
Model-Based
Engineering of
Collaborative
Embedded Systems

Wolfgang Böhm
Manfred Broy
Cornel Klein
Klaus Pohl
Bernhard Rumpe
Sebastian Schröck Eds.

Extensions of
the SPES Methodology

Model-Based Engineering of Collaborative
Embedded Systems

[BBK+21] W. Böhm, M. Broy, C. Klein, K. Pohl, B. Rumpe, S. Schröck (Eds.):
Model-Based Engineering of Collaborative Embedded Systems. ISBN 978-3-030-62135-3. Springer, Jan. 2021.
www.se-rwth.de/publications/

Wolfgang Böhm • Manfred Broy
Cornel Klein • Klaus Pohl

Editors

Extensions of the SPES Methodology

Bernhard Rumpe • Sebastian Schröck

Model-Based Engineering
of Collaborative
Embedded Systems

ISBN 978-3-030-62135-3 ISBN 978-3-030-62136-0 (eBook)

https://doi.org/10.1007/978-3-030-62136-0

© The Editor(s) (if applicable) and The Author(s) 2021
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction

in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors

give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions

that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors

Wolfgang Böhm

Fakultät für Informatik

Technische Universität München

Garching, Germany

Manfred Broy

Fakultät für Informatik

Technische Universität München

Garching, Germany

Cornel Klein

Corporate Technology, CT RDA SSI

Siemens AG

München, Germany

Klaus Pohl

Software Systems Engineering

University of Duisburg-Essen

Essen, Germany

Bernhard Rumpe

Lehrstuhl Software Engineering

RWTH Aachen University

Aachen, Germany

Sebastian Schröck

Assembly Technique (CR/APA1)

Robert Bosch (Germany)

Renningen, Germany

This book is an open access publication.

https://doi.org/10.1007/978-3-030-62136-0
http://creativecommons.org/licenses/by/4.0/

Preface

With the transition from classical embedded systems to networked,
collaborative embedded systems (CESs), a wide range of new
applications is emerging. The ability of companies to efficiently
develop CESs of the highest quality is therefore a decisive competitive
factor. However, collaboration means a leap in complexity. In addition
to the quality of the embedded system, collaborative networks that
change dynamically at runtime must also be considered. The product
success of systems with embedded software is today even more
determined by software quality. Therefore, it is essential to master the
complexity of CESs with efficient and effective methods.

As more and more domains are becoming increasingly digitalized,
technologies for software development are becoming more and more
heterogeneous. This makes it even more important for research on
software engineering in particular to provide generalized, generally
applicable methods and techniques for the various types of software
in order to provide a solid basis for growing diversification.

The modeling of systems—and here, the explicit modeling of
structures, behavior, interaction patterns, dynamics, functional
constraints, and non-functional constraints—plays an essential role in
a methodologically sound approach to software and system
development.

In the funded projects "Software Platform Embedded Systems"
(SPES2020) and the follow-up project SPES_XT, the foundations for a
comprehensive methodological toolkit for the integrated model-
based development of embedded systems were developed. The
methods and tools developed in these projects allow the complexity
of embedded systems to be mastered in the development process.

Collaborative embedded
systems (CESs)

Methodologically sound
approach

SPES methodology

v

vi Preface

Therefore, the results of the SPES projects provide an excellent
starting point for tackling the next level of complexity, which is
reached with the development of CESs.

The project "Collaborative Embedded Systems" (CrESt), funded by
the German Federal Ministry of Education and Research (BMBF)1, is
the successor of the two SPES projects. It aimed at adapting and
complementing the methodology developed and the underlying
modeling techniques to the challenges of dynamic and dynamically
changing structures of CESs based on the SPES development
methodology. Further information on the CrESt project is available on
its website2, which also features selected project deliverables.

In order to cope with the high complexity of the individual systems
and the dynamically formed interaction structures at runtime, which
are partly based on uncertain context information, highly advanced,
powerful development methods are required that extend the current
state of the art in the development of embedded systems and cyber-
physical systems. The development of CESs goes hand in hand with
important safety and security issues. Our case studies are therefore
selected from areas that are highly relevant for Germany’s economy
(automotive, industrial production, power generation, and robotics).
Given its focus, the project also supports the digitalization of complex
and transformable industrial plants in the context of the German
government's "Industry 4.0" initiative. In addition, the expected
project results provide a solid foundation to the mosaic for
implementing the German government's high-tech strategy
"Innovations for Germany" in the coming years.

The methodological contributions of the project support the
effective and efficient development of CESs in dynamic and uncertain
contexts, with special emphasis on the reliability and variability of
individual systems and the creation of networks of such systems at
runtime. The manifold potentials of such systems are expected to have
a sustainable positive impact on the information society. In many
leading branches of German high technology, such as the automotive
industry, automation, industrial plant engineering, as well as health,
logistics, mobility, medicine, and in the service sector, CESs will play a
central role in the future — for example, in order to reliably and
completely automate tasks in highly complex dynamic everyday
situations and to comprehensively support people in such
dynamically developing networks of systems of systems.

1 Funded by the BMBF under grant number 01IS16043
2 CrESt project website: www.crest.in.tum.de

CrESt project

New development
challenges

Contributions

http://www.crest.in.tum.de

Preface vii

In the CrESt
project, 22 partners
from industry and
science have joined
forces to research and
develop new
techniques and
methods for the
development of CESs
based on the results
of the SPES projects.

The work was conducted along a three-dimensional project structure,
whose central elements were the engineering challenges that have
been the subject of work across domains. Orthogonally to this, work
on cross-domain topics aimed at promoting the integrability and
consistency of the solutions developed. Finally, in the third dimension,
the specifics of the different application domains were considered and
evaluated based on case studies. This allowed the methodological
work between the different engineering challenges to be shared and
thus significant synergies to be released.

The present book describes core results of the CrESt project and is
supplemented by the classification of our results in the context of
"model-based systems engineering" (MBSE). The relevance has
become clear at least since the discussion about Industry 4.0 and
cyber-physical systems (CPS).

Many people have made substantial contributions to this book.
First of all, we would like to thank the project partners and their
employees, who have contributed with great dedication to the
development of the project results.

Secondly, we would like to thank the steering committee of the
CrESt project for their continuous guidance and support throughout
the project and for encouraging us to document major project results
in this book.

Thirdly, we would like to thank each and every author of the
individual chapters for their contributions and their patience in the
book-writing process and their cooperation and help in making this
book a consistent and integrated product.

Special thanks are also due to the many reviewers of the individual
chapters of the book, who have contributed significantly to improve
the quality of the individual chapters.

The results presented in this book have been made possible
through the funding of the BMBF; in particular, we would like to thank

Project structure

Acknowledgements

Fig. 1: CrESt project structure

viii Preface

Dr. Ute Bernhard and Dr. Michael Weber, as well as Mr. Dirk Günther
from the project management agency of the German Aerospace Center
(DLR) for their continuous support.

Last but not least, we would like to express our deepest thanks to
Dr. Andreas Wortmann for the excellent management of the overall
book production process.

We hope that you will enjoy reading the book and using the
knowledge presented in your daily business.

Wolfgang Böhm
Manfred Broy

Cornel Klein
Klaus Pohl

Bernhard Rumpe
Sebastian Schröck

Summer 2020

Table of Contents
1 Use Cases ……………………………………………………………………. 1

1.1 Introduction …………………………………………………….……………… 2
1.2 Vehicle Platooning …………………………………………………………….. 2
1.3 Adaptable and Flexible Factory ……………………………………………….. 6
1.4 Autonomous Transport Robots ……………………………………………… 10

2 Engineering of Collaborative Embedded Systems ……………………….. 15
2.1 Introduction ……………………………….………………………………….. 16
2.2 Background ……………………………………………………………...……. 16
2.3 Collaborating Embedded Systems ………………………………………...…. 19
2.4 Problem Dimensions of Collaborative Embedded Systems ………………… 26
2.5 Application in the Domains “Cooperative Vehicle Automation” and “Industry

4.0” ……………………………………………………..……………………… 29
2.6 Concepts and Methods for the Development of Collaborative Embedded

Systems .……………………………………....……………………………….. 37
2.7 Conclusion ………………………………….…………………….…………... 45
2.8 Literature ……………………………………………………………...………. 46
2.9 Appendix ……………………………………………………………………… 48

3 Architectures for Flexible Collaborative Systems ………………………... 49
3.1 Introduction …………………………………………………………...……… 50
3.2 Designing Reference Architectures ………………………………………….. 50
3.3 Reference Architecture for Operator Assistance Systems ……………………. 57
3.4 Checkable Safety Cases for Architecture Design …………………………….. 62
3.5 Conclusion ……………………………………………………………………. 68
3.6 Literature ……………………………………………………………………… 69

4 Function Modeling for Collaborative Embedded Systems ……………… 71
4.1 Introduction …………………………………………………………………... 72
4.2 Methodological Approach …………………………………………………… 73
4.3 Background …………………………………………………………………… 75
4.4 Metamodel for Functions of CESs and CSGs ……………………………….. 75
4.5 Evaluation of the Metamodel ………………………………………………… 82
4.6 Application of the Metamodel ……………………………………………….. 85
4.7 Related Work …………………………………………………………………. 89

ix

x Table of Contents

4.8 Conclusion ……………………………………………………………………. 90
4.9 Literature …………………………………………………………………….... 91

5 Architectures for Dynamically Coupled Systems ………………………… 95
5.1 Introduction …………………………………………………………………... 96
5.2 Specification Modeling of the Behavior of Collaborative System Groups ….. 98
5.3 Modeling CES Functional Architectures …………………………………… 103
5.4 Extraction of Dynamic Architectures ………………………………………. 108
5.5 Functional Safety Analysis (Online) ………………………………………… 117
5.6 Conclusion …………………………………………………………………... 121
5.7 Literature …………………………………………………………………….. 121

6 Modeling and Analyzing Context-Sensitive Changes during Runtime ... 125
6.1 Introduction and Motivation .………………………………………………. 126
6.2 Solution Concept ……………………………………………………………. 126
6.3 Ontology and Modeling …………………………………………………….. 127
6.4 Model Integration and Execution …………………………………………... 138
6.5 Conclusion …………………………………………………………………… 143
6.6 Literature …………………………………………………………………….. 144

7 Handling Uncertainty in Collaborative Embedded Systems Engineering 147
7.1 Uncertainty in Collaborative Embedded Systems …………………………. 148
7.2 Modeling Uncertainty ...…………………………………………………….. 151
7.3 Analyzing Uncertainty ………………………………………………………. 160
7.4 Conclusion …………………………………………………………………… 168
7.5 Literature …………………………………………………………………….. 169

8 Dynamic Safety Certification for Collaborative Embedded Systems at
Runtime ………………………………………………………………….. 171
8.1 Introduction and Motivation ……………………………………………… 172
8.2 Overview of the Proposed Safety Certification Concept …………………. 173
8.3 Assuring Runtime Safety Based of Modular Safety Cases …………………. 174
8.4 Design and Runtime Contracts ……………………………………………. 188
8.5 Conclusion …………………………………………………………………. 194
8.6 Literature …………………………………………………………………… 194

9 Goal-Based Strategy Exploration ………………………………………... 197
9.1 Introduction ………………………………………………………………... 198
9.2 Goal Modeling for Collaborative System Groups ………………………… 198

Table of Contents xi

9.3 Goal-Based Strategy Development ………………………………………… 201
9.4 Goal Operationalization (KPI Development) …………………………….. 205
9.5 Modeling Methodology for Adaptive Systems with MATLAB/Simulink ... 207
9.6 Collaboration Framework for Goal-Based Strategies ……………………... 210
9.7 Conclusion ………………………………………...……………………….. 214
9.8 Literature ……………………………………………………………………. 215

10 Creating Trust in Collaborative Embedded Systems …………………… 217
10.1 Introduction ………………………………………………………………... 218
10.2 Building Trust during Design Time ……………………………………….. 219
10.3 Building Trust during Runtime …………………………………………… 225
10.4 Monitoring Collaborative Embedded Systems …………………………... 228
10.5 Conclusion …………………………………………………………………. 236
10.6 Literature …………………………………………………………………… 237

11 Language Engineering for Heterogeneous Collaborative Embedded
Systems …………………………………………………………………… 239
11.1 Introduction ………………………………………………………………... 240
11.2 MontiCore ………………………………………………………………….. 242
11.3 Language Components …………………………………………………….. 243
11.4 Language Component Composition ……………………………………… 246
11.5 Language Product Lines ……………………………………………………. 248
11.6 Conclusion ………………………………………………………………….. 251
11.7 Literature …………………………………………………………………… 251

12 Development and Evaluation of Collaborative Systems using Simulation
…………………………………………………………………………….. 255
12.1 Introduction ………………………………………………………………... 256
12.2 Challenges in Simulating Collaborative Embedded Systems ……………. 258
12.3 Simulation Methods ……………………………………………………….. 262
12.4 Application …………………………………………………………………. 266
12.5 Conclusion …………………………………………………………………. 267
12.6 Literature …………………………………………………………………... 267

13 Tool Support for Co-Simulation-Based Analysis ……………………….. 269
13.1 Introduction ………………………………………………………………... 270
13.2 Interaction of Different Simulations ………………………………………. 270
13.3 General Tool Architecture …………………………………………………. 275

xii Table of Contents

13.4 Implementing Interoperability for Co-Simulation ………………………. 276
13.5 Distributed Co-Simulation ………………………………………………… 278
13.6 Analysis of Simulation Results …………………………………………….. 280
13.7 Conclusion …………………………………………………………………. 280
13.8 Literature …………………………………………………………………… 281

14 Supporting the Creation of Digital Twins for CESs …………………….. 283
14.1 Introduction ………………………………………………………………... 284
14.2 Building Trust through Digital Twin Evaluation …………………………. 285
14.3 Conclusion …………………………………………………………………. 292
14.4 Literature …………………………………………………………………… 293

15 Online Experiment-Driven Learning and Adaption ……………………. 295
15.1 Introduction ………………………………………………………………... 296
15.2 A Self-Optimization Approach for CESs …………………………………... 297
15.3 Illustration of CrowdNav ………………………………………………….. 300
15.4 Conclusion …………………………………………………………………. 302
15.5 Literature …………………………………………………………………… 303

16 Compositional Verification using Model Checking and Theorem Proving
…………………………………………………………………………….. 305
16.1 Introduction ………………………………………………………………... 306
16.2 Approach …………………………………………………………………… 307
16.3 Example …………………………………………………………………….. 308
16.4 Conclusion …………………………………………………………………. 313
16.5 Literature …………………………………………………………………… 313

17 Artifact-Based Analysis for the Development of Collaborative Embedded
Systems …………………………………………………………………… 315
17.1 Introduction …………………………………………………...…………… 316
17.2 Foundations …………………………………………………...…………… 317
17.3 Artifact-Based Analysis …………………………………...………………… 319
17.4 Artifact Model for Systems Engineering Projects with Doors NG and

Enterprise Architect ………………………………………………………... 325
17.5 Conclusion …………………………………………………………………. 329
17.6 Literature …………………………………………………………………… 330

18 Variant and Product Line Co-Evolution ………………………………... 333
18.1 Introduction ………………………………………………………………... 334

Table of Contents xiii

18.2 Product Line Engineering …………………………………………………. 336
18.3 Propagating Updates from Domain Engineering Level to Application

Engineering Level ………………………………………………………….. 337
18.4 Propagating Changes from Application Engineering Level to Domain

Engineering Level ………………………………………………………….. 344
18.5 Conclusion …………………………………………………………………. 350
18.6 Literature ..………………………………………………………………….. 350

19 Advanced Systems Engineering …………………………………………. 353
19.1 Introduction ….…………………………………………………………….. 354
19.2 Advanced Systems Engineering ……………………………………………. 355
19.3 MBSE as an Essential Basis …………………………………………………. 356
19.4 The Integrated Approach of SPES and SPES_XT …………………………. 358
19.5 Methodological Extensions: From SPES to ASE …………………………... 361
19.6 Conclusion …………………………………………………………………. 363
19.7 Literature …………………………………………………………………… 364

Appendices ……………………………………………………………………. 365
A - Author Index ……………………………………………………………….. 367
B - Partner ……………………………………………………………………… 375
C - List of Publications ………………………………………………………… 391

1

CrESt Use Cases

In this chapter, we present three use cases that are used throughout this book to
demonstrate the various systems engineering methods presented: vehicle platooning,
adaptable and flexible factories, and autonomous transport robots. The use cases are
chosen from real-life industrial tasks and exhibit all software engineering challenges that
are specific to the development of collaborative embedded systems.

Holger Schlingloff, Fraunhofer FOKUS

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_1

1

https://doi.org/10.1007/978-3-030-62136-0_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_1&domain=pdf

2 CrESt Use Cases

1.1 Introduction

To derive and present the systems engineering methods described in
this volume, three different industrial use cases are used throughout
the book. These are vehicle platooning, adaptable and flexible
factories, and autonomous transport robots. In the following, we
describe each use case up to a level of detail that shows clearly how
the respective process building blocks contribute to the overall
development of the use case. For each use case, we first give some
remarks on the historical evolution of the domain, then describe
requirements and application scenarios for the use case, and finally
describe the main challenges for development to be addressed in the
rest of the book.

1.2 Vehicle Platooning

In the “Vehicle Platooning” use case, we consider a group of vehicles
that share the goal of traveling together at high speed for some
distance. With the vehicles driving in a low-distance formation, the
overall air resistance is decreased and fuel consumption is
significantly reduced. Furthermore, more vehicles fit onto the street
and traffic may be more efficient. However, in order to avoid crashing
into one another, the vehicles have to communicate constantly.
Scenarios within this use case are as follows: forming and dissolving
a platoon, as well as single vehicles joining and leaving a platoon.

Cruise control (CC) in cars has been known since the 1950s. Up to
now, such systems have been and still are limited to isolated control
decisions executed individually based on local sensor data. In the
future, vehicle-to-vehicle and vehicle-to-roadside communication
technology will enable the cruise control systems to consider a vast
range of additional context information (e.g., general traffic
conditions, dangerous situations ahead, etc.). This will enable the
cruise control system to establish effective collaboration between
vehicles. This kind of collaborative cruise control will be the central
component of upcoming fully autonomous vehicles.

Adaptive cruise control (ACC) is a step towards such a
collaborative cruise control. It is an enhancement of conventional
cruise control systems that allows the vehicle equipped with ACC to
follow a vehicle in front with a pre-selected time gap by controlling
the engine, power train, and/or service brakes. This means that the

1.2 Vehicle Platooning 3

ACC is a system that requests the onboard computers to control the
vehicle’s acceleration and deceleration. The most common ACC
systems generally use automotive radar systems, placed at the front
of the car, and/or a camera placed on the interior rear mirror. The
radar is used to identify obstacles and predict their speed by sending
and receiving radio waves. Camera-only ACC systems are currently
being researched but are not yet state of the art. The ACC increases
and reduces the car speed and automatically adjusts the vehicle speed
to maintain a safe distance from vehicles ahead. The system may not
react to parked, stopped, or slow-moving vehicles; it alerts the driver
of an imminent crash and may apply limited braking but the main
responsibility for steering the car lies with the driver.

Fig. 1-1: SysML use case diagram “Platoon Membership”

Collaborative adaptive cruise control (CACC) takes the ACC
technology to the next level, enabling vehicles to adjust their speed to
the preceding vehicle in their lane with direct car-to-car
communication. In the following, we use “CACC” to denote the cyber-
physical system of communicating controllers in collaborating
vehicles (that is, the collaborative system group (CSG)) and “CACC
ECU” to denote the electronic control unit(s) in an individual vehicle
(that is, the collaborative embedded system (CES)). Compared to

4 CrESt Use Cases

classical ACC, a CACC can respond faster to speed changes by
preceding vehicles and even vehicles beyond the line of sight. These
advancements improve the stability of the traffic flow, increase driver
confidence, and allow distances to be minimized for vehicle-following.
Ultimately, this results in better use of a highway’s capacity and
greater fuel efficiency. To increase efficiency by leveraging the
collaborative aspect, the CACC may be observing several of the
following common goals and targets:

 Same destination (at least partially)
 Support when driving on an unknown road/to an unknown

destination
 Desired and steady cruising speed
 Reduced time and fuel consumption

Figure 1-1 shows the main SysML use case diagram1 for platooning.
Most of the collaborative aspects of the CACC functionality occur when
a platoon is formed. Before any automated vehicle control can start,
the vehicles have to notice each other and agree on a common driving
strategy. During this phase, several aspects have to be considered:

 The vehicles must be in a close range so that a platoon can be
formed physically. Therefore, the CACC must be aware of the
physical location, speed, and direction of each vehicle. As a
minimum, the vehicles must be aware of other CACC-capable
vehicles and cars in their immediate vicinity.

 The vehicles must have a common driving direction. In the
simplest case, the CACC would know the complete routes that all
participating vehicles are about to travel. However, due to privacy
concerns, this may not be the case; only partial information may
be available from some vehicles.

 The vehicles should have a common or at least similar driving
characteristic or goal. A truck platoon that wants to drive as
economically and safely as possible might not be acceptable for a
driver of a powerful car who wants to travel as fast as possible.
Other drivers might not be willing to accept a very close distance
to the surrounding vehicles, which is necessary to maximize the
fuel savings. Such driving characteristics have to be negotiated
between the participants.

1 The term “SysML use case“ should not be confused with the three use cases for

collaborative embedded systems presented in this chapter. A SysML use case
describes a dedicated functionality for a certain actor.

1.2 Vehicle Platooning 5

 The vehicles must agree on their roles in a platoon. A lead vehicle
(LV) has to be selected; all other platoon members will be assigned
the role of a follower vehicle (FV). Either role might not be
acceptable for some drivers. During the negotiations, a car can be
a potential lead vehicle (PLV) or a potential follower vehicle (PFV).

A typical scenario for this use case is as follows. A vehicle drives on
the highway and wants to create a platoon. The CACC ECU of this
vehicle generates a platoon proposal and continuously broadcasts it
to other vehicles that might join the platoon. Another vehicle’s CACC
ECU receives the proposal and accepts it. After the acceptance, both
vehicles start a “platoon verification” routine, which includes a
platoon role allocation (PLV and PFV). During the verification, no
other vehicle can connect to the platoon. The PFV joins the PLV
longitudinally at the rear. The speed of both vehicles is synchronized
to establish a pairing. When the verification is closed and the platoon
is created, PLV becomes LV and PFV becomes FV1.

In the meantime, the platoon proposal remains active. Invitations
for other cars to join the platoon are continuously broadcast. If a PFV2
receives this request and accepts the proposal, the existing platoon
will be extended by another FV. In the simplest scenario, PFV2 must
join at the rear of the platoon — in other words, behind FV1. More
complex scenarios would allow a vehicle to also join somewhere in the
middle of an existing platoon. Assuming that the communication is
organized as a peer-to-peer network, PFV2 can pair with FV1 or LV,
depending on the platoon network topology. Once the pairing is
finished, the platoon join is closed; PFV2 becomes FV2 and the platoon
regulation takes control.

There are many more aspects and parameters that have to be
considered or negotiated during the build-up phase of a platoon. As
the vehicle platooning use case is considered in various chapters
throughout the book, we do not go into detail here. Moreover, there
are operations that may be reasonable but are not considered in this
book, such as changing the order or the leader of a platoon, fusing two
platoons into one, or splitting one platoon into two. A collaborative
platoon management system has to be flexible enough to cope with
such diverse information.

The CACC use case exhibits many challenges for advanced
software engineering, described as typical for the development of
CESs in Chapter 3: the complex functionality is realized mainly by
software, there is a high degree of networking of heterogeneous
components, and the system must act reliably and autonomously.
Furthermore, the development must take into account common and

6 CrESt Use Cases

conflicting goals of the CESs. The challenges addressed in this book
can be summarized as follows:

 Conception, implementation, and validation of a CACC that realizes
the function of driving in a platoon

 Assessment of the quality of the platoon regulation concept,
especially with respect to safety and reliability

 Platoon communication concept and its quality, especially the
security

 Heterogeneity of CESs built by different vendors (and the resulting
challenges for information exchange between these systems,
including standardization)

 Means to cope with uncertainties caused by imprecise and
possibly differing context perceptions of vehicles

Further challenges, which are not addressed here, include:

 Reliability of artificial intelligence techniques used for context
perception and the related uncertainty

 Elicitation of requirements for engineering methods and tools for
generalized collaborative car-to-car and car-to-X functionalities.

1.3 Adaptable and Flexible Factory

The use case “Adaptable and Flexible Factory” deals with production
modules that collaborate to build products on demand. Each module
consists of one or more production machines and offers one or more
production functions (e.g., cutting, assembly, inspection, or
forwarding of a workpiece). These functions can be combined in
different ways, and even dynamically recombined according to
changing customer needs. The common goal is to optimize the use of
production resources and machines for different usage scenarios.

According to the VDI 5201 standard, flexibility and adaptability are
concepts that describe “the ability of manufacturing companies to
change in response to changing general conditions. […] Adaptability
refers to the ability to change involving structural changes to the
system, while flexibility refers to the ability to change without structural
changes.” Present day industrial production facilities mostly consist of
specialized production machines that are connected in a fixed way via
stationary transport devices such as belt or chain conveyors. The need
for adaptable and flexible factories is driven by several demands:

 Individualization and customization of products
 Variability of products in globalized markets

1.3 Adaptable and Flexible Factory 7

 New or changed customer requirements
 Shorter product life cycles
 Changing markets and varying sales figures

Clearly, these demands cannot be met with traditional production
systems. Adaptable and flexible factories are at the center of the
fourth industrial revolution, comparable to the transition from
individual manual production methods to mass production by
machines in the 19th century. The ultimate vision of Industry 4.0 is to
allow fully automatic production of individualized goods, reducing
changeover times to zero. In order to realize this vision, several
fundamental properties of a production system are required. The
production process must be modular and arranged in several stages.
Each production module must have a clearly defined set of capabilities
and must be decoupled from other modules. Finally, the mapping of
the process to modules and the topological layout of the process in the
factory must be flexible. As most modern production facilities satisfy
these requirements to some degree, the major obstacle to adaptable
and flexible factories lies in the complexity of the corresponding
systems engineering process.

Within this use case, we assume a factory is composed of multiple
independent units called production modules. A production module
can be thought of as a specific machine or device, or a tightly coupled
group of machines. This covers both process industries and discrete
manufacturing, where production modules are sometimes called
production cells. Modules may be aggregated into different production
lines that are substructures of a production facility. A factory may host
several such facilities.

In our terminology, a production module or cell is a CES. The CSG
is formed (statically or dynamically) according to a specific
production job: it consists of all modules in the factory which take part
in this particular production process. For a specific product
component (e.g., a motor), this can be the corresponding production
line. For a complete product (e.g., a car), the CSG consist of all modules
in the corresponding production facility.

A production module is characterized by its ability to interact with
the environment, which also includes communication with other
production modules, humans (e.g., operators or maintenance
engineers), and other entities within a factory (e.g., control systems or
manufacturing execution systems). Collaboration arises from this
possibility of interaction: several modules can form a production
chain for a certain type of product. General functions of a module are:

8 CrESt Use Cases

 Processing
 Assembly
 Quality control — for example, visual inspection
 Transportation
 Storage of products

Flexible production modules are capable of performing different
functions in the production chain. One example is a robot arm that can
change the tool fitted (e.g., a welding gun) for another one (e.g., a
digital camera). Adaptable production facilities are capable of
changing the way the different modules are interconnected. An
example is a mobile robot that can work in different production lines.
This example shows that in an adaptable production facility,
membership of a CES in a CSG can change dynamically.

In our use case, we consider a CSG for the production of
quadrocopters. Each product consists essentially of components from
five different classes:

 Mechanical sub-components
 Onboard electronic components
 Motors for the rotors
 Batteries
 Remote control units

Each of these components is available in several different variants,
hence there are a large number of different products that can be built.
The production process consists of several steps, which are
performed either in sequence, in parallel, or independently of each
other. Typical production steps are:

 Pre-assembly of rotor arms and rotor
 Pre-assembly of the body, including mounting of onboard

electronics and battery
 Attachment of four arms and rotors to the body
 Final assembly of the full product

For each individual production step, activities such as turning,
sticking, molding, drilling, screwing, etc. are necessary. The order of
assembly of the different parts, and a production system which can
realize this production task are shown in Figures 1-2 and 1-3.

1.3 Adaptable and Flexible Factory 9

Fig. 1-2: Process sequences “Quadrocopter” – order of assembly

The production facility (i.e., the CSG) is structured into two main lines
and several sidelines. Each line contains several production modules
(i.e., the CESs). Each module is capable of performing different
processing tasks (joining, sticking, gluing, soldering, etc.), allowing a
flexible production of parts for different quadrocopters within one
line. Moreover, the connection between sidelines and main lines can
be adapted dynamically according to changing demands. Given a
certain sequence of quadrocopters to be produced, the modules
collaborate to accomplish this job as quickly as possible and with the
most effective use of resources. Usually, this collaboration is
orchestrated by a central manufacturing execution system (MES). The
MES assigns each specific step of the production process to an
individual production module and adapts the flow between the
production lines accordingly. However, such a centralized control
component is not really necessary; it would be feasible to imagine the
production modules distributing the workload among themselves.

