Definition 5.2 (Digital Twin) “A digital twin of an original system consists of

• a set of models of the original system and
• a set of digital shadows (Definition 5.1),
• both of which are purposefully updated on a regular basis, and
• provides a set of services to use both purposefully w.r.t. the original system.

A digital twin interacts with the original system by

• providing useful information about the system’s context and
• sending it control commands.” [29]

The models of a digital twin (Definition 5.2) capture structural, behavioral,
physical, geometrical, and mathematical aspects and things of the original system as

2 https://www.dagstuhl.de/de/seminars/seminar-calendar/seminar-details/22362.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 93

relevant to the digital twin [28]. Figure 5.1 sketches the process of DT creation from
such models and its extracted information using model-driven engineering and code
generators [25, 28, 30], e.g., by deriving relevant structures from SysML models, or
functional machine knowledge from STEP files. Moreover, the models can be used
during DT runtime, e.g., 3D models together with real-time data for visualization,
simulation models to compare the simulated behavior with the actual one, or process
models to check process conformance with planned processes.

All states of a DT—whether they be past, current, or future—are informed by the
set of the twin’s digital shadows [28]. Digital twins are responsible for collecting,
filtering, and reducing digital shadows into representations that serve each relevant
purpose of the multiple purposes a DT can have.

Digital twins make selected capabilities available for use by twin-external entities
leveraging services with well-defined interfaces [28]. These services allow, e.g.,
runtime adaptation of the digital twin based on new contextual knowledge, sending
control commands to the original system, or the provisioning of decision support to
humans who interact with the digital twin (Definitions 5.3 and 5.4). The DT offers
a communication channel that the DT can use in case it needs to interact with the
original system. This communication channel can be a direct one where the DT
communicates directly with the digital interface of the original system, or it can be
an indirect one, e.g., with a human operator in the middle, e.g., for legal reasons or
other security measurements.

In the literature, there is quite a variety of definitions of the term “digital twin”.
Dalibor et al. [1] have analyzed 356 publications about DTs and identified 112
definitions. They identified some problems with DT definitions in these: ambiguity
by referring to some other undefined term; use case, domain, or technology speci-
ficity, leading to a narrowed down definition; or “utopian, due to all-encompassing
aspirations” [28] of a complete virtual representation. Furthermore, we defined the
DT as an active component. We will briefly have a look at some definitions.

Grieves et al. [31] define the digital twin as a “set of virtual information
constructs that fully describes a potential or actual physical manufactured product
from the micro atomic level to the macro geometrical level. At its optimum, any
information that could be obtained from inspecting a physical manufactured product
can be obtained from its Digital Twin” [31]. Similar to our definition, Grieves
et al. also refer to models to represent the original system, or physical product
respectively. Models like the Bill of Materials often originate in the counterpart’s
engineering process. Contrary to our definition, the DT is a non-active 1-to-1
mirror image of a purely physical product. This allows for precise analyses done in
the active Digital Twin Environment. Furthermore, Grieves et al. also differentiate
between the digital twin prototype (DTP) and the digital twin instance (DTI), where
the DTI instantiates a DTP.

The Digital Twin Consortium has agreed on defining the digital twin as “a virtual
representation of real-world entities and processes, synchronized at a specified

94 M. Heithoff et al.

frequency and fidelity.”3 In compliance with our definition, the digital twin contains
information about its real-world counterpart rather than being its virtual decal. The
has a bidirectional communication executed by some component. Our definition
can build a subset of the consortium’s definition, further specifying how the DT
represents its counterpart (with models and digital shadows), and how the DT and
its counterpart are synchronized (DSs and control commands).

The International Organization for Standardization (ISO) defines the DT manu-
facturing specific as a “(manufacturing) fit for purpose digital representation of an
observable manufacturing element” [32] with synchronization between the element
and its digital representation, whereas the “digital representation (manufacturing)
data element representing a set of properties of an observable manufacturing
element” [32]. This DT contains a set of the observed manufacturing element’s
properties rather than all possible information and also in compliance with our
definition is synchronized with its counterpart. This task is done in a digital twin
framework, and not by the DT itself, meaning the DT is a passive component.

Digital Twin Cockpits and Process-Aware Digital Twin Cockpit
In case a DT is not used in a fully automated manner, it usually provides a means
for human-user interaction.

Definition 5.3 (Digital Twin Cockpit) “A digital twin cockpit is the user interac-
tion part of a digital twin (Definition 5.2). It provides

• the graphical user interface for visualizations of its data organized in digital
shadows (Definition 5.1) and models, and

• the interaction with services of the digital twin, and thus
• enables humans to access, adapt and add information and monitor and partially

control the original system.” [28]

Digital twin cockpits are integral parts of DTs that require human-user inter-
action [28]. They are specialized services provided by digital twins as well as
integrative frontend components that enable access to DT services in a user-oriented
fashion. DT cockpits may visualize data from DSs, external software systems,
user interactions, submitted commands, and models of the original system or its
operation processes [28].

In our model-centered view of digital twins, we consider models a natural fit
for the engineering of digital twin cockpits and their integration with digital twins.
Models empower domain experts to participate in digital twin engineering based
on abstracted technologies and domain-specific languages. They also permit the
generation of significant parts of the cockpit infrastructure [28], which bears the
potential to increase development productivity and automation while decreasing
complexity.

3 https://www.digitaltwinconsortium.org/initiatives/the-definition-of-a-digital-twin/.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 95

Definition 5.4 (Process-Aware Digital Twin Cockpit) “A process-aware digital
twin cockpit is a digital twin cockpit (Definition 5.3) that additionally provides func-
tionality to handle explicated processes of the original system and its context.” [28]

We consider these processes to be specified via appropriate process languages,
and covering activities performed by (i) things in the original system; (ii) the DT
itself; or (iii) humans or things in the context of the original system [28]. Process
activities are usually carried out (a) manually by human process participants;
(b) automatically by digital twins; and (c) manually or automatically by things,
depending on their nature [28]. In either case, process-aware digital twin cockpits
are aware of supported processes, their activities, current statuses, history of states,
and executed activities.

5.2.2 State-of-the-Art in Modeling and Model-Driven
Engineering of Digital Twins

In current literature, there exist approaches for the MDE of digital twins and for
modeling software architectures. We present and compare some of them to our work.

For the engineering to DTs, the industry provides platforms to develop DTs
in an easy way [33, 34], but ties users to a specific vendor. MDE needs more
general approaches that enable modularization, provide systematic approaches for
interoperability, and support reuse. Some examples of such industry solutions
are Microsoft Azure,4 Amazon Greengrass,5 IBM Maximo,6 or Siemens Mind-
Sphere,7 as well as modeling techniques to model DTs, e.g., Eclipse Ditto, Hono,
and Vorto,8 Microsoft Digital Twin Description Language.9

5.2.2.1 Reference Architectures for Digital Twins

A reference architecture for DTs identifies the different components in a digital twin,
their interconnections, and their interface. It acts as a template in the DT’s design
process within a specific domain. Following the principles, a reference architecture
supports a DT developer in implementing an efficient solution to their problem
domain.

4 https://azure.microsoft.com/services/iot-hub/, https://azure.microsoft.com/services/digital-
twins/, and https://azure.microsoft.com/services.
5 https://aws.amazon.com/de/greengrass/.
6 https://www.ibm.com/topics/what-is-a-digital-twin.
7 https://siemens.mindsphere.io/en.
8 https://www.eclipse.org/hono/, https://www.eclipse.org/vorto/, and https://www.eclipse.org/
ditto/.
9 http://www.aka.ms/dtdl.

96 M. Heithoff et al.

Grieves [35] proposes a three-dimensional DT model as a first conceptual struc-
ture. It includes (1) a Physical Entity, (2) a Virtual Entity as a digital representation
of the physical one, and (3) interconnection allowing for communication between
both. Tao et al. [36] extends this approach in five comparatively generic dimensions
that concern physical entities, virtual models, services, data, and connections
between elements.

The DT reference architecture of the Digital Twin Consortium [37] provides
an overview of the main constituents. It delivers a technology-agnostic foundation
of a digital twin’s components, features, and requirements. The information and
operation technology (IT/OT) platform serves as the virtualization foundation the
twin system operates on. It comprises the operating system, functionality for
orchestration of requests and activities, and the integration infrastructure, e.g., for
data storage. The virtual representation is the digital twin’s core, representing
the central software platform encapsulating the system’s models, simulations,
operations, and different forms of representation. This component is twinning the
real-world counterpart. Therefore, it can reflect several system states (historic,
present, or anticipated future) and inflict steering commands. These constant updates
require a bidirectional connection to the real world. The seamless integration
and communication between the twin and its counterpart is established via the
service interface. It prescribes the transmission protocols for exchanging data and
commands. This interface enables integrating real-world inputs (e.g., collected
via sensors) or external data sources. Applications and services provide further
functionality to the digital twin. They constitute subcomponents dedicated to
particular tasks, enabling the twin to perform more sophisticated operations on the
real-world system concerning external data or events.

A unifying approach and key enabler in modern manufacturing is the Refer-
ence Architecture Model Industry 4.0 (RAMI 4.0) [38], providing for product
development and provisioning in an interconnected world. It establishes a common
terminology between different disciplines and enables their collaboration. RAMI
4.0 features three dimensions for incorporating production assets concerning dif-
ferent hierarchy levels (i.e., in which context it is applied) throughout its complete
life cycle and different domain-specific views. It focuses on networking and the
correct, integrated virtual mapping of physical assets. In this context of the seamless
integration of production machines in Industry 4.0, Asset Administration Shells
are a common concept for standardized data exchange. Their main idea involves
creating a virtual wrapper for a CPS [39]. This wrapper manages all external
communication in a standardized manner. Thus, it covers the knowledge about
internal transmission properties and provides a mapping adhering to a standardized
communication protocol, allowing data and command exchange in both directions.
Further approaches envision the extension to semantic asset administration shells
[40]. These establish transmission not only via standardized protocols but also
through a shared semantical foundation, ensuring the same meaning of the data at
all endpoints.