Fig. 1-3: Example production system for the assembly of a quadrocopter

10 CrESt Use Cases

The diagram in Figure 1-3 is an abstract model of the production
facility. Given appropriate models of the production modules and
their interconnections in the production facility, plus a description of
the necessary production steps for each product and the estimated
demand for each product, the best possible system configuration can
be determined via simulation. In particular, simulation can be used to
show the manufacturability of certain products or sequences of
products, to determine the best timing of the modules and lines, to
avoid bottlenecks and optimize the layout and output of the facility,
and to calculate the cost per unit and management costs. Chapter 12
shows how to create adequate models for this use case.

Challenges for the design of adaptable and flexible factories, which
are addressed in this book, are as follows:

 Definition of engineering methods and a corresponding process
for the design of an adaptable and flexible factory

 Integration of qualities into the engineering methods and models
— for example, safety, reliability, and security

 Creation of models for production modules and facilities
 Description of production processes and validation of orders
 Simulation and analysis methods for these models:

o For proving properties of the CESs as well as the CSG
o For managing variability in the CSG
o For risk assessment and risk decomposition

 Engineering tools that support the adapted engineering methods
 Migration concept for converting a legacy production site into an

adaptable and flexible factory step by step

1.4 Autonomous Transport Robots

Our third use case deals with autonomous transport robots, which are
driverless vehicles for loading and unloading production modules in
a factory. Since they are not stationary, autonomous transport robots
can realize the material flow between flexible units in an adaptable
production facility. In our terminology, each robot is a CES, and the
fleet of robots is the CSG that provides the transport service to the
production facility. We explore a decentralized control scenario,
where each robot can decide which transport job to accept and
accomplish. The common goal of the fleet is to keep production going
— that is, no production module may ever stop due to lack of supply
material or abundance of processed material.

1.4 Autonomous Transport Robots 11

In present-day factories, traditional transport systems such as
conveyor belts or rollers are increasingly being replaced by
automated guided vehicles (AGV). The task of these AGVs is to provide
an automated flow of material between storage, machinery,
workspaces, and shipping department — for example, to transport
small load carriers, trays, barrels, and coils. Moreover, they can be
used for the automated transport of components to quality control or
refinishing operation spaces, and for the transport of tools and testing
equipment to assembly lines or working spaces.

The advantages of AGVs in comparison to stationary conveyor
systems are:

 Scalability: A fleet may grow as necessary with regard to the
number of transportation tasks. If business demands grow, new
vehicles can be added to the fleet easily.

 Changeability: The layout of a production process can be changed
easily, as no stationary equipment has to be rebuilt.

 Fault tolerance: With stationary equipment, even a small failure
of a single part often means that the whole process is halted. If one
of several AGVs malfunctions, however, the others can simply
take over its tasks.

 Reduced space: In general, vehicles use less space than conveyors;
moreover, they can be stowed away if not in use. In fact, as
modern transport robots use the same walkways as human
factory workers, the additional space requirements are minimal.

 Easy deployment: Since there is no construction work necessary,
AGVs can be deployed at a production site within a relatively
short amount of time.

The first generation of AGVs, introduced in the 1950s, were capable of
following a white line or other optical markers on the floor. They used
to drive on circular one-way routes on dedicated lanes in the factory.
Thus, there were only a few advantages compared to stationary
conveyor systems. The second generation, which emerged around
1970, still had to use dedicated areas that humans were not allowed
to enter but could localize themselves in these areas via photoelectric
and inductive sensors. Thus, they could move more or less freely
within a blocked segment of the traffic route, which allowed more
flexibility. Laser scanners for distance measurement became available
in the 1990s, with safety features available only from the 2000s. A
rotating laser scanner for distance measurement can not only stop the
AGV if a person approaches, it can also build a digital map of the
factory environment and allow the AGV to move freely in the facility.

12 CrESt Use Cases

An autonomous transport robot is an AGV that can navigate
autonomously. It does not require any kind of markings, reflectors, or
track guidance. Using a pre-recorded map of the environment, it finds
its path by itself, without the need for fixed routes on traffic ways.
Localization is done via comparison of the data from the integrated
laser scanner with an internal map of the factory. Routing is also
autonomous: when a robot receives an order to transport a load from
point A to point B, it uses the map to calculate an optimal path. In the
case of there being an unexpected obstacle on this path—for example,
a pallet that the vehicle cannot circumvent—the robot comes up with
an alternative route. If no alternative exists, the robot reports to the
central management software that the order cannot be executed.

In this use case, we consider a fleet of autonomous transport
robots as a CSG. Currently, transport robot fleets are managed and
controlled centrally. A fleet organization system AIC (AGV interface
controller) is in contact with the customer’s manufacturing execution
system and translates material requisitions into transportation tasks
for the fleet. Criteria for the AIC’s choice can include the vehicle’s
distance to the pick-up-area, avoiding robots driving without a task,
and the battery status of the robots. From the AIC, the robots receive
simple instructions with a “pick up here, carry there” structure and
then plan the route to get to their destination, with each robot taking
little individual action and robots gathering information first and
foremost from the central controlling system.

Fig. 1-4: Central and decentralized fleet management

Here, we are considering transport robots as individuals with
goals, foresight, and an awareness of the other robots in the fleet.
Individual robots are granted a higher level of autonomy, and the
central AIC is no longer necessary. The task management system
merely offers tasks that must be performed, and the robots distribute
these amongst themselves according to individual capabilities (see
Figure 1-4). This has several advantages. Among other improvements,

1.4 Autonomous Transport Robots 13

it increases the overall efficiency, making more sensible use of
resources and moving in ways that ensure no robot becomes a
hindrance for others.

The user story in Table 2-5 describes how autonomous
cooperating robots can determine which one of them fulfils an order
for transportation. If a new order is given and several robots are
available to take it, there must be a decision about which one of these
robots will actually perform the task. This can be accomplished via a
“bidding” process in which each robot calculates its factors playing
into this task — for example, how far away it currently is from the
pick-up area or what its current battery charge status is. It then sends
these combined factors to the other robots as a bid. Depending on
which robots can offer the most practical circumstances, a distributed
consensus protocol is used to decide which robot takes the order.

Table 2-5: User story for distribution of transport jobs

 Who? What? When? Why?
1 Production

Module
Broadcasts
transportation
need to robots

Every time a
module has
need of support
or availability
(may be in
advance
and/or may be
with priority)

The
production
process of
the module
is not
allowed to
stop

2 Every
Robot

Calculates a bid
for this
transport (may
be based on
individual cost
and/or other
criteria)

When a new
transport need
is notified

To get the
information
about which
robot is the
best fit for
this
transport

3 Every
Robot

Determine
winner by
distributed
leader election
algorithm

After bidding

4 Winning
Robot

Adds the
transport to its
own transport
queue

When a bid is
won

That the
transport
need is
satisfied

14 CrESt Use Cases

Further challenges in this use case are as follows:

 Cooperative path planning: Ideally, each robot should share the
information about blocked paths with the other robots in the fleet.
This information must be updated at frequent intervals. A more
advanced option would allow path planning according to the
traffic situation and the presumed paths of the other robots.

 Fault tolerance: The transportation system is not allowed to halt
if some of the robots are offline (in a dead spot where there is no
wireless reception) or cannot localize themselves because of
massive differences between the observed and expected
environment.

 Flexible fleet size: It should be possible to integrate a new robot
into an existing and operating fleet without stopping production.
After it has authorized itself, the new robot receives map and task
information from the others and is able to collaborate in the fleet
as a coequal partner.

 Distributed logging and monitoring: For a possible “transport as
a service” operation mode, the fleet must remember all relevant
transactions. The logging of this data must be safe and secure—
for example, via a block chain mechanism.

Acknowledgement: The author wishes to acknowledge the
contributions to the CrESt use case descriptions by the authors of the
respective deliverables, in particular Oliver Kreuzmann, Stefan Penz,
Jorge Castillo, Suryo Buono, Birthe Böhm, Roland Rosen, Jan Vollmar,
Jan Christoph Wehrstedt, Wolfram Klein, Sebastian Schröck,
Constantin Hildebrandt, Alexander Ludewig, Birte Caesar, Marian
Vorderer, Michael Hassel, Sebastian Törsleff, Jan Winhuysen, Tobias
Schüle, Michael Nieke, Jan Stefan Zernickel, Susanne Dannat, André
Schmiljun, Henry Stubert, and Janina Samuel. Moreover, the author
thanks the reviewers Torsten Bandyszak, Birthe Böhm, Birte Caesar,
Alexander Hayward, Jörg Kirchhof, Vincent Malik, Nikolaus Regnat,
Sebastian Schroeck, and Jan Christoph Wehrstedt for their valuable
remarks.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Engineering of Collaborative
Embedded Systems

Embedded	systems	are	being	increasingly	used	in	changing	environments	where	they	no	
longer	fulfill	their	associated	stakeholder	goals	on	their	own,	but	rather	in	interaction	
with	 other	 embedded	 systems.	 This	 transition	 to	 networked,	 collaborative	 embedded	
systems	is	creating	new	application	opportunities	that	impose	numerous	challenges	for	
developers	 of	 these	 systems.	 In	 this	 introductory	 chapter	 of	 the	 book,	 we	 present	 the	
complexity	 of	 these	 systems	 and	 the	 challenges	 associated	 with	 them	 in	 a	 coherent	
manner.	 We	 illustrate	 the	 challenges	 using	 two	 use	 cases,	 “Vehicle	 Platooning”	 and	
“Adaptable	 and	 Flexible	 Factory.”	 Finally,	 we	 reference	 the	 challenges	 of	 developing	
collaborative	embedded	systems	to	the	individual	chapters	of	this	book,	which	describe	
various	methods	of	mastering	the	complexity	in	more	detail.	

	

Birthe Böhm, Siemens AG
Wolfgang Böhm, Technical University of Munich
Marian Daun, University of Duisburg-Essen
Alexander Hayward, Helmut-Schmidt-Universität
Sieglinde Kranz, Siemens AG
Nikolaus Regnat, Siemens AG
Sebastian Schröck, Robert Bosch GmbH
Ingo Stierand, OFFIS e.V.
Andreas Vogelsang, Technische Universität Berlin
Jan Vollmar, Siemens AG
Sebastian Voss, fortiss GmbH
Thorsten Weyer, University of Duisburg-Essen
Andreas Wortmann, RWTH Aachen University

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_2

15

https://doi.org/10.1007/978-3-030-62136-0_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_2&domain=pdf

16 Engineering of Collaborative Embedded Systems

2.1 Introduction

With	the	transition	from	classical	embedded	systems	to	networked,	
collaborative	 embedded	 systems	 (CESs),	 new	 applications	 for	
industry	are	emerging.	The	ability	of	a	company	to	efficiently	develop	
CESs	 of	 the	 highest	 quality	 will	 therefore	 become	 a	 decisive	
competitive	factor.	At	the	same	time,	this	transition	will	lead	to	a	leap	
in	the	complexity	of	the	systems	under	consideration.	Not	only	single	
embedded	systems,	but	also	dynamically	changing	networks	of	CESs	
at	runtime	have	to	be	considered.	Since	the	success	of	products	in	the	
area	of	embedded	systems	is	strongly	determined	by	their	quality,	it	
must	 be	 possible	 to	 guarantee	 a	 high	 system	 quality	 despite	 the	
increasing	complexity.	Therefore,	it	is	essential	to	be	able	to	control	
the	complexity	of	CESs	with	efficient	methods.	This	includes	suitable	
methods	 for	 specification,	 implementation,	 and	 validation	 of	 these	
systems.	The	development	of	CESs	goes	hand	in	hand	with	important	
safety	 and	 security	 issues,	 which	 have	 to	 be	 addressed	
comprehensively	 for	 a	 broad	 industrial	 application	 by	 relevant	
development	approaches.	

This	 chapter	gives	an	 informal	 introduction	 to	 the	 challenges	of	
developing	CESs.	We	start	with	the	definition	of	important	terms	and	
then	 describe	 the	 challenges	 that	 have	 to	 be	 overcome	 in	 the	
development	of	such	systems.	These	challenges	are	explained	in	more	
detail	by	means	of	two	use	cases.	Finally,	at	a	high	level	of	abstraction,	
we	 provide	 an	 overview	 of	 selected	 results	 achieved	 in	 the	 CrESt	
project1.	 Details	 of	 the	 results	 can	 be	 found	 in	 the	 corresponding	
contributions	of	this	book	(see	Section	2.6	and	the	Appendix).	

2.2 Background

Model-based	systems	engineering	(MBSE)	[Selic	2003]	aims	to	reduce	
the	 conceptual	 gap	 between	 problem	 domains	 (mechanical	
engineering,	 automation,	 biology,	 law,	 etc.)	 and	 the	 solution	 in	
software	 [France	 and	Rumpe	2007],	 and	 to	 integrate	 contributions	
from	the	participating	domains.	For	 this	purpose,	models—often	 in	
the	 terminology	 of	 problem	 domains—are	 used	 as	 documentation.	
Furthermore,	 development	 artifacts	 that	 reduce	 this	 gap	 with	 an	
explicit	description	of	problem	domain	concepts	can	be	accessed	with	

	
1	Website	of	the	CrESt	project:	https://crest.in.tum.de/	(available	in	German	only)	

New class of systems

Model-based systems
engineering

https://crest.in.tum.de/

2.2 Background 17

sufficient	 formalization	 of	 efficient	 automation.	 These	 artifacts	 also	
simplify	 the	 integration	 of	 contributions	 from	 different	 domain	
experts	by	abstracting	solution	domain	details.	

In	the	German	Federal	Ministry	of	Education	and	Research	(BMBF)	
project	SPES2020	[Pohl	et	al.	2012]	and	the	follow-up	project	SPES_XT	
[Pohl	et	al.	2016],	significant	results	for	MBSE	have	been	achieved	that	
further	 advance	 the	 development	 of	 highly	 automated	 embedded	
systems	and	have	already	established	themselves	as	a	methodological	
approach	in	industry.	

The	two	SPES	projects	provide	a	methodological	toolkit	for	MBSE	
that	 allows	 an	 efficient	 model-based	 development	 of	 embedded	
systems.	At	 the	 same	 time,	 the	 toolkit	 is	 based	on	 a	 solid	 scientific	
foundation	 with	 a	 special	 focus	 on	 consistency	 and	 semantic	
coherence	 (see	 [Broy	 and	 Stolen	 2001],	 [Broy	 2010]).	 The	 SPES	
methodology	building	set	is	based	on	three	principles	of	outstanding	
importance:	

q Consistent	consideration	of	interfaces	along	the	design	process	
q Decomposition	 of	 the	 interface	 behavior	 and	 the	description	 of	

systems	 via	 subsystems	 and	 components	 at	 different	 levels	 of	
granularity	

q Definition	of	models	based	on	the	previous	points	for	a	variety	of	
cross-sectional	 topics	 (variability,	 safety,	 etc.)	 and	 analysis	
options	

In	 SPES,	 a	 system	 model	 is	 a	 conceptual	 (“generic”)	 model	 for	
describing	systems	and	their	properties.	It	describes	what	constitutes	
a	system	as	the	result	of	a	conceptualization.	System	models	define	
the	 components	 of	 the	 system	 and	 its	 structure,	 the	 essential	
properties,	 and	 other	 aspects	 that	 have	 to	 be	 considered	 during	
development.	 Among	 other	 things,	 system	 models	 define	 what	
requirements	 refer	 to	 (subject	 of	 discourse).	 In	 SPES,	 the	 system	
model	consists	of	(see	Figure	2-1):	

q An	 operational	 context2	 that	 influences	 or	 is	 influenced	 by	 the	
system	at	runtime	

q An	interface	that	clearly	separates	the	system	from	its	operational	
context	

q A	behavior	 of	 the	 system	 that	 can	 be	 observed	 at	 the	 interface	
(indicated	by	arrows	at	the	interface)	

	
2	 SPES	 distinguishes	 between	 the	 operational	 context,	which	 in	 turn	 consists	 of	 the	
structural,	 functional,	and	behavioral	context,	and	the	knowledge	context	(see	e.g.,	
[Pohl	et	al.	2016]).	In	this	chapter,	however,	only	the	operational	context	is	relevant.	

Principles of the SPES
methodology

System model

18 Engineering of Collaborative Embedded Systems

q An	 inner	 structure	 of	 interrelated	 and	 communicating	 elements	
(architecture),	which	are	themselves	systems	

The	 system	 model	 used	 in	 SPES	 is	 static	 in	 the	 sense	 that	 model	
elements	do	not	change	at	runtime.	This	applies	in	particular	to	the	
appearance	and	disappearance	of	elements	in	the	operational	context	
as	well	as	the	adaptation	of	the	system	interface	at	runtime.	With	the	
transition	 from	 classical	 embedded	 systems	 as	 considered	 in	
SPES2020	and	SPES_XT	to	networked	CESs,	new	applications	for	the	
MBSE	approach	arise.	At	the	same	time,	this	transition	leads	to	a	leap	
in	the	complexity	of	the	systems	under	consideration.	Not	only	single	
embedded	systems	but	also	networks	of	CESs	have	to	be	considered.	
Such	system	networks	can	be	constituted	dynamically	at	runtime	by	a	
multitude	 of	 different	 embedded	 systems	 (homogeneous	 or	
heterogeneous	type)	[Grosz	1996].	In	their	interaction,	these	system	
networks	enable	the	users	to	achieve	a	comprehensive	added	value	
that	 goes	 beyond	 the	 benefits	 of	 the	 individual	 systems.	 In	 such	
systems,	 both	 the	 exact	 system	 configuration	 (i.e.,	 the	 system	
boundary)	 and	 the	 system	 context	 at	 design	 time	 can	 only	 be	
anticipated	 with	 considerable	 uncertainty.	 In	 the	 context	 of	 the	
development	 of	 CESs,	 this	 raises	 new	 and	 important	 questions	

regarding	 the	 functional	 safety	 of	 the	 systems	 and	 the	 dynamically	
formed	system	networks	[Damm	and	Vincentelli	2015],	[SafeTRANS	
2019].	

Fig. 2-1: SPES system model	

2.3 Collaborating Embedded Systems 19

The	BMBF	project	CrESt3,	which	was	conceived	as	a	continuation	
of	 the	 work	 of	 SPES2020	 and	 SPES_XT,	 addressed	 these	 new	
challenges	and	the	increasing	complexity	in	the	development	of	highly	
automated	embedded	systems	and	developed	the	SPES	framework	for	
MBSE	with	regard	to	CESs.	

2.3 Collaborating Embedded Systems

2.3.1 Collaborative and Collaborating Systems

With	 the	 term	 collaboration,	 we	 denote	 the	 (active)	 interaction	 of	
several	 embedded	 systems	 in	 one	 system	network.	The	purpose	of	
collaboration	 is	 to	 achieve	 a	 common	 goal	 through	 the	 mutual	
provision	of	 functions	that	 individual	systems	alone	cannot	achieve	
[Broy	and	Schmidt	2001],	 [Sha	et	al.	2008].	Collaboration	therefore	
serves	 to	 achieve	 the	 goals	 defined	 in	 a	 single	 system	 or	 a	 system	
group	 and	 can	 take	 various	 forms	with	 regard	 to	 possible	 binding	
times,	the	type	of	coupling,	the	process	of	forming	the	group,	or	the	
collaboration	 management.	 From	 the	 point	 of	 view	 of	 our	 system	
model,	 it	 is	 not	 so	 easy	 to	 distinguish	 collaboration	 from	 “simple”	
interaction.	In	fact,	collaboration	must	of	course	manifest	itself	at	the	
interfaces	of	the	collaborating	systems	in	the	form	of	interaction.		

A	 collaborative	 system	 can	 therefore	 be	 distinguished	 from	 a	 non-
collaborative	system	not	so	much	by	the	system	model	as	by	its	origin,	
its	use,	and	its	purpose.	Maier	has	defined	two	properties	that	must	
apply	 to	 collaborative	 systems	 (as	 opposed	 to	 non-collaborative	
systems)	[Maier	1998]:	

q Operational	independence	of	elements:	The	systems	involved	in	a	
collaboration	 provide	 added	 value	 even	 if	 they	 are	 operated	
independently	of	the	collaboration.	

q Managerial	independence	of	elements:	The	systems	involved	in	a	
collaboration	are	actually	developed	and	operated	independently.	

Taking	 these	 properties	 into	 account,	 we	 define	 a	 collaborative	
embedded	 system	 (CES):	 CESs	 are	 embedded	 systems	 that	 can	
collaborate	 with	 other	 CESs	 to	 achieve	 goals	 that	 are	 difficult	 or	
impossible	for	a	single	CES	to	achieve	alone.	

	
3	Funded	by	the	German	Federal	Ministry	of	Education	and	Research	under	the	funding	
code	01IS16043	

Collaborative embedded
system (CES)

20 Engineering of Collaborative Embedded Systems

A	collaborative	system	group	(CSG)	is	formed	dynamically	at	runtime	
by	a	set	of	CESs	that	collaborate	with	each	other.	The	CESs	involved	
can	take	on	different	roles	in	the	group.	It	is	important	to	note	that	a	
CSG	can	also	be	seen	as	a	system	in	the	sense	of	Figure	2-1,	where	the	
internal	structure	is	formed	by	the	collaborating	CESs.	

We	call	a	CES	a	collaborating	CES	if	it	is	actively	involved	in	a	CSG	
at	a	certain	point	in	time.	Note	that	a	system	can	be	collaborative	for	
a	 certain	 CSG	 type	 (e.g.,	 platoon),	 while	 it	 is	 not	 collaborative	 for	
another	CSG	type	(e.g.,	adaptable	and	flexible	factory).	

Note	that	a	CSG	and	the	CESs	are	at	different	levels	of	granularity	

in	 the	SPES	modeling	 framework	(see	[Pohl	et	al.	2016]):	while	 the	
CSG	models	describe	the	overall	system	and	are	thus	 located	at	 the	
highest	 level	of	 granularity,	 the	CES	models	 are	 located	at	 the	next	
level	of	granularity	of	the	framework,	and	thus	represent	architectural	
components	(subsystems)	of	the	CSG.	

	

Collaborative system
group (CSG)

Collaborating systems

Fig. 2-2: Goals, functions and architectures in collaborative system groups	

2.3 Collaborating Embedded Systems 21

CESs	 can	 be	 developed	 and	 realized	 with	 the	 help	 of	 methods	
defined	in	CrESt4.	The	most	important	concepts	for	the	collaboration	
of	CESs	are	illustrated	in	Figure	2-2.	

2.3.2 Goals of System Networks

In	addition	to	the	CESs,	the	CSGs	also	have	goals	that	are	negotiated	
when	 the	 CSG	 is	 formed.	 This	 involves	 checking	 whether	 there	 is	
sufficient	agreement	with	regard	to	the	achievement	of	 the	goals	of	
the	 participating	 CESs.	 We	 differentiate	 between	 negotiable	 goals	
(“soft	goals”),	which	can	be	adjusted	if	necessary	to	allow	the	CES	to	
participate	in	a	CSG,	and	non-negotiable	goals	(“hard	goals”),	which,	if	
they	 conflict	with	 the	 goals	 pursued	by	 a	 CSG,	may	 result	 in	 a	 CES	
being	unable	 to	 join	a	CSG.	Goals	can	also	be	refined	hierarchically.	
Furthermore,	 relationships	 can	 be	 used	 to	 define	 dependencies	
between	 goals.	 The	 set	 of	 goals	 pursued	 by	 a	 CES,	 as	 well	 as	 the	
relationships	between	the	individual	goals,	form	the	goal	system	of	a	
CES,	 which	 is	 already	 fundamentally	 (generically)	 defined	 during	
development.	 This	 goal	 system	 is	 then	 individually	 instantiated	 at	
runtime	in	the	respective	CES	instances,	thus	concretizing	the	goals.	

During	the	conceptual	development	of	a	CSG,	a	basic	goal	system	
consisting	 of	 soft	 and	 hard	 goals	 is	 also	 defined.	 This	 goal	 system	
contains	overarching	goals	that	can	only	be	achieved	within	the	CSG	
through	cooperation	between	the	CESs	involved.	At	runtime,	the	CSG	
goal	 model	 is	 instantiated	 by	 goal	 negotiations	 between	 the	
participating	CESs:	the	overarching	goals	are	specified	and	compared	
with	 the	 individual	 goals	 of	 the	 participating	 CESs.	 Within	 the	
collaboration,	 the	 participating	 CESs	 make	 their	 system	 functions	
available	 to	each	other	 in	order	 to	achieve	common	goals	 that	 they	
cannot	achieve	on	their	own.	If	conflicts	arise—for	example,	between	
the	 overarching	 goals	 of	 the	 CSG	 and	 the	 individual	 goals	 of	 the	
participating	CESs—these	must	be	resolved.	

2.3.3 Coordination in System Networks

Where	different	CESs	contribute	collaboratively	to	a	CSG	goal,	it	must	
be	 ensured	 that	 the	 individual	 contributions	 are	 coordinated	 and	
aligned.	 Different	 control	 mechanisms	 are	 conceivable	 here.	 For	

	
4	For	a	better	distinction	between	CES	and	CSG,	we	assume	in	the	following	that	CESs,	
unlike	 CSGs,	 are	 “static”	 in	 the	 sense	 that	 their	 functional	 scope	 and	 physical	
architecture	are	already	fully	known	at	the	time	of	design.	In	particular,	this	excludes	
the	possibility	of	nesting	system	networks	of	CSGs.	

CES goals

CSG goals

Control mechanisms

22 Engineering of Collaborative Embedded Systems

example,	 the	 collaboration	 of	 several	 systems	within	 a	 CSG	 can	 be	
centrally	controlled	by	the	role	of	a	coordinator.	The	CSG	coordinator	
can	also	decide	when	and	under	which	conditions	other	CESs	join	or	
leave	 the	 CSG.	 In	 contrast,	 collaboration	 within	 a	 CSG	 can	 also	 be	
organized	decentrally.	Depending	on	how	critical	the	contribution	of	
individual	CESs	is	to	the	common	goal,	their	commitment	to	the	CSG	
will	 also	 be	 more	 or	 less	 firm:	 for	 example,	 a	 CSG	 can	 forbid	 its	
participants	 to	 leave	 the	 group	 before	 certain	 common	 goals	 have	
been	achieved.	

Whether	 a	 CSG	 is	 to	 be	 managed	 and	 organized	 centrally	 or	
decentrally	depends	on	the	circumstances	of	 the	respective	domain	
on	the	one	hand,	and	on	the	other	hand,	on	the	roles	the	CESs	can	take	
within	 the	 collaboration.	 In	 special	 cases,	 it	 may	 be	 necessary	 to	
prepare	 CESs	 for	 collaboration	 through	 structural	 design.	 Should	
these	 CESs	 wish	 to	 enter	 a	 new	 CSG	 in	 order	 to	 collaboratively	
contribute	 in	 another	 way	 to	 a	 new	 collaborative	 goal,	 a	
reconfiguration	might	be	necessary	that	can	only	be	performed	by	an	
external	 actor	 and	 for	 which	 the	 CES	 or	 even	 the	 CSG	 has	 to	 be	
temporarily	taken	out	of	service.	

2.3.4 Dynamics in System Networks

In	the	following,	dynamics	is	understood	to	mean	both	the	dynamics	
within	 CSGs	 and	 the	 dynamics	 within	 their	 operational	 contexts.	
Dynamics	 refers	 to	 the	 change	over	 time	 in	 structure	and	behavior	
over	time.	

The	concrete	inner	CSG	structure	is	dynamic,	since	new	CESs	can	
join	and	leave	the	CSG	at	runtime.	For	example,	at	design	time,	there	
is	no	definition	of	how	many	CESs	are	currently	involved	in	the	CSG.	
At	 this	 point	 in	 time,	 only	 the	 types	 and	 roles	 of	 the	 participating	
systems	and	the	basic	structure	of	the	CSG	are	defined.	

The	operational	context	is	also	dynamic,	since	systems	can	enter	
and	leave	the	context.	The	special	consideration	of	dynamics	here	is	
that	there	 is	transition	between	system	components	of	CSGs	(CESs)	
and	their	context.	This	includes,	for	example,	the	fact	that	individual	
systems	in	the	context	of	a	system	join	together	to	form	a	CSG.	The	
question	as	 to	which	objects	belong	 to	 the	context	of	 a	 system	and	
which	do	not	(i.e.,	which	CESs	are	part	of	the	CSG)	depends	on	their	
relevance	in	connection	with	the	fulfillment	of	the	CSG	goals.	

Dynamicity of the CSG

Dynamicity of the
operational context

2.3 Collaborating Embedded Systems 23

For	dynamic	systems,	depending	on	the	application	domain,	openness	
in	 the	sense	of	 the	open	world	assumption5	plays	an	 important	 role	
[Keet	et	al.	2013].	In	contrast	to	the	closed	world	assumption,	there	is	
no	assumption	here	that	the	possible	states	of	the	operational	context	
are	completely	known	from	the	outset,	but	rather	that	states	may	exist	
that	 are	 unknown	 to	 the	 system.	 This	 view	 has	 important	
consequences.	 For	 example,	 an	 object	 recognition	 algorithm	would	
not	be	able	to	reject	an	unknown	object	as	a	possible	malfunction	but	
would	have	to	recognize	“unknown”	objects.	In	other	words,	openness	
is	understood	to	mean	the	property	that	the	environment	in	which	a	
CES	or	CSG	is	to	operate	is	not	fully	known	at	design	time.	If,	from	the	
perspective	of	the	CES	or	CSG,	the	context	in	which	it	is	expected	to	
operate	 is	not	 fully	known,	 this	 is	called	openness	of	context.	 If	 the	
structure	 of	 the	 CSG	 itself	 is	 not	 fully	 known	 at	 the	 time	 of	
development,	 this	 is	 called	openness	of	CSG.	Openness	 can	 refer	 to	
object	instances	and	object	types.	The	former	allows	the	occurrence	
of	additional	objects	of	previously	known	types,	while	the	latter	also	
allows	the	occurrence	of	objects	of	new	types.	

As	a	further	consequence,	CESs	and	CSGs	formed	at	runtime	that	
operate	 in	 open	 contexts	 must	 be	 able	 to	 deal	 with	 imprecise,	
contradictory,	uninterpretable,	and	even	missing	context	information	
[Bandyszak	et	al.	2020].	The	phenomenon	of	such	“fuzzy”	information	
about	 properties	 of	 the	CES	 or	 CSG	 context	 is	 characterized	by	 the	
term	 “uncertainty”	 of	 context	 information.	 CESs	 and	 CSGs	must	 be	
able,	 whenever	 necessary	 and	 possible,	 to	 mitigate	 the	 existing	
uncertainty	 individually	 or	within	 a	 CSG	—	 that	 is,	 to	 dissolve	 the	
uncertainty	 completely,	 reduce	 it,	 or	 take	 appropriate	measures	 to	
continue	to	operate	reliably	and	robustly	in	the	context	of	the	given	
uncertainty.	

At	 the	 design	 stage,	 CSGs	 are	 developed	 conceptually	 —	 for	
example,	 in	 the	 form	 of	 standardization	 of	 interfaces	 and	 the	
definition	 of	 basic	 architectural	 decisions	 and	 concepts	 for	 the	
formation	of	a	CSG.	This	defines	the	type	of	the	CSG	and	its	abstract	
properties	and	goals.	However,	the	overall	system	behavior	and	the	
complete	 architecture	 of	 a	 CSG	 can	 only	 be	 specified	 after	
instantiation	 and	 only	 taking	 into	 account	 the	 CESs.	 This	 concrete	
realization	by	CESs	only	takes	place	dynamically	at	runtime	through	
the	 interaction	of	 the	collaborating	CESs	 involved.	All	prerequisites	

	
5	 The	 “closed	world	 assumption”	 describes	 the	 principle	 that	 only	 events	 that	were	
considered	at	design	time	occur	in	a	context	and	that	other	events	should	be	treated	
as	failures.	

Uncertainty

Open world assumption

Conceptual definition

24 Engineering of Collaborative Embedded Systems

that	 a	 CES	 must	 fulfill	 in	 order	 to	 participate	 in	 a	 CSG	 must	 be	
described	conceptually	at	development	time.	If	a	CES	assumes	one	or	
more	roles	in	a	CSG,	it	provides	the	system	group	with	the	necessary	
functions.	

The	 formation	 of	 a	 CSG	 must	 be	 designed	 and	 specified	
conceptually	during	the	development	phase	—	both	at	the	level	of	the	
CESs	and	at	the	level	of	the	CSG	at	various	levels	of	detail	by	describing	
the	 necessary	 interfaces	 and	 protocols.	 This	 ensures	 that	 the	 CESs	
have	a	common	definition	of	the	communication	(suitable	protocols	
and	 interfaces),	 of	 roles	 to	be	 assumed	and	 their	 interaction	 in	 the	
CSG,	system	functions	to	be	provided,	and	other	quality	requirements	
of	the	CSG	during	runtime.	Here,	too,	the	respective	domains	specify	
the	 level	 of	 detail	 to	 which	 a	 CSG	 is	 planned	 during	 this	 concept	
development	and	the	extent	to	which	knowledge	about	the	nature	of	
the	CSG	differs	between	the	CESs	(potentially	involved).	

2.3.5 Functions

In	 order	 to	 fulfil	 the	 goals	 defined	 in	 the	 CESs	 and	 CSGs,	 different	
functions	 that	 must	 be	 implemented	 in	 the	 CESs	 are	 required.	 A	
function	 can	 be	 described	 at	 its	 interfaces	 by	 inducing	 a	 certain	
behavior	 on	 the	 basis	 of	 predefined,	 possible	 inputs	 and	 thereby	
generating	 different	 outputs	 [Broy	 and	 Stolen	 2001].	 The	 current	
implementation	is	encapsulated	by	the	interface	and	the	input/output	
behavior.	 For	 functions	 to	 actually	 be	 executed,	 they	 must	 be	
implemented	in	an	architecture.	

We	distinguish	(logically)	between	two	classes	of	 functions:	one	
subset	is	formed	by	the	system	functions,	which	can	be	represented	at	
very	different	levels	of	detail	and	represent	the	concrete	end-to-end	
added	value	compared	to	the	system	context	and	to	the	achievement	
of	the	CSG	or	CES	goals	that	a	CSG	or	CES	is	capable	of	providing.	

The	second	class	consists	of	the	collaboration	functions:	prior	to	
collaboration,	the	CESs	must	communicate	with	each	other,	exchange	
information	about	their	possible	contributions	in	the	form	of	system	
functions,	 communicate	 and,	 if	 necessary,	 adapt,	 negotiate,	 and	
prioritize	 their	 goals,	 and	 define	 the	 concrete	 course	 of	 the	
collaboration.	This	requires	a	comparison	between	the	requirements	
for	goal	fulfillment	and	available	system	functions.	The	role	that	each	
CES	will	take	on	within	the	CSG	must	also	be	determined	before	the	
actual	collaboration	takes	place.	This	depends,	among	other	things,	on	
which	role	a	CES	can	generally	take	on	due	to	its	functional	nature.	All	
these	 basic	 functions	 for	 the	 realization	 of	 a	 collaboration,	 and	

Function interface

System functions

Collaboration functions

2.3 Collaborating Embedded Systems 25

especially	 the	 alignment	 between	 goals	 and	 system	 functions,	 are	
summarized	in	the	model	as	collaboration	functions.	

A	collaboration	function	differs	from	the	system	functions	in	that	
it	does	not	so	much	represent	the	individual	contribution	of	the	CES,	
but	rather	provides	the	functional	basis	for	enabling	the	collaboration.	
Every	CES	must	have	collaboration	 functions	 in	order	 to	be	able	 to	
collaborate	 in	 principle,	 regardless	 of	 which	 concrete	 system	
functions	it	contributes	to	a	collaboration.	Which	CESs	within	a	CSG	
communicate	with	 each	 other	 and	which	 hierarchies	 exist	 to	make	
decisions	 depends	 on	whether	 the	 CSG	 is	 organized	 centrally,	with	
fixed	hierarchies,	or	decentrally.	

In	either	case,	the	CSG	is	a	construct	that	is	pre-designed	at	design	
time,	implemented	in	the	CES,	and	dynamically	assembled	at	runtime.	
Both	the	goals	of	a	CSG	and	its	functions	are	aggregated	components	
that	 are	 implemented	 only	 in	 the	 CES.	 Thus,	 a	 CSG	 function	 for	
achieving	a	CSG	goal	consists	of	a	combination	of	system	functions	of	
several	CESs	involved	in	the	collaboration	or,	if	applicable,	of	one	or	
more	 system	 functions	 of	 a	 CES.	 The	 coordinated	 execution	 of	 the	
system	functions	of	the	CESs	generates	the	behavior	that	realizes	the	
CSG	function.	This	behavior	can	also	be	described	as	emergent,	since	
the	CSG	functions	may	create	new	properties	of	the	CSG	as	a	result	of	
the	interaction	of	its	collaborating	elements.	The	emergent	properties	
of	 the	 CSG	 cannot	 always	 be	 directly—or	 at	 least	 not	 always	
obviously—traced	back	to	properties	of	the	CES,	which	they	have	in	
isolation.	

Just	as	the	functions	of	a	CSG	are	aggregated	from	the	functions	of	
at	 least	one	CES,	the	CSG	architecture	is	formed	just	as	dynamically	
from	 the	 static	 architectures	 of	 the	 CESs.	 In	 contrast	 to	 the	 static	
architecture	of	a	CES,	which	can	be	developed	and	planned	explicitly,	
the	dynamic	architecture	of	a	CSG	is	again	planned	conceptually	and	
the	necessary	elements	are	provided	in	the	architectures	of	the	CESs.	
This	 allows	 a	 comparison	 as	 to	 whether	 a	 CSG	 includes	 the	
corresponding	architectural	 elements	 that	are	necessary	 to	achieve	
the	 overall	 goal	 of	 the	 CSG.	 Only	 in	 this	 way	 is	 it	 possible	 to	
dynamically	form	different	CSGs	at	runtime.	

Emergent behavior

CSG architecture

26 Engineering of Collaborative Embedded Systems

2.4 Problem Dimensions of Collaborative Embedded
Systems

With	the	consideration	of	collaborative	embedded	systems	in	CrESt,	
two	further	problem	dimensions	are	added	to	the	systems	considered	

in	SPES:	collaboration	and	dynamics	at	runtime.	A	distinction	is	also	
made	 here	 between	 CESs	 and	 CSGs,	 which	 form	 these	 embedded	
systems	 at	 runtime.	 In	 the	 following	 sections,	 we	 explain	 these	
additional	dimensions	in	detail,	especially	with	regard	to	the	system	
concept.	Figure	2-3	provides	an	overview	of	the	most	important	terms	
and	relationships.	

In	addition	to	the	classic	characteristics	of	the	system	model,	such	
as	interface,	observable	behavior	at	the	interface,	operational	context,	
and	internal	structure	(see	Figure	2-1),	communication	between	CESs,	
system	goals,	and	the	role	of	the	CES	in	the	system	network	must	also	
be	considered	in	the	case	of	CESs.	Furthermore,	the	characteristics	are	
no	 longer	 statically	 and	 completely	 known	 at	 design	 time	 but	 can	
change	 at	 runtime.	 For	 example,	 when	 a	 CES	 enters	 the	 CSG,	 its	
internal	structure	changes.	At	the	same	time,	the	operational	context	
of	both	the	entering	CES	and	the	CSG	changes.	For	systems	in	context,	
we	also	distinguish	between	collaborative	systems—that	is,	systems	
that	are	able	to	enter	a	CSG	due	to	their	architecture	and	functions—

Fig. 2-3: Collaborative embedded systems at a glance	

2.4 Problem Dimensions of Collaborative Embedded Systems 27

and	non-collaborative	systems	that	cannot	take	an	active	role	in	the	
CSG	at	any	time.	

Based	 on	 these	 specific	 challenges	 for	 collaborative	 embedded	
systems,	a	taxonomy	of	challenges	can	be	defined,	as	shown	in	Figure	
2-4.	 For	 the	 two	 superordinate	 categories	 “Collaboration”	 and	
“Dynamics,”	a	number	of	characteristics	were	defined.	The	challenges	
are	described	in	detail	in	the	following	sections.	

2.4.1 Challenges Related to Collaboration

CESs	 must	 be	 designed	 in	 such	 a	 way	 that	 they	 can	 operate	 in	
conceptually	 conceived	 types	 of	 CSG.	 This	 requires	 both	 the	
communication	 of	 objectives	 and	 the	 ability	 to	 take	 on	 different	
collaborative	 roles	 and	 act	 accordingly.	 To	 this	 end,	 these	 systems	
must	be	able	to	make	their	system	functions	available	to	CSG	and	-	also	
in	terms	of	quality	-	to	communicate	them	to	other	CESs	at	runtime.	
For	 this	 purpose,	 collaboration	 is	 considered	 under	 the	 following	
aspects:	

q Goals:	A	CES	must	be	able	 to	 align	 its	 individual	 goals	with	 the	
goals	of	CSG.	In	doing	so,	the	CES	must	decide	what	contribution	
it	 can	make	 to	 the	common	goals	and	which	 individual	goals,	 if	
any,	 must	 be	 adjusted	 (see	 “Hard	 Goals”	 and	 “Soft	 Goals”	 in	
Chapter	2).	

q Functions	/	behavior:	A	CES	must	be	in	a	position	to	provide	CSG	
with	 its	 own	 system	 functions.	 In	 addition,	 options	 must	 be	

Goals

Functions / behavior

Fig. 2-4: Taxonomy of CrESt challenges	

28 Engineering of Collaborative Embedded Systems

provided	 for	 how	 it	 can	 adapt	 its	 own	 functions	 and	 qualities	
within	the	framework	of	the	negotiated	CSG	objectives.	

q Architecture	/	Structure:	A	CSG	is	an	initially	virtual	entity	that	is	
thought	 of	 at	 design	 time	 and	 then	 forms	 (and	 can	 dissolve)	
dynamically	at	runtime.	At	design	time	only	a	conceptualization	
takes	 place.	 It	 is	 realized	 through	 the	 interaction	 of	 the	
participating	CES	and	their	architecture	components.		

q Communication:	The	basic	ability	of	the	CES	to	communicate	with	
other	 CESs	 is	 realized	 by	means	 of	 the	 collaboration	 functions.	
Among	 other	 things,	 these	 functions	 also	 form	 the	 basis	 for	
negotiating	 objectives,	 assigning	 roles	 and	 communicating	
available	system	functions	to	CSG.	

2.4.2 Challenges Related to Dynamics

The	 developers	 of	 dynamic	 CESs	 need	 concepts	 and	 methods	 that	
support	their	design	so	that	they	can	operate	in	a	highly	dynamic	and	
possibly	 open	 operational	 context	 in	 dynamically	 formed	 CSGs	 at	
runtime	 and,	 if	 necessary,	 with	 “fuzzy”	 information	 in	 a	 targeted	
manner.	 As	 shown	 in	 Figure	 2-3,	 the	 context	 of	 a	 CES	 differs	
significantly	from	that	of	a	CSG	according	to	its	hierarchical	structure.	
The	context	of	a	CSG	consists	exclusively	of	surrounding	systems	of	
the	CSG,	while	the	context	of	a	CES	is	formed	by	the	other	CESs	of	a	
CSG	and,	if	applicable,	by	parts	of	the	context	of	the	CSG.	

As	shown	in	Figure	2-2,	the	system	and	collaboration	functions	of	
CSG	are	formed	by	the	functions	of	the	CESs.	A	challenge	to	a	CSG	must	
therefore	always	be	solved	by	the	CESs	involved,	possibly	also	by	the	
interaction	of	several	CESs.	Dynamics,	openness	and	uncertainty	give	
rise	to	the	following	challenges	for	the	development	of	these	systems,	
among	others:	

q CSGs	 must	 be	 able	 to	 adapt	 their	 goals	 to	 the	 changes	 in	 the	
operational	 context	 that	 they	 perceive	 via	 their	 sensor	
technology.	This	is	particularly	the	case	when	CESs	become	part	
of	CSG	or	leave	CSG.	This	requires	the	possibility	to	dynamically	
adjust	 the	 goals	 of	 the	 CESs	 (see	 challenges	 on	 collaboration	
goals).	

q CSGs	must	 be	 able	 to	 cope	with	 changes	 in	 available	 functions.	
This	concerns	on	the	one	hand	the	system	functions	of	the	CESs	in	
an	operational	 context	and	on	 the	other	hand	 the	collaboration	
functions	of	the	CESs	within	the	CSG.	For	this	purpose,	CESs	must	
be	 able	 to	 describe	 their	 available	 system	 or	 collaboration	

Architecture / Structure

Communication

Goals

Functions / Behavior

2.5 Application in the Domains “Cooperative Vehicle Automation” and “Industry 4.0” 29

functions	 and	 to	 adapt	 their	 system	 functions	 according	 to	 the	
negotiated	goals.	For	example,	a	CES	must	be	able	to	communicate	
with	new	objects	that	have	been	added	to	its	CSG	or	operational	
context.	 In	 open	 systems	 (in	 the	 sense	 of	 the	 open	 world	
assumption),	 this	 requires	 the	 ability	 to	 communicate	 with	
systems	 of	 previously	 unknown	 types	 and,	 where	 this	 is	 not	
possible,	to	handle	them	safely	in	other	ways.	At	the	CSG	level,	it	
must	 be	 possible	 to	 describe	 the	 functions	 required	 to	 achieve	
certain	goals	in	the	form	of	sought-after	capabilities	and	to	search	
for	these	in	their	CSG	and	operational	context.	They	must	be	able	
to	 recognize	when	new	system	 functions	 are	 available	 and,	 if	 a	
system	 function	 is	 no	 longer	 available,	 search	 for	 alternatives.	
Finally,	a	CSG	must	be	able	to	select	available	alternative	system	
functions	according	to	defined	criteria.	

q The	CESs	of	a	CSG	must	be	able	to	deal	with	structural	changes	of	
the	CSG.	In	particular,	they	must	be	able	to	detect	changes	in	their	
operational	 context	 and	 CSG	 and	 adapt	 their	 interfaces	
accordingly.	The	dynamic	entry	or	exit	of	a	CES	from	the	group	or	
the	change	of	roles	of	the	CES	within	a	CSG	also	affects	the	internal	
structure	of	the	CSG.	

q Both	 CESs	 and	 CSGs	must	 be	 able	 to	 deal	 with	 changes	 in	 the	
operational	context	of	the	CSG	or	of	CESs	within	the	CSG.	To	do	so,	
they	must	be	able	to	consider	the	behavior	of	context	objects	(of	
the	CESs	and	CSGs)	when	planning	their	own	goal	fulfillment	and	
implementing	desired	 functions.	To	analyze	 the	current	context	
behavior	 and	 the	 potential	 changes	 resulting	 from	 it,	 it	 is	
necessary	to	define	the	desired	or	expected	behavior	of	context	
objects.	Finally,	CESs	must	be	able	to	evaluate	behavioral	changes	
in	terms	of	their	 impact	on	the	CES	or	CSG	under	consideration	
and	to	draw	conclusions	from	this.	This	includes,	for	example,	the	
adjustment	of	goals.	

q Dealing	with	uncertainty	and	fuzziness	in	data	collection	is	also	
relevant	for	classical	systems.	For	dynamic	systems,	which	should	
be	able	to	operate	in	open	contexts,	it	must	be	possible	to	resolve	
or	deal	with	uncertainties	in	terms	of	the	open	world	assumption.	

2.5 Application in the Domains “Cooperative Vehicle
Automation” and “Industry 4.0”

In	 the	 following,	we	 consider	 and	 concretize	 the	 challenges	 on	 the	
basis	of	exemplary	application	domains.	

Architecture / Structure

Context

Uncertainty

30 Engineering of Collaborative Embedded Systems

2.5.1 Challenges in the Application Domain “Cooperative
Vehicle Automation”

The	use	case	“Cooperative	Vehicle	Automation”	 investigates	system	
networks	 that	 are	 formed	 between	 vehicles	 in	 order	 to	 achieve	
common	 goals.	 An	 obvious	 scenario	 in	 this	 context	 is	 “vehicle	
platooning”	 (computer-controlled	 convoy	 driving).	 In	 the	 sense	 of	
CrESt,	this	is	a	system	group	(i.e.,	a	CSG)	of	individual	vehicles	(CESs)	
that	drive	in	close	succession	in	close	proximity	to	each	other	with	the	
aid	of	automated	control	systems.	Often,	the	common	goal	of	such	a	
network	is	to	reduce	the	fuel	consumption	of	all	participants	and	to	
relieve	the	individual	drivers.	During	their	participation	in	a	platoon,	
individual	 vehicles	 coordinate	 their	 own	 goals	 with	 the	 common	
goals.	 For	 example,	 individual	 vehicles	with	 individual	 destinations	
for	 a	 certain	 route	 can	 join	 a	 platoon	 that	 has	 a	 different	 final	
destination	but	is	travelling	in	the	same	direction.	

Figure	 2-5	 shows	 an	 example	 of	 the	 structure	 of	 such	 a	 platoon,	
consisting	of	vehicles	A	to	D.	Car	A,	at	the	head	of	the	convoy,	takes	on	
the	 central	 role	 of	 coordination,	 referred	 to	 here	 as	 the	 “leading	
vehicle.”	In	this	role,	the	vehicle	coordinates	basic	tasks	such	as	the	
creation	 and	 dissolution	 of	 the	 platoon,	 or	 processes	 such	 as	 the	
execution	of	a	lane	change	for	the	entire	platoon.	The	other	vehicles	
take	on	 the	 role	 of	 “following	vehicle”	 and	 thereby	 transfer	part	 of	
their	control	to	the	lead	vehicle.	In	addition,	individual	vehicles	of	the	

Fig. 2-5: Overview of collaboration in computer-controlled convoy driving	

2.5 Application in the Domains “Cooperative Vehicle Automation” and “Industry 4.0” 31

platoon	can	also	contribute	further	system	functions.	This	allows	new	
sub-functions	of	the	platoon	to	be	formed	and	the	overall	functionality	
of	 the	 platoon	 to	 be	 expanded.	 For	 example,	 a	 vehicle	 could	 bring	
special	sensors	into	the	platoon	for	better	environmental	monitoring,	
which	are	then	available	to	the	platoon	as	a	whole.	

In	order	for	a	platoon	to	be	formed,	certain	requirements	must	be	
met	by	 the	participating	vehicles.	The	preliminary	design	phase	 for	
platoons	must	therefore	define	which	requirements,	such	as	wireless	
communication	 connections,	 standardized	 communication	protocol,	
suitable	distance	sensors,	must	be	met	by	the	vehicles	of	a	platoon.	

Collaboration

In	 the	 following,	 we	 look	 at	 the	 specific	 challenges	 in	 the	 area	 of	
collaboration	using	the	example	of	a	vehicle	entering	a	platoon.	Car	E	
wants	to	enter	a	platoon	consisting	of	four	vehicles	(see	Figure	2-5).	

Car	E	must	coordinate	its	individual	goals,	such	as	destination	and	
cruising	speed,	with	the	platoon's	common	goals	before	entering.	The	
cruising	speed	is	a	soft	goal,	so	Car	E	is	allowed	to	adjust	its	speed	to	
the	cruising	speed	of	the	platoon.	

Upon	entry,	Car	E	is	assigned	its	future	role	(usually	as	a	following	
vehicle)	 in	 the	 platoon.	 It	must	 adapt	 its	 behavior	 to	 this	 role.	 For	
example,	 decisions	 on	 initiating	 acceleration,	 braking,	 and	 lane	
changing	processes	are	transferred	from	Car	E	to	the	lead	vehicle.	

When	entering	the	platoon,	Car	E	will	give	an	entry	position.	This	
specification	can	influence	and	optimize	the	structure	of	a	platoon	—	
for	example,	for	an	imminent	exit	of	another	vehicle.	

For	the	entry	of	Car	E	into	the	platoon,	extensive	communication	
between	Car	E	and	the	platoon's	lead	vehicle	is	necessary.	Car	E	has	to	
express	its	wish	to	enter	the	platoon.	The	platoon	has	to	communicate	
its	common	goals,	as	well	as	the	entry	requirements,	such	as	role	and	
entry	position.	 In	addition,	 communication	 is	also	necessary	within	
the	platoon.	Before	entry,	the	lead	car	must	ask	the	members	of	the	
platoon,	for	example,	to	create	a	gap	at	the	entry	position.	After	Car	E	
has	 pulled	 in,	 the	 lead	 vehicle	must	 ask	 the	 other	members	 of	 the	
platoon	to	close	this	gap	again.	

Dynamics

Let	us	now	look	at	the	special	challenges	in	the	area	of	dynamics	using	
the	example	of	the	entry	of	a	vehicle	(Car	E)	into	the	platoon.	

The	entry	of	Car	E	into	the	platoon	may	lead	to	adjustments	to	the	
community	goals	(soft	goals)	of	the	platoon.	For	example,	Car	E	could	

Goals

Functions and behavior

Architecture and
structure

Communication

Goals

32 Engineering of Collaborative Embedded Systems

bring	special	sensors	that	can	detect	the	environment	more	precisely	
into	the	platoon,	and	thus	enable	a	higher	cruising	speed	for	the	entire	
platoon.	

The	entry	of	Car	E	 can	also	 lead	 to	a	 change	of	 roles	within	 the	
platoon.	For	example,	 for	Car	A	 in	 its	 role	as	 leader,	 the	size	of	 the	
platoon	could	be	limited	to	four	vehicles.	For	the	inclusion	of	Car	E	as	
the	fifth	vehicle,	the	leading	role	must	therefore	be	transferred	to	one	
of	 the	 other	 vehicles	 that	 supports	 the	 corresponding	platoon	 size.	
However,	it	could	also	be	that	Car	A	hands	over	its	role	as	lead	vehicle	
to	Car	E	after	entry	because	Car	A	will	leave	the	platoon	in	a	short	time.	
Functions	such	as	the	coordination	of	acceleration,	braking,	and	lane	
change	of	the	platoon	then	move	from	Car	A	to	Car	E.	

The	entry	of	Car	E	changes	the	internal	structure	of	the	platoon,	
such	as	the	number	and	order	of	the	participating	cars.	Depending	on	
the	sensor	types	contained	in	Car	E	(e.g.,	for	distance	measurement),	
the	interfaces	of	the	other	members	may	have	to	be	adapted.	Interface	
adaptations	may	also	be	necessary	if	sensors	are	missing	or	unknown	
sensor	types	are	used.	

The	context	of	 the	platoon	 is	constantly	changing.	New	vehicles,	
traffic	signs,	but	also	unpredictable	obstacles	on	the	road	can	appear	
at	 any	 time.	 In	 addition,	 new	 functionalities	 can	 appear	 in	 context,	
such	 as	 the	 sensor	 data	 of	 a	 traffic	 control	 system	 that	 provide	
information	about	the	road	surface.	The	platoon	must	be	able	to	detect	
these	changes	fast	enough	and	adapt	 its	behavior	accordingly.	With	
the	entry	of	Car	E	into	the	platoon,	the	context	changes	for	the	platoon	
as	well	as	for	Car	E	and	the	previous	vehicles	of	the	platoon.	For	Car	E,	
the	context	no	longer	contains	the	platoon	as	a	whole,	but	rather	the	
individual	vehicles	inside	the	platoon.	For	the	vehicles	of	the	platoon,	
Car	E	now	becomes	a	member	of	their	own	association.	

Platoons	operate	in	an	open	environment	and	must	therefore	deal	
with	a	high	degree	of	uncertainty	and	 fuzziness.	A	platoon	must	be	
able	to	deal	with	road	users	not	yet	known	at	the	time	of	the	platoon's	
design.	Road	 safety	must	be	 guaranteed	 even	 then.	 Future	 vehicles	
with	 new	 features	 (such	 as	 extended	 information	 about	 the	
environment)	should	be	included	in	the	platoon	and	their	capabilities	
should	be	able	to	be	used.	

2.5.2 Challenges in the Application Domain “Industry 4.0”

The	visions	of	an	adaptable	and	flexible	factory	are	complex	and	are	
described	by	different	scenarios	in	connection	with	the	Industry	4.0	

Functions and behavior

Architecture and
structure

Context

Uncertainty

2.5 Application in the Domains “Cooperative Vehicle Automation” and “Industry 4.0” 33

vision	[Plattform	Industry	4.0	2017a],	[Plattform	Industry	4.0	2017b],	
[Plattform	Industry	4.0	2017c].	

One	scenario	frequently	described	in	this	context	is	order-driven	
production,	where	the	CESs	involved	in	the	production	of	a	product	
(also	called	modules	in	the	factory)	form	a	CSG	(also	called	production	
network	in	the	factory)	based	on	the	requirements	of	the	product	to	
be	manufactured	and	with	the	goal	of	manufacturing	the	product.	The	
application	of	the	concept	described	in	2.3.1	results	in	a	production	
network	that	is	formed	to	produce	a	specific	production	order	and	is	
dissolved	again	after	its	completion.	

In	the	example	of	the	adaptable	and	flexible	factory,	the	interaction	of	
the	CESs	in	the	CSG	must	also	be	considered	and	described	by	means	
of	suitable	models	in	order	to	serve	as	a	basis	for	the	development	of	
the	 CESs	 and	 to	 enable	 collaboration	 during	 operation.	 Figure	 2-6	
shows	 such	 an	 existing	 and	 a	 planned	 production	 network	 for	 the	
processing	of	two	production	orders.	

To	process	manufacturing	order	PO1,	a	different	composition	of	
production	modules	 is	 required	 than	 for	manufacturing	 order	 PO2	
(see	Figure	2-6).	When	the	order	is	received,	the	modules	agree,	based	
on	the	order	information,	whether	and	under	which	conditions	(costs,	
quality,	 and	 time)	 they	 can	 contribute	 to	 the	 production.	 For	 the	

Fig. 2-6: Overview of collaboration in order-driven production	

34 Engineering of Collaborative Embedded Systems

production	of	PO1,	for	example,	a	collaboration	of	modules	A,	B,	and	C	
with	 the	 roles	 production	 planning	 unit,	 production	 station	 (in	 the	
form	of	a	drilling	station),	and	transport	device	is	required,	while	for	
the	production	of	PO2,	a	further	function	of	module	D	in	the	role	of	an	
assembly	device	must	be	added.	Even	 in	 the	adaptable	and	 flexible	
factory,	there	are	modules	that,	due	to	lack	of	suitable	functionality,	
are	not	capable	of	collaborating	with	other	modules	(e.g.,	module	F	in	
the	figure).	