The ISO published a reference architecture for DTs in manufacturing [41].
They divide the DT framework (including the DT and all of its surroundings)

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 97

either by domain or entities resulting in two reference models. They also provide
a functional view of their DT reference architecture. The domain-based reference
model divides the DT framework into layers building up upon each other. (1) The
observable manufacturing domain, describing the observed real-world (including
processes and personnel), (2) the device communication domain which observes and
interacts with the sensors and actuators of the observable manufacturing domain, (3)
the digital twin domain where all digital twin logic happens, e.g., synchronization
and services, and (4) the user domain accessing the digital twin domain and
providing applications for humans and other systems. The entity-based reference
model introduces entities which a digital twin framework should implement. Those
entities manage the 4 domains and are divided in (1) user entities, e.g., MES
or human-machine interfaces, (2) digital twin entities, e.g., operation or service
management, (3) device communication entities, e.g., data collection, and (4) cross-
system entities. The functional view refines the entity-based reference model and
defines different functional entities, such as the data-collecting functional entity.
This reference architecture offers a valuable guideline for implementing a digital
twin with different components and domains for consideration. However, the model
is of an abstraction level not directly suitable for code generation.

Minerva et al. [42] propose a generalized architectural model for DTs that is
organized into four primary layers. The Perception Layer and Communication Layer
are responsible for interacting with physical items in the original system, e.g.,
devices, but also with edge and cloud items. The Middleware Layer gathers five
sub-layers that (i) manage and orchestrate items; (ii) virtualize them to exploit
their characteristics; (iii) model, aggregate, and orchestrate logical objects as
item abstractions; (iv) collect, integrate, and contextualize data; and (v) aid in
the visualization, design, and simulation of digital twins. Finally, the Application
Layer interacts with the Middleware Layer by means of well-defined interfaces to
implement and provide software systems that leverage digital twins. Liu et al. [43]
present a reference framework for cloud-based digital twins in the Healthcare
domain (CloudDTH). Similarly to Minerva et al. [42], the CloudDTH reference
framework is organized in layers. However, it explicitly includes user concerns and
user interaction with digital twins, and considers the possibility of flexibly adding
novel services when required. Kovacs and Mori [44] present several kinds of DT
architectures, e.g., their integration as design tools within the Product Lifecycle
Management (PLM), for co-simulation, cloud-based device DTs, multi-actor DTs,
or multi-actor distributed DTs.

While all contributions introduce valuable concepts, applying MDE approaches
remains a challenge using them. Most proposed reference architectures miss the
level of detail needed to be usable for model-driven engineering or are too specific
to a single domain. Component and connector architecture models present a logical
software architecture to achieve an abstract architecture with enough details to
utilize automated testing, verification and code generation. These details include
logical components, their signatures, as well as behavior descriptions in a formal
way within Architecture Description Languages (ADLs). Therefore, we propose an
architecture following the logical architecture modeling paradigm.

98 M. Heithoff et al.

5.2.2.2 Model-Driven Engineering

MDE has the potential to reduce system complexity and increase development
efficiency, portability, quality, and reusability, among others [13]. To this end, the
paradigm provides various means to automate software engineering processes. In
this chapter, we focus on the following foundational MDE techniques, which are
well-established and elaborated both in theoretical and practical hindsight [45]:

• Integration on the Language and Modeling Levels: Modeling languages are
core to MDE as they prescribe the syntax and well-formedness constraints of
models. Furthermore, they denote a practical means for model construction
that allows retrospective integration with existing models likely to be expressed
in other languages [46–48]. A building block of digital twin engineering is
the design of digital twin architectures that ensure compatibility with their
original systems. When employing MDE in the digital twin engineering process,
it becomes possible to integrate existing models of the original system with
models that are relevant to digital twin design. This integration is non-intrusive,
i.e., it leaves the engineering models unchanged but enables domain experts
to participate in the engineering process and synthesize large parts of the DT
implementation (next items).

• Domain-Specific Modeling: Modeling languages can be oriented towards
domains in that they specify concepts and keywords for the capturing of domain
knowledge being relevant for certain purposes. This MDE technique enables the
directed participation of domain experts in engineering processes and empowers
them to directly impact the developed system’s structure and behavior. In
the context of digital twin engineering, domain-specific modeling languages
support domain experts in the description of data aggregations, conditions for
interactions with twin-external systems, and runtime configurations. Here, low-
code development platforms are also becoming important [49] and we discuss
them as an additional supportive technique for domain-specific modeling.

• Code Generation: Code generation is often recognized to be a key driver for
MDE adoption as it can increase development efficiency and quality. We perceive
code generation as a crucial technique for digital twin engineering because it
allows the synthesis of executable code for digital twin data structures, databases,
services, interfaces, and user-facing cockpits [28, 50, 51].

• Model-to-Model Transformation: Model-to-model transformations convert
models of one modeling language into models of another language. They are
particularly useful for the stepwise refinement of models on different levels of
abstraction towards concrete implementations, and to bridge between different
kinds of models or modeling ecosystems. For digital twin engineering, we
leverage model-to-model transformations, e.g., to add semantic information to
unstructured runtime data or derive database models from engineering models.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 99

5.2.2.3 Modeling of Digital Twin Architectures

Modeling digital twin architectures in research is either considered on a high level or
for very concrete realizations, e.g., simulation or fidelity analysis. E.g., Muñoz [52]
presents a high-level digital twin system framework to investigate the fidelity of
digital twins and measure if a digital twin and the physical system are equivalent.
In further work, Muñoz et al. [53] are investigating the alignment of the traces
between physical and digital twin. Barat et al. [54] present an agent-based DT
as experimentation support for simulation-based decision-making. Niati et al. [55]
introduce a multi-paradigm modeling approach to derive the behavior specification
of a multi-agent digital twin but lack to describe a related functional architecture.

Macías et al. [56] propose an approach to model the architectural design of digital
twins using Domain-Driven Design (DDD) [57]. DDD is a model-based methodol-
ogy that emphasizes the collaboration of domain experts and software engineers to
realize software systems that correctly reflect the relevant structural and behavioral
parts of the application domain. The proposed approach by Macías et al. leverages
DDD’s (i) strategic design to identify digital twins as bounded contexts and clarify
their relationships; and (ii) tactical design to distribute domain concepts among
digital twins, capture their semantics, and specify twins’ technical capabilities. We
consider the approach by Macías et al. a valuable step to ensure that DTs fit their
intended domain-specific purposes. Specifically, the approach’s explicit emphasis
on the importance of domain services and the general applicability of DDD in MDE-
based development processes [58, 59] maps to our reference architecture (Sect. 5.3)
and vision of model-driven digital twin engineering (Sect. 5.4).

The work presented in this chapter builds on our previous work on architec-
tures for digital twins. We have investigated relevant components of the system
architecture of self-adaptive digital twins [6] using the ADL MontiArc [60]. The
communication between MontiArc components relies on the Focus stream the-
ory [61, 62] which describes semantics formally as an ordered stream of messages.
Connectors represent the sending and receiving of sequences of messages via
unidirectional channels. Each channel transports the messages of a specific type
in order of their transmission. One can use the timing paradigms untimed, timed,
and time-synchronous. Moreover, MontiArc allows the embedding of software
languages [63] for describing component behavior, e.g., automata, process models,
or code. The MontiArc code generation and simulation framework is able to
generate Java code. Using weakly-causal and strongly-causal components, the
generated application allows for timed and time-synchronous communication. We
have realized a prototype for a use case in injection molding [64], developed
methods to integrate the CPS with their digital twins [34], and how to integrate
functionalities for process prediction [65]. To support human users, we have
investigated what components are needed for digital twin cockpits [27]. Moreover,
we have investigated which challenges occur when we are integrating digital twin
systems-of-systems [66].

100 M. Heithoff et al.

5.2.2.4 Model-Driven Engineering of Digital Twins

MDE methods are well applicable for the engineering of digital twins as they
increase automation and reduce the development time of applications [13]. Research
about MDE for DTs has increased especially driven by the Modeling Digital
Twins (ModDiT) workshop series10 as part of the MODELS conference and the
Engineering Digital Twins community.11 The state-of-the-art in MDE for digital
twin engineering includes various approaches to derive relevant services, however,
a more comprehensive view over the whole lifetime of an original system is missing.

Lehner et al. [50] introduce a framework for the model-driven development
and maintenance of digital twin infrastructures. It consists of a metamodel for the
description of digital twin types and instances in a platform-independent manner.
Existing engineering models in AutomationML12 can be transformed into instances
of the metamodel from which the generation of digital twin infrastructures becomes
feasible. Our approaches (Sect. 5.4) also leverage code generation for the synthesis
of digital twin infrastructures but in addition, produce further artifacts such as digital
twin cockpits. Furthermore, our modeling languages provide concrete syntaxes
that, in addition to automated model-to-model transformations, allow manual
modeling for model creation and evolution. By contrast to a holistic metamodel,
the expressivity of our languages for the description of DT components arises from
the composition support of the underlying technology. Consequently, stakeholders
can model different aspects of digital twins using languages that are tailored to
their needs and anticipate the composition of resulting models for the holistic
specification of digital twins. As a result, the introduction of novel modeling
languages or constructs has a comparatively low impact on existing metamodels
and thus does not require the redeployment of the complete modeling ecosystem.

Fend and Bork [51] present a modeling language and code generation framework
for the monitoring of mobile CPS. The language enables architects to specify such
systems including functionalities, sensors, and actuators. A model transformation
translates language models into SysML v2 models13 for technical refinement.
Finally, a code generator derives a DT with a monitoring cockpit from the SysML v2
models. In the resulting architecture, the digital twin is responsible for bridging
between the CPS and the cockpit. Similar to our approaches (Sect. 5.4), Fend and
Bork aim to support digital engineering with holistic MDE that allows model
construction, transformation, and generation of executable source code. The code
is as complete as possible both for connecting original systems with DTs and
controlling items through DTs in a visual, user-centric fashion. While our primary
focus is currently on design time, Fend and Bork address runtime concerns.
Furthermore, they concentrate exclusively on monitoring and mobile CPS.

10 https://gemoc.org/events/moddit2023.
11 https://edt.community/.
12 https://www.automationml.org.
13 https://www.omg.org/spec/SysML.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 101

Huang et al. [67] propose the usage of ontologies to establish semantic inter-
operability between DTs that leverage asset administration shells to ensure syn-
tactic compatibility between heterogeneous assets in smart factories. They align
asset models with dedicated Unified Modeling Language (UML) profiles with
an ontology that specializes in the description of capabilities for manufacturing
resources. This alignment relies on mappings between model and ontology elements
to capability-centric assign meaning to assets. Like our approaches (Sect. 5.4),
Huang et al. employ MDE and language composition. On the contrary, we exploit
textual domain-specific modeling to increase language efficiency and usability for
stakeholders who do not have a background in software modeling or engineering.
Furthermore, our composition mechanisms allow a tighter integration of languages
that gives rise to controlled, systematic, and compatible language co-evolution.
Moreover, [67] does not apply code generation for DT synthesis.