Individual	 goals	 of	 the	 modules,	 such	 as	 achieving	 the	 highest	
possible	 throughput,	 energy-efficient	 production,	 or	 adherence	 to	
certain	 maintenance	 intervals,	 must	 be	 taken	 into	 account	 when	
forming	 production	 networks	 and	 compared	 with	 the	 higher-level	
and	 possibly	 conflicting	 goals	 of	 the	 production	 network.	 The	
fulfilment	of	the	production	order	represents	the	overriding	overall	
goal,	which	can	only	be	achieved	through	the	individual	contributions	
of	the	modules	involved	in	production.	

In	this	scenario,	it	is	assumed	that	in	different	factories,	different	
modules	 with	 heterogeneous	 system	 functions	 or	 production	
functions	 (such	 as	 drilling,	 milling,	 transport,	 and	 assembly)	 are	
available	 for	 the	production	of	 individual	 customer	orders,	 initially	
detached	from	each	other.	Depending	on	the	shape	of	the	product	to	
be	manufactured,	different	manufacturing	functions	are	required	for	
production.	 In	 contrast	 to	 platooning,	 this	 scenario	 is	 mainly	
characterized	 by	 the	 multitude	 of	 very	 different	 functions	 of	
individual	CESs.	

The	contributing	modules	must	both	align	their	functions	with	the	
requirements	 resulting	 from	 the	 order	 and	 communicate	 their	
respective	 contribution	 to	 the	production	 to	each	other	 in	order	 to	
jointly	 determine	 the	 feasibility	 and	 the	 sequence	 of	 processing.	
Depending	 on	 the	 functions	 required,	 it	 may	 be	 necessary	 to	
reconfigure	modules	before	production	can	start	because	they	cannot	
perform	a	required	function	in	the	current	configuration.	Depending	
on	 the	 scope,	 the	 reconfiguration	 can	 be	 performed	 either	
automatically	 by	 the	 module	 itself,	 or	 by	 an	 external	 actor.	 The	
frequency	with	which	individual	modules	are	reconfigured	depends	
on	the	requirements	of	the	respective	production	network.	

By	providing	their	respective,	very	heterogeneous	 functions,	 the	
modules	 assume	 roles	 required	 for	 the	 production	 (such	 as	
production	planning	unit,	production	cell,	assembly	station,	transport	
device)	and	contribute	to	production	within	a	CSG.	

2.5 Application in the Domains “Cooperative Vehicle Automation” and “Industry 4.0” 35

Collaboration

In	 order	 to	 realize	 the	 collaboration	 of	 the	 modules	 for	 the	 joint	
production	 of	 a	 product,	 numerous	 challenges	 have	 to	 be	 met.	 By	
combining	the	very	heterogeneous	functions	of	individual	modules,	it	
should	 be	 possible	 to	manufacture	 a	 product	 that	 a	 single	module	
could	not	manufacture	on	its	own	due	to	its	limited	possibilities.	

Since	each	individual	module	can	make	only	a	limited	contribution	
to	 the	 overall	 production,	 and	 since	 these	 individual	 contributions	
must	 be	 coordinated	 for	 an	 aggregated	 overall	 contribution,	
achievable	 intermediate	 goals	 (such	 as	 progress	 in	 the	 production	
process	 that	 can	 be	 achieved	 by	 the	 individual	 module)	 must	 be	
defined.	This	requires	that	the	modules	have	machine-interpretable	
descriptions	 for	 their	 respective	 functions	 and	 that	 they	 exchange	
these	 descriptions,	 as	 well	 as	 metadata	 (e.g.,	 units	 used,	 qualities	
provided)	 in	 the	 context	 of	 communication	 with	 other	 modules	
through	 their	 collaboration	 functions.	 From	 these	 descriptions,	 we	
can	derive	whether	and	to	what	extent	a	contribution	can	be	made	to	
the	production	of	a	product.	

During	production,	consideration	must	be	given	to	the	fact	that	the	
sequence	 of	 functions	 to	 be	 performed	 by	 the	 modules	 varies	
depending	on	the	product	to	be	manufactured.	The	information	about	
the	 sequence	 of	 the	 functions	 of	 the	 modules	 to	 be	 executed	 is	
determined	based	on	the	production	order.	While,	for	example,	in	the	
case	 of	 a	 platoon,	 the	 functions	 to	 be	 executed	 for	 integrating	 or	
leaving	the	platoon	are	very	similar,	even	with	varying	vehicles	and	
destinations,	 in	 a	 factory,	 even	 when	 manufacturing	 very	 similar	
products,	 a	 geometrically	 determined,	 very	 different	 sequence	 of	
functions	may	be	required	in	production.	

The	 production	 sequence	 as	 the	 goal	 of	 collaboration	 and	 the	
resulting	involvement	of	the	modules	must	therefore	be	redefined	for	
each	production	order.	For	example,	 for	 the	production	of	PO1	and	
PO2,	both	functions	of	module	A	and	module	B	are	required.	For	PO1,	
however,	it	may	be	necessary	for	module	A	to	execute	its	production	
functions	 first	and	module	B	afterwards,	whereas	PO2	requires	 the	
functions	of	module	B	first	and	then	those	of	module	A.	PO2	may	even	
require	 manual	 reconfiguration	 by	 an	 employee	 in	 the	 factory	 of	
module	 B	 because	 a	 specific	 tool	 is	 required.	 This	 reconfiguration	
must	also	be	considered	and	provided	for	in	the	collaboration.	
In	addition	to	providing	individual	system	functions,	the	architecture	
of	 factory	modules	also	 implements	communication	with	other	CSG	
modules.	 While	 communication	 about	 platooning	 targets	 is	 done	
dynamically	at	system	runtime,	targets	of	CSGs	and	CESs	of	adaptable	

Goals

Function and behavior

Architecture and
structure

36 Engineering of Collaborative Embedded Systems

and	 flexible	 factories	 are	 aligned	 at	 configuration	 time.	 Due	 to	 the	
heterogeneity	of	goals,	roles,	collaboration,	and	system	functions,	the	
ways	 in	which	modules	are	combined	to	 form	CSGs	are	much	more	
complex	 than	 in	 platooning	 and	 require	 intelligent	 procedures	 for	
coordination.	

In	the	adaptable	and	flexible	factory	in	particular,	and	in	similar	
heterogeneous	collaborative	contexts,	it	may	therefore	be	necessary	
to	involve	people	as	actors	(experts)	in	the	CSG	formation	process.	In	
addition	 to	 the	 inter-CES	 communication,	 opportunities	 to	 involve	
experts	in	collaboration	planning	must	also	be	provided.	

Dynamics

The	 goal	 pursued	 by	 a	 production	 network	 is	 to	 fulfil	 a	 single	
production	 order.	 The	 production	 network	 comprises	 all	 modules	
that	contribute	to	the	production	of	the	corresponding	product	with	
their	production	functions	and,	if	necessary,	additional	functions	such	
as	production	monitoring.	If,	for	example,	module	B	fails	in	its	role	as	
a	 production	 cell	 (drilling	 station)	 due	 to	 an	 error	 during	 the	
processing	of	PO1,	compensation	strategies	are	required	to	ensure	the	
fulfilment	 of	 the	 order.	 In	 this	 case,	 the	 production	 network	 could	
request	the	required	function	from	module	E,	since	this	module	does	
not	belong	to	any	network	at	this	time	and	has	the	basic	possibility	of	
assuming	the	required	role.	

The	failure	of	a	system	function	of	a	module	as	well	as	the	search	
for	and	 integration	of	alternative	modules	with	comparable	 system	
functions	shows	the	dynamics	with	regard	to	function	and	behavior.	
Such	a	change	can	result	in	further	adaptations	because	new	transport	
routes	may	have	to	be	considered.	

Every	 time	 a	 module	 fails	 or	 a	 new	 module	 is	 added	 to	 the	
production	 network,	 the	 architecture	 and	 structure	 of	 the	 network	
also	change.	

Furthermore,	 production	 networks	 must	 be	 able	 to	 deal	 with	
changes	 in	 their	 context.	 For	 example,	 the	 delivery	 of	 required	
materials	by	external	suppliers	in	the	context	of	PO1	could	change.	

While	in	platooning,	a	vehicle	with	the	role	of	“following	vehicle”	
leaving	the	platoon	can	be	assumed	to	be	an	everyday	occurrence	and	
usually	does	not	prevent	the	joint	achievement	of	goals,	the	failure	of	
modules	in	the	production	network	can	mean	that	the	order	cannot	
be	fulfilled.	These	and	other	forms	of	uncertainty	must	also	be	taken	
into	account	during	the	design	of	individual	modules	of	the	adaptable	
and	flexible	factory.	

Communication

Goals

Functions and behavior

Architecture and
structure

Context

Uncertainty

2.6 Concepts and Methods for the Development of Collaborative Embedded Systems 37

2.6 Concepts and Methods for the Development of
Collaborative Embedded Systems

2.6.1 Enhancements Regarding SPES2020 and SPES_XT

To	 meet	 the	 requirements	 for	 the	 development	 of	 collaborative	
embedded	 systems,	 new	 methods	 have	 been	 developed	 in	 CrESt.	
These	methods	were	classified	according	to	their	contribution	to	the	
taxonomy	 of	 challenges	 (see	 Figure	 2-4).	 Some	 methods	 can	 be	
classified	 into	 the	 taxonomy	 several	 times	 because	 they	 offer	
solutions	for	different	challenges.	

The	“Process	Building	Block	Framework”	was	used	to	document	
the	 methods	 (see	 [Pohl	 et	 al.	 2016]).	 This	 framework	 allows	
systematic	documentation	of	how	artifacts	are	created	and	processed	
in	the	development	process.	Each	“process	building	block”	has	a	well-
defined	input	(e.g.,	models,	etc.)	and	output	(models,	analysis	results,	
etc.).	 Input	 and	 output	 can	 be	 further	 restricted	 by	 pre-	 and	 post-
conditions	and	are	assigned	to	the	SPES	viewpoints.	Process	building	
blocks	 can	 be	 connected	 to	 each	 other	 via	 relationships	 and	 thus	
provide	a	mapping	to	the	desired	development	process.	

In	 SPES2020	 and	 SPES_XT,	 a	 framework	 for	 the	 creation	 of	 a	
system	 model	 was	 developed.	 The	 models	 are	 organized	 in	 four	
viewpoints:	 requirements	 viewpoint,	 functional	 viewpoint,	 logical	
viewpoint,	 and	 technical	 viewpoint.	 In	 addition,	 the	 framework	
includes	 special	 models	 for	 cross-cutting	 topics	 such	 as	 safety,	
variability,	 and	 validation.	 For	 the	 description	 of	 CESs	 in	 a	 system	
model,	 this	 framework	 has	 been	 extended	 in	 CrESt.	 The	 existing	
viewpoint	structure	was	retained.	Existing	models	were	extended	and	
a	 number	 of	 new	model	 types	were	 defined.	 These	 extensions	 are	
used,	among	other	things,	to	describe	a	CSG	and	its	relationships	to	
CESs	—	for	example,	with	respect	to	goals	and	functions	(see	Figure	
2-7).	 The	 two	 main	 classes	 of	 the	 taxonomy	 (Figure	 2-4)	
“Collaboration”	and	“Dynamics”	impact	all	four	viewpoints.	Therefore,	
they	have	to	be	considered	in	the	models	of	all	viewpoints.	In	addition	
to	 the	 extensions	 of	 existing	 viewpoints,	 specific	model	 types	 have	
been	defined	that	consider	collaboration	and	dynamics	and	cannot	be	

Process building blocks

SPES viewpoints and
cross-cutting topics

38 Engineering of Collaborative Embedded Systems

assigned	directly	to	existing	viewpoints.	They	are	orthogonal	to	the	

viewpoints	 and	 have	 cross-connections	 to	 several	 viewpoints.	
Examples	are	models	that	describe	collaboration	strategies	in	a	CSG	
or	information	about	dynamics	at	runtime	(see	Figure	2-8).	

2.6.2 Collaboration

In	order	 to	 support	 the	development	of	CESs	 and	CSGs	 in	 terms	of	
collaboration,	 the	 methodological	 toolbox	 of	 SPES,	 including	 the	
modeling	approach	contained	therein,	was	extended	in	CrESt.	A	list	of	

Fig. 2-7: CrESt framework (part1)

Fig. 2-8: CrESt framework (part2)	

2.6 Concepts and Methods for the Development of Collaborative Embedded Systems 39

methods	 developed	 to	 support	 collaboration	 can	 be	 found	 in	 the	
appendix	of	this	chapter6.	

Goals

The	Goal-Oriented	Requirements	Language	(GRL)	[Daun	et	al.	2019]	
can	be	used	to	model	the	common	goals	of	a	CSG	and	the	relationships	
to	 the	 individual	 goals	 of	 the	 CES	 members.	 With	 the	 help	 of	 this	
formal	 description,	 the	 necessary	 skills	 and	 key	 performance	
indicators	 (KPIs)	 of	 the	 CSG	 members,	 whose	 interaction	 in	 the	
context	 of	 a	 collaboration	 makes	 the	 achievement	 of	 the	 common	
goals	possible,	can	be	derived.	

In	order	to	analyze	the	individual	goals	of	potential	CSG	members	
or	their	development	organizations,	CrESt	defined	a	suitable	language	
for	partner	network	models.	

In	 order	 to	 illustrate	 the	 variability	 or	 configurability	 of	 a	 CSG	
based	on	the	configuration	possibilities	of	its	members,	CrESt	results	
allow	for	the	combination	of	different	variability	models.	

Based	 on	 these	 extensions	 of	 the	modeling	 framework,	 specific	
methods	were	developed	to	achieve	the	goals	of	a	collaboration.	Thus,	
it	is	possible	to	determine,	at	runtime,	whether	or	not	a	collaborative	
goal	 can	be	 achieved	 in	 the	 current	CES	 constellation	with	 the	CES	
capabilities	currently	available.	The	possibility	to	achieve	a	common	
goal	by	making	possible	adjustments	to	the	participating	CESs	is	also	
taken	 into	 account.	 For	 example,	 this	 approach	 can	 be	 used	 to	
determine,	for	an	adaptable	and	flexible	factory,	whether	it	is	possible	
to	produce	a	product	with	the	required	quality.	If	not,	the	approach	
allows	a	check	to	determine	whether	a	suitable	(re-)	configuration	of	
the	modules	can	make	that	production	possible.	Further	details	can	be	
found	in	Chapter	6.		

In	order	to	achieve	a	common	goal	of	a	CSG,	it	may	be	necessary	
for	individual	members	to	adapt	the	individual	goals	they	pursue	in	
order	to	subordinate	them	to	those	of	the	group.	For	example,	in	order	
to	reduce	their	own	fuel	consumption	by	participating	in	a	platoon,	all	
participating	 vehicles	 must	 adapt	 their	 speed	 to	 the	 speed	 of	 the	
platoon.	With	 the	help	of	CrESt	methods,	 suitable	 strategies	 can	be	
derived	and	verified	at	runtime	to	optimally	achieve	both	the	common	
goals	 of	 a	 CSG	 and	 the	 goals	 pursued	 by	 the	 members	 of	 the	
collaborating	CESs	(for	details,	see	Chapter	9	and	Chapter	10).	

	
6	 The	 CrESt	 results	 are	 available	 on	 request.	 See:	 https://crest.in.tum.de/	 (website	
available	in	German	only),	

Goal-Oriented
Requirements Language

Language for partner
network models

Combination of different
variability models

https://crest.in.tum.de/

40 Engineering of Collaborative Embedded Systems

Functions and Behavior

The	modeling	of	functions	has	been	extended	to	support	the	modeling	
of	 CESs	 in	 the	 framework.	 Two	 types	 of	 functions	 can	 now	 be	
distinguished.	

The	first	type	of	function	is	the	collaboration	functions	necessary	
for	the	collaboration	of	CESs	in	a	CSG	and	the	system	functions	of	a	
CES	that	serve	to	achieve	the	system	goals.	To	enable	the	dedicated	
consideration	 of	 collaboration	 functions	 in	 particular,	 appropriate	
modeling	 approaches	 were	 provided	 in	 order	 to	 ultimately	 enable	
collaboration	at	runtime	and	the	associated	systematic	coordination	
of	different	functionalities	in	a	CSG.	When	designing	a	CSG,	it	is	now	
possible	to	specify	which	collaboration	functions	are	necessary	for	the	
participation	of	a	CES	in	a	CSG.	

In	addition,	the	conceptual	relationships	between	system	and	CSG	
functions,	as	well	as,	for	example,	goals	and	roles	in	a	collaboration,	
were	worked	out.	For	a	CSG,	we	can	specify	which	roles	the	individual	
CES	members	can	take	on	and	which	functions	they	have	to	provide	
to	the	CSG	for	this	purpose.	In	a	platoon,	for	example,	the	lead	vehicle	
must	be	able	to	plan	and	execute	lane	changes	for	the	entire	platoon.	
By	 means	 of	 collaboration	 functions,	 system	 functions	 such	 as	
acceleration	and	braking	must	be	orchestrated	in	a	suitable	way,	so	
that,	 for	 example,	 the	 entry	 and	 exit	 of	 a	 vehicle	 into	 and	 from	 a	
platoon	is	made	possible.	A	detailed	description	of	function	modeling	
can	be	found	in	Chapter	4		and	Chapter	5.	

Additionally,	 the	 framework	 has	 been	 extended	 to	 formally	
describe	 the	 behavior	 of	 a	 CSG	 through	 contracts	 and	 scenarios	 at	
design	 time	 (see	 Section	 8.4).	 Furthermore,	 approaches	 including	
suitable	tools	were	developed	to	analyze	the	behavior	of	a	CSG	by	co-
simulation.	Details	can	be	 found	 in	Chapter	12	and	Chapter	13.	The	
confidence	of	the	CES	members	in	the	behavior	of	the	other	members	
plays	an	important	role	in	the	creation	of	a	CSG.	In	CrESt,	an	approach	
was	therefore	developed	to	build	up	mutual	trust	in	the	behavior	of	
CES	members,	for	instance	within	a	platoon,	with	the	help	of	digital	
twins	(see	Chapter	14).	

Architecture and Structure

The	goal-oriented	requirements	models	are	used	 in	CrESt	 to	derive	
supporting	 architectures	 of	 CESs	 and	 CSGs.	 In	 addition,	 the	
architecture	modeling	in	the	framework	has	been	extended	to	support	
the	virtual	characteristics	of	a	CSG.	This	means	that	all	components	of	
a	 CSG	 architecture	 are	 realized	 by	 components	 of	 the	 participating	

Modeling of
collaboration functions

Goals and roles in a
collaboration

Describing CSG behavior

Support of virtual CSG
characteristics

2.6 Concepts and Methods for the Development of Collaborative Embedded Systems 41

CESs.	The	design	of	a	CSG	is	therefore	described	at	two	levels.	At	the	
development	 stage,	 the	 architecture	 is	 defined	 at	 an	 abstract	 level	
with	 the	 help	 of	 reference	 architectures	 developed	 in	 CrESt	 (for	
example,	in	the	context	of	standardization).	A	detailed	description	of	
this	approach	can	be	found	in	Chapter	3	and	Chapter	5.	At	runtime,	
the	abstract	architecture	is	instantiated	into	a	concrete	architecture.	
For	 example,	 only	 the	 framework	 conditions	 for	 a	 platoon	 are	
specified	 at	 design	 time.	 At	 runtime,	 a	 platoon	 then	 consists	 of	 a	
defined	number	of	concrete	vehicles.	

Communication

CESs	must	be	able	to	communicate	with	the	different	partners	both	
within	a	CSG	and	in	their	environment.	For	example,	in	a	platoon,	the	
following	vehicles	must	be	able	to	be	instructed	by	the	lead	vehicle	to	
form	a	gap	for	the	entering	vehicle	at	the	given	position.	

In	 CrESt,	 an	 approach	 has	 been	 developed	 to	 achieve	 semantic	
interoperability	 between	 different	 and	 changing	 communication	
partners	regarding	the	exchanged	(possibly	complex)	information	by	
means	 of	 ontologies.	 For	 example,	 it	 is	 important	 to	 exchange	
information	 about	 the	 specific	 capabilities	 of	 the	 individual	 CES	
members.	The	CrESt	framework	was	therefore	extended	by	a	formal	
description	of	the	capabilities	of	a	CES	(for	details,	see	Section	6.3		and	
Chapter	7).	

Safety	contracts	must	also	be	communicated	at	runtime	for	safety-
critical	 systems.	 In	 CrESt,	 a	 corresponding	 method	 has	 been	
developed	for	this	purpose.	(see	Section	8.4).	Furthermore,	suitable	
communication	patterns	were	defined	for	the	communication	of	CESs	
in	 a	 CSG	 and	made	 available	 on	 the	 basis	 of	 the	Coaty	middleware	
framework	 [Coaty].	 A	 detailed	 description	 can	 be	 found	 in	 Section	
10.6.	

2.6.3 Dynamics

With	regard	to	the	problem	dimension	dynamics,	both	the	modeling	
of	CESs	and	CSGs	and	the	methodological	toolkit	for	developing	these	
systems	have	been	expanded.	The	appendix	of	this	document	contains	
a	list	of	the	methods	developed	in	CrESt	for	this	dimension7.	

	
7	 The	 CrESt	 results	 are	 available	 on	 request.	 See:	 https://crest.in.tum.de/	 (website	
available	in	German	only).	

Semantic
interoperability

Safety contracts

https://crest.in.tum.de/

42 Engineering of Collaborative Embedded Systems

Goals

With	the	approaches	developed	in	CrESt,	community	goals	can	now	
be	negotiated	dynamically	at	runtime.	The	decisions	made	at	runtime	
are	based	on	strategies	for	ensuring	that	individual	and	community	
goals	are	achieved	as	well	as	possible.	Such	strategies	also	serve	to	
plan	and	enable	adaptation	at	runtime	based	on	the	achievement	of	
goals.	CrESt	provides	methods	for	deriving	appropriate	strategies	and	
operationalizing	the	adaptation	(see	also	Chapter	9).	

In	order	to	achieve	the	common	goals	of	a	CSG,	all	CES	members	
must	 fulfill	 their	 commitments.	 Therefore,	 CrESt	 has	 developed	
methods	for	assessing	the	risk	and	impact	of	erroneous	behavior	of	a	
CES	and	for	ensuring	that	the	goals	are	met	in	this	case	as	well.	In	the	
use	case	of	the	adaptable	and	flexible	factory,	for	example,	the	failure	
of	one	module	must	not	lead	to	serious	damage	to	the	factory	workers	
and	the	other	modules.	A	prerequisite	for	this	is	a	method	for	a	goal-
based	 review	 of	 CESs	 at	 runtime.	 These	methods	 are	 described	 in	
Section	10.2	and	Section	8.3.4.	

Functions and Behavior

Both	CESs	and	CSGs	change	their	behavior	dynamically	at	runtime.	In	
the	 case	 of	 a	 CSG,	 for	 example,	 this	 can	 be	 done	 by	 CES	members	
joining	and	leaving	the	CSG.	This	dynamic	behavior	makes	it	difficult	
to	 perform	 safety-critical	 analyses	 completely	 at	 design	 time.	
Therefore,	methods	are	made	available	in	the	framework	where	parts	
of	the	security	analysis	can	be	shifted	to	runtime.	In	order	to	execute	
these	 parts	 with	 acceptable	 effort	 at	 runtime,	 corresponding	
preparatory	work	at	design	time	is	necessary.	Analyses	with	regard	to	
risks,	errors,	and	uncertainties	can	thus	be	analyzed	in	a	model-based	
manner	at	design	time	and	combined	into	modular	safety	checks	that	
are	evaluated	at	runtime	(see	Chapter	8	and	Chapter	3).	In	addition,	
argument-based	and	contract-based	approaches	based	on	behavioral	
models	 that	 allow	 a	 semi-automated	 or	 fully	 automated	 safety	
demonstration	 at	 runtime	 have	 been	 developed	 (Section	 8.4).	 A	
model-based	approach	to	risk	analysis	supports	safety	engineers	 in	
assessing	 the	 safety	 of	 newly	 configured	 systems	 at	 runtime.	
Problems	 arising	 from	 adjustments	 to	 systems	 at	 runtime	 can	 be	
identified	 by	 predictive	 simulation	 under	 certain	 circumstances.	 A	
detailed	description	can	be	found	in	Section	10.3.	

In	addition,	CrESt	also	provides	suitable	monitoring	methods	that	
monitor	both	functional	behavior	and	time	behavior.	

Strategies for individual
and community goals

Commitments

Safety-critical analyses

Monitoring methods

2.6 Concepts and Methods for the Development of Collaborative Embedded Systems 43

Architecture and Structure

In	 CrESt,	 an	 approach	 was	 developed	 for	 deriving	 a	 dynamic	
architecture	 by	 considering	 the	 corresponding	 architectures	 for	
different	context	situations.	Dynamic	architectures	of	CSGs	can	also	be	
designed	using	reference	architectures	from	the	building	set.	At	the	
development	 stage,	 the	 architecture	 is	 defined	 only	 at	 an	 abstract	
level	 (for	 instance,	 in	 the	 context	 of	 standardization).	The	 concrete	
CESs	or	the	number	of	CESs	that	make	up	the	architecture	at	runtime	
are	 not	 known	 at	 this	 time.	 Only	 at	 runtime	 is	 this	 abstract	
architecture	instantiated	into	a	concrete	architecture	(for	details,	see	
Chapter	3	and	Chapter	5.	During	runtime,	this	concrete	architecture	
can	change	again	and	again	as	the	members	of	the	CSG	change	—	that	
is,	when	they	enter	or	leave	the	system.	

In	 CrESt,	 approaches	 from	 software	 product	 line	 development	
were	used	to	enable	the	dynamic	binding	of	components	at	runtime	
and	 to	 analyze	 possible	 architectures	 at	 development	 time	 with	
regard	to	their	variable—that	is,	potentially	dynamic—components.	
This	approach	 is	detailed	 in	Chapter	5.	A	CES	 is	often	 integrated	 in	
different	CSGs,	which	poses	special	challenges	for	variability	modeling	
at	design	time,	since	short-term	change	requests	 to	a	CES	are	often	
implemented	only	for	a	specific	configuration	in	a	single	CSG.	In	CrESt,	
methods	have	been	developed	to	merge	these	changes	into	a	single	
CES	configuration	with	the	current	version	of	the	CES	product	lines	
fully	automatically	(see	Chapter	18		for	more	details).	

Testing	of	a	designed	CSG	is	made	more	difficult	by	the	fact	that	a	
large	number	of	different	CES	combinations	are	possible.	In	order	to	
test	a	large	number	of	scenarios	during	development,	methods	for	co-
simulating	 the	 real	 world	 with	 the	 virtual	 world	 in	 CrESt	 were	
developed.	Using	evolutionary	test	methods,	the	critical	situations	of	
a	 system	 can	 be	 identified	 and	 the	 quantity	 of	 test	 cases	 can	 be	
reduced	to	these	situations.	

Context

CESs	 operate	 in	 a	 constantly	 changing	 environment	 to	 which	 they	
have	 to	 adapt	 their	 behavior.	 In	 CrESt,	 approaches	 have	 been	
developed	 to	 support	 the	 systems	 in	 adapting	 and	 using	 context	
information.	 The	 creation	 of	 context-sensitive	 variability	 models	
facilitates	 the	 search	 for	 a	 valid	 CSG	 configuration	 for	 a	 changed	
context.	

Another	 approach	 combines	 the	 use	 of	 digital	 twins	 with	
predictive	simulation	using	the	perceived	context	to	find	the	optimal	

Dynamic architectures

Dynamic binding

Co-simulation methods

Context-sensitive
variability models

Digital twins

44 Engineering of Collaborative Embedded Systems

configuration	for	each	situation	(Section	3.2,	Chapter	15,	and	Section	
10.3).		

In	 addition,	 methods	 have	 also	 been	 developed	 to	 observe	 and	
evaluate	the	effects	of	context	changes	on	the	system	and	its	behavior	
at	 runtime	 (see	 Section	8.3.1).	 These	 are	based	on	 the	modeling	of	
runtime-specific	 context	 models.	 The	 CrESt	 framework	 now	 also	
supports	 sufficient	 testing	 of	 adapting	 systems	 in	 a	 dynamic	
environment.	Further	details	can	be	found	in	Chapter	6.	

Uncertainty

CESs	 operate	 in	 an	 open	 and	 dynamic	 environment.	 They	 are	
developed	 independently	 of	 each	 other	 and	 can	 combine	 to	 form	
different	 constellations	 at	 runtime.	 This	 significantly	 increases	 the	
complexity	 regarding	 potential	 uncertainties	 that	 can	 occur	 at	
runtime.	 In	 CrESt,	 methods	 have	 been	 developed	 to	 systematically	
identify	 the	 different	 types	 of	 uncertainties	 (e.g.,	 regarding	
collaboration,	data	quality,	sensor	perception,	information	exchange)	
at	design	time	(see	Chapter	7).	For	the	systematic	documentation	of	
the	uncertainties	identified,	a	model-based	approach	was	developed	
in	 which	 the	 uncertainties	 are	 described	 orthogonally—that	 is,	 in	
separate	models	with	uncertainty-specific	model	elements—and	are	
related	to	various	system	or	context	models.	

For	 an	 adaptable	 and	 flexible	 factory,	 for	 example,	 this	 allows	
uncertainties	that	could	disrupt	the	production	process	or	 lead	to	a	
production	 stop	 to	be	analyzed	and	documented.	The	uncertainties	
identified	can	then	be	linked	to	the	models	of	the	individual	machines	
and	the	model	used	to	describe	the	production	process.	For	a	platoon,	
this	method	can	be	used	to	identify	and	model	uncertainties	such	as	
incompleteness	 and	 ambiguity	 with	 regard	 to	 the	 information	
exchanged	between	vehicles	on	the	driving	environment	(for	details	
see	Section	7.3.1).		

Another	 method	 developed	 in	 CrESt	 aims	 at	 identifying	 and	
handling	 uncertainties	 that	 may	 arise	 from	 the	 use	 of	 data-driven	
components—that	 is,	 AI-based	 techniques—for	 the	 evaluation	 of	
environmental	 data	 (see	 Section	 7.3.2).	 For	 this	 purpose,	 the	
quantification	of	the	uncertainty	regarding	the	output	of	data-driven	
components	 (e.g.,	 the	 recognition	 of	 a	 traffic	 sign)	 at	 runtime	 is	
enabled.	This	 serves	 to	ensure	 that	data-driven	components	whose	
behavior	cannot	be	completely	predicted	at	development	time	meet	
safety-critical	requirements	during	operation.	

Runtime-specific
context models

Identification of
uncertainty types

AI-based techniques for
data-driven components

2.7 Conclusion 45

2.7 Conclusion

Within	 the	 CrESt	 project,	 important	 concepts	 of	 collaborative	
embedded	 systems	 were	 identified.	 From	 the	 resulting	 specific	
challenges,	a	number	of	key	features	(such	as	goals,	communication,	
uncertainty)	 were	 developed.	 The	 methodological	 building	 blocks	
developed,	as	well	as	the	extensions	of	existing	building	blocks,	focus	
on	 addressing	 these	 challenges	 and	 were	 assigned	 to	 the	 main	
features.	

A	 specific,	 somewhat	 more	 restrictive	 system	 concept	 was	
deliberately	chosen	as	 the	basis	 for	 the	work.	On	the	one	hand,	 the	
assumption	was	made	that	a	CES	collaborates	in	at	most	one	CSG	at	
any	 given	 time.	 On	 the	 other	 hand,	 hierarchical	 CSGs	 (i.e.,	 system	
networks	of	system	networks)	were	excluded	from	the	analysis.	For	
many	 use	 cases,	 including	 those	 considered	 in	 the	 project,	 these	
assumptions	are	quite	practical.	Future	work	in	this	topic	area	should	
look	more	closely	at	these	limitations.	

Increasingly,	methods	of	artificial	intelligence	(AI)	are	being	used	
in	 embedded	 systems.	 The	 AI	 methods	 (for	 example,	 machine	
learning,	deep	learning,	data	analytics,	semantic	technologies)	are	as	
diverse	 as	 their	 applications.	 These	 range	 from	 the	 analysis	 and	
classification	 of	 existing	 situations	 to	 the	 interpretation	 and	
evaluation,	diagnosis	and	prognosis,	and	the	creation	of	proposals	for	
action	and	independent	action	in	the	sense	of	autonomous	systems.	
The	 use	 of	 AI	 technologies	 makes	 it	 possible	 to	 process	 incoming	
information	 appropriately	 and	 to	 adapt	 to	 changing	 conditions	 at	
runtime.	

A	central	challenge	for	the	integration	of	AI	technologies	in	CESs	
and	 CSGs	 is	 to	 guarantee	 the	 essential	 functionality	 and	 quality	
characteristics	of	the	systems.	In	general,	the	behavior	of	AI	methods	
cannot	be	completely	determined	at	development	time.	Therefore,	it	
is	unclear	which	adaptations	the	systems	make	at	runtime	and	in	what	
way	this	 influences	the	collaboration	and	dynamics	of	the	CESs	and	
CSGs.	An	interesting	question	here	is	whether	and	how	the	necessary	
conceptual	development	of	the	CSG	level	can	be	replaced	by	the	use	of	
AI	methods	at	runtime.	

Furthermore,	 the	 integration	of	AI	components	 in	the	context	of	
uncertainties	 leads	 to	 novel	 effects	 and	 challenges	 that	 have	 to	 be	
considered	as	early	as	development	time.	These	include,	for	example,	
data	 that	 is	 not	 100%	 trustworthy	 (i.e.,	 data	 with	 undetected	
systematic	 deviations	 or	 fuzziness),	 non-deterministic	 behavior,	
runtime	 variances,	 malicious	 misinformation,	 and	 commands	 from	

Restrictive assumptions

Integration of AI
technologies

Novel challenges

46 Engineering of Collaborative Embedded Systems

outside	 the	 system	 boundaries.	 These	 uncertainties	 affect	 the	
knowledge	 gained	 from	 AI	 components.	 This	 and	 the	 dynamic	
adaptability	 create	 completely	new	challenges	 for	 the	development	
and	quality	assurance	of	embedded	systems.	

The	secured	integration	of	powerful	AI	technologies	in	CESs	and	
CSGs	 marks	 a	 decisive	 development	 step	 for	 future	 collaborative	
systems.	The	necessary	extensions	of	the	design	methodology	would	
have	to	be	investigated	in	future	projects.	

2.8 Literature

[Bandyszak	et	al.	2020]	T.	Bandyszak,	M.	Daun,	B.	Tenbergen,	P.	Kuhs,	S.	Wolf,	T.	Weyer:	
Orthogonal	 Uncertainty	 Modeling	 in	 the	 Engineering	 of	 Cyber-Physical	 Systems.	 In:	
IEEE	Transactions	on	Automation	Science	and	Engineering,	IEEE	2020.	

[Bresciani	et	al.	2004]	P.	Bresciani,	A.	Perini,	P.	Giorgini,	F.	Giunchiglia,	J.	Mylopoulos:	
Tropos:	 An	 Agent-Oriented	 Software	 Development	 Methodology.	 In:	 Autonomous	
Agents	and	Multi-Agent	Systems	8,	2004,	pp.	203–236.	

[Broy	and	Stolen	2001]	M.	Broy,	K.	Stolen:	Specification	and	Development	of	Interactive	
Systems:	Focus	on	Streams,	Interfaces,	and	Refinement,	Springer	2001.	

[Broy	2010]	M.	Broy:	A	Logical	Basis	for	Component-Oriented	Software	and	Systems	
Engineering.	In:	The	Computer	Journal,	vol.	53,	no.	10,	2010,	pp.	1758-1782.	

[Broy	and	Schmidt	2014]	M.	Broy,	A.	Schmidt:	Challenges	in	Engineering	Cyber-Physical	
Systems.	IEEE	Computer,	47(2),	IEEE	2014,	pp.	70-72.	

[Broy	 et	 al.	 2020]	 M.	 Broy,	 W.	 Böhm,	 M.	 Junker,	 A.	 Vogelsang,	 S.	 Voss:	 Praxisnahe	
Einführung	von	MBSE	–	Vorgehen	und	Lessons	Learnt,	White	Paper,	fortiss	GmbH,	2020	
(available	in	German	only).	

[Coaty]	 Coaty.io:	 Coaty	 Developer	 Guide.	 https://coatyio.github.io/coaty-
js/man/developer-guide/,	accessed	on:	07/14/2020.	

[Damm	and	Vincentelli	2015]	W.	Damm,	A.	S.	Vincentelli:	A	Conceptual	Model	of	System	
of	Systems.	Second	International	Workshop	on	the	Swarm	at	the	Edge	of	the	Cloud,	ACM	
2015.	

[Daun	et	al.	2019]	M.	Daun,	V.	Stenkova,	L.	Krajinski,	J.	Brings,	T.	Bandyszak,	T.	Weyer:	
Goal	 Modeling	 for	 Collaborative	 Groups	 of	 Cyber-Physical	 Systems	 with	 GRL:	
Reflections	 on	 Applicability	 and	 Limitations	 Based	 on	 Two	 Studies	 Conducted	 in	
Industry.	In:	Proceedings	of	the	34th	ACM/SIGAPP	Symposium	on	Applied	Computing,	
SAC	2019,	Limassol,	Cyprus,	2019.	

https://coatyio.github.io/coaty-js/man/developer-guide/
https://coatyio.github.io/coaty-js/man/developer-guide/

2.8 Literature 47

[France	and	Rumpe	2007]	R.	France,	B.	Rumpe:	Model-Driven	Development	of	Complex	
Software:	A	Research	Roadmap.	 In:	 Future	of	 Software	Engineering	 (FOSE'07),	 IEEE	
2007,	pp.	37-54.	

[Grosz	1996]	B.	J.	Grosz:	Collaborative	Systems.	In:	AI	Magazine,	vol	17,	no	2,	1996.	

[Horkoff	et	al.	2019]	J.	Horkoff,	F.	Başak	Aydemir,	E.	Cardoso,	T.	Li,	A.	Maté,	E.	Paja,	M.	
Salnitri,	L.	Piras,	 J.	Mylopoulos,	P.	Giorgini:	Goal-Oriented	Requirements	Engineering:	
An	 Extended	 Systematic	 Mapping	 Study.	 In:	 Requirements	 Engineering	 24,	 2	 (June	
2019),	2019,	pp.	133–160.	

[Keet	et	al.	2013]	C.	M.	Keet,	W.	Dubitzky,	O.	Wolkenhauer,	K.-H.	Cho,	H.	Yokota:	Open	
World	Assumption.	In:	Encyclopedia	of	Systems	Biology,	Springer,	New	York,	2013.	

[Lamsweerde	2000]	A.	 v.	 Lamsweerde:	Requirements	Engineering	 in	 the	Year	00:	A	
Research	 Perspective.	 In:	 Proceedings	 of	 the	 22nd	 International	 Conference	 on	
Software	Engineering,	Invited	Paper,	ACM	Press,	June	2000.	

[Maier	 1998]	 Mark	 W.	 Maier:	 Architecting	 Principles	 for	 Systems-of-Systems.	 In:	
Systems	Engineering	1(4),	1998,	pp.	267-284.	

[Plattform	 Industrie	 4.0	 2017a]	 Plattform	 Industrie	 4.0:	 Application	 scenario	 in	
practice:	order-controlled	production	of	a	customised	bicycle	handlebar.	BMWi,	Berlin,	
2017.	

[Plattform	 Industrie	 4.0	 2017b]	 Platform	 Industrie	 4.0:	 Aspects	 of	 the	 Research	
Roadmap	 in	 Application	 Scenarios.	 BMWi.	 https://www.plattform-
i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-
roadmap.pdf;	accessed	on	04/04/2020.	

[Plattform	 Industrie	 4.0	 2017c]	 Plattform	 Industrie	 4.0:	 Fortschreibung	
Anwendungsszenarien	 der	 Plattform	 Industrie	 4.0.	 BMWi:	 https://www.plattform-
i40.de/PI40/Redaktion/DE/Downloads/Publikation/fortschreibung-
anwendungsszenarien.html;	accessed	on	04/08/2020.	

[Pohl	 et	 al.	 2012]	 K.	 Pohl,	 H.	 Hönninger,	 R.	 Achatz,	 M.	 Broy	 (Eds.):	 Model-Based	
Engineering	 of	 Embedded	 Systems:	 The	 SPES2020	 Methodology,	 Springer,	
Heidelberg/New	York,	2012.	

[Pohl	et	al.	2016]	K.	Pohl,	M.	Broy,	H.	Daembkes,	H.	Hönninger	(Eds.):	Advanced	Model-
Based	Engineering	of	Embedded	Systems:	Extensions	of	 the	SPES2020	Methodology,	
Springer,	Heidelberg/New	York,	2016.	

[SafeTRANS	2019]	SafeTRANS	e.V.:	Safety,	Security,	and	Certifiability	of	Future	Man-
Machine	Systems,	2019.	

[Selic	2003]	B.	Selic:	The	Pragmatics	of	Model-Driven	Development.	In:	IEEE	Software,	
20(5),	IEEE	2003,	pp.	19-25.	

https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html

48 Engineering of Collaborative Embedded Systems

[Sha	et	al.	2008]	L.	Sha,	S.	Gopalakrishnan,	X.	Liu,	Q.	Wang:	Cyber-Physical	Systems:	A	
New	Frontier.	In:	2008	IEEE	International	Conference	on	Sensor	Networks,	Ubiquitous,	
and	Trustworthy	Computing	(sutc	2008),	2008,	pp.	1–9.	

2.9 Appendix

In	 the	 CrESt	 project,	 methods	 and	 building	 blocks	 for	 modeling	
collaborative	 systems	 and	 system	 networks	 were	 developed.	 The	
documents	containing	a	detailed	description	of	the	project	results	can	
be	 requested	 via	 the	 project	 website	 (https://crest.in.tum.de/,	
website	available	in	German	only).	

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

https://crest.in.tum.de/
http://creativecommons.org/licenses/by/4.0/

3

Architectures for Flexible
Collaborative Systems

Collaborative systems are characterized by their interaction with other systems in
collaborative system groups in order to reach a common goal. These systems interact
based on fixed rules and have the ability to change structurally, if necessary. Changes in
the collaboration are usually triggered from outside and are time-discrete with a rather
wide time scale. The architectures of these systems and system groups must support
flexibility and adaptability at runtime while also ensuring specific qualities, although
these changes and their consequences cannot be fully foreseen in all combinations at
design time.

In order to enable knowledge preservation and reuse for the design of system
architectures for flexible collaborative systems and system groups, we present a method
for designing reference architectures for systems and system groups. For this approach,
we present an example of a reference architecture for an operator assistance system. To
adequately consider safety requirements during the design, we further introduce a
method which adapts safety argumentation for flexible collaborative systems to changes
in their specification or operating context.

Birthe Böhm, Siemens AG
Carmen Cârlan, fortiss GmbH
Annelie Sohr, Siemens AG
Stephan Unverdorben, Siemens AG
Jan Vollmar, Siemens AG

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_3

49

https://doi.org/10.1007/978-3-030-62136-0_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_3&domain=pdf

50 Architectures for Flexible Collaborative Systems

3.1 Introduction

Designing architectures for flexible collaborative systems and their
system groups is still a challenge due to the novelty of these systems
and a lack of proven methods that address their specific requirements
[Böhm et al. 2018]. This applies in particular to the design of system
groups and the systems collaborating within these groups.

Flexible collaborative systems assume a fixed collaboration that
adheres to a fixed set of rules. Changes are usually triggered not from
the system itself but, for example, by an operator of this system. These
changes are not as frequent as in dynamically coupled or adaptive
systems. Typical examples of flexible collaborative systems are
adaptable and flexible factories.

In Section 3.2, we provide a method for designing reference
architectures for collaborative embedded systems (CESs) and
collaborative system groups (CSGs). Such reference architectures can
then be used as blueprints for deriving system architectures for
specific systems. In addition, they can be used to design specific CSGs
and collaborating CESs at an interface level to allow for independent
design and development of the CESs and CSGs but enable their
collaboration. We then apply this approach to adaptable and flexible
factories, and briefly present the resulting high-level logical reference
architecture. This overview is detailed in Section 3.3 by applying the
approach to one of the CESs identified, a simulation-based operator
assistance system.

For numerous CESs and their CSGs, safety requirements are crucial
and must be guaranteed. Our proposed safety case modeling approach
in Section 3.4 supports the execution of automatic consistency checks
between the safety case model and the system architecture. This
approach can be used to prove that the architecture of a system
satisfies the required safety properties. It ensures that, in the event of
changes to the system specification or the operating context, the
logical architecture still fulfills the safety requirements.

Finally, in Section 3.5, we provide conclusions and give an outlook
on future work.

3.2 Designing Reference Architectures

A typical approach for designing architectures for systems starts with
eliciting specific requirements. This step is followed by identifying

Characteristics of
flexible collaborative

systems

3.2 Designing Reference Architectures 51

functions needed. Based on these functions, we create a logical
architecture and, finally, a problem-specific technical architecture.
This procedure must be repeated from scratch for each specific
system. Therefore, in particular for organizations that frequently
design similar systems, reuse of existing solutions promises a
reduction in effort and the possibility to make experiences and
knowledge available to future projects or even across organizational
borders. Various reuse approaches can be classified. For example,
VDI/VDE 3695 defines, among other things, reference models or
architectures as one possible way of enabling reuse of artifacts within
the engineering of systems [VDI/VDE 3695 2010].

Reference architectures are a reuse approach for organizations
that expect to build similar systems in the future and already have
good knowledge of these systems. They are used as blueprints for
future systems and may be adapted for specific systems. In addition,
reference architectures may be also applied when designing specific
CSGs (e.g., for the adaptable and flexible factory) to define the
necessary roles, system, and collaboration functions of CESs but also
protocols, data structures, etc. to enable collaboration within this CSG.
Different organizations may subsequently use this reference
architecture to design CESs which may collaborate in these CSGs.

In this section, we present a method for designing reference
architectures for CESs and CSGs. In addition, we give a short insight
into a reference architecture for adaptable and flexible factories. This
reference architecture is based on a general reference architecture for
CESs and CSGs.

A reference architecture is defined as “the outcome of applying the
architectural framework to a class of systems to provide guidance and
to identify, analyze and resolve common, important architectural
concerns. A reference architecture can be used as a template for
concrete architecture of systems of the class” [Lin et al. 2017].
Complementing this, an architecture framework is defined as
“conventions, principles and practices for the description of
architectures established within a specific domain of application
and/or community of stakeholders” [ISO/IEC/IEEE 42010 2011]. The
SPES_XT modeling framework (see Chapter 2) is an example of such
an architecture framework and is used in the following for designing
reference architectures as well as system architectures.

Definition of reference
architecture and
architecture framework

52 Architectures for Flexible Collaborative Systems

3.2.1 Method for Designing Reference Architectures

The general procedure for designing reference architectures and
deriving system architectures from reference architectures is shown
in Figure 3-1. While a reference architecture is created only once,
numerous system architectures can be derived from a single
reference architecture. The transitions between the viewpoints in
Figure 3-1 show the general procedure for designing reference and
system architectures.

Fig. 3-1: General approach for designing reference and system architectures

In addition, the role of non-functional requirements (e.g.,
requirements related to safety), which are elicited in the
requirements viewpoint, is highlighted. In some cases, these
requirements cannot be assigned to single functions or to logical or
technical components and should therefore be revised regularly
during the design of reference as well as system architectures — this
is indicated by the arrows related to the non-functional requirements
in the figure above. In Section 3.4, we provide a method for integrating
safety cases into reference or system architectures to provide an
approach for safety-related requirements.

Finally, in Figure 3-1, the arrows from the reference architecture
viewpoints to the system architecture viewpoints indicate the reuse
of design results for designing system architectures. However, it may
be necessary to adapt or complement the reference architecture
content.

Non-functional
requirements

3.2 Designing Reference Architectures 53

As a first and critical step within the requirements viewpoint for
defining reference architectures, we define the scope of systems for
which the reference architecture will be defined. This means that we
need to forecast the future systems for which we want to use the
reference architecture as a blueprint.

Next, we determine which kind of reference architecture we want
to design. There are several key design decisions that have to be taken,
for example:

 Coverage: Reference architectures can, for example, cover a
common core of all considered systems, offer combinable and
reusable building blocks, or provide a solution that will cover all
requirements of all considered systems and is then tailored to fit
to one specific system.

 Extensibility: Reference architectures may, for example, allow
white box extensibility, which means that its components can be
fully adapted. On the other hand, only black box reuse that does
not allow any internal modifications may be allowed. Other forms
include grey box reuse, which is a mixture of both.

 Granularity: The level of granularity of the reference architecture
must also be decided. The goal is to be as detailed as possible
while still covering the future system architectures for the
intended set of systems. A reference architecture may, for
example, define only interfaces of systems or components or
provide a full detailing of all systems.

 Viewpoints: Consequently, the reference architecture may define
views of the requirements viewpoint only, or also comprise views
of the functional, logical, technical, and other viewpoints. While a
reference architecture that covers all viewpoints would appear to
be the best option, it also allows less changeability or requires
more effort if there are frequent changes.

These key design decisions mainly depend on the similarity of the set
of systems and their requirements.

Subsequently, further requirements are elicited for the reference
architecture based on the decisions made above. In addition, even
requirements of the set of selected systems that are not implemented
by the reference architecture may have to be considered to prepare
their later implementation. For collaborative systems in particular,
the CSG must be considered as well as the CESs — for both CSG and
CES design. This results from the general concept described in
Chapter 2. If a CES is to contribute to different CSGs, all relevant CSGs
have to be involved.

Scope definition

Key design decisions for
reference architectures

Further requirements
elicitation considers the
scope of systems

54 Architectures for Flexible Collaborative Systems

On this basis, we then extract the necessary functions of our
reference architecture while also considering the collaboration and
system functions for both CSGs and CESs. It is important to keep the
relations between requirements and functions, and further on, to
logical and technical components, as traces. These traces allow us to
check, for example, whether all requirements are implemented by
functions or logical and technical components. Vice versa, in the case
of changes to the technical solution, the traces also enable us to check
whether all requirements are still fulfilled.

Based on the functional architecture, we create a logical
architecture for the set of selected systems. Within this logical
architecture, the CSGs are usually logical components and are
composed by the CESs.

Finally, a technical reference architecture may be created. Since
CSGs are virtual, the collaboration and system functions have to be
implemented by the CESs. For all architecture viewpoints, it is crucial
to document design decisions and trace the relationships between the
different viewpoints and between the elements in the viewpoints. We
then refine any viewpoints as far as possible.

Once the reference architecture is created, we can use it to derive
system architectures for future systems. Again, we need to elicit
requirements but now for a specific system we want to build. We then
compare these requirements with the requirements for our reference
architecture and identify similarities as well as differences.
Subsequently, we assess these similarities and differences while
keeping in mind the parameters for our reference architecture. By
using the traces between all architectural components, we can then
customize the reference architecture by following the traces and
adjusting the elements with divergent or refined requirements — if
our extensibility concept permits these adaptions. In addition, we
have to integrate new requirements which have not been considered
in the reference architecture but are needed for the specific system
[Unverdorben et al. 2019].

Example 3-2: Using a Reference Architecture as a Template
Imagine a reference architecture for a factory which includes a
requirement to display all alarm data to operators to allow them to
recognize critical situations and ensure smooth production. However, for
one specific factory, the data will be analyzed first to identify critical
situations and only decision-relevant data will be displayed to the
operators.

Functional architecture

Logical architecture

Technical architecture

Deriving system
architectures from

reference architectures

3.2 Designing Reference Architectures 55

Since just one requirement has changed, we still want to use the reference
architecture for this factory. Therefore, we identify the changed
requirement in the reference architecture and follow the traces to related
requirements (e.g., alarms will be displayed in a flat list), functions, and
logical and technical components. In our example, we find that all
requirements dedicated to the data collection are still applicable and the
related functions and logical and technical components can remain
unchanged. However, the requirements that address data preparation for
the operator must be replaced by, firstly, data analysis and, secondly, an
adapted user interface for the operator. This affects the related functions
but also the logical and technical components. For example, an additional
data analysis function is introduced which is assigned to a logical data
analysis component. In the technical solution, this logical component is
realized by an additional software component.

Note that any changes to the original reference architecture during
derivation of a system architecture must be reflected on carefully
since they may indicate improvements for the reference architecture.
Thus, continuous feedback from system architecture design to
reference architecture design is important for keeping the reference
architecture up to date. In the case of changes to the reference
architecture, there must also be an update concept for existing
systems based on a prior version of the reference architecture.

To use the method described above successfully, tool support for
modeling reference and system architectures is useful. [Böhm et al.
2020] introduces a modeling tool which implements this method.

3.2.2 Application Example: Reference Architecture for
Adaptable and Flexible Factories

For adaptable and flexible factories, we created a reference
architecture using the method described above. The focus is on core
requirements and the reference architecture must cover the
requirements, functional, and logical viewpoints. Since we want to be
independent from any specific technical solution, the objective is not
a technical reference architecture.

The adaptable and flexible factory was already introduced in
Chapter 1. In order to extend the requirements for such a factory, we
used the application scenarios described in [BMWi 2017a] and [BMWi
2017b] as a basis: the main goal of the factory is to produce products.
Incoming product orders must be analyzed in terms of required
capabilities and compared with available capabilities within and,
optionally, across factories (see also Section 6.4.2). The factory might
need to reconfigure its production and, eventually, produces the

Requirements for the
adaptable and flexible
factory

56 Architectures for Flexible Collaborative Systems

product. Besides this basic production process, we assumed that a
need for high capacity utilization and guaranteed delivery dates
requires production planning. Other goals of the factory are
optimization of production, integrated maintenance, collaboration in
marketplaces, and continuous development of its product portfolio.

In addition to the application scenarios, requirements arose from
the use cases described in this book and the concepts presented in
Chapter 2 as guiding principles. On this basis, we designed a general
reference architecture for CESs and their CSGs, which not only
considers the general concepts but also refines, for example,
collaboration and system functions and, subsequently, the logical
architecture.

We then created our reference architecture for adaptable and
flexible factories. Figure 3-3 shows a basic diagram of the logical
reference architecture which presents the CSGs identified, which are
derived from the base CSG at the top.

Fig. 3-3: Refinement of CSG for adaptable and flexible factories

The CSGs within the reference architecture for adaptable and flexible
factories have the following goals and define, accordingly, the
following functions:

 ProductionCSG: The goal of this CSG is the manufacture of a
product specified within a production order. For this purpose, it
realizes functions for analyzing incoming product orders with
respect to producibility and additional constraints such as
delivery dates, price, etc. It also contains functions, for example,
for maintaining a production plan for this product, tracking the
production, and collecting data for operation control.

 ProductionOptimizationCSG: The main goal of this CSG is to
optimize the production of the factory. Therefore, it realizes
operator support functions—for example, detecting bottlenecks,
failures, or unused capacities in production—and deduces
measures based on these observations. A close interaction
between this CSG and the operator is crucial and may be realized

3.3 Reference Architecture for Operator Assistance Systems 57

by an operator assistance system as part of this CSG. This CES is
described in more detail in Section 3.3.

 MaintenanceCSG: In order to keep the factory productive and in a
good state, this CSG defines functions related to preventive and
reactive maintenance, as well as maintenance planning and
implementation.

 MarketplaceCSG: This CSG ensures collaboration between
adaptable and flexible factories by offering production
capabilities available in the factory and requesting external
capabilities via marketplaces.

 ProductPortfolioCSG: The goal of this CSG is the continuous
development of the factory in order to, for example, reach a high
capacity utilization. For this purpose, it combines functions for
analyzing missing production functions according to recent
product orders, detecting possible improvements (e.g., based on
current bottlenecks), and suggesting corresponding measures,
etc.

For these CSGs as well as for CESs within the adaptable and flexible
factory, the logical architecture was detailed further.

We also used the reference architecture for a factory model
demonstrator to derive a specific logical system architecture and to
define a technical architecture on top. This pilot showed that the
reference architecture is a good basis for deriving system
architectures, provided that the underlying general concept is
applicable.

3.3 Reference Architecture for Operator Assistance
Systems

In Subsection 3.2.2, we identified a CSG for production optimization
for adaptable and flexible factories. A central CES contributing to this
goal is an operator assistance system. It manages the collaboration of
the various CESs in the CSG and offers an interface to the human
operator. The CESs being handled by the operator assistance system
comprise production machines providing data and they are controlled
by the operator, planning and management tools, and additionally
model- and data-based evaluation services such as simulation and
optimization. These CESs must be combined dynamically in a context-
and situation-specific manner. In this section, we now want to take a
deep dive into a technical reference architecture for an operator
assistance CES.

Application to
demonstrator

58 Architectures for Flexible Collaborative Systems

3.3.1 Simulation-Based Operator Assistance

It is a challenging task to operate adaptable and flexible systems, such
as production plants in discrete manufacturing and process industries
or connected infrastructure systems such as energy and water grids.
The need for more flexibility in operation grows with a higher variety
of products, smaller lot sizes, and fluctuating markets. Despite an
increasing degree of automation, there are still many decisions to be
made by human operators in a short time that target various aspects
such as cost, time, and quality. Specific data- and simulation-driven
operator support applications can help to handle the task [Boschert et
al. 2018], [Rosen et al. 2018]. A digital twin, that is, a virtual replica of
the physical system, connects data from different sources and models
from different hierarchies. It can form the core of intelligent operator
assistance systems [Rosen et al. 2019].

Today, integrating simulation and digital twin approaches into
operation support for complex systems is still a time-consuming and
resource-intensive, typically customer- and project-specific task. You
need automation, software, simulation, and domain experts to do this.
Therefore, we want to present a technical reference architecture that
can support the development of such assistance systems. By using the
reference architecture, operator assistance systems can be easily
realized on a low-code and low-modeling base and development time
can be reduced significantly.

One of the main challenges for the development of an operator
assistance CES is that it requires a high degree of flexibility: the CES
provides different applications such as virtual monitoring and short-
term prediction and optimization on different levels such as machine,
line, and factory level, and can run in different situations such as
normal operation and failure situations. This imposes the need for
flexible, situation-specific collaboration of calculation modules and
multiple use of data and models.

The concept of a reference architecture for an operator assistance
CES will be outlined in the following. For more details, the reader is
referred to [Zhou et al. 2019].

3.3.2 Design Decisions

We make the following key design decisions for the operator
assistance reference architecture:

 Scope: We consider simulation-based assistance systems for the
operation of adaptable and flexible factories.

Simulation can help to
optimize production

Reference architecture
as enabler for low-code

assistance system
development

Assistance systems need
to be very flexible

Reference architecture
contains execution core
and collections of basic

elements

3.3 Reference Architecture for Operator Assistance Systems 59

 Coverage: We cover a common core with generic metamodels and
an execution engine to run configurable workflows of evaluations
and an extendible collection of re-usable data interfaces,
evaluations, and user interface (UI) elements.