In previous work, we have investigated how to use MDE to engineer digital twins
and how to use models during the runtime of digital twins for use cases in different
application domains. Our approaches investigate how to extract functional machine
knowledge from STEP files to be used for digital twin engineering [30]. In a 2-step
generation process, we are able to create low-code development platforms for the
generation of digital twins [49]. We have investigated how digital twins can support
the MDE process to create sustainable software systems from design to their end-
of-life [29] and how to support the design process of wind turbines with digital twin
cockpits for parameter management [5]. To be able to work with models at runtime
in digital twins, we have developed methods to generate process-aware systems [68]
and to generate process-aware digital twin cockpits from event logs [28]. Moreover,
we connect process models with digital shadows to allow for reproducibility of, e.g.,
data analysis, aggregation, and simulation [69].

5.2.3 Used Technology Stack

The model-based engineering of digital twins and their constituents predominantly
relies on engineering models crafted in modeling languages of heterogeneous
disciplines. Such languages, called Domain-Specific Languages (DSLs), are tai-
lored for their specific use case in an application area to describe a system’s
structure, behavior, geometrical topology, etc. That is, they are usually designed
with respect to the target domain’s terminology and foster efficient modeling for
the corresponding domain experts. In model-based approaches, the created models
are often used for communication, describing the system under development. In
MDE, they represent the primary development artifacts from which parts of the
system are automatically derived [70]. The precise manifestation of this synthesis
strongly depends on the application domain, e.g., via code generation for software
components or milling on CNC machines for hardware.

As digital twins are software products by nature, it is plausible to automatically
derive them (as far as possible) from the engineering models of the original system

102 M. Heithoff et al.

via code generation. For this purpose, the models must be processed using the
tooling of their original DSLs to extract relevant information. These DSLs are
created using language workbenches, e.g., MontiCore [71] which supports the
efficient engineering of modeling languages with a textual representation. A DSL is
based on a context-free grammar (CFG) in EBNF form [72] to describe concrete
and abstract syntax. MontiCore generates the required infrastructure to process
the model artifacts: a parser transforming the model into an abstract syntax tree
(AST), context conditions for checking additional well-formedness constraints, and
a symbol table infrastructure [47] for quick navigation and cross-referencing.

A distinctive feature of MontiCore is its large variety of language composition
techniques fostering reuse and seamless integration of multiple DSLs. These
techniques range from a simple extension of existing languages to their mutual
embedding to aggregation. To this end, MontiCore provides an extensive library
of reusable language components [73] containing common constituents present
in multiple DSLs, such as expressions, statements, literals, or types. They serve
as default building blocks and thus avoid engineering modeling languages from
scratch. MontiCore focuses on black-box reusability of not only the concrete and
abstract syntax of a language but also of the corresponding tooling. Therefore,
MontiCore makes use of several design patterns [74], such as an exhaustive
visitor infrastructure for traversing the AST and symbol table, as well as advanced
mechanisms explicitly tailored for sustainable language development, such as the
TOP mechanism for including handwritten artifacts or the mill serving as a static
delegator enabling seamless reuse in language composition.

For synthesizing executable program artifacts from a parsed model, MontiCore
comes with a generator infrastructure based on the FreeMarker template engine.14

It facilitates applying templates to specific types of AST nodes for translating these
into artifacts of general-purpose programming languages. Templates consist of a
static part directly copied into the target artifact and a dynamic part evaluated
concerning the contents of the given AST nodes. Furthermore, templates can embed
each other. Therefore, MontiCore provides a flexible template exchange mechanism
to seamlessly adapt the code generation process for individual use cases.

5.3 Reference Architecture Components of Digital Twin

We propose a reference architecture for digital twins useful for MDE approaches.
It is based on models and services and includes components that enable self-
adaptivity and process awareness. We consider a reference architecture to be
based on a reference model. A reference model consists of associated concepts
of an abstract framework or domain-specific ontology representing the component
parts of a consistent idea and supports communication of this idea to members

14 https://freemarker.apache.org/.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 103

of a certain community [75]. Hence, the concepts in a reference model of a
reference architecture denote the architectural components of a software or system
architecture. Associations between these concepts identify communication rela-
tionships between architectural components. The reference model of a reference
architecture can be leveraged by relating its concepts and associations with more
concrete elements of the same kind. Specifically, for the implementation of a
reference architecture, it is necessary to choose concrete technologies for each of
its components, and communication protocols and data formats for communication
relationships between components.

Figure 5.2 shows our proposed reference architecture for model- and service-
based digital twins. To foster its comprehension by readers without a theoretical
background in model-based engineering, its reference model follows a custom
notation whose mapping to model formalisms like UML component diagrams [76]
or MontiArc [60] is straightforward. The reference architecture manifests our
previous insights on digital shadows [77] (Definition 5.1), self-adaptive digital
twins [6] (Definition 5.2), and process-aware digital twins [65] in a coherent
conceptual framework.

Digital twin services constitute the functional building blocks of our reference
architecture. In general, a service is a software component that (i) is loosely
coupled to minimize dependencies to other components; (ii) aims for high cohesion
by encapsulating coherent business logic; (iii) agrees on contracts as predefined
specifications of communication relationships and provides a well-defined interface
with operations to establish such relationships; and (iv) is composable with other
services to coordinately accomplish coarse-grained tasks [78].

Software Engineering | RWTH Aachen1

Evaluator ReasonerGoal

Data Processor

Processor

Query Digital
Shadow

Database Layer

Database Interface
Technology-Specific Data Storage Technology-Specific Data Retrieval

Process
Discovery

Event
Log

Process
Model

Digital
Shadow
Type,
Domain
Model,
Data

Data,
Digital
Shadow

Conformance
Checker

Event
Log

Problem, Action

Executor

Action Feedback

Process
Model

Suggested
Action

Cockpit Backend
Actions,
Process
Models,
Digital
Shadows,
Digital
Shadow
Types

User
Decisions,
Digital
Shadow
Types,
Commands

Cockpit Frontend

Further
Services

Data Command

Feedback

Gateways

Digital Twin

Original System

Data Lake

Third Party
Applications

Data

Data
Data

Command

Feedback

Key

Digital Twin
Service

Infrastructure
Component

Twin-External Application or
System

Action, Command, or Data
Flow from Left to Right

Essential Services for
Self-Adaptivity

Essential Services for
Process-Awareness

Digital
Shadow
Caster

Pre-Processed
Data

Digital
Shadows

Pre-
Processors

Digital
Shadow

Type, Data
Data

Data,
Event Log

Process
Orchestrator

Optimizer

Digital
Shadow

Digital
Shadow

Action,
Digital Shadow

Action

Fig. 5.2 Reference architecture for model- and service-based digital twins useful for MDE
approaches, including components for self-adaptivity and process-awareness (simplified illustra-
tion of a MontiArc model, some relations omitted for readability)

104 M. Heithoff et al.

In the context of digital twins, the decomposition of a software architecture
into services yields various benefits. First, services permit targeted scalability of
functionality [79]. If, for instance, the original system is extended with additional
physical entities that send commands to the twin, the digital twin services dealing
with these commands can be started as often as required to execute the requested
commands in parallel, thereby increasing the twin’s performance efficiency [80].
Second, services improve the twin’s maintainability because functionality in the
form of new services can be added without the need for redeploying the complete
twin. Furthermore, existing functionality is modifiable by adapting the correspond-
ing services whereas other components can continue their operation as long as
interfaces remain stable [79]. For a digital twin, this independent modifiability
permits seamless integration, e.g., with physical entities that leverage novel com-
munication technologies. Third, service-based digital twins can draw on knowledge
from service-based software architecting, e.g., to increase a twin’s reliability by
established fault-handling mechanisms like automated service replication [81],
specialized design patterns [78], and streamlined testing of functionality [82].

The proposed reference architecture in Fig. 5.2 represents a simplified illustration
of a MontiArc model which can be used to generate the source code of a DT. The
architecture consists of the following services:

• Data Processor: The Data Processor consists of several Pre-Processors,
the actual Processor, and the Digital Shadow Caster. Pre-Processors
query Data from databases in the Database Layer, perform preprocessing
steps, and pass the pre-processed data to the Processor. The Digital Shadow
Caster [65] creates instances of Digital Shadows from Digital Shadow
Types, available Data, and Domain Models that capture required domain
knowledge for digital shadow creation [77].

• Evaluator: The Evaluator is responsible for the supervision of the Original
System [6]. To this end, it compares digital shadows requested from the Data
Processor with the current state of the Original System based on event-
condition-action rules. The Evaluator is able to detect undesired differences
between the Original System’s current and target status. Depending on
differences’ severity, the Evaluator creates and sends Goals to the Reasoner
to mitigate the differences, or informs the Optimizer about Actions that allow
a further improvement of the Original System’s current state captured as a
Digital Shadow.

• Reasoner: This service finds or derives Actions to reach a target state in the
Original System that fulfills provided Goals [6]. The Reasoner bases its
finding or derivation of Actions on data about the Original System as well
as models describing the Original System’s intended behavior. The Reasoner
may comprise different AI sub-components for the automated reasoning about
Goal achievement [65]. In case these sub-components provide more than one
Action for Goal achievement, the Reasoner is also responsible for selecting
the most suitable Action, e.g., in terms of cost, time efficiency, or energy
consumption.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 105

• Executor: This service translates the Action selected by the Reasoner into
Commands that are executable by the Original System [65]. Furthermore, it
considers Feedback from the Original System concerning the execution of
suggested Actions and may also pass this Feedback to the Reasoner.

• Optimizer: The Optimizer service integrates means that enable an improve-
ment of the Original System’s current state reflected by a given Digital
Shadow and accompanying Data. Similar to the Reasoner, the Optimizer
instructs the Executor to prepare Commands for execution by the Original
System that results in the calculated state improvement.

• Process Discovery: From received Event Logs, the Process Discovery
service derives Process Models by means of specialized algorithms [65].

• Process Orchestrator: The Process Orchestrator is responsible for
performing and monitoring the execution of Process Models. Since this service
may interact with every other digital twin service that acts as a participant in a
process, we do not show all possible communication relationships in Fig. 5.2 to
keep it comprehensible.

• Conformance Checker: This service supports process analysis and prediction
by means of process mining and reasoning techniques [65]. It identifies devi-
ations from real-world processes based on Event Logs that capture steps in
process flows and Process Models that describe the intended process flow. The
Conformance Checker derives Actions for the Reasoner to resolve possible
Problems that manifest as deviations in actual and intended process flows.

• Cockpit Backend & Frontend: We refer to Definition 5.3 for an explanation
of these services. While the Cockpit Backend is responsible for the interaction
with the Database Layer, the Cockpit Frontend provides users with a
graphical interface to access data, possibly after its processing by the Cockpit
Backend, and manipulate it through operations provided by the Cockpit Back-
end [65]. Additionally, we consider both components to also be able to interact
directly with all other digital twin services, e.g., to increase communication
efficiency by preventing non-performant communication loops. However, for the
sake of comprehensibility, Fig. 5.2 does not comprise all possible communication
relationships of Cockpit Backend & Frontend.

• Further Services: As described above, a benefit of service-based software
architectures is their modifiability. Consequently, our proposed reference archi-
tecture anticipates its extensibility by further services. These services may
interact with already existing ones. For example, we can envision a Monitoring
service that processes Event Logs from the Data Processor service but also
Process Models from the Database Layer. Furthermore, an Analysis service
could leverage the Conformance Checker to enable users to reason about
conformance deviations in Process Models or it uses the Reasoner to debug
the derivation of Actions from Goals. A Simulation service, on the other
hand, could send simulation-specific Data to the Data Processor and track
the Feedback produced by the Executor when current and intended state in a
simulation of the Original System deviate. There may also be services that
allow the synchronization of design models, e.g., Domain or Process Models,

106 M. Heithoff et al.

with models that reify the runtime of the digital twin. Such a synchronization
would permit error resolution in design models or stimulate new design decisions
that result in an adaption of design models [83]. Digital twin services may interact
with each of the previously described services as well as with each other. Again,
we do not show all possible communication relationships in Fig. 5.2 to facilitate
its understanding.

• Gateways: Twin-external applications or systems like Third Party Applica-
tions, the Original System, or external databases abstracted by the notion of
Data Lake interact with digital twin services via Gateway services. A Gateway
service is an intermediary between the DT and external services. It allows (i)
tailoring of the interfaces of digital twin services to external applications or
systems, e.g., by bundling operations that serve the same use case but stem from
different digital twin services or by hiding internal utility operations from twin-
external entities; (ii) additional scalability, e.g., for buffering an increased amount
of requests from twin-external entities before initializations of new instances
of digital twin services finish; and (iii) preprocessing of received Commands
and Data, e.g., by bridging between twin-internal and -external protocols and
data formats, or by filtering malformed requests before they reach twin-internal
services [84].

5.4 Model-Driven Engineering of Digital Twins: How to
Derive Innovative Products

In Model-Based System Engineering (MBSE), it is common practice to develop
models that describe the various aspects of the original system within its design
phase. These models range from describing structural elements, such as the system’s
architecture or setup, over behavior models to models describing the human
interaction with this system. These models are typically referred to as engineering
models.

As the digital twin shares the conceptual base with its original system, we find
very similar elements in both. Therefore, we aim to reuse our engineering models
from the design process of the original system to derive large parts for its digital
twin via code generation(see Sect. 5.2.3). This does not only have the effect that
we do not discard the models but also changes made to the engineering models
will have a transmission effect on both the original system and its digital twin,
ensuring their compatibility. Furthermore, we also aim to enable citizen engineers to
set up, modify, and control their digital twin by using models conforming to targeted
domain-specific languages.

Designing the original system can be done with the MBSE approach, describing
the individual parts of the system. For that, several modeling languages are
employed [85]. We roughly distinguish between two types of models: structural
models and behavioral models. UML class diagrams depict the data foundation

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 107

and component types within a system, and ADLs like MontiArc [64], or SysML
describe the interplay of multiple components (e.g., a sensor or an assembly group).
To describe the behavior of single components we could utilize modeling languages
like statecharts or the BPMN, to specify desirable or unwanted situations we often
use exemplary methods, like object or sequence diagrams. In addition, we can also
specify the user interaction with the system using, e.g., the BPMN or use-case
diagrams.

Those engineering models build the foundation after which the original system
is constructed. One key element of each DT is the data it monitors, evaluates, and
controls. This data is coming from and going to the original system for which both
systems share a common data foundation. We can derive this data structure for our
digital twin using an MDE approach from the structural engineering models. These
describe the components of the original system as well as their interfaces, namely
the data that flows between components. Exemplary we show that for structural
SysML modeling (see Fig. 5.3). We can extract the data structure as a class diagram
from SysML part definitions using a transformation where part definitions are
converted to classes and parts are transformed to either class attributes or classes
with an association depending on their primitive type. From UML class diagrams
we can generate a relational database on which the digital twin can work on [86].

Next, the data model must be connected to the actual system. For legacy systems,
this has to be constructed via a hand-written interface which invokes the original’s
system API or offers the endpoint for a communication channel like OPC. If
the developer has more control, they can make use of a systematic model-driven
interface specifications to streamline the development [87].

Figure 5.4 shows how a digital twin developer can utilize the data model
which corresponds to the original system’s engineering models. A well-defined data
model not only allows us to develop the digital twin faster but also adds semantic
information to the data gathered: every data point is associated to a structural
concept in the engineering model. In the engineering process of digital twins, we
specify which data will be processed in the form of digital shadows. A DT engineer
can now select from the data concepts in the data model as instructions to build the
digital shadow. Hand-crafted aggregation and abstraction steps refine this data to fit
the shadow’s purpose. All services within the digital twin can now reason about the
same data concepts and can access and modify this data via a well-defined interface.

Fig. 5.3 Deriving data models from engineering models

108 M. Heithoff et al.

Fig. 5.4 From engineering models to DT components utilizing data models

Furthermore, the data model can be used to define a basic standard overview in a
graphical user interface in the DT cockpit.

Although the extraction of a data model already employs benefits in the
engineering process of the digital twin, other development models can also serve
as the basis for other services. For instance, one can directly derive services from
behavioral models that verify the correct (in the model specified) behavior. In case of
deviations, those can either notify via the DT cockpit or perform actions themselves,
if a fallback strategy has been defined. User interactions can be derived from BPMN
models and use case diagrams, which can be executed in the digital twin cockpit and
guide the DT operator through complicated processes. The GUI can be extended
with a graphical presentation of the system derived from an architecture model,
displaying which data is flowing over which channel at which component. 3D
models enhance this to provide a more visually intuitive representation or can be
used in simulation to predict how the system evolves.

These were all models that were already present from MBSE of the original
system. For the successful development of a digital twin, we can further extend
the MDE approach by adding models only used for the software engineering of the
DT. This includes utilizing all the information that the original system lacks. Mostly
sensor information in the spatial context the original system is deployed in, and user-
defined services that work on the information the original system outputs and of its
context. Regarding our reference architecture for model- and service-based digital
twins (see Fig. 5.2), we identified modeling languages well-suited to input domain-
expert information for each component [49]. Building DSs in the Digital Shadow
Caster can be done by defining its data structure as a class diagram, connecting
it to the twin’s data model, and defining hand-crafted aggregation steps either by
an expression language like the OCL or using workflow models specifying each
computation step within a business process which also involves a potential user [69].
The latter has the benefit that the level of abstraction can be chosen so that domain
experts can be included in the design process of this aggregation. The situations
that the Evaluator shall detect can be modeled using an event language [64]
which specifies conditions that trigger such an event. Reasoning methods can be

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 109

defined using the Planning Domain Definition Language (PDDL),or Case-Based
Reasoning (CBR). Large parts of the Cockpit components can be generated using
class diagrams for the data layer, GUI models to describe graphical components
operating on this data, and OCL conditions to constraint and validate data and GUI
inputs [88].

Developing digital twins remains a software development process that still
requires a significant amount of domain knowledge. To bridge this gap, low-
code platforms have emerged, enabling domain experts (here referred to as citizen
engineers) to actively participate in the development process. Their domain-specific
knowledge can be provided in the form of models. With the help of a low-code plat-
form, citizen engineers are guided through the various aspects of the digital twin, not
only configuring its initial setup but also potentially reconfiguring it during runtime.

We propose a two-phase development approach for a Low-Code Development
Platform (LCDP) [49] (see Fig. 5.5). Firstly, the platform itself is built using a
model-driven approach from the design-time models, such as class diagrams or
GUI models [88]. Software developers integrate language plugins, each specifically
designed for a component of the reference architecture (see Fig. 5.2). These plugins
consist of a language component, corresponding digital twin-component(s), as well
as an editor and viewer. Additionally, developers can leverage pre-existing plugins
to expedite the process.

After generation of the LCDP, a DT engineer is guided through the configuration
process. They start by defining the domain data model as a class diagram, using
the language-plugin’s editor and viewer. They then proceed to specify models for
the different components of the reference architecture: digital shadows, evaluation,
and reasoning methods, behavior models for process conformance checking, and
communication with the original system or other external systems. The DT engineer

Fig. 5.5 Development process of a low-code platform which guides throughout the model-driven
engineering of a digital twin [49]

110 M. Heithoff et al.

can also choose from a pre-defined model library. The outcome of this process is a
DT configuration, which can be instantiated for a specific system. For changes in
the system or to instantiate a DT for other systems, the DT engineer can then adapt
this DT configuration.

Such a low-code approach is very flexible, e.g., what digital twin components
could be used when reference architectures evolve, which models to provide in
model libraries, and which DSLs should be supported.

5.5 Exemplary Use Cases for a Digital Twin in Injection
Molding

The domain we consider for digital twin engineering in the manufacturing domain is
injection molding (see Fig. 5.6). Injection molding describes a production process,
which takes plastic granules as input and creates plastic parts. Plastic granules are
inserted through the hopper into the injection unit where they are heated. The molten
material is transported via the screw and injected under pressure into an injection
mold which represents the negative shape of the workpiece. A clamping unit keeps
the mold closed during this process so that the mold halves do not open up. The
machine ejects the workpiece from the mold after a defined cooling time.

If we want to create a digital twin for such a system, we need the models and
contextual data traces of this CPS during its operation. Our digital twin provides
services to use the data and models. However, what data is relevant, and what
services to be provided depends on the use cases and different purposes a DT should
cover. In the following, we discuss five use cases represented within one DT.

Use Case 1: Monitoring and Providing Information to Human Operators
During the production process, we can measure the process parameters temperature,
and pressure using different sensors. These measurements already indicate the

Fig. 5.6 An injection molding machine (ARBURG Allrounder 520)

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 111

quality of the produced workpiece due to the highly sensitive nature of injection
molding machines to contextual changes such as environmental temperature. As a
result, the same configuration does not result in workpieces of the same quality
every time. In practice, an experienced operator is able to derive how to adapt the
configuration to meet the required quality criteria.