 Extensibility: The common core is limited to black box reuse in
order to guarantee interoperability of services in arbitrary
workflows, for different assistance functions, across different
plants, and over time. Full white box extensibility is provided for
the collections of data interfaces, evaluations, and UI elements.

 Granularity and viewpoints: A detailed technical architecture is set
up since we aim to implement the architecture as a software
framework for the future development of operator assistance
systems.

3.3.3 Technical Reference Architecture

The technical reference architecture which is finally derived from the
design decisions described in Subsection 3.3.2 and additional
requirements implements a concept of a service-oriented
architecture, model-based data structures and flows, and generic but
customizable UI components.

System functions are divided into encapsulated, exchangeable, and
configurable sub-functions. These sub-functions or services can be
recombined in many ways to create various workflows which offer
different assistance functions. For seamless data exchange between
all services, a common component-based metamodel is introduced
which is most notably suited for model-based services such as
simulation and optimization.

The architecture for operator assistance systems can be divided
into three horizontal layers: the data layer, the service layer, and the
UI layer, see Figure 3-4. The technical reference architecture provides
generic implementations of the core elements in this architecture: the
execution engine calling services as specified in workflows, a UI
backend, and a data management based on metamodels for
component libraries, plants, and workflows.

Modular, service-
oriented architecture
and configurable
workflows

60 Architectures for Flexible Collaborative Systems

Fig. 3-4: General technical architecture for an operator assistance system

When implementing a specific operator assistance system, these
reference architecture elements form the base. Starting from there,
firstly, unspecific or domain-specific frontloading and, finally, project-
or customer-specific engineering is performed, see Figure 3-5.
Implementing new services or new adapters for existing
computational modules such as simulation tools is part of the
frontloading. With an increasing number of domains and projects
addressed, the reference architecture becomes more elaborate and
the collection of reusable services grows. The effort is shifted away
from software implementation towards model engineering and
system configuration: specifying domain libraries, setting up
workflows and data contracts, generating plant models, and
configuring UIs. The complete development process is further
facilitated by defined process steps, toolkits, and many templates.

Fig. 3-5: General steps of the reference-based development process

Reuse of reference
architecture reduces

development effort

3.3 Reference Architecture for Operator Assistance Systems 61

3.3.4 Workflow of Services and Data Flow

The reference architecture strictly separates the logical and
sequential workflow of services and the data flow during runtime
execution, as shown for a generic workflow in Figure 3-6. There is no
bilateral data exchange between the services. Each service
communicates only with the current runtime model and does not
know about the source and the destination of any specific variable
value. This ensures consistency of data during the whole workflow,
simplifies configuration of workflow sequences and data contracts,
and guarantees flexibility to replace individual services.

Fig. 3-6: Workflow (upper part) and data flow (lower part)

3.3.5 Application Example for an Adaptable and Flexible
Factory

The technical reference architecture presented was implemented as a
software framework which was successfully applied in the
development of a prototypical assistance system for the operation of
an adaptable and flexible factory. The prototype system integrates
data from an enterprise resource planning (ERP) system, from a
manufacturing execution system (MES), and machine data via the
standard communication protocol OPC UA. It contains functions for
virtual monitoring of the production, online calibration of the models,
detection of any failures and deviations, prediction of critical
situations such as bottlenecks, and job shop and flow shop schedule
optimization. Figure 3-7 shows the workflows of three of these
functions and illustrates how services are reused and re-combined to

Collaboration of services
via common runtime
model

Reduced development
cost for operator
assistance in adaptable
and flexible factories

62 Architectures for Flexible Collaborative Systems

offer various functions. Development time was significantly reduced
compared to a project- and task-specific development by using the
reference architecture as the starting point and core of the system.

Fig. 3-7: Workflows for three different assistance functions

3.4 Checkable Safety Cases for Architecture Design

In this section, we introduce a method for safety argumentation in the
design of system and reference architectures. Safety requirements are
crucial for CESs and CSGs that may harm people, equipment, or the
environment. Adaptable and flexible factories are a typical example of
safety-critical systems. Our goal is to support the construction and
maintenance of the argumentation that the system architecture of a
flexible system satisfies the system safety properties. To this end, we
introduce checkable safety cases.

Systems implementing safety functionality that will operate safely
in a given operational context must be proven. To this end, more and
more safety standards nowadays, such as ISO 26262 [ISO 2018] in the
automotive industry, recommend the creation of a safety case. A
safety case is a collection of documents entailing an implicit, well-
reasoned argument that the system is acceptably safe to operate in a
given context, based on certain evidence [Bloomfield and Bishop
2010]. To enable the automated manipulation of safety cases, several
approaches for modeling safety cases have been proposed in
literature, the most prominent approaches being based either on the
Structured Assurance Case Metamodel (SACM) [SACM 2019] or the
Goal Structuring Notation (GSN) [GSN 2018].

The validity of the safety case models must be revised every time
there is a change in the system specification. However, currently, such
validity revision is done manually, implying a considerable amount of
effort and costs. Given the frequent changes to architectural

3.4 Checkable Safety Cases for Architecture Design 63

structures of flexible systems, there is a need to automate validity
checks for safety cases. To this end, we introduce checkable safety
case models with the scope of supporting safety engineers in
maintaining valid safety case models given changes in other system
models. Checkable safety case models are a special type of safety case
model that is integrated with system models, which are amenable to
automated checks.

To this end, we extend the SPES_XT modeling framework with a
new system view, that is, the safety case view. The safety case models
are to be integrated with the other system models corresponding to
different viewpoints (e.g., requirements viewpoint, logical viewpoint).
The safety case model is to be modeled alongside the system
development and will be maintained to ensure consistency with other
system models during the entire system lifecycle.

To support safety engineers in modeling checkable safety cases,
we propose a set of checkable safety case patterns. Similar to design
patterns, safety case patterns are templates for re-occurring safety
fragments that can be reused in different safety cases [Kelly and
McDermid 2010]. These templates entail placeholders for system-
specific information which are to be filled when the pattern is used in
a certain safety case. We extend the concept of safety case patterns
with checkable safety case patterns. Checkable safety case patterns
come with a set of automated checks that may be performed on the
safety case fragment obtained after the instantiation of the pattern.
Among other things, the safety case of a system must entail an
argument about the satisfaction of safety properties by the system
architecture. As reference architectures are blueprints to be used for
modeling system architectures, for each such reference architecture
we provide a pattern for arguing about the fact that the reference
architecture satisfies certain safety properties. When the architecture
of a certain system uses a certain reference architecture as a blueprint,
the corresponding safety case checkable pattern can be used to model
the safety argumentation for the constructed system architecture.

3.4.1 Checkable Safety Case Models – A Definition

To support safety engineers in the cumbersome, time-consuming
process of keeping safety case models consistent with system models
(e.g., system architecture models), we propose checkable safety cases.

Extension of the
SPES_XT modeling
framework

Modeling checkable
safety case fragments
for reference
architectures

Safety case models on
which automated
checks can be executed

64 Architectures for Flexible Collaborative Systems

The validity of checkable safety case models is checked by the
automatic execution of sanity checks, based on explicit specification
of semantics of safety case elements, and the integration of the safety
case model with system models and automated verification
approaches [Cârlan et al. 2019], see Figure 3-8.

Fig. 3-8: Safety argumentation based on contract-based verification

Given a change in a system model that is traced from the safety case
model, consistency checks between the safety case model and the
system models are automatically executed. These consistency checks
assess whether the argumentation is still valid considering the
changes in the system model that the argumentation applies to. Then,
the safety engineer must update the safety argument in accordance
with the changes, while also generating the evidence required. Given
that system models are amenable to automated checks, the results of
such checks can be used as evidence in safety cases. Therefore, we
integrate safety case models with such automated verification
approaches, thus enabling 1) automatic detection of stale evidence,
and 2) automatic integration of new verification results as evidence,
while assessing the impact of the new evidence on the confidence in
the overall argumentation.

Checkable safety case models entail both checkable and non-
checkable argumentation fragments that are connected with each
other. On the one hand, non-checkable argumentation fragments
entail regular safety case elements, as defined by the Goal Structuring
Notation (GSN) — a standardized graphical notation for describing
safety cases and currently the most frequently used language for

Checkable safety cases
entail checkable and

non-checkable
argumentation

fragments

3.4 Checkable Safety Cases for Architecture Design 65

modeling safety cases [GSN 2018]. On the other hand, checkable safety
case fragments entail a set of interconnected specialized safety case
elements. Specialized safety case elements extend GSN, with each
specialized element representing a reoccurring claim in safety cases,
thus having certain semantics. Specialized safety case elements
reference certain types of system model elements or entail metadata
regarding certain verification approaches. They may be connected to
each other only via specialized connections, which extend the
connections specified in GSN. In contrast to GSN-based connection
types that ensure the correct construction of arguments from a
semantic point of view, specialized connections enable intrinsic
checks on safety case models, which ensure the construction of
semantically correct arguments.

3.4.2 Checkable Safety Case Patterns

To support safety engineers in modeling checkable safety cases, we
propose an exemplary set of checkable safety case patterns.

While the argumentation structure of checkable safety case
patterns is based on state-of-the-art patterns, the connected elements
the structure contains are specializations of regular safety case
elements. The specialized safety case elements have variable
declarations, which are placeholders for a reference to a certain type
of system element or verification information. The variables are to be
instantiated with specific references when the pattern is used to
model the safety case of a certain system. The relationships among
specialized safety case elements are described via dedicated
connections, thus enabling intrinsic consistency checks, which
prohibit pattern misuse — a specialized safety case element may be
connected only to certain types of other specialized safety case
elements.

A checkable safety case pattern is specified as presented in the
following [Kelly and McDermid 2010]. We extend the specification of
regular safety case patterns with information specific to checkable
safety case patterns:

 Name: the identifying label of the pattern giving the key principle
of its argument

 Intent: the goal the pattern is trying to achieve
 Motivation: the reasons that gave rise to the pattern and the

associated checks
 Structure: the structure of the argument in GSN

Checkable safety case
patterns enhance state-
of-the-art patterns to
enable automated
checks

66 Architectures for Flexible Collaborative Systems

 Participants: each element in the pattern and its description; here
we differentiate between plain SACM-based elements and
specialized elements — for the specialized elements, the
corresponding metadata is explained

 Collaborations: how the interactions of the pattern elements
achieve the desired effect of the pattern; here we explain the
specialized connections among the specialized elements and how
the specialized safety case elements will be connected with the
regular elements

 Applicability: the circumstances under which the pattern could be
applied, that is, the necessary context

 Consequences: what remains to be completed after pattern
application

 Implementation: how the pattern should be applied; here we
discuss how the safety case elements are to be instantiated

The following documentation information is specific to checkable
safety case patterns:

 Prerequisites: regarding the existence of certain system models or
of certain verification tools

 Automated checks: the checks that can be executed on the safety
case fragments produced after the instantiation of the pattern

3.4.3 An Example of Checkable Safety Case Patterns

In Figure 3-9, we present part of the checkable safety case fragment
concerning the satisfaction of a certain safety property by a system
architecture built in a contract-based manner. The system
architecture entails assume-guarantee (A/G) contracts that formalize
safety properties. The properties are satisfied if: 1) the contracts of
the architecture model are correctly refined by the contracts of the
components within the architecture model (claim expressed as
Refinement Check specialized goals); 2) the contracts of the
architecture components are satisfied (claim expressed as
Compatibility Check specialized goals); and 3) each architecture
component correctly implements its contracts (claim expressed as
Implementation Check specialized goals). Each claim in the argument
is a specialized safety case element, with a certain meaning and with
certain references to system model elements. Given specialized
connections between specialized elements, intrinsic consistency
checks are enabled. For example, elements of the type CBD Strategy
may be supported only by goals of the type Compatibility Check,

Arguing about the
satisfaction of a certain

safety property by an
architecture

3.4 Checkable Safety Cases for Architecture Design 67

Refinement Check, and Implementation Check, ensuring the validity of
the argument structure. The CBD Strategy references a certain
component in the system architecture that will implement the safety
contract. Consequently, to ensure the validity of the argumentation,
we check whether the sub-goals of the type Implementation Check
supporting CBD Strategy reference only children of the component
referenced by the strategy. The validity of claims of the type
Implementation Check is checked via an automated verification tool
able to check architecture models annotated with contracts — a
model checker. In the example presented in Figure 3-9 the model
checker used is NuSMV [Cimatti et al. 2002].

Fig. 3-9: GSN-based safety case fragment

68 Architectures for Flexible Collaborative Systems

In Figure 3-9 a GSN-based safety case fragment is shown arguing
about the verification via NuSMV model checker of the system
architecture model against system safety properties specified as
contracts. Due to space constraints, the figure displays only part of the
argumentation, namely the argumentation legs regarding the correct
implementation of the subcomponents of the architecture.

In conclusion, we propose the creation of checkable safety case
patterns that argue about the implementation of safety properties by
a system architecture which may also be based on a certain reference
architecture. Given the specialized safety case elements contained in
the pattern and their integration with system models and verification
tools, the validity of the argumentation fragment resulting from the
pattern instantiation is automatically checked if there is a change in
the corresponding system architecture model. These automated
checks are especially needed if there are frequent changes.

3.5 Conclusion

In this chapter, we presented a general method for designing
reference architectures and deriving system architectures for CESs
and their CSGs in order to support reuse of system architectures. In
addition, the method can be used to design a CSG and the interfaces of
collaborating CESs within this CSG. In a next step, the architectures of
the CES can be refined based on the reference architecture. This
enables the integration of CESs of different organizations within one
CSG. As an application example, we provided a short overview of the
reference architecture for adaptable and flexible factories, detailed by
a CES implementing an operator assistance system. The technical
reference architecture for this CES shows the reuse potential for
various operator assistance systems and provides a promising basis
for future systems.

In order to consider non-functional requirements in the system
architecture, we also introduced checkable safety case models. These
checkable safety cases support maintenance of the validity of safety
case models and keep them consistent with system architecture. This
method may be used for the construction of the safety argumentation
system architectures based on reference architectures.

In addition to the methods presented, we also developed
prototypical tools which support and facilitate the application of the
methods. The methods and reference architectures presented in this
chapter have been applied successfully but should nevertheless be

3.6 Literature 69

applied to other CESs and their CSGs to prove their benefits. Future
research may extend them beyond their current scope, for example,
by involving artificial intelligence as design support as well as
considering artificially intelligent CESs and CSGs in particular.

3.6 Literature
[Bloomfield and Bishop 2010] R. Bloomfield, P. Bishop: Safety and Assurance Cases:

Past, Present and Possible Future – an Adelard Perspective. In: Making Systems
Safer, Springer, London, 2010, pp. 51-67.

[BMWi 2017a] BMWi: Platform Industrie 4.0 – Aspects of the Research Roadmap. In
Application Scenarios. https://www.plattform-i40.de/I40/Redaktion/EN
/Downloads/Publikation/aspects-of-the-research-roadmap.pdf; accessed on
07/07/2020.

[BMWi 2017b] BMWi: Platform Industrie 4.0 – Fortschreibung der
Anwendungsszenarien der Plattform Industrie 4.0. https://www.plattform-
i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-
anwendungsszenarien.html; accessed on 07/07/2020 (available in German only).

[Böhm et al. 2018] B. Böhm, M. Zeller, J. Vollmar, S. Weiß, K. Höfig, V. Malik, S.
Unverdorben, C. Hildebrandt: Challenges in the Engineering of Adaptable and
Flexible Industrial Factories. In: I. Schaefer, L. Cleophas, M. Felderer (eds.):
Workshops at Modellierung 2018, Modellierung 2018, Braunschweig, Germany,
February 21–23, 2018, pp. 101–110.

[Böhm et al. 2020] B. Böhm, J. Vollmar, S. Unverdorben, A. Calà, S. Wolf: Holistic Model-
Based Design of System Architectures for Industrial Plants. In: VDI – Verein
Deutscher Ingenieure e.V. (eds.): Automation 2020, Baden-Baden, 2020.

[Boschert et al. 2018] S. Boschert, R. Rosen, C. Heinrich: Next Generation Digital Twin.
In: Proceedings of the 12th International Symposium on Tools and Methods of
Competitive Engineering — TMCE 2018, Delft, 2018, pp. 209-218.

[Cârlan et al. 2019] C. Cârlan, V. Nigam, S. Voss, A. Tsalidis: ExplicitCase: Tool-Support
for Creating and Maintaining Assurance Arguments Integrated with System Models.
In: Proceedings of IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2019, pp. 330-337.

[Cimatti et al. 2002] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M.
Roveri, R. Sebastiani, A. Tacchella: NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In: Computer Aided Verification. CAV 2002. Lecture Notes in
Computer Science, vol 2404. Springer, Berlin, Heidelberg.

[de La Vara et al. 2016] J. L. de La Vara, M. Borg, K. Wnuk, L. Moonen: An Industrial
Survey of Safety Evidence Change Impact Analysis Practice. In: IEEE Transactions
on Software Engineering, 42(12), 2016, pp: 1095-1117.

[GSN 2018] Assurance Case Working Group. Goal Structuring Notation Community
Standard (Version 2). https://www.goalstructuringnotation.info/; accessed on
01/11/2020.

 [ISO/IEC/IEEE 42010 2011] International Organization for Standardization,
International Electrotechnical Commission, Institute of Electrical and Electronics
Engineers (eds.): Systems and Software Engineering - Architecture Description.

https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.goalstructuringnotation.info/
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf

70 Architectures for Flexible Collaborative Systems

Geneva, s.l., New York, http://ieeexplore.ieee.org/servlet/opac?punumber=
6129465; accessed on 04/04/2020.

[ISO 2018] International Organization for Standardization (ISO): 26262: Road Vehicles
- Functional Safety.

[Kelly and McDermid 2010] T. Kelly and J. McDermid, "Safety case patterns-reusing
successful arguments," IEE Colloquium on Understanding Patterns and Their
Application to Systems Engineering (Digest No. 1998/308), London, UK, 1998, pp.
3/1-3/9.

[Lin et al. 2017] S.-W. Lin, M. Crawford, S. Mellor (Eds.): The Industrial Internet of
Things Volume G1: Reference Architecture. Industrial Internet Consortium (IIC)
Technology Working Group, 2017. http://www.iiconsortium.org/
IIC_PUB_G1_V1.80_2017-01-31.pdf; accessed on 07/07/2020.

[Rosen et al. 2018] R. Rosen, S. Boschert, A. Sohr: Next Generation Digital Twin. In: atp
magazin, Atp-Mag. 60, 2018, pp. 86–96.

[Rosen et al. 2019] R. Rosen, J. Jaekel, M. Barth, O. Stern, R. Schmidt-Vollus, T.
Heinzerling, P. Hoffmann, C. Richter, P. Puntel Schmidt, C. Scheifele: Simulation und
Digitaler Zwilling im Engineering und Betrieb automatisierter Anlagen -
Standpunkte und Thesen des GMA FA 6.11. In: VDI – Verein Deutscher Ingenieure
e.V. (eds.): Automation 2019, Baden-Baden, 2019 (available in German only).

[SACM 2019] Structured Assurance Case Metamodel. URL
https://www.omg.org/spec/SACM/About-SACM/; accessed on 04/11/2020.

[Unverdorben et al. 2019] S. Unverdorben, B. Böhm, A. Lüder: Concept for Deriving
System Architectures from Reference Architectures. In: 2019 IEEE International
Conference on Industrial Engineering and Engineering Management: IEEM2019:
Dec. 15-18, Macau/IEEE International Conference on Industrial Engineering and
Engineering Management - [Piscataway, NJ]: IEEE, 2019, pp. 19-23.

[VDI/VDE 3695 2010] Association of German Engineers (VDI), Association for
Electrical, Electronic & Information Technologies (VDE): VDI 3695 Blatt 3 -
Engineering of Industrial Plants - Evaluation and Optimization - Subject Methods.
2010.

[Zhou et al. 2019] Y. Zhou, T. Schenk, M. Allmaras, A. Massalimova, A. Sohr, J. C.
Wehrstedt: Flexible Architecture to Integrate Simulation in Run-Time
Environment. Presented at the Automation Congress 2019, VDI, Baden-Baden,
2019.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://ieeexplore.ieee.org/servlet/opac?punumber=6129465
http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
https://www.omg.org/spec/SACM/About-SACM/
http://creativecommons.org/licenses/by/4.0/
http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=6129465

Function Modeling for
Collaborative Embedded

Systems

The evolution from traditional embedded systems to dynamically interacting,
collaborative embedded systems increases the complexity and the number of
requirements involved in the model-based development process. In this chapter, we
present the new aspects that need to be considered when modeling functions for
collaborative embedded systems and collaborative system groups, such as the
relationship between functions of a single system and functions resulting from the
interplay of multiple systems. These different aspects are represented by a formal,
domain-independent metamodel. To aid understanding, we also apply the metamodel to
two different use cases.

Alexander Hayward, Helmut Schmidt University Hamburg
Marian Daun, University of Duisburg-Essen
Ana Petrovska, Technical University of Munich
Wolfgang Böhm, Technical University of Munich
Lisa Krajinski, University of Duisburg-Essen
Alexander Fay, Helmut Schmidt University Hamburg

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_4

71

https://doi.org/10.1007/978-3-030-62136-0_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_4&domain=pdf

72 Function Modeling for Collaborative Embedded Systems

4.1 Introduction

In modern development methodologies for complex systems, the
modeling of functions represents a historically grown and proven way
of dealing with large quantities of requirements that need to be taken
into account. A function can be used to describe the purpose of a
system at different levels of detail.

The SPES2020 and SPES_XT projects (cf. [Pohl et al. 2012, Pohl et
al. 2016]) have already developed a comprehensive set of science-
based methods for modeling and analyzing functions of embedded
systems, with a special focus on consistency and semantic coherence
as part of a comprehensive methodological framework. The methods
are based on the assumption that the embedded systems under
development are to be integrated into a static context that is well
known at the time of development.

The additional assumption considered in CrESt—that individual
systems no longer achieve the goals1 associated with them alone, but
rather by collaboration with other systems—results in a range of new
challenges for which the existing SPES modeling framework is no
longer sufficient and needs to be extended.

A collaborative embedded system (CES), collaborating with other
CESs that may be instances of different system types, should be able
to achieve goals that 1) the CES could not achieve alone, or 2) could be
achieved more easily or better by combining their functions with
other CESs. For collaboration, the participating CESs form a common
group, referred to as a collaborative system group (CSG). Since a CSG
constitutes itself dynamically at runtime and its members, goals, and
functions can change, methods for mastering the complexity are
particularly necessary for modeling functions at CSG level.

In this chapter, we describe the new aspects that have to be
considered when modeling functions for both CESs as well as the
resulting CSG. To describe these aspects systematically, we use a
metamodel. With regard to the derivation of this metamodel, Section
4.2 describes the requirements and aspects on which it is based. In
Section 4.3, we provide further background information. We then
present the metamodel on a domain-independent level in Section 4.4
and evaluate it in Section 4.5. To enable a better understanding of the
metamodel, we apply it to two use cases in Section 4.6, and this is

1 See Chapter 2 for a detailed discussion

The SPES projects

Goal fulfillment via
collaboration

CES and CSG

Outline

4.2 Methodological Approach 73

followed by related work in Section 4.7 and the conclusion in Section
4.8.

4.2 Methodological Approach

Model-based continuous function-centered engineering processes are
already established in engineering practice [Daun et al. 2019a]. To
support function-centered development, this chapter proposes a
function metamodel. In order to achieve the goal of defining a uniform
modeling methodology for functions, we have applied the following
research methodology. To ensure applicability to a variety of domains
and in various contexts, first, we have gathered requirements from
academia and industry, using common requirements elicitation
techniques such as interviews, workshops, and in-depth discussions.
In addition, we have investigated engineering methods of different
domains to foster function-centered engineering. As a result, we have
derived a set of seven high-level requirements. For details of the
requirements elicitation phase and the results, please refer to
[Ludewig et al. 2018]. The following is a brief outline of the major
requirements:

Requirements 4-1: Requirements for the function metamodel

 Req.1: It must be possible to model functions on different
abstraction layers. Composition and decomposition of functions
must consider the relationship between single functions of CESs and
overall functions on the CSG layer. On the highest layer of
abstraction, a function can be understood as the emerging result of
individual contributing functions. On the lowest abstraction layer, it
must be possible to model an atomic function and its contribution to
the overall function.

 Req.2: It must be possible to model which overall function of a CSG
an individual function of a CES can contribute to and how it can do
so. For this purpose, the modeling process must consider whether
different inputs and outputs of functions can be connected with
those of other functions with regard to compatibility.

 Req.3: Due to characteristics of openness and dynamicity,
functions—as well as their connections to each other—may vary or
change over time. These possible changes in individual functions
may affect the overall function. Therefore, the possible inputs and
outputs of functions—on different abstraction layers—that vary
over time must be considered in the modeling process.

Deriving requirements

74 Function Modeling for Collaborative Embedded Systems

 Req.4: Functions transform input into output to achieve a goal or
meet a requirement. It must be possible to model the relationship
between a goal (or a requirement) and its possible solution provided
by a function. This modeling must consider priorities of goals and
functions as well as conflicts between them. This modeling must also
include dependencies between different functions.

 Req.5: In case of a failure or of an error in individual functions,
compensation strategies are necessary. Possible functional errors or
failures must be considered in modeling to make them detectable.
Therefore, relationships between the function model and other
system models must be considered.

 Req.6: Since different CSG functions are realized by different
systems, potentially from different manufacturers, modeling
approaches must ensure that inputs and outputs of different
functions are compatible and suitable/consistent with each other.

 Req.7: CESs must provide the functionality to allow the CSG to be
restructured at runtime. This leads to functions being related to
different states. These states must represent, for example, when a
function is accessible and when the transformation from input to
output is not available.

We subsequently developed a metamodel iteratively to satisfy these
requirements. We conducted workshops with the stakeholders to
negotiate and re-iterate the metamodel as long as necessary to
achieve a final, agreed version that fits all purposes for functional
modeling and analysis of CESs.

The following is an example of the analysis of the individual
methods investigated and the resulting rationale for the relevance of
the method for the function metamodel. For demonstration purposes,
we use a method for modeling the goals of CESs and CSGs.

Example 4-2: Functional aspects of the goal modeling method
Method name: GoalBasedSystemGroupEngineering

Metamodel extension required: Consider the relationship between goals
and functions.

Reason: This method focusses on the definition of goals for the individual
CESs as well as for the CSG. In the relationship between the CSG goals and
the CES goals, it must be ensured that every CSG goal can be
operationalized. Therefore, goals are refined into tasks, which represent
abstract definitions of functions to be implemented.

Metamodel
development

75

4.3 Background

Our work builds on results from the SPES projects that provide a
framework that enables seamless model-based engineering of
embedded systems (cf. [Pohl et al. 2016]). The SPES modeling
framework includes a functional viewpoint for specifying the system’s
functionality. The system’s functionality is elicited from the
requirements in a preceding requirements viewpoint. Our metamodel
builds on this background work.

To a large extent, the SPES modeling framework is based on a
formal theory called FOCUS, which provides models and formalisms
for specifications and the development of distributed interactive and
dynamic systems. FOCUS establishes a formal semantics that serves
as a common ground for also giving means to functional behavior. In
FOCUS (cf. [Broy and Stølen 2012], and [Broy 2014]), a system’s
interface is determined by the system’s boundary. The syntactic
interface describes the set of input and output channels and the
message types that these channels transport across the system’s
boundary. The system’s functionality is described by the interface
behavior, which can be observed at the system’s boundary and which
is defined by the history of streams of messages across the input and
output channels. The histories of the streams of messages across the
input and output channels capture the system’s interface behavior.
Accordingly, the interface behavior models system functionality that
can be observed.

4.4 Metamodel for Functions of CESs and CSGs

The metamodel for functions is given in Figure 4-3, which shows the
aspects to be considered when modeling functions of CESs and CSGs.
Based on the requirements, we have identified five major aspects that
need to be considered when modeling functions for CESs and CSGs.
These aspects are detailed in the subsections below:
 First, a differentiation between individual collaborating

systems, not collaborating systems, and collaborative system
groups is necessary. The CESs can partake in a CSG to fulfill
their purposes as well as to contribute to the goals of the CSG.
Whether a function belongs to either a CES or the CSG
influences whether that function exists on its own or only in
the collaborative interplay.

SPES modeling
framework

FOCUS theory

Five major aspects

4.4 Metamodel for Functions of CESs and CSGs

76 Function Modeling for Collaborative Embedded Systems

 Second, the term function must be defined, thereby placing a
particular emphasis on its behavior and its interfaces. It is
important to identify how these aspects relate to the
function’s contribution to the collaboration of the CSG.

 Third, as collaborative systems are inherently goal-oriented,
system goals must be considered. System goals represent the
established realization of stakeholder goals, which are elicited
during requirements engineering. This means that a CES takes
part in a collaboration only if this fulfills a certain purpose
(i.e., the system goal), depending on the needs of the CSG and
the other CESs. The systems offer different functions to
optimize goal fulfillment of the individual CESs as well as the
overall CSG.

 Fourth, roles play a vital part in the engineering of
collaborative systems, as the functions a system offers and
requires depend on the role the system takes in a certain
collaboration.