Digital Twin Components for Use Case 1 The original system collects relevant
data, e.g., temperature, current volume flow, injection pressure, and machine
movements, via sensors in and on the injection molding machine. This data is sent
to a data lake via OPC-UA (step 1 in Fig. 5.7). The digital twin fetches relevant data
via its data collection gateways (step 2) and processes the data in the data processor
(step 3) to derive relevant DSs, e.g., to monitor the aforementioned sensors. This
information is then visualized in the digital twin cockpit (steps 4–7). An experienced
operator can then decide if they have to intervene in the process. User decisions from
the cockpit, e.g., to reduce the pressure, are then transferred to the executor (steps
7–10) which translates the user decision into machine commands. Those are sent to
the original system (steps 11, 12).

Use Case 2: Self-Adaptive Volume Flows As operators might not always have the
knowledge required to perform parameter changes for optimizing the settings of an
injection molding machine, it is also interesting to enable digital twins to self-adapt
the system, e.g., to reach a constant melt front velocity inside the mold [64]. To
realize this, relevant sensory information needs to be processed, e.g., from cavity
pressure sensors monitoring the characteristic volume flow. The digital twin should
then adjust the volume flow profile to reach a constant melt front velocity. This
ensures high-quality parts and reduces weld lines, incomplete filling, or burners.

Fig. 5.7 Data flow within the components of our architecture based on Use Case 1

112 M. Heithoff et al.

Digital Twin Components for Use Case 2 In our architecture supporting self-
adaptivity in a model-based way, we take digital shadow types describing what part
of the data we need and how to aggregate it into the digital shadow caster. We
request the defined data via gateways and create a digital shadow including data
about the injection pressure and the volume flow. This DS is then passed on to the
evaluator, which identifies problems in state-defining attributes in comparison with
the data in the DS. If a problem is detected, e.g., the cavity pressure is too low, the
evaluator sends a related goal to the reasoner, e.g., to increase the cavity pressure.
The reasoner then decides, e.g., based on previous data, what the right amount of
increase is and sends the according action, e.g., increase the cavity pressure by 5
bar, to the executor. The executor translates it into a machine command and sends it
via OPC-UA connections to the original system which performs the command.

Use Case 3: Geometry-Dependent Machine Configuration In order to reach a
constant melt front velocity in an injection molding machine very quickly, one
can apply simulative optimization methods which simulates the injection molding
process for a certain part geometry and then calculate an optimized injection volume
rate profile. Using this profile, concrete machine settings are calculated and applied.
In the next step, the results are validated by measuring the pressure and screw
position. This information could lead to a new calculation of machine settings to
improve the injection volume rate profile.

Digital Twin Components for Use Case 3 To realize this use case, step by step
a DS is populated with data for the optimization of the melt front in the digital
shadow caster. A simulation service uses data about the geometry of the part
and the material in this DS and calculates the injection profile. This DS is then
used by an optimization service to calculate the machine settings and the executor
translates them into machine commands sent to the original system. In the next
step, e.g., the pressure and screw position is measured. The evaluator identifies if
the pressure defers too much from the ideal injection profile and in case this is
true, the optimization service is again called to calculate new machine settings to
be executed. This could be repeated in several cycles until the quality goals are
reached. The data resulting from each of these steps are added to the DS in the digital
shadow caster in between each step. A process model with instances organized by
the process orchestrator guides the system to know which service has to be called
and when the digital shadow caster needs to add data.

Use Case 4: Job Scheduling For production planning, an optimal production
schedule is important. Thus, the digital twin requires information from a production
scheduling system about the jobs, their due dates, the duration needed for their
realization, and the changeover times between different jobs. For an injection
molding job, one needs to put the right mold on the corresponding injection
molding machine, one usually has to change the raw material, and needs to adjust
several manufacturing parameters, e.g., the temperature to melt the material. This
time differs depending on the part to be manufactured and its predecessor. This
information is then optimized to receive schedules, e.g., with a minimal setup

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 113

time and minimal total lateness of jobs. During the execution of the jobs, the real
execution times and setup times could be monitored and compared with the planned
times. Deviations could lead to a new job scheduling or at least new calculations of
job lateness.

Digital Twin Components for Use Case 4 Information such as jobs, their due
dates, and the duration needed for their realization is available for the digital twin via
third-party applications, e.g., an ERP system. The digital shadow caster creates a DS
including all relevant information for building an optimal schedule. An optimizing
service uses the DS together with optimization models and calculates different
scheduling variants fulfilling minimal setup time and minimal total lateness of job
requirements. The suggested schedules are added to the DS. This DS is then sent
and visualized in the DT cockpit where the operator can select from this reduced set
of schedules and can apply a suitable schedule when operating the injection molding
machine. The digital twin is furthermore able to accompany the production process
of each job and detect time deviations. This requires processing information about
the time needed for each job in the data processor, and deciding in the evaluator if
a new optimization process of the schedule should be started. If it is required, the
new schedule suggestions have to be shown to the operator who can decide if a new
schedule will be applied or not.

Use Case 5: Process Analysis To detect problems during the main injection
molding process, one can describe measurable steps of the main process in a process
model, e.g., fill in plastic granules, heat them up to a certain temperature, transport
the molten material into the mold, cool the workpiece, eject the workpiece. During
the runtime of the injection molding machine and the digital twin, the actual process
can be discovered using real sensory information and we can check the conformance
with the planned process. In case of deviations, e.g., the operator can be informed to
check the machine or retrospective process analysis can be used to detect problems
in the process, e.g., time delays.

Digital Twin Components for Use Case 5 We define a process model for the main
injection molding process steps and store it in the database (steps 1, 2 in Fig. 5.8).
During the execution of the injection molding process, the data processor takes the
monitored process steps (steps 2, 3), transforms them into event logs, and hands
the event log over to the process discovery service (step 4). The process discovery
service identifies the current process model using process mining techniques [65]
and stores it in the database (steps 5, 6). Moreover, a process conformance checker
service takes the current and planned process model from the database (steps 6, 7)
and investigates if the current process is equal to the planned process. If there is
a problem, e.g., opening the clamping unit takes too long, it informs the reasoner
(step 8) which suggests an action via the executor (steps 9, 10) and either executes it
directly on the machine (step 11) or sends it to an operator in the DT cockpit (steps
12–15).

114 M. Heithoff et al.

Fig. 5.8 Data flow within the components of our architecture based on Use Case 5

5.6 Discussion

The presented definitions and reference architecture for model- and service-based
digital twin engineering is based on previous studies on academic comprehension
of digital twins [1] and their prototypical [49] as well as industrial-scale [5, 89]
application. The definitions contain generalized characterizations for a modular
assignment of digital twins, shadows, and their constituents. This results in the
extensible reference architecture explicitly tailored for, but not restricted to, man-
ufacturing. It reflects the model-driven software engineering perspective on the
reference architecture proposed by the Digital Twin Consortium [37].

The advancing engineering of DTs offers the possibility of suitable integration
with original systems of any kind, i.e. not only CPSs but also purely digital systems
or biological entities. A considerable limitation, however, is the integrability of the
supervised system. While this challenge generally applies to DT commissioning,
its degree of intensity enormously varies for individual applications or application
domains. For instance, while observing biological processes is partially possible
via external sensors, their particular steering may require further technological
innovations in the corresponding application domain. Generally, evaluating the
application of the presented architectural components is subject to future work.
Investigating domain-specific influences on DT software architectures is essential
for unifying their creation.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 115

5.6.1 Relation to Reference Architectures and Main Concepts

We discuss our architecture (Sect. 5.3) with the main existing solutions, i.e., the
Digital Twin Consortium reference architecture, RAMI 4.0, the Asset Administra-
tion Shell, ISO-23247, and other approaches. For quick reference, we provide an
overview of the components of our MDE reference architecture in relation to the
concepts of the Digital Twin Consortium [37] and the ISO-23247 standard [41] (see
Table 5.1).

5.6.1.1 Digital Twin Consortium Reference Architecture

The digital twin reference architecture of the Digital Twin Consortium [37]
provides a general overview of the main constituents. It delivers a technology-
agnostic foundation of a digital twin’s components, features, and requirements.
This architecture is intentionally designed to be discipline-independent, allowing
for different incarnations for specific problem domains. Consequently, the reference
architecture introduced in Sect. 5.3 covers the model-driven software engineering
view, i.e., the perspective of the concrete solution domain for the virtual part of the
overall digital twin system.

Table 5.1 Placing of our reference architecture in the concepts of the Digital Twin Consortium
reference architecture and in the concepts of the ISO-23247 standard

Model-Driven Engineering Concept in the DTC Reference

DT Reference Architecture Architecture Concept in ISO-23247

Data Processor (Preprocessor,
Processor, DS Caster) Process
Discovery

Applications
Analytics
Synchronization Mechanisms

Data Collection
Application and Service

Evaluator Applications
Analytics

Application and Service

Reasoner
Conformance Checker

Applications
Analytics

Application and Service

Executor Applications
Analytics
Synchronization Mechanisms

Device Control

Database Interface
Database Layer

Data Storage Data Collection

DT Cockpit Integration Presenta-
tion/Functions
Visualization Services
Data Storage

Resource Access and
Interchange

Gateways Integration Service Interfaces
Platform APIs

Cross-System

Process Orchestrator Orchestration/Middleware Operation and
Management

116 M. Heithoff et al.

We refine generalized components, particularly of the internal representation
(or “Virtual Representation” stack called in the DT Consortium Reference Archi-
tecture), with more detail on the twin’s constituents and their connections. The
prerequisites for “Integration Presentation/ Functions”, “Visualization Services”,
and different representations are handled by a DT’s cockpit with a frontend and
backend connected to the database interface. Furthermore, “Modeling Languages”
would be no component in a component-connector architecture model, as they are
internal representations used within one or more components. Thus, considering
an MDE approach, models of different languages would be the primary driver in
engineering and running the DT system. General prerequisites in the DT Consortium
Reference Architecture are also refined within corresponding software components,
such as mapping the overall “Applications” and “Analytics” stack to a data proces-
sor, evaluator, reasoner, and executor. For the “Integration Service Interfaces”, our
architecture considers standardized communication gateways. However, we do not
focus on further incarnating the aspects of “Synchronization Mechanisms” as they
are specific to the particular use cases and, thus, part of the further services.

Furthermore, we comprise the “Data Storage” of the DT Consortium Reference
Architecture in a database layer with a corresponding interface for communi-
cation with the DT internals as well as its cockpit. Similar to the “Orches-
tration/Middleware”, we consider a process orchestrator for steering internal
workflows. Otherwise, we explicitly abstract from specific realizations of the
“IT/OT Platform” stack, such as “Platform APIs” or “Networking”, as these are
either application-specific and bound to the individual services or already comprised
in the standardized communication gateways. Thus, they are often tied to the
original system’s capabilities and service interfaces. Similarly, the architecture
presented in this chapter omits non-functional requirements, e.g., “Privacy” or
“Security as mentioned in the DT Consortium Reference Architecture “Security
and Trustworthiness” stack. Instead, our software engineering view concentrates on
logical components for fulfilling particular tasks of the DT, including data process-
ing, evaluation, reasoning, and steering of the original system, while allowing for
different realizations for specific use cases.

5.6.1.2 RAMI 4.0 and the Asset Administration Shell

While the concepts of RAMI 4.0 are intentionally abstract, the approach is strongly
related to the scope of digital twin engineering since synchronizing heterogeneous
data is essential to their incorporation. Although a single asset administration
shell (type 1 and 2) does not represent a twin of a system itself, it can support
establishing lightweight service interfaces (cf. Sect. 5.6.1.1). Providing information
in a standardized and semantically sound manner allows for more convenient
communication between the twin’s applications, incorporated real-world machine
components, and additional data.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 117

5.6.1.3 ISO-23247—Digital Twin Framework for Manufacturing

The reference architecture proposed by ISO in [41] acts as a guideline for imple-
menting digital twin solutions. We can clearly place our DT reference architecture
domain-based reference model in the digital twin domain with consideration of the
user domain and device communication domain. Furthermore, we can place all
our components in the entity-based reference model, e.g., the Digital Shadow
Caster is responsible in the data collection sub-entity, the Cockpit can be placed
in the user entity or the Evaluator and Reasoner act in the application and service
sub-entity. Our reference architecture is a detail-enriched architecture that offers
concepts for components in the one proposed by ISO. Concrete implementation is
still a task for a DT developer.

5.6.1.4 Other Approaches

Given the high level of the approaches in [35, 36], parts of our reference architecture
(Sect. 5.3) can directly be mapped to the mentioned dimensions. In particular, our
notion of service is consistent with its understanding of Tao et al. as a service may
process input data to produce output data in a specific fashion under given quality
assumptions and with considering previous invocations that resulted in a certain
state. However, we do not impose the requirement for state management on DT
services since stateless services exhibit several benefits, e.g., increased scalability
and maintainability [90]. Additionally, [36] does not cover user interaction as well
as support for generic processes and self-adaptivity.

Minerva et al. [42] emphasize the relevance of services as loosely coupled
building blocks of domain-specific digital twin logic, similar to Macías et al. [56]
and our architecture (Sect. 5.3). By contrast, Minerva et al. consider microser-
vices [90] as an explicit realization approach for service-based digital twins, while
our reference architecture does not suggest a concrete style for architecting such
DTs. Furthermore, our architecture is not organized in layers but exploits the
flexibility of service orientation [78] which circumvents the anticipation of a fixed
organization of architecture components. Moreover, we suggest the stringent usage
of formalized modeling languages to capture digital twins or parts thereof to elevate
models from documentation to actionable artifacts in the software engineering
process as envisioned by MDE [45].

In contrast to Liu et al. [43], our reference architecture (Sect. 5.3) is not organized
in layers but also integrates means for interfacing with users and follows the service
approach. Liu et al. also perceive models as foundational to digital twin architectures
and runtime and mention the importance of ensuring model correctness, accuracy,
and consistency with items in the original system. Among others, our proposal to
employ MDE for digital twin engineering (Sect. 5.4) stems from MDE providing
techniques to establish these quality characteristics on models.

118 M. Heithoff et al.

5.6.2 Model-Driven and Low-Code Approaches for Digital
Twins

MDE has become increasingly important in developing software-intensive systems,
including creating digital twins. Models as primary development artifacts effectively
drive the development process enabling the generation of extensive parts of the final
application.

This means the advantages of MDE due to abstraction and automation [13]
transfer directly to the engineering of DTs in terms of increased development
efficiency, lower costs, and higher product quality and maintainability. Harnessing
the generative nature of MDE techniques, models support creating DTs serving
multiple purposes, especially if these change over time or if additions are needed.
Furthermore, employing DSLs enables domain experts with no programming
proficiency to engineer and commission the software-intensive components of the
twin system.

A current limitation of employing MDE techniques for DT engineering relies
on the lack of standardization of the underlying modeling languages and platforms.
While standards like UML and SysML exist that are widely employed, it is still
unexplored which techniques effectively foster digital twin development the most.
The lack of such basis yields that current approaches still vary widely, which can
quickly lead to a vendor-locked scenario for commercial software solutions.

In addition to already established MDE practices, the future engineering of
digital twins can vastly benefit from their (semi-) automatic synthesis from existing
engineering models of the original system. In this notion, creating the twin systems
relies on reusing the development artifacts of their physical counterparts. Thus, only
models or software artifacts that exclusively concern the runtime of the digital
twin must be contributed, such as services or the user interface of the cockpit.
The base artifacts, which by now are mainly hand-crafted, could be synthesized.
This, however, needs further investigation for automatically detecting properties of
heterogeneous engineering models that are relevant for twinning and transforming
these into corresponding data models. Such a mechanism would yield a substantial
potential for efficient digital twin engineering and provision, as the process can
be automatized to a large extent. Properties, such as sensor values or machine-
internal communication, could be directly employed to display and analyze the
DT, thus generating the overall infrastructure as an incarnation of the reference
architecture, directly providing default services and communication interfaces for
data. Furthermore, the automatic derivation of data structures for digital twins and
shadows can foster their automated evolution when the corresponding engineering
models evolve.

The primary challenge, which currently cannot be fully automated and thus
constitutes a limitation of this MDE approach, is generating meaningful and useful
DTs concerning their individual use cases. While extracting relevant properties
from engineering models can be automized, determining which properties are
relevant in the first place is challenging and often requires domain expertise and

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 119

manual intervention. Also, not every property to observe might be represented in
engineering models. An example would be the placement of two separate machine
parts interacting with each other. Their models’ internals do not constitute their
precise position in action, calibrated via external sensors, such as laser scanners.
Hence, domain experts developing a digital twin must be able to define such
properties manually without burdening them with software engineering tasks.

In this respect, there is great potential for low-code platforms. In addition to
modeling languages, they offer domain-specific functions and generally serve as
software creation tools. Thus, they can support a mainly model-driven engineering
effort. A low-code platform for digital twins would, therefore, always be specifically
tailored to the corresponding discipline, empowering domain experts to design
digital twins, shadows, and corresponding cockpits themselves. Due to out-of-the-
box model integration (of heterogeneous languages), essential information can be
extracted and proposed as relevant property within the digital twin. Based on these
proposals, the domain expert can then choose the required properties to be covered
with the later twin system. Predefined settings and guided configuration support
even citizen developers in defining such systems. They can choose from a set of
library software components realizing several services. These components can be
provided independently by software engineers, maintaining the notion of separation
of concerns while simultaneously integrating efforts of different disciplines. Thus,
the efficient provision of domain-specific low-code platforms for digital twin
engineering is a promising prospect for future investigation.

5.6.3 Digital Twins in the Life Cycle of the System

The highly automated derivation of DTs from engineering and operation models
enables the parallel development and evolvement of both systems. As a result,
the digital twin can have different tasks when deployed before, during, or after
the commissioning of the original machine. Figure 5.9 shows the engineering and
operations stages of the twin. While its derivation is possible to a large extent, it
still has its own dedicated development process in which it is designed, built, and
tested. In an agile software engineering approach, DT engineering is an iterative
process in which the results of the last iteration are incorporated into the next one.
However, establishing a seamless DevOps feedback loop for arbitrary CPSs is an
open challenge and is subject to further research. Here, a DT-based approach could
foster providing this required connection, establishing a virtualization layer for
updates from a system’s operation to its engineering phase (e.g., for the subsequent
development iteration).

After its release, the twin is highly connected with its real-world counterpart,
establishing a direct feedback loop incorporating, e.g., sensor data, events, steering,
or optimization commands. This feedback loop usually is a vital feature of the
digital twin, allowing for advanced measures, such as predictive maintenance, i.e.,

120 M. Heithoff et al.

▪▪▪

▪▪▪▪▪▪

GUI
Models

▪▪▪

▪▪▪▪▪▪

Data
Models

▪▪▪

▪▪▪▪▪▪

GUI
Models

▪▪▪

▪▪▪▪▪▪

Eng.
Models

Transformer

Digital Twin
Engineering

Test

Generation

Design

Deploy

DS

DS

DS

Digital Twin
Operation

Fig. 5.9 Vision of future digital twin engineering includes a backward channel including operation
information into the next development cycle

analyzing the current state of a machine and taking maintenance measures before
critical events happen. This increases productivity and reduces incidents.

A future research opportunity could extend this feedback loop back into the
engineering phase of the digital twin or even the original system itself. An intuitive
approach would be to improve the twin, for instance, in terms of graphical
representation or embedding more sophisticated machine data analyses. As a result,
it is not only continuously optimized through an internal development cycle but
also with the consideration of real operational data. Even more challenging would
be feeding this data back into the original engineering models to optimize the
system further or create variants. An example is the correction of over- and under-
engineering, i.e., which assembly components can be designed cheaper and which
must be more robust. However, closing this DevOps loop in digital twin engineering
is still an open issue and needs further research. It requires inherent integration of
the original models and the twin and a clear distinction on how to trace changes
and whether these can be carried out automatically or manually by a domain expert.
Nevertheless, establishing such mechanisms offers immense potential for further
integrating digital twins and thus accompanying the real-world system over its
complete life cycle and different variants.

5.7 Conclusion

The engineering of DTs in manufacturing can be improved using model-driven
methods, as they reduce complexity, allow for automatic transformation into
code in different programming languages, and foster reusability. We proposed a
reference architecture for model- and service-based digital twins and presented its
components. This architecture is specifically tailored towards self-adaptivity and

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 121

process-awareness. We discussed our architecture in the context of the reference-
architecture proposed by the Digital Twin Consortium and were able to map
different components to it. We showcase how engineering models from the design
process of the original system can be reused to develop different components of
the architecture. MDE as a code-generative approach is well-suited to transfer
domain knowledge from these engineering models to the engineering process of
a conceptual base and several services of the DT.