 Fifth, context and adaptivity must be considered. CESs and
CSGs operate in an open, dynamic context. The dynamicity of
the operational context is the main trigger for the adaptation
of the entire CSG, which might result in reconfiguration of the
individual CESs and thus impact their functional interplay.

4.4.1 Systems, CESs, and CSGs

In this section, we introduce the relationship between a system and
the collaboration of systems. Therefore, we start—as in traditional
system analysis—by separating a system and its context. For a system,
we must distinguish whether it is a not collaborating system, a
collaborating system, or a CSG, always viewed at a certain point in time.

A not collaborating system does not collaborate with other
systems in a given CSG at a current time t. We can distinguish between
CESs and non-CESs. While a non-CES cannot collaborate in a CSG at any
time2, a CES can become a collaborating system for a CSG at a later
point in time during the runtime of the system. A collaborating system
is part of a CSG, which consists of multiple collaborating systems.
Within a CSG, the CESs work together, provide their functions to each
other, and share information to promote common CSG goals.

2 Note: CESs and non-CESs are always related to a specific type of CSG: a system can be

collaborating with respect to a given type of CSG and a non-CES for another type of
CSG.

Collaborating and not
collaborating systems

Belonging to a certain
CSG depends on time

4.4 Metamodel for Functions of CESs and CSGs 77

Fig. 4-3: Metamodel for functions of CESs and CSGs [Hayward et al. 2020]

78 Function Modeling for Collaborative Embedded Systems

Every system (i.e., each CES, each CSG, each non-CES) has a functional
architecture that contains all the functions of the system and describes
how the functions interact with each other to achieve goals. This
means that each individual CES consists of a functional architecture
(cf. [Pohl et al. 2016]) which is therefore part of the larger functional
architecture of the CSG.

4.4.2 Functions

Systems can be described on different levels of detail by their
functions [VDI 2221]. Functions describe the behavior of a system
through the interrelation between input and output variables [VDI
2222]. A function has a syntactic interface, through which it can take
up information, material, or energy, transform it and output it again.
Depending on the domain, the understanding of the term function can
vary slightly in detail but this definition is valid at this general level
[Eisenbart et al. 2012].

In the classical design methodology according to [Pahl et al. 2013]
as well as in today's model-based system development [Vogelsang
2015], [Meissner et al. 2014], functions are derived from
requirements lists and models during an early design phase to capture
the required functionality of the CES. Since specific solution principles
can be derived only to a very limited extent based on these abstract
functions, the functions are further decomposed into sub-functions,
which can also be further subdivided, thus forming a hierarchy. These
sub-functions again have interfaces through which they are
connected. The functional hierarchy is called functional architecture.
The functions and the resulting functional architecture can be used to
describe what a system should be able to do. Additionally, the
interface behavior can be used to describe which states, state
transitions, and functional dependencies functions have [Eisenbart et.
al. 2012].

A CES no longer performs certain functions alone; it performs
them in collaboration with other CESs. For this purpose, the CESs form
a CSG and thereby provide their functions (CES function) to each other
to achieve a common goal. The CSG can be considered as a system on
its own again with components and functions (CSG function). These
functions of the CSG are realized by CES functions and result from the
interplay between the collaborating systems. While the functions of
individual CESs can be modeled and realized during design time, the
functions of the CSG are only constituted through collaboration
between several CESs at runtime. By modeling CSG functions, we can

Functional architecture

Functions have
interfaces

Functional
decomposition

Functions and
collaboration

4.4 Metamodel for Functions of CESs and CSGs 79

indicate the specific contributions involved that CESs have to provide
to achieve common goals of the CSG.

In addition to these two specializations of the function concept, the
metamodel further distinguishes between system function and
collaboration function. A system function contains the individual
contribution of a CES within the collaboration. In a broader sense, a
system function also includes other internal functions of the CES that
contribute, albeit indirectly, to the fulfillment of goals. Collaboration
functions, on the other hand, comprise a set of functions that are
assumed to be available in all CESs participating in the CSG to enable
collaboration in general and independently of the specific form and
goal of the CSG. These collaboration functions include functions for
the perception of and communication with other CESs, the negotiation
of goals, the comparison of required and existing functions, or the
adaptation of the CESs’ behavior to meet the conditions of the CSG.

4.4.3 Goal Contribution and Fulfillment

Systems have goals associated with them. A goal is thus defined as a
condition or situation the system wants to achieve or a behavior the
system wants to exhibit. This holds for an individual CES as well as for
a CSG. As mentioned in the previous sections, the fulfillment of these
goals is always realized through functions and their implementation
with the help of algorithms. This explicit manifestation of the
stakeholder goals enables systems to fulfill the goals planned at the
time of development during operation. We have to consider several
situations according to system goals.

The goals of the CESs concerned may differ from each other and
from the goals of the CSG and may even be conflicting goals. In the case
of (partly) different or contradictory goals, and in order to form a
functioning CSG, the following must be negotiated: different goals
between CESs collaborating in the CSG, differences between CES and
CSG goals, and the way each CES contributes to the achievement of the
CSG goals. Finally, the individual goals must be adopted in order to
reach a consistent goal system within the CSG and its collaborating
systems. As a consequence, it must be possible for the CESs to change
their goals according to the results of the negotiations. In this sense,
goals are considered dynamic at runtime.

We differentiate between goals that will never be changed (hard
goals) and goals that may be changed (soft goals) in order for a CES to

System function and
collaboration function

Goals

Negotiating goals

Hard goals and soft
goals

80 Function Modeling for Collaborative Embedded Systems

actively contribute to the CSG goal system3 in a consistent manner. To
this end, we have extended the function metamodel from SPES to
match these additional requirements.

4.4.4 Roles

Another concept that supports modeling and implementation of CSGs
is that of roles. Within a CSG, different functions are needed to achieve
the CSG goals. Roles can be used to define, within the CSG, which
collaborating system is responsible for which CES functions and thus
for which goals. CESs assume roles when they join the CSG. A single
CES can potentially assume one or more roles within a CSG at the same
time. The roles allow the definition of the necessary CES functions and
thus the necessary behavior of the individual collaborating systems
[Weiß et al. 2019, Regnat et al. 2019].

A CES that has assumed a certain role within the CSG (current role)
is responsible for the role-related functions. If a CES leaves a CSG (e.g.,
intentionally or due to an error), but the functions associated with its
role must still be provided, it may be necessary for another CES, which
has the necessary functions, to change its current role. This role
change is only possible if the functions of this subsequent CES allow
(potential role), it to assume the role from the leaving CES. These
processes are only possible if the CESs involved in the CSG have a
common understanding of the roles to be assumed.

4.4.5 Context and Adaptivity

A system is separated from its context and other systems by its system
boundary. The system boundary defines whether an object belongs to
the system or is outside of it. However, because of the dynamicity of
the CSG, the boundary, the behavior, and the structure of the CSG may
change over time. Consequently, we had to extend the metamodel to
cope with such situations — namely, a potential CES that is outside
the CSG at a given point in time may enter the CSG and therefore
become part of the CSG structure (i.e., will be inside the CSG
boundary).

The context of the system describes the environmental
surrounding that is not part of the system. The surrounding includes

3 Note: The terms hard goal and soft goal are used differently here as compared to goal

modeling literature: hard goals are not subject to negotiation and are in a sense
“static,” while soft goals may be dynamically negotiated and changed in order to
cooperate in a CSG.

Roles enable assignment
of responsibilities

Potential roles and
current role

System boundary

Context

4.4 Metamodel for Functions of CESs and CSGs 81

persons, groups, organizations, processes, events, documents,
functions of other systems, etc. In other words, the context is a
perceivable part of the environment that consists of all the objects
relevant to the system. Context is everything that is relevant to a
system but remains external to its range of action [Lalanda et al.
2013]. Separating the system and its context means distinguishing
between changeable and unchangeable variables [Pohl 2010].
Consequently, the context consists of all objects relevant to the system
but outside the system’s boundary.

Modern systems, such as CESs and CSGs, operate in a changing,
uncertain, and dynamic context. In addition to the dynamicity of the
context in which the systems operate, the structure of the system itself
is also dynamic. Consequently, as briefly explained earlier in this
section and in Section 4.4.1, the structure and the behavior of the
system fluctuate over time — namely, a CES that is not collaborating
at time x might become a collaborating system at a definite time t + x
in the future by joining a specific CSG; and vice versa, a collaborating
system of a CSG might, over time, leave the group. This directly
impacts and changes the boundary of a system, which is no longer
static, changes at runtime, and goes beyond what was defined during
the system’s design.

Consequently, the systems must be able to adapt in order to deal
with the dynamicity and the runtime changes that might originate
externally from the context in which the system operates, as well as
internally from the system itself. We refer to these uncertainties and
changes that trigger the adaptivity as trigger events. What we
distinguish as internal or external events depends specifically on
whether the system under consideration is a CES or a CSG. From the
point of view of an entire CSG, internal trigger events could refer to,
for example, the changes in CESs that collaborate, as role changes. In
contrast, an external trigger event could be a CES from the context
requesting to join and share its functionality with the CSG. However,
from the view of an individual CES, the changing of a role, which is an
internal trigger from the perspective of the CSG, can be considered an
external trigger for the CES. In contrast, an example of internal
triggers for the CESs are sensor uncertainties, such as sensor
ambiguity, sensor imprecision, or even complete sensor failure, which
could potentially lead the complete CES to a non-deterministic or
faulty behavior.

In a nutshell, the general idea behind adaptivity is the ability to
change the system’s observable behavior, structure, and realization
[Broy 2017], [Krupitzer et al. 2015], [Giese et al 2013] as a response

Context and system
boundaries change

Trigger events

Adaptivity

82 Function Modeling for Collaborative Embedded Systems

to the internal and external events in order for the systems to continue
meeting their functional specifications while preserving the
performance (or another quality objective) — despite all the changes
that the system may encounter during runtime [Petrovska and
Pretschner 2019].

The adaptivity is enabled by the adaptation logic, which is a
necessary precondition for a system to adapt to these changing
situations. If the adaptation is triggered manually by an external user
or administrator (a human assumes the role of an adaptation logic),
then this is referred to as a system reconfiguration. In contrast, if the
adaptation is triggered and executed by the system itself, in an
automated manner, without any user interaction, then we call it self-
adaptation [Petrovska et al. 2020]. Specifically, in our metamodel, we
consider the adaptation logic to be a collaboration function which
adapts the functions and the behavior of the CESs and the CSG through
the collaboration of the systems.

4.5 Evaluation of the Metamodel

In this section, we will briefly outline how the proposed function
metamodel fulfills the requirements from Section 4.2. Further
evaluation is subsequently given in Section 4.6 by showing the
applicability of the proposed function metamodel.

4.5.1 Abstraction

Requirements 4-4: Req.1

It must be possible to model functions on different abstraction layers.
Composition and decomposition of functions must consider the
relationship between single functions of CESs and overall functions on the
CSG layer. On the highest layer of abstraction, a function can be
understood as the emerging result of individual contributing functions. On
the lowest abstraction layer, it must be possible to model an atomic
function and its contribution to the overall function.

This requirement is fulfilled because a function is composed of other
functions, thereby allowing the description of functionality at
different levels of granularity. Furthermore, the separation between
CSG function and CES function introduces another abstraction layer, as
a function belongs either primarily to the overall CSG or to an
individual CES. However, in both cases, the functions must be

Adaptation logic

4.5 Evaluation of the Metamodel 83

implemented in a CES, as the CSG relies on the CESs for any kind of
resource. In addition, the distinction between collaboration function
and system function also indicates different levels of granularity to
describe functional properties.

4.5.2 Relationships between Functions

Requirements 4-5: Req.2
It must be possible to model which overall function of a CSG an individual
function of a CES can contribute to and how it can do so. For this purpose,
the modeling process must consider whether different inputs and outputs
of functions can be connected with those of other functions with regard to
compatibility.

The aforementioned differentiation between CSG function and CES
function allows us to define which CSG function is realized by which
CES functions, and which CES function realizes which CSG functions.

4.5.3 Openness and Dynamicity

Requirements 4-6: Req.3
Due to characteristics of openness and dynamicity, functions—as well as
their connections to each other—may vary or change over time. These
possible changes in individual functions may affect the overall function.
Therefore, the possible inputs and outputs of functions—on different
abstraction layers—that vary over time must be considered in the
modeling process.

To address this requirement, the adaptation logic reacts to trigger
events in the context and adapts the behavior of a function. A change in
an individual function also affects other functions of the CES or the
CSG (see Sections 4.5.1 and 4.5.2). In particular, the composition of the
functional architecture of any kind of system may be changed.

84 Function Modeling for Collaborative Embedded Systems

4.5.4 Goal Contributions

Requirements 4-7: Req.4
Functions transform input into output to achieve a goal or meet a
requirement. It must be possible to model the relationship between a goal
(or a requirement) and its possible solution provided by a function. This
modeling must consider priorities of goals and functions as well as
conflicts between them. This modeling must also include dependencies
between different functions.

A goal is defined as either a hard goal or a soft goal; each can be
decomposed and be related to each other. Each goal is implemented by
at least one system function, while any function can contribute to any
goal. In addition, a collaboration function may change a soft goal.

4.5.5 Relationships Between Functions and Systems

Requirements 4-8: Req.5
In case of a failure or of an error in individual functions, compensation
strategies are necessary. Possible functional errors or failures must be
considered in modeling to make them detectable. Therefore, relationships
between the function model and other system models must be considered.

As mentioned earlier, functions and systems can be directly related by
means of the functional architecture. Furthermore, the metamodel
differentiates between the CSG and CSG functions, and between CESs
and CES functions.

4.5.6 Input/Output Compatibility

Requirements 4-9: Req.6
Since different CSG functions are realized by different systems, potentially
from different manufacturers, modeling approaches must ensure that
inputs and outputs of different functions are compatible and
suitable/consistent with each other.

Each function is defined by its behavior and its interface. This allows
us to check the compatibility of functions. Furthermore, as outlined
above, sophisticated relationships between functions, systems, CES
functions, and CSG functions can be defined.

4.6 Application of the Metamodel 85

4.5.7 Runtime Restructuring

Requirements 4-10: Req.7
CESs must provide the functionality to allow the CSG to be restructured at
runtime. This leads to functions being related to different states. These
states must represent, for example, when a function is accessible and
when the transformation from input to output is not available.

The adaptation logic allows restructuring functions and functional
architectures by adapting the behavior of individual functions (see
Req.3). This leads to different states of a function being associated
with different situations and compositions of the CSG. Furthermore,
the concept of roles allows restructuring of the CSG by means of the
assignment of roles involved. Therefore, individual CESs conduct role
changes, which influence the function and thereby again restructure
the overall functional architecture.

4.6 Application of the Metamodel

In this section, we demonstrate the applicability of the metamodel
using examples from the two use cases of the adaptable and flexible
factory and autonomous transport robots.

4.6.1 Example from the Adaptable and Flexible Factory

For the adaptable and flexible factory, let us consider the scenario of
order-driven production. In this scenario, there are several
heterogeneous modules within a factory. These modules are equipped
with different functions and can contribute to the production of
products. Exemplary functions are drilling, milling, or even turning of
materials. In addition, assembly operations can be used to assemble
different workpieces or to execute optical quality checks. Depending
on the product to be manufactured for a customer, different functions,
and thus contributions from different modules are required. Those
modules that can contribute to the production form a CSG in which
they provide their functions to each other in order to achieve the
overall goal of fulfilling the production order. At the end of the
production, the modules leave the CSG again.

Both centralized and decentralized coordination paradigms are
conceivable for this CSG. In the case of centralized coordination, there
is a single module that, as coordinator, decides after receiving a

Centralized and
decentralized
coordination

86 Function Modeling for Collaborative Embedded Systems

production order which module is supposed to contribute to the
production with which functions. In the case of decentralized
coordination, the modules autonomously negotiate their possible
contributions to the fulfillment of the order. Other mixed forms of
centralized and decentralized coordination are also possible.

Regardless of the process of forming the CSG, the modules can be
considered as CESs in accordance with the metamodel before the
production starts and thus before the CSG is formed. By forming a CSG,
these CESs become collaborating systems and, depending on their
functional properties, assume one (or even several) roles in the CSG.
Roles to be filled in the factory are, for example, material processing,
assembly, transport, quality inspection and, in the case of centralized
coordination, the coordinator. The required product can only be
manufactured once all the roles required for an order have been
assigned to the modules forming the CSG.

A module can only assume a role if it has the necessary functions.
When all necessary roles have been assigned to modules, the CSG
functions that are required to fulfill the CSG goals can be executed. An
exemplary CSG function in the factory is the manufacturing of the
product. The CSG function for manufacturing the product can only be
executed, and thus the goal of fulfilling the customer order achieved,
through the individual CES functions of the modules. Further
exemplary CSG functions are the definition of the production
sequence and the calculation of the production time. These CSG
functions can also only be realized by aggregating the CES functions
of the modules.

The metamodel also shows a separation between system function
and collaboration function. The system function represents the
individual contribution of a CES to a CSG. A system function of a
factory module can be drilling, milling, transport, or assembly, for
example.

The collaboration functions enable the modules to communicate
with each other, to exchange information about production orders,
and to coordinate their contributions in the CSG. To coordinate the
contribution of a module, the requirements of the products to be
manufactured resulting from the orders must be compared with the
available functions of the modules. In other words, a check is required
to determine whether the functions of the modules are suitable to
contribute to the production of the order. Such matching is also part
of the collaboration functions.

Modules assume roles

Separation between
system function and

collaboration function

4.6 Application of the Metamodel 87

In a centrally organized factory, the task of matching the
requirements of the order with available functions is the
responsibility of the coordinator. In this scenario, each module that
should be involved in possible production orders must inform the
coordinator of its available system functions and provide appropriate
descriptions of the scope of these functions.

In a decentralized factory, where the modules coordinate with
each other without a central coordinator, each module must be able
to check whether it can contribute to the production and must be able
to communicate the result of this check to the other modules. The
other modules must be able to understand this contribution and
compare it with their contributions. This is the prerequisite for
determining whether the contributions delivered in total (the
resulting CSG functions) are sufficient to produce the product.

Receiving a new order within the factory can be seen as a trigger
event from the context, which means that the modules have to adapt
their behavior. The execution of this adaptation is enabled by the
adaptation logic in the metamodel. A single module can adapt its
behavior by using the adaptation logic. Such an adaptation can, for
example, be that a module changes its current configuration and thus
its executable functions. Depending on the specific module, this
reconfiguration can be done automatically by the module itself or
partially automated with the support of a worker in the factory.

4.6.2 Modeling of Goals for Transport Robots

Another example which helps to improve the understanding of the
elements of the metamodel is based on the use case of transport
robots. This example looks at several transport robots (i.e., CESs)
within a factory, with each robot being responsible for transporting
different materials (i.e., an overall CSG). In order to receive different
materials as input for various products, the individual transport
robots connect to modules and conveyor belts, which allows the
transport robots to take part in multiple production processes at once.
The main purpose (i.e., the system goals) of the transport robots
consists of executing the production logistics and ensuring punctual
delivery and pick-up of materials between production process sites,
for which the transport robots provide several functions.

In order to optimize the transport of goods within the factory from
a logistical point of view, individual transport robots must negotiate
possible orders and distribute them jointly. To enable this negotiation
and to coordinate further behavior, the transport robots must

The coordinator
matches requirements
and functions

Self-check contribution
possibilities

Autonomous transport
robots operate in a
factory

Negotiate orders and
coordinate behavior

88 Function Modeling for Collaborative Embedded Systems

collaborate. Therefore, several collaborative transport robots (CTR)
form a collaborative transport robot fleet (CTRF). In the context of the
metamodel, individual CTRs can be considered as CESs and the CTFR
as the CSG.

By forming a CTRF, a CTR starts communicating to share
information within the CTRF. This allows the CTRF to manage the
operations of the CTRs. While a non-collaborative robot would
typically optimize its own routes and transportations, the CTRF
allows optimized utilization over all the CTRs. For more information
on the close interaction between CTRs and the CTRF, refer to [Brings
et al. 2019].

In order to further illustrate the different goals of the CTRs and the
CTRF, some of them are shown as an example in Figure 4-11. This
figure models relationships between various goals and related tasks
(i.e., specific functions to be implemented) and dependencies between
the CTRs and a CTRF (i.e., the relationship between the functions of
the CESs and the functions of the CSG). The modeling was performed
using an extension of the goal-oriented requirement language (GRL)
(cf. [Daun et al. 2019b], [Brings et al. 2020]). The goals that CTRs and
CTRFs pursue are represented by curved boxes and they can be
fulfilled by executing all connecting tasks, which are represented by
hexagonal boxes.

Fig. 4-11: Goal model collaborative transport robot fleet

Forming a collaborative
transport robot fleet

Goals of transport
robots

4.7 Related Work 89

Figure 4-11 shows an excerpt of the goal model for the CTRF. When
applying GRL, these tasks can be divided into further tasks to allow a
more detailed specification. In terms of the metamodel, these tasks
can be considered as functions. The individual tasks of the CTR
presented here correspond to system functions in the metamodel. The
functions for communication between the CTRs within the CTRF that
are not shown here correspond to the collaboration functions.

The CTR pursues the goal to optimize their current goods
transportation. The goal can be fulfilled when the CTR performs the
different tasks shown. The CTRF pursues the goal to optimize the
goods transportation of all participating CTRs. As these goals are
interdependent, they are linked in the goal model by a bidirectional
dependency (shown by the two Ds on the connecting line). The task
optimal order acceptance decision has some positive influence on the
goal optimal current resource usage and is therefore displayed as a
contribution arrow marked with the plus icon. While this refers
mainly to the goal part of the metamodel, the relation to functions is
made clear as the tasks define what functions need to be implemented
to fulfill which goals.

4.7 Related Work

A comparative literature review was conducted by [Erden et al. 2008]
to investigate different function modeling approaches and their
similarities and differences. For example, functional model ontologies
[Chandrasekaran and Josephson 2000], [Umeda et al. 1996], [Umeda
et al. 1995], and [Yoshioka et al. 2004] aim at developing frameworks
and languages for modeling the functionality of a system from the
different viewpoints [Erden et al. 2008]. None of the proposed
functional model ontologies consider the modeling of functions of
complex CESs and CSGs, including the ramifications of the contexts in
which these systems operate.

In [Chandrasekaran and Josephson 2000], the authors define two
function viewpoints: “environment-centric viewpoint” and “device-
centric viewpoint.” These viewpoints correspond to the collaboration
and system functions proposed in our work respectively. In the first
viewpoint, the function is related to the external effects that an object
or a system has on its environment. In contrast, in the second
viewpoint, functions are related to the internal features and
parameters of the system. In our metamodel, to a certain extent we
subsume both the viewpoints proposed in [Chandrasekaran and

GRL goal modeling

Differentiate between
goals and tasks

90 Function Modeling for Collaborative Embedded Systems

Josephson 2000]: 1) considering systems’ functions that have effects
on their environments, specifically in our case the context as the
relevant part of the environment; 2) as well as the other systems
involved in a collaboration, including their internal system
parameters, states, and behaviors. Furthermore, [Gero 1990] has
developed a function–behavior–structure model. In his model, he
considered a function as an intermediate step between the behavior
of the system and the user’s goal.

A few frameworks have been proposed in literature to define a
well-formed functional behavior of the system systematically. FOCUS
(cf. [Broy and Stølen 2012], and [Broy 2014]), previously explained in
Section 4.3, is an instance of such a formal framework that provides
models and formalisms for specifications and development of
distributed interactive and dynamic systems. In our contribution,
according to FOCUS, we define the behavior of a function as a stream
of messages across its input and output channels, which through its
interfaces, take up information, material, or energy, and transform it
before outputting it.

To the best of our knowledge, there has been no previous work on
modeling functions for CESs from multi-dimensional aspects as
proposed in our metamodel, including the dynamicity of the contexts
of the system, role and goal modeling, and complex properties of these
systems such as collaboration and adaptivity. The domain-
independent metamodel proposed in this paper closes this gap.

4.8 Conclusion

The new challenges in the model-based development of embedded
systems arising from collaboration make it necessary to adapt and
extend existing modeling languages. In this chapter, we showed the
aspects to be considered in the modeling of functions for CESs and
CSGs in a metamodel. We then evaluated this metamodel and
illustrated it using two examples from the use cases of the adaptable
and flexible factory and autonomous transport robots. Based on the
metamodel, specific extensions of modeling languages can be
executed. Depending on domain-specific requirements, methods for
the application of these extended modeling languages can be
developed. The use case examples presented in this chapter will be
used as a basis for further research.

4.9 Literature 91

4.9 Literature

[Brings et al. 2019] J. Brings, M. Daun, T. Bandyszak, V. Stricker, T. Weyer, E. Mirzaei, M.
Neumann, J. S. Zernickel: Model-Based Documentation of Dynamicity Constraints
for Collaborative Cyber-Physical System Architectures: Findings from an
Industrial Case Study. In: Journal of Systems Architecture - Embedded Systems
Design, vol. 97, 2019, pp. 153–167, DOI: 10.1016/j.sysarc.2019.02.012.

[Brings et al. 2020] J. Brings, M. Daun, T. Weyer, K. Pohl: Goal-Based Configuration
Analysis for Networks of Collaborative Cyber-Physical Systems. In: Proceedings
of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic,
Mar. 2020, pp. 1387–1396, DOI: 10.1145/3341105.3374011.

[Broy and Stølen 2012] M. Broy, K. Stølen: Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer Science &
Business Media, 2012.

[Broy 2014] M. Broy: A Model of Dynamic Systems. In: From Programs to Systems. The
Systems Perspective in Computing, pp. 39-53. Springer, Berlin, Heidelberg, 2014.

[Broy 2017] M. Broy: Formalizing Adaptivity, Dynamics, Context-Awareness,
Autonomy, 2017, white paper.

[Chandrasekaran and Josephson 2000] B. Chandrasekaran, John R. Josephson: Function
in Device Representation. In: Engineering with Computers 16.3-4: pp.162-177,
2000.

[Daun et al. 2019a] M. Daun, T. Weyer, K. Pohl: Improving Manual Reviews in Function-
Centered Engineering of Embedded Systems Using a Dedicated Review Model. In:
Software and Systems Modeling, vol. 18, no. 6, 2019, pp. 3421–3459, DOI:
10.1007/s10270-019-00723-2.

[Daun et al. 2019b] M. Daun, V. Stenkova, L. Krajinski, J. Brings, T. Bandyszak, T. Weyer:
Goal Modeling for Collaborative Groups of Cyber-Physical Systems with GRL:
Reflections on Applicability and Limitations Based on Two Studies Conducted in
Industry. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019, 2019, pp. 1600–1609,
DOI: 10.1145/3297280.3297436.

[Erden et al. 2008] M.S. Erden, H. Komoto, T. J. van Beek, V. D'Amelio, E. Echavarria, T.
Tomiyama: A Review of Function Modeling: Approaches and Applications. Ai
Edam 22, no. 2, 2008, pp. 147-169.

[Eisenbart et al. 2012] B. Eisenbart, L. Blessing, K. Gericke: Functional Modelling
Perspectives Across Disciplines: A Literature Review. International Design
Conference - Design 2012, Dubrovnik, Croatia, 2012.

[Gero 1990] J. S. Gero: Design Prototypes: A Knowledge Representation Schema for
Design. AI magazine 11.4, 1990, pp. 26-26.

92 Function Modeling for Collaborative Embedded Systems

[Giese et al. 2013] H. Giese, H. A. Müller, M. Shaw, R. De Lemos: Software Engineering
for Self-Adaptive Systems II. Springer, Berlin, 2013.

[Hayward et al. 2020] A. Hayward, M. Daun, W. Böhm, A. Petrovska, L. Krajinski, A. Fay:
Modellierung von Funktionen in der modellbasierten Entwicklung von
Systemverbünden kollaborierender cyber-physischer Systeme, Tagung: Entwurf
komplexer Automatisierungssysteme (EKA), Magdeburg, 2020, (available in
German only).

[Krupitzer et al. 2015] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, C. Becker: A
Survey on Engineering Approaches for Self-Adaptive Systems. Pervasive and
Mobile Computing 17, 2015, pp. 184-206.

[Lalanda et al. 2013] P. Lalanda, J. A. McCann, A. Diaconescu: Autonomic Computing:
Principles, Design and Implementation. Springer Science & Business Media, 2013.

[Ludewig et al. 2018] A. Ludewig, M. Daun, A. Petrovska, W. Böhm, and A. Fay:
Requirements for Modeling Dynamic Function Networks for Collaborative
Embedded Systems. In: Joint Proceedings of the Workshops at Modellierung 2018
co-located with Modellierung 2018, Braunschweig, Germany, 2018, vol. 2060, pp.
79–89.

[Meissner et al. 2014] H. Meissner, M. Cadet, N. Stephan, C. Bohr: Model-Based
Development Process of Cybertronic Products and Production Systems. In:
Advanced Materials Research, Vol. 1018, 2014, pp. 539–546.

[Pahl et al. 2013] G. Pahl, W. Beitz, J. Feldhusen, K.H. Grote: Methoden und Anwendung
erfolgreicher Produktentwicklung. 8. Aufl., Heidelberg: Springer. 2013 (available
in German only).

[Petrovska and Pretschner 2019] A. Petrovska, A. Pretschner: Learning Approach for
Smart Self-Adaptive Cyber-Physical Systems. IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS* W), pp. 234-236. IEEE, 2019.

 [Pohl 2010] K. Pohl: Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer Publishing Company, Incorporated, 2010.

[Pohl et al. 2012] K. Pohl, H. Hönninger, R. Achatz, M. Broy, Eds., Model-Based
Engineering of Embedded Systems: The SPES 2020 Methodology. Berlin
Heidelberg: Springer-Verlag, 2012.

[Pohl et al. 2016] K. Pohl, M. Broy, H. Daembkes, H. Hönninger: Advanced Model-Based
Engineering of Embedded Systems, Springer, Cham, 2016.

[Regnat et al. 2019] Regnat, N. et. al.: Seamless Model-Based Approach - MQ1.AP2.D4.
Published by Subproject MQ1 in CrESt. Internal Project Deliverable of CrESt, 2019.

[Umeda et al. 1995] Y. Umeda, T. Tomiyama: FBS Modeling: Modeling Scheme of
Function for Conceptual Design. Proc. of the 9th Int. Workshop on Qualitative
Reasoning, 1995.

4.9 Literature 93

[Umeda et al. 1996] Y. Umeda, I. Masaki, Y. Masaharu, Y. Shimomura, T. Tomiyama:
Supporting Conceptual Design Based on the Function-Behavior-State Modeler. Ai
Edam 10, no. 4: 275-288, 1996.

[VDI 2221] VDI Guideline 2221: Systematic Approach to the Development and Design
of Technical Systems and Products, 1993.

[VDI 2222] VDI Guideline 2222 Blatt 1:1997-06: Methodic Development of Solution
Principles, 1997.

[Vogelsang 2015] A. Vogelsang: Model-Based Requirements Engineering for
Multifunctional Systems. Dissertation. Technische Universität München, Institut
für Informatik, 2015.

[Weiß et al. 2019] S. Weiß et. al.: Modeling of Dynamics in the Open Context of
Collaborative Embedded Systems – EC4.AP2.D3. Published by Subproject EC4 in
CrESt. Internal Project Deliverable of CrESt, 2019.

[Yoshioka et al. 2004] M. Yoshioka, Y. Umeda, H. Takeda, Y. Shimomura, Y. Nomaguchi,
T. Tomiyama: Physical Concept Ontology for the Knowledge Intensive
Engineering Framework. Advanced engineering informatics, 18(2), 2004, pp.95-
113.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	

	

5

Architectures for Dynamically
Coupled Systems

Dynamically	 coupled	 collaborative	 embedded	 systems	 operate	 in	 groups	 that	 form,	
change,	and	dissolve—often	frequently—during	their	lifetime.	Furthermore,	the	context	
in	which	 collaborative	 systems	 operate	 is	 a	 dynamic	 one:	 systems	 in	 the	 context	may	
appear,	change	their	visible	behavior,	and	disappear	again.	Ensuring	safe	operation	of	
such	 collaborative	 systems	 is	 of	 key	 importance,	 while	 their	 dynamic	 nature	 poses	
challenges	that	do	not	occur	in	“classical”	system	design.	This	starts	with	the	elicitation	
of	the	operational	context	against	which	the	system	will	be	designed—requiring	capture	
of	 its	dynamic	nature—and	affects	all	other	design	phases	as	well.	Novel	development	
methods	 are	 required,	 enabling	 engineers	 to	 deal	 with	 the	 challenges	 raised	 by	
dynamicity	 in	 a	 manageable	 way.	 This	 chapter	 presents	 methods	 that	 have	 been	
developed	to	support	engineers	in	this	task.	The	methods	cover	different	viewpoints	and	
abstraction	 levels	of	 the	development	process,	 starting	at	 the	requirements	viewpoint,	
and	glance	at	the	functional	and	technical	design,	as	well	as	verification	methods	for	the	
type	of	systems	envisioned.

Malin Gandor, OFFIS e.V.
Nicolas Jäckel, FEV Europe GmbH
Lorenz Käser, PikeTec GmbH
Alexander Schlie, TU Braunschweig
Ingo Stierand, OFFIS e.V.
Axel Terfloth, itemis AG
Steffen Toborg, PikeTec GmbH
Louis Wachtmeister, RWTH Aachen University
Anna Wißdorf, PikeTec GmbH

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_5

95

https://doi.org/10.1007/978-3-030-62136-0_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_5&domain=pdf

96 Architectures for Dynamically Coupled Systems

	

5.1 Introduction

Dynamically	coupled	collaborative	embedded	systems	(CESs)	have	to	
function	 safely	 in	 collaborative	 system	 groups	 (CSGs)	 that	 form,	
change,	and	dissolve	during	the	lifetime	of	the	CESs.	The	members	of	
a	vehicle	platoon,	for	example,	typically	change	frequently.	CESs	and	
the	corresponding	CSGs	must	therefore	be	able	to	deal	with	internal	
dynamics	as	well	as	those	of	the	operational	context.	Here,	dynamics	
refers	 to	 a	 specific	 notion	 of	 the	 term	 that	 subsumes	 the	 following	
aspects:	

Structure:	the	elements	of	the	CES	or	CSG	under	consideration	and	
their	 interaction	 and	 dependencies.	 For	 example,	 elements	 of	 the	
context	can	become	part	of	the	system	group	and	emerge	from	it	by	
leaving	the	group.	

Function/behavior:	the	services	offered	by	the	CES	or	CSG,	and	the	
dependencies	to	the	services	in	its	context.	

The	above-mentioned	aspects	are	indeed	closely	related.	Systems	
form	system	groups	in	order	to	achieve	overarching	goals	(as	defined	
in	Chapter	2).	Vehicles,	 for	example,	may	 join	a	platoon	 in	order	 to	
optimize	 space	 usage	 and	 traffic	 flow,	 which	 changes	 the	 internal	
system	structure	of	the	platoon.	A	car	that	drives	in	a	platoon	requires	
functions—such	as	certain	coordination	functions—that	are	different	
to	 those	 needed	 to	 drive	 independently.	 The	 functional	 aspect	 also	
concerns	 the	 visible	 behavior	 of	 the	 context,	 which	 may	 also	
dynamically	 change.	 CESs	 and	 CSGs	 must	 be	 able	 to	 change	 their	
behavior	 accordingly.	 In	 some	 application	 domains,	 such	 as	 in	 the	
traffic	 example,	 this	 aspect	 subsumes	 the	 perceived	 “intention”	 of	
other	traffic	participants.	

This	 chapter	 focusses	 on	 three	 challenges	 that	 arise	 from	
dynamicity	for	the	development	of	collaborative	embedded	systems.	
First,	systems	are	typically	designed	against	a	context	that	impacts	the	
definition	 of	 requirements,	 for	 example,	 the	 temperature	 range	 in	
which	the	system	must	be	able	to	work.	Defining	such	specifications	
becomes	 a	 complex	 task	 for	 dynamically	 coupled	 systems.	 The	
complexity	results	not	only	from	the	context	dynamics,	with	changing	
context	structures	and	behavior,	but	also	from	the	system	itself,	which	
may	dynamically	become	part	of	a	larger	system	(group)	and	leave	it	
again.	At	the	end	of	this	progression,	we	are	faced	with	the	problem	of	
designing	 systems	 against	 open	 contexts	 that	 cannot	 be	 fully	
anticipated	at	design	time.	

Challenges addressed

5.1 Introduction 97

	

Dynamicity	 also	 raises	 the	 challenge	 of	 managing	 design	
complexity.	Starting	with	the	functional	design,	how	can	we	develop	a	
functional	 architecture	 that	 reflects	 the	 dynamicity	 of	 the	 system	
context	 as	 well	 as	 the	 structure	 and	 behavior	 of	 potential	 CSGs	 in	
which	 the	 CES	 is	 intended	 to	 work?	 Dynamicity	 calls	 for	 novel	
architectural	 patterns,	 enabling	 engineers	 to	 deal	with	 this	 kind	 of	
complexity.	Finally,	such	architectures	should	also	support	validation	
and	 verification	 tasks	 —	 for	 example,	 by	 enabling	 compositional	
reasoning.	As	the	class	of	systems	considered	is	that	of	safety-critical	
systems,	corresponding	analysis	methods	 that	support	engineers	 in	
assessing	 important	 safety	 properties	 should	 be	 applicable	 in	 a	
scalable	way.	

This	 chapter	 presents	 methods	 that	 support	 engineers	 in	
designing	 dynamically	 coupled	 systems.	 The	 chapter	 is	 structured	
along	 the	 established	 design	 framework	 developed	 in	 the	 SPES	
projects	[Pohl	et	al.	2012],	[Pohl	et	al.	2016],	as	depicted	in	Figure	5-
1.	Section	5.2	introduces	a	contract-based	modelling	method	for	the	
specification	of	the	behavior	of	collaborative	system	groups,	covering	
collaboration	 and	 interface	 aspects	 of	 CSGs	 and	 their	 expected	
behavior.	 Section	 5.3	 elaborates	 on	 the	 functional	 design.	 The	
approach	enables	the	modelling	of	refined	function	architectures	with	
operation	modes	 that	 reflect	 the	dynamicity	of	 context	and	system.	
Section	5.4	presents	a	novel	approach	for	incrementally	constructing	
system	architectures	 that	can	 function	 in	dynamic	contexts.	Finally,	
Section	 5.5	 presents	 an	 analysis	 method	 for	 the	 safety	 aspect	 of	
collaborative	systems	at	the	logical	design	level.	The	analysis	method	
allows	 assessment	 of	 the	 impact	 on	 safety	 of	 failures	 of	 the	
communication	medium.	The	methods	are	exemplified	in	the	context	
of	the	“Vehicle	Platooning”	and	“Autonomous	Transportation	Robots”	
uses	cases	(cf.	Chapter	1).	

	
Fig. 5-1: Method overview

Chapter structure

98 Architectures for Dynamically Coupled Systems

	

5.2 Specification Modeling of the Behavior of
Collaborative System Groups

This	chapter	introduces	a	modelling	approach	for	a	formal	contract-
based	specification	of	collaborative	open	systems.	

CSGs	 are	 formed	 by	 the	 CESs	 involved.	While	 a	 CSG	 as	 a	whole	
exposes	 behavior,	 follows	 its	 goals,	 and	 interacts	 with	 the	
environment,	its	behavior	is	actually	implemented	by	the	systems	that	
make	up	the	CSG.	This	implies	that	each	system	must	be	implemented	
correctly	 with	 respect	 to	 the	 required	 group	 behavior.	 To	 decide	
whether	a	CES	fulfills	its	obligations	in	a	collaborative	system	group,	
we	 choose	 the	 concept	 of	 contracts.	 Contracts,	 as	 presented	 in	 this	
approach,	 define	 the	 rights	 and	 obligations	 of	 the	 individual	
collaborative	systems	based	on	protocol	state	machines	for	peer-to-
peer	communication	and	formal	scenario	specifications	of	the	group	
behavior.	We	want	these	contracts	to	be	formal	so	that	they	can	be	
used	 during	 CES	 operation	 but	 also	 already	 support	 automatic	
verification	 and	 simulation	 from	 a	 requirements	 perspective.	 This	
also	implies	that	the	modeling	approach	defines	execution	semantics	
so	that	specifications	are	executable.	

The	modelling	approach	covers	different	aspects	that	are	relevant	
for	 specifying	 CSGs	 and	 the	 collaborative	 behavior	 of	 the	 CESs	
involved.	 The	 key	 concepts	 enable	 the	 scenario-based	 definition	 of	
collaboration	 structure	and	behavior.	The	metamodel	 in	Figure	5-2	
shows	the	main	modelling	concepts	and	their	relationships,	which	are	
discussed	in	the	following.	

Fig. 5-2: Collaboration metamodel

These	 modeling	 concepts	 are	 implemented	 using	 a	 collection	 of	
integrated	domain-specific	modeling	languages	(DSLs).	These	consist	
of	 textual,	 grammar-based	 languages	 and	 the	 graphical	 notation	 of	

Collaboration
specification metamodel

System Type

Property

Event

*

*

System Port
*

Collaboration
Specification

Collaboration
Scenario Type

*

System Interface

interface

Type

System
Connection*

System Instance
*

provided 1
required

1

1

Scenario
Statechart

Protocol State
Machine

Scenario
Operation

Scenario Behavior

Behavior
*

1

1 behavior of

behavior of*

1

in
st

an
ce

 o
f

1

5.2 Specification Modeling of the Behavior of Collaborative System Groups 99

	

statecharts.	 The	 concrete	 tools	 used	 are	 YAKINDU	 statecharts	 and	
slang	 (system	 language)	 [Yakindu	 2019],	 together	with	 Franca	 IDL	
[Franca	 2019].	 Independently	 of	 this	 concrete	 choice	 of	 modeling	
languages	and	tools,	the	underlying	concepts	can	also	be	adapted	to	
standard	 system	 modeling	 languages,	 such	 as	 SysML,	 or	 by	
proprietary	modeling	 approaches.	 The	 concepts	 are	 exemplified	by	
the	“Collaborative	Adaptive	Cruise	Control	(CACC)”	car	platooning	use	
case	(see	Chapter	1).	

The	 core	 approach	 for	 modeling	 collaboration	 within	 a	 CSG	 is	
based	 on	 formal	 specifications	 of	 scenarios.	 Scenarios	 constitute	 a	
natural	way	of	specifying	 inter-object,	or	 in	our	scope,	 inter-system	
behavior	[Harel	and	Marelly	2003].	A	CSG	consists	of	a	set	of	CESs	and	
a	 set	 of	 relationships	 between	 these	 systems.	 This	 is	 specified	 by	
collaboration	 scenario	 types.	 The	 specification	 of	 such	 a	 type	 is	
illustrated	 by	 Figure	 5-3.	 The	 example	 shows	 a	 platoon	 of	 three	
vehicles	that	form	a	CSG.	Each	CES	involved	is	represented	by	a	system	
instance	 of	 system	 type	 PlatoonMember.	 The	 direct	 communication	
relationships	between	the	CESs	are	specified	as	system	connections.	

	

Fig. 5-3: Example CSG structure

For	 this	 type	 of	 collaboration	 scenario	 structure,	 a	 specification	
defines	a	set	of	behaviors.	In	contrast	to	other	scenario	specifications,	
such	 as	 use	 case	 descriptions	 or	 standard	 sequence	 charts,	 CSG	
specifications	 following	 this	 approach	must	be	executable	 and	 thus	
require	 a	 high	 degree	 of	 formalism.	 To	 support	 this,	 two	 types	 of	
behavior	 models	 are	 used:	 scenario	 operations	 and	 scenario	
statecharts.	 A	 scenario	 operation	 is	 a	 simple	 procedural	 model	 for	
specifying	 dynamic	 processes	 within	 a	 CSG.	 Figure	 5-4	 gives	 an	
example	of	a	CSG	reconfiguration	within	the	vehicle	platoon	that	adds	
and	integrates	vehicles.	

	
	

	
	

Collaboration scenario
specification

scenario PlatoonOfThree {
instance leadVehicle : PlatoonMember
instance midVehicle : PlatoonMember
instance backVehicle : PlatoonMember

connect backVehicle.asFollower to midVehicle.asLeader
connect midVehicle.asFollower to leadVehicle.asLeader

}

100 Architectures for Dynamically Coupled Systems

	

@scenario op joinToSingleLead() {

 // first place a car into the scenario
 midVehicle.location = Coordinate.new(0, 0)
 midVehicle.velocity = 50
 assert notConnected(midVehicle.asFollower)
 // let the time proceed without creating a platoon
 time.proceed(minutes(5))
 assert notConnected(midVehicle.asFollower)
 assert (midVehicle.location.X == 50*60*5)

 // place second car 200 meters in front of first car
 leadVehicle = PlatoonMember.new
 leadVehicle.location = Coordinate.new(midVehicle.location.X + 200, 0)

 leadVehicle.velocity = 40

 // as soon as the first car comes close to the second car
 // the platoon will be established
 time.proceedUntil(leadVehicle.location.X - midVehicle.location.X < 100)
 assert (midVehicle.asFollower == leadVehicle.asLeader)

 // after some time the platoon is cruising with the second car
 // velocity and constant distance.
 time.proceed(seconds(20))
 assert (midVehicle.velocity == leadVehicle.velocity)
 assert (leadVehicle.location.X - midVehicle.location.X == 55)
}

Fig. 5-4: Reconfiguration example for platoon creation

CSG	reconfigurations	apply	changes	to	the	coupling	of	CESs	and	are	
thus	a	way	to	capture	the	dynamics.	Basically,	all	modifications	such	
as	adding,	removing,	connecting,	and	configuring	CES	instances	can	be	
described.	Moreover,	time	is	an	explicit	concept	that	can	be	used	to	
control	temporal	aspects	of	the	scenario.	Finally,	assertions	check	the	
proper	execution	of	a	scenario.	

Scenario	statecharts	(introduced	in	[Marron	et	al.	2018])	adapt	the	
concepts	of	scenario-based	modeling	(SBM).	SBM	is	an	approach	that	
was	 first	 presented	 in	 the	 form	 of	 the	 graphical	 formalism	 of	 life	
sequence	 charts	 (LSC)	 [Damm	 and	Harel	 2001],	 [Harel	 and	Marelly	
2003].	Scenario-based	statecharts	extend	the	formalism	of	statecharts	
[Harel	 1987]	 with	 SBM	 concepts.	 A	 scenario	 statechart	 (SSC)	 (see	
Figure	5-2)	describes	a	scenario	that	covers	a	single	behavioral	aspect	
of	the	system	group.	Different	scenario	statecharts	can	be	combined	
to	 obtain	 a	 behavioral	 description	 of	 the	 system	 group.	 The	
synchronization	between	these	scenarios	is	based	on	events.	In	each	
state,	an	SSC	can	request	or	block	events.	All	events	that	are	requested	
by	 at	 least	 one	 scenario	 and	 are	 not	 blocked	 by	 at	 least	 one	 other	
scenario	 are	 called	 enabled.	 One	 or	 more	 enabled	 events	 can	 be	
selected	 and	 activated	 by	 a	 central	 event	 selection	mechanism.	 All	

5.2 Specification Modeling of the Behavior of Collaborative System Groups 101

	

scenarios	that	requested	or	waited	for	such	an	event	will	be	notified	
and	can	proceed	to	the	next	scenario	state.	

Fig. 5-5: Emergency stop and obstacle detection scenarios

Figure	 5-5	 illustrates	 two	 example	 scenarios,	 each	 defined	 using	 a	
simple	 scenario	 state	 chart.	 The	 first	 specifies	 an	 emergency	 stop	
based	 on	 an	 obstacle.	 The	 second	 specifies	 the	 obstacle	 detection.	
Both	refer	 to	 the	platooning	CSG	but	are	not	directly	dependent	on	
each	other.	

All	properties	of	a	CES	that	are	relevant	for	the	CSG	specification	
are	specified	by	a	system	type.	As	an	example,	PlatoonMember	(Figure	
5-6)	reacts	to	incoming	events	and	defines	a	set	of	system	properties	
such	as	velocity	and	frontDistance.	It	also	defines	direct	collaboration	
relationships	 to	 other	 vehicles	 using	 system	ports.	 The	 system	port	
asLeader	provides	a	CACControl	interface	and	asFollower	requires	it.	

CACControl	is	a	system	interface	that	defines	the	elements	that	can	
be	used	in	the	interaction	(or	communication)	between	two	systems.	
This	 concept	 adapts	 the	 well-known	 concepts	 of	 interface	 and	
protocol	 specifications,	 as	 the	 modeling	 approach	 assumes	 that	
communication	 protocols	 will	 form	 the	 basis	 for	 inter-CES	
communication.	

System type
specification

System interface
specification

102 Architectures for Dynamically Coupled Systems

	

Fig. 5-6: System type and system interface example

System	interfaces	define	the	elements	that	exist	 in	the	 interface	and	
are	used	by	the	interaction	of	CESs.	The	proven	concept	of	protocol	
state	 machines	 (PSMs)	 [Franca	 2019]	 allows	 specification	 of	 the	
dynamic	behavior	of	system	interfaces	and	can	be	used	to	ensure	that	
the	communication	peers	involved	interact	in	the	proper	order.	

The	behavioral	part	of	a	CSG	collaboration	specification	is	made	up	
of	 all	 scenario	 operations,	 scenario	 statecharts,	 and	 PSMs.	 The	
scenario-based	modeling	approach	is	 inherently	incremental,	which	
involves	 incremental	 specification,	 development,	 and	 integration	 of	
dynamically	coupled	CSGs	and	CESs.	Additionally,	all	behavior	models	
are	 inherently	 executable.	 All	 models	 described	 can	 be	 jointly	
executed	within	a	simulation	without	any	further	behavioral	model.	
This	 already	 serves	 as	 a	 basis	 for	 analysis	methods	 that	 check	 the	
properties	and	consistency	of	the	specification	itself.	Moreover,	if	the	
specification	 models	 of	 the	 CSG	 are	 executed	 together	 with	 the	
behavioral	 models	 of	 the	 CESs	 (e.g.,	 using	 co-simulation),	 then	
conformity	and	consistency	of	the	CESs	with	the	CSG	specification	can	
be	checked	automatically.	This	allows	a	complete	specification	of	the	
collaborative	behavior	of	a	CSG	 for	all	known	aspects	 in	a	dynamic	
context,	 which	 is	 a	 precondition	 for	 the	 verification	 of	 the	 CES	
behavior	within	a	CSG.	Comparable	to	PSMs	that	define	an	interaction	
contract	 for	single	 interaction	relations,	 the	collaboration	scenarios	
defined	by	a	CSG	specification	form	the	collaboration	contract	for	all	
CESs	involved.	

System interface
contracts

CSG contracts validation

@system type PlatoonMember {

@provides port asLeader : CACControl
@requires port asFollower : CACControl

in event obstacleDetected
in event move
in event brake
property velocity : real
property ready : boolean
property frontDistance : real

}

refers to

asFollower

asLeader

CACControl

CACControl

@system interface CACControl {
out event leadReady
in event followerReady
out event requestAcceleration: real
in event confirmAcceleration : real

}

specifies

specifies

5.3 Modeling CES Functional Architectures 103

	

5.3 Modeling CES Functional Architectures

The	functional	architecture	of	a	CES	establishes	the	link	between	the	
requirements	 viewpoint	 and	 the	 system	 design	 (cf.	 Figure	 5-1).	 A	
functional	 architecture	 “integrates	 the	 system	 requirements	 in	 a	
structured,	implementation	independent	system	specification”	[Pohl	
et	al,	2012].	It	should	therefore	reflect	all	aspects	discussed	in	Section	
5.2,	 including	dynamicity.	The	basic	 idea	of	 the	modelling	approach	
presented	in	this	section	is	to	explicate	relevant	system	states	in	the	
functional	 architecture	model	 in	 order	 to	 enable	 consistency	 to	 be	
established	between	the	functional	model	and	the	dynamic	aspects	of	
the	CSG	specification	—	that	is,	the	functional	design	of	the	individual	
CESs	 realizes	 the	 dynamic	 aspects	 specified	 in	 the	 requirements	
viewpoint.	

The	 approach	 conforms	 to	 the	 metamodel	 defined	 with	 the	 SPES	
modelling	framework	[Pohl	et	al.	2012],	which	has	been	extended	in	
CrESt	in	order	to	reflect	the	need	to	design	(dynamic)	collaborative	
systems	 as	 well	 (cf.	 Chapter	 4).	 An	 excerpt	 of	 this	 metamodel	 is	
depicted	 in	 Figure	 5-7.	 It	 reveals	 the	 relationship	 between	 the	
concepts	 discussed	 in	 Section	 5.2	 (bold	 boxes)	 and	 the	 functional	
elements.	 The	 specified	 system	 behavior,	 for	 example,	 will	 be	
allocated	 to	 the	 behavior	 of	 a	 function.	 The	 collaborative	 behavior	
specification	(cf.	Figure	5-5)	is	allocated	to	collaboration	functions	of	
the	 CESs,	 while	 the	 collaboration	 structure	 and	 their	 relationships	
determine	 the	 way	 in	 which	 CSG	 functions	 are	 realized	 by	 CES	
functions.	 The	 figure	 also	 shows	 the	 relationship	 of	 the	 functional	
architecture	to	the	goals	a	CES	or	CSG	is	aiming	for.		

Functional architecture
metamodel

Fig. 5-7: CrESt functional architecture metamodel — excerpt	

104 Architectures for Dynamically Coupled Systems

	

Modelling	 functional	 architectures	 of	 dynamic	 systems	 requires	
paying	 particular	 attention	 to	 the	 relationships	 between	 system	
functions	 and	 goals.	 As	 introduced	 in	 the	 Chapter	 2	 collaboration	
functions	 determine	 the	 goals	 a	 CES	 (or	 CSG)	 is	 following	 at	 a	
particular	 point	 in	 time.	 The	 goals	 in	 turn	 are	 implemented	 by	 the	
system	functions	of	the	individual	CESs.	Dynamic	changes	in	the	CES	
(and	CSG)	are	reflected	by	changes	in	the	collaboration	functions,	and	
in	turn	in	the	system	functions.	The	dynamic	interplay	between	goals	
and	functions	requires	changes	to	happen	in	an	orchestrated	way.	The	
individual	 system	 functions	 must	 switch	 their	 internal	 behavior	
consistently	 in	order	to	be	able	to	contribute	to	the	changing	goals.	
The	 proposed	modelling	 approach	 allows	 the	 specification	 of	 such	
functional	dynamics	in	terms	of	state	diagrams,	where	engineers	can	
explicate	 the	dynamicity	 of	 functional	 behavior	 and	 the	 interaction	
between	functions	to	coordinate	changes.	The	approach	then	enables	
analysis	of	whether	dynamic	changes	actually	happen	in	a	consistent	
way	with	respect	to	the	scenarios	specified.	

5.3.1 Scenario

The	 approach	 is	 exemplified	 by	 the	 “Autonomous	 Transport	
Robots”	use	case	(cf.	Chapter	1).	Figure	5-8	shows	a	simple	scenario	
with	 a	 single	 production	machine	 and	 two	 transport	 robots,	which	
represent	the	CSG	being	designed.	Each	robot	is	a	CES	in	this	CSG.	The	
goal	 of	 the	CSG	 is	 to	 transport	 goods	between	machines	 as	well	 as	
storage	locations,	following	some	optimization	objectives	(cf.	Chapter	
9).	Transport	requests	from	the	machines	are	distributed	among	the	
individual	robots.		

The	 scenario	 specification	 in	 Figure	 5-8	 is	 similar	 to	 the	 one	
introduced	 in	 Section	 5.2	 but	 applied	 to	 a	 different	 use	 case.	 The	
scenario	consists	of	a	simple	sequence	of	snapshots	that	represent	a	
particular	state	of	the	system	and	its	context.	Both	robots	initially	do	
not	perform	transport	tasks.	This	is	indicated	by	a	wait	state	assigned	
to	the	robots.	In	the	second	step	of	the	scenario,	the	machine	issues	a	
request	 for	 a	 transport	 task,	 such	 as	 the	 delivery	 of	 a	 required	
resource,	or	the	pickup	of	goods	produced	by	the	machine.	This	state	
is	depicted	on	the	right-hand	side	of	the	figure.	The	third	step	in	the	
scenario	specification	would	be	that	one	of	the	robots	(here	robot2)	
takes	over	responsibility	for	the	task.	

Functional architectures
for dynamic systems

System scenario —
example

5.3 Modeling CES Functional Architectures 105

	

This	type	of	scenario	typically	also	consists	of	a	specification	of	the	
interaction	between	the	 individual	objects,	such	as	sequence	charts	
defining	 messages	 that	 are	 communicated,	 causing	 a	 scenario	 to	
transition	 from	 one	 snapshot	 to	 another.	 In	 our	 scenario,	 this	 is	
exemplified	by	single	events.	In	Figure	5-8,	the	events	are	written	in	
boldface.	For	example,	 the	scenario	 transitions	 from	the	 first	 to	 the	
second	snapshot	as	a	result	of	the	occurrence	of	a	newTask	event.	

The	scenario	actually	exhibits	the	dynamic	nature	in	the	context	of	
the	 CSG	 “Transport	 Robots.”	 Although	 a	 transport	 task	 is	 not	 a	
physical	entity,	it	corresponds	to	a	transported	product	as	a	physical	
object	 that	appears	 in	 the	context	of	 the	transport	robots.	Products	
and	other	 relevant	dynamic	 aspects,	 such	as	 temporary	 roadblocks	
and	the	addition	of	robots	to	the	fleet,	have	been	omitted	to	keep	the	
discussion	simple.	

5.3.2 Modelling

The	modelling	approach	as	depicted	in	Figure	5-9	is	consistent	with	
[Vogelsang	2015]	and	employs	the	concepts	for	a	structured	mapping	
of	 the	collaboration	specification	to	the	functional	architecture.	The	
top	 part	 shows	 the	 functional	 architecture	 of	 a	 transport	 robot,	
consisting	of	the	functions	Planning	&	Control,	Bidding,	and	Dynamic	
Control.	The	key	element	of	the	mapping	is	shown	in	the	angled	boxes.	
They	represent	the	system	states	and	object	relations	derived	from	
the	specification,	which	are	relevant	for	the	individual	functions.	The	
Bidding	 function	 realizes	 the	 collaboration	 among	 all	 robots	 by	

Fig. 5-8: Autonomous transport robots use case — example scenario	

106 Architectures for Dynamically Coupled Systems

	

negotiating	which	 robot	 takes	 over	 a	 transport	 task,	 and	 therefore	
decides	 about	 the	 hasToFulfill	 relationship	 of	 a	 task.	 The	