Applying MDE methods makes it easier to develop DTs serving multiple
purposes: Parts serving a certain purpose can be generated individually, if purposes
change over time, or if additions are needed, parts of a DT can be iteratively re-
generated supporting DT evolvement. Furthermore, MDE enables domain experts
to participate in the engineering of DT services. Since the digital twin can also exist
across the life cycle of the original system, models do not need to only flow from the
engineering of the original system to the engineering of the DT but also the other
way around. We give an outlook on how the DT is connected to the original system
throughout its life cycle. Our 5 use cases from the injection molding domain have
shown how to use different components of the architecture in practice.

Digital twin engineering has to react to changes in the original system over a long
lifetime. Thus, further research steps are needed to investigate how to incorporate
operation information into the next development cycle of a digital twin.

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC 2023 Internet of Production -
390621612. Website: https://www.iop.rwth-aachen.de. Funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) - Model-Based DevOps - 505496753. Website:
https://mbdo.github.io

References

1. Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeister, L., Wimmer, M., &
Wortmann, A. (2022). A cross-domain systematic mapping study on software engineering for
Digital Twins. Journal of Systems and Software, 193, 111361.

2. Graessler, I., & Poehler, A. (2017). Integration of a digital twin as human representation in a
scheduling procedure of a cyber-physical production system. In IEEE Int. Conf. on Industrial
Engineering and Engineering Management (IEEM).

3. Scheifele, C., Verl, A., & Riedel, O. (2019). Real-time co-simulation for the virtual com-
missioning of production systems. Procedia CIRP, 79, 397–402. 12th CIRP Conference on
Intelligent Computation in Manufacturing Engineering.

4. Delbrügger, T., & Rossmann, J. (2019). Representing adaptation options in experimentable dig-
ital twins of production systems. International Journal of Computer Integrated Manufacturing,
32(4–5), 352–365.

5. Michael, J., Nachmann, I., Netz, L., Rumpe, B., & Stüber, S. (2022). Generating digital twin
cockpits for parameter management in the engineering of wind turbines. In Modellierung 2022,
Bonn (pp. 33–48). GI.

6. Bolender, T., Bürvenich, G., Dalibor, M., Rumpe, B., & Wortmann, A. (2021). Self-adaptive
manufacturing with Digital Twins. In 2021 Int. Symp. on SE for Adaptive and Self-Managing
Systems (SEAMS), 2021. IEEE.

122 M. Heithoff et al.

7. Yan, K., Xu, W., Yao, B., Zhou, Z., & Pham, D. T. (2018). Digital twin-based energy modeling
of industrial robots. In Asian Simulation Conference. Berlin: Springer.

8. Saini, G., Ashok, P., van Oort, E., & Isbell, M. R. (2018). Accelerating well construction using
a digital twin demonstrated on unconventional well data in North America. In Unconventional
Resources Technology Conference 2018 (pp. 3264–3276). Society of Exploration Geophysi-
cists, American Association of Petroleum.

9. Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J.
(2019). A novel cloud-based framework for the elderly healthcare services using digital twin.
IEEE Access, 7, 49088–49101.

10. Xie, J., Wang, X., Yang, Z., & Hao, S. (2019). Virtual monitoring method for hydraulic supports
based on digital twin theory. Mining Technology, 128(2), 77–87.

11. Seshadri, B. R., & Krishnamurthy, T. (2017). Structural health management of damaged aircraft
structures using digital twin concept. In 25th AIAA/AHS Adaptive Structures Conference (p.
1675).

12. Kriebel, S., Markthaler, M., Granrath, C., Richenhagen, J., & Rumpe, B. (2023). Modeling
hardware and software integration by an advanced digital twin for cyber-physical systems:
Applied to the automotive domain. New York: Springer International Publishing.

13. Völter, M., Stahl, T., Bettin, J., Haase, A., & Helsen, S. (2013). Model-driven software
development: Technology, engineering, management. Wiley Software Patterns Series (1. aufl.
ed.). West Sussex: Wiley.

14. Berardinelli, L., Mazak, A., Alt, O., Wimmer, M., & Kappel, G. (2017). Model-driven systems
engineering: Principles and application in the CPPS domain (pp. 261–299). Cham: Springer
International Publishing.

15. Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital twin in
manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11),
1016–1022. 16th IFAC Symp. on Information Control Problems in Manufacturing (INCOM).

16. Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lakemeyer, G., Liebenberg, M.,
Michael, J., Pennekamp, J., Quix, C., Rumpe, B., van der Aalst, W., Wehrle, K., Wortmann, A.,
& Ziefle, M. (2022). A computer science perspective on digital transformation in production.
Journal ACM Transactions on Internet of Things, 3, 1–32.

17. Becker, F., Bibow, P., Dalibor, M., Gannouni, A., Hahn, V., Hopmann, C., Jarke, M., Koren, I.,
Kröger, M., Lipp, J., Maibaum, J., Michael, J., Rumpe, B., Sapel, P., Schäfer, N., Schmitz, G.
J., Schuh, G., & Wortmann, A. (2021). A conceptual model for digital shadows in industry and
its application. In Conceptual Modeling, ER 2021, October (pp. 271–281). Cham: Springer.

18. Daniel, P., Coronado, U., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., & Kurfess, T. (2018).
Part data integration in the shop floor digital twin: Mobile and cloud technologies to enable a
manufacturing execution system. Journal of Manufacturing Systems, 48, 25–33. Special Issue
on Smart Manufacturing.

19. Hu, L., Nguyen, N.-T., Tao, W., Leu, M. C., Liu, X. F., Shahriar, M. R., & Nahian Al Sunny,
S. M. (2018). Modeling of cloud-based digital twins for smart manufacturing with mt connect.
Procedia Manufacturing, 26, 1193–1203. 46th SME North American Manufacturing Research
Conference, NAMRC 46, Texas.

20. Zambal, S., Eitzinger, C., Clarke, M., Klintworth, J., & Mechin, P.-Y. (2018). A digital twin
for composite parts manufacturing: Effects of defects analysis based on manufacturing data. In
IEEE 16th Int. Conf. on Ind. Informatics (INDIN), 2018.

21. Luo, W., Hu, T., Zhang, C., & Wei, Y. (2019). Digital twin for cnc machine tool: Modeling and
using strategy. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1129–1140.

22. Liau, Y., Lee, H., & Ryu, K. (2018). Digital twin concept for smart injection molding. IOP
Conference Series: Materials Science and Engineering, 324(1), 012077.

23. Desai, N., Ananya, S. K., Bajaj, L., Periwal, A., & Desai, S. R. (2020). Process parameter
monitoring and control using digital twin. In Cyber-Physical Systems and Digital Twins (pp.
74–80). Cham: Springer.

24. Gomez-Escalonilla, J., Garijo, D., Valencia, O., & Rivero, I. (2020). Development of efficient
high-fidelity solutions for virtual fatigue testing. In ICAF 2019 – Structural Integrity in the Age
of Additive Manufacturing. Cham: Springer.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 123

25. Michael, J., Koren, I., Dimitriadis, I., Fulterer, J., Gannouni, A., Heithoff, M., Hermann, A.,
Hornberg, K., Kröger, M., Sapel, P., Schäfer, N., Theissen-Lipp, J., Decker, S., Hopmann, C.,
Jarke, M., Rumpe, B., Schmitt, R. H., & Schuh, G. (2023). A digital shadow reference model
for worldwide production labs. In Internet of Production: Fundamentals, Applications and
Proceedings. Cham: Springer.

26. Stachowiak, H. (1973). Allgemeine Modelltheorie. Cham: Springer.
27. Dalibor, M., Michael, J., Rumpe, B., Varga, S., & Wortmann, A. (2020, October). Towards a

model-driven architecture for interactive Digital Twin cockpits. In Conceptual Modeling (pp.
377–387). Cham: Springer International Publishing.

28. Bano, D., Michael, J., Rumpe, B., Varga, S., & Weske, M. (2022). Process-aware Digital Twin
cockpit synthesis from event logs. Journal of Computer Languages, 70.

29. Heithoff, M., Hellwig, A., Michael, J., & Rumpe, B. (2023). Digital twins for sustainable
software systems. In Int. Workshop on Green and Sustainable Software (GREENS 2023), Los
Alamitos. IEEE.

30. Caesar, B., Jansen, N., Weigand, M., Ramonat, M., Gundlach, C. S., Fay, A., & Rumpe, B.
(2022). Extracting functional machine knowledge from STEP files for digital twins. In IEEE
27th Int. Conf. on Emerging Technologies and Factory Automation (ETFA), September. IEEE.

31. Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent
behavior in complex systems. In Kahlen, J., Flumerfelt, S., Alves, A. (Eds), Transdisciplinary
perspectives on complex systems: New findings and approaches (pp. 85–113). Springer. https://
doi.org/10.1007/978-3-319-38756-7_4

32. ISO/DIS 23247-1. (2020). Automation systems and integration—Digital twin framework for
manufacturing—Part 1: Overview and general principles.

33. Lehner, D., Pfeiffer, J., Tinsel, E.-F., Strljic, M. M., Sint, S., Vierhauser, M., Wortmann, A., &
Wimmer, M. (2022). Digital twin platforms: Requirements, capabilities, and future prospects.
IEEE Software, 39(2), 53–61.

34. Kirchhof, J. C., Michael, J., Rumpe, B., Varga, S., & Wortmann, A. (2020). Model-driven
Digital Twin construction: Synthesizing the integration of cyber-physical systems with their
information systems. In 23rd ACM/IEEE Int. Conf. on Model Driven Engineering Languages
and Systems, October 2020 (pp. 90–101). ACM.

35. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication.
White Paper, 1(2014), 1–7.

36. Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. C. (2018). Digital twin driven prognostics and health
management for complex equipment. CIRP Annals, 67(1), 169–172.

37. McKee, D. (2023). Platform stack architectural framework: An introductory guide - A Digital
Twin Consortium White Paper. Technical report, Digital Twin Consortium.

38. Schweichhart, K. (2016). Reference architectural model Industrie 4.0 (RAMI 4.0)-An intro-
duction. Publikationen der Plattform Industrie, 4(0), 1–32.

39. Bangemann, T., Riedl, M., Thron, M., & Diedrich, C. (2016). Integration of classical
components into industrial cyber–physical systems. Proceedings of the IEEE, 104(5), 947–
959.

40. Bader, S. R., & Maleshkova, M. (2019). The semantic asset administration shell. In Semantic
Systems. The Power of AI and Knowledge Graphs: 15th International Conference (SEMAN-
TiCS) (pp. 159–174). Berlin: Springer.

41. Automation Systems and Integration—Digital twin framework for manufacturing — Part
2: Reference architecture. Standard, International Organization for Standardization, Geneva,
2021.

42. Minerva, R., Lee, G. M., & Crespi, N. (2020). Digital twin in the iot context: A survey on
technical features, scenarios, and architectural models. Proceedings of the IEEE, 108(10),
1785–1824.

43. Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Jamal Deen, M.
(2019). A novel cloud-based framework for the elderly healthcare services using digital twin.
IEEE Access, 7, 49088–49101.

124 M. Heithoff et al.

44. Kovacs, E., & Mori, K. (2023). Digital twin architecture – An introduction (pp. 125–151).
Cham: Springer.

45. Combemale, B., France, R., Jézéquel, J.-M., Rumpe, B., Steel, J., & Vojtisek, D. (2016).
Engineering modeling languages. London: Chapman & Hall.

46. Abouzahra, A., Sabraoui, A., & Afdel, K. (2020). Model composition in model driven
engineering: A systematic literature review. Information and Software Technology, 125,
106316.

47. Butting, A., Michael, J., & Rumpe, B. (2022). Language composition via kind-typed symbol
tables. Journal of Object Technology, 21, 4, 1–13.

48. Pfeiffer, J., Rumpe, B., Schmalzing, D., & Wortmann, A. (2023). Composition operators for
modeling languages: A literature review. Journal of Computer Languages, 76, 101226.

49. Dalibor, M., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J., Rumpe, B., Varga, S., & Wortmann,
A. (2022). Generating customized low-code development platforms for Digital Twins. Journal
of Computer Languages, 70, 101117.

50. Lehner, D., Sint, S., Vierhauser, M., Narzt, W., & Wimmer, M. (2021). AML4DT: A model-
driven framework for developing and maintaining Digital Twins with automationML. In 26th
IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA).

51. Fend, A., & Bork, D. (2022). Cpsaml: A language and code generation framework for digital
twin based monitoring of mobile cyber-physical systems. In Int. Conf. on Model Driven
Engineering Languages and Systems: Comp. (pp. 649–658). New York: ACM.

52. Muñoz, P. (2022). Measuring the fidelity of digital twin systems. In 25th Int. Conf. on Model
Driven Engineering Languages and Systems: Comp., MODELS ’22 (pp. 182–188). New York:
ACM.

53. Muñoz, P., Wimmer, M., Troya, J., & Vallecillo, A. (2022). Using trace alignments for
measuring the similarity between a physical and its digital twin. In 25th Int. Conf. on Model
Driven Engineering Languages and Systems: Comp. (pp. 503–510). New York: ACM.

54. Barat, S., Kulkarni, V., Clark, T., & Barn, B. (2022). Digital twin as risk-free experimentation
aid for techno-socio-economic systems. In 25th Int. Conf. on Model Driven Engineering
Languages and Systems, MODELS ’22 (pp. 66–75). New York: ACM.

55. Niati, A., Selma, C., Tamzalit, D., Bruneliere, H., Mebarki, N., & Cardin, O. (2020). Towards
a digital twin for cyber-physical production systems: A multi-paradigm modeling approach
in the postal industry. In ACM/IEEE Int. Conf. on Model Driven Engineering Languages and
Systems: Comp. New York: ACM.

56. Macías, A., Navarro, E., Cuesta, C. E., & Zdun, U. (2023). Architecting digital twins using
a domain-driven design-based approach*. In IEEE 20th Int. Conf. on Software Architecture
(ICSA) (pp. 153–163).

57. Evans, E. (2004). Domain-driven design (1st ed.). Upper Saddle River: Addison-Wesley.
58. Rademacher, F., Sorgalla, J., & Sachweh, S. (2018). Challenges of domain-driven microservice

design: A model-driven perspective. IEEE Software, 35(3), 36–43. IEEE.
59. Rademacher, F., Sachweh, S., & Zündorf, A. (2020). Deriving microservice code from

underspecified domain models using DevOps-enabled modeling languages and model transfor-
mations. In 46th Euromicro Conf. on Software Engineering and Advanced Applications (SEAA)
(pp. 229–236). IEEE.

60. Haber, A., Ringert, J. O., & Rumpe, B. (2012, February). MontiArc - Architectural modeling
of interactive distributed and cyber-physical systems. Technical Report AIB-2012-03, RWTH
Aachen University.

61. Broy, M., & Stølen, K. (2001). Specification and development of interactive systems. Focus on
streams, interfaces and refinement. Heidelberg: Springer.

62. Ringert, J. O., & Rumpe, B. (2011). A little synopsis on streams, stream processing functions,
and state-based stream processing. International Journal of Software and Informatics, 5(1–2),
29–53.

63. Bertram, V., Rumpe, B., & von Wenckstern, M. (2016). Encapsulation, operator overloading,
and error class mechanisms in OCL. In Int. WS in OCL and Textual Modeling (OCL’16) (pp.
17–32). New York: ACM/IEEE.

5 Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing 125

64. Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D., Schmitz, M.,
& Wortmann, A. (2020). Model-driven development of a digital twin for injection molding.
In Int. Conf. on Advanced Information Systems Engineering (CAiSE’20) (Vol. 12127, pp. 85–
100). LNCS. Cham: Springer.

65. Brockhoff, T., Heithoff, M., Koren, I., Michael, J., Pfeiffer, J., Rumpe, B., Uysal, M. S., van
der Aalst, W. M. P., & Wortmann, A. (2021). Process prediction with Digital Twins. In Int.
Conf. on Model Driven Engineering Languages and Systems Companion (MODELS-C) (pp.
182–187), October 2021. New York: ACM/IEEE.

66. Michael, J., Pfeiffer, J., Rumpe, B., & Wortmann, A. (2022). Integration challenges for digital
twin systems-of-systems. In 10th IEEE/ACM Int. WS on Software Engineering for Systems-of-
Systems and Software Ecosystems. New York: ACM.

67. Huang, Y., Dhouib, S., Medinacelli, L. P., & Malenfant, J. (2022). Enabling semantic
interoperability of asset administration shells through an ontology-based modeling method.
In 25th Int. Conf. on Model Driven Engineering Languages and Systems: Comp., MODELS
’22 (pp. 497–502). New York: ACM.

68. Drave, I., Michael, J., Müller, E., Rumpe, B., & Varga, S. (2022). Model-driven engineering of
process-aware information systems. Springer Nature Computer Science Journal, 3, 479.

69. Heithoff, M., Michael, J., & Rumpe, B. (2022, June). Enhancing digital shadows with
workflows. In Modellierung 2022 Satellite Events (pp. 142–146) GI.

70. France, R., & Rumpe, B. (2007, May). Model-driven development of complex software: A
research roadmap. Future of Software Engineering (FOSE ’07) (pp. 37–54).

71. Hölldobler, K., Kautz, O., & Rumpe, B. (2021, May). MontiCore language workbench and
library handbook: Edition 2021. Aachener Informatik-Berichte, Software Engineering, Band
48. Aachen: Shaker Verlag.

72. Wirth, N. (1996). Extended Backus-Naur Form (EBNF). ISO/IEC, 14977(2996).
73. Butting, A., Eikermann, R., Hölldobler, K., Jansen, N., Rumpe, B., & Wortmann, A. (2020).

A library of literals, expressions, types, and statements for compositional language design.
Journal of Object Technology, 19(3), 3:1–16.

74. Drux, F., Jansen, N., & Rumpe, B. (2022). A catalog of design patterns for compositional
language engineering. Journal of Object Technology, 21(4), 4:1–13 (2022)

75. Gray, J., & Rumpe, B. (2021). Reference models: How can we leverage them? Journal Software
and Systems Modeling, 20(6), 1775–1776.

76. Rumpe, B. (2017). Agile modeling with UML: Code generation, testing, refactoring. Berlin:
Springer International.

77. Brecher, C., Dalibor, M., Rumpe, B., Schilling, K., & Wortmann, A. (2021). An ecosystem
for digital shadows in manufacturing. In 54th CIRP CMS 2021 - Towards Digitalized
Manufacturing 4.0, Amsterdam, September 2021. Amsterdam: Elsevier.

78. Erl, T. (2005). Service-oriented architecture (SOA): Concepts, technology and design (1st ed.).
Hoboken: Prentice Hall.

79. Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Service oriented architectures:
Approaches, technologies and research issues. VLDB Journal, 16(3), 389–415. Springer.

80. ISO/IEC. (2011). Systems and software engineering — Systems and software Quality Require-
ments and Evaluation (SQuaRE) — System and software quality models. Standard ISO/IEC
25010:2011(E), International Organization for Standardization/International Electrotechnical
Commission.

81. Gu, Q., & Lago, P. (2009). Exploring service-oriented system engineering challenges: A
systematic literature review. Service Oriented Computing and Applications, 3(3), 171–188.
Springer.

82. Canfora, G., & Di Penta, M. (2006). Testing services and service-centric systems: Challenges
and opportunities. IT Professional, 8(2), 10–17 (2006). IEEE.

83. Blair, G., Bencomo, N., & France, R. B. (2009). Models@ run.time. Computer, 42(10), 22–27.
84. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., & Pautasso, C. (2023). Patterns for API

design: Simplifying integration with loosely coupled message exchanges. Boston: Addison-
Wesley.

126 M. Heithoff et al.

85. Clark, T., van den Brand, M., Combemale, B., & Rumpe, B. (2015). Conceptual model of
the globalization for domain-specific languages. In Globalizing Domain-Specific Languages.
LNCS (Vol. 9400, pp. 7–20). Cham: Springer.

86. Adam, K., Michael, J., Netz, L., Rumpe, B., & Varga, S. (2020). Enterprise information systems
in academia and practice: Lessons learned from a MBSE Project. In 40 Years EMISA: Digital
Ecosystems of the Future, LNI P-304, Bonn, 2020. GI.

87. Bodenbenner, M., Montavon, B., & Schmitt, R. H. (2022). Model-driven development of
interoperable communication interfaces for fair sensor services. Measurement: Sensors, 24,
100442.

88. Gerasimov, A., Michael, J., Netz, L., & Rumpe, B. (2021). Agile generator-based GUI
modeling for information systems. In Modelling to Program (M2P), March (pp. 113–126).
Cham: Springer.

89. Braun, S., Dalibor, M., Jansen, N., Jarke, M., Koren, I., Quix, C., Rumpe, B., Wimmer, M.,
& Wortmann, A. (2023). Engineering Digital Twins and digital shadows as key enablers for
industry 4.0 (pp. 3–31). Cham: Springer.

90. Newman, S. (2015). Building microservices: Designing fine-grained systems (1st ed.).
Sebastopol: O’Reilly.

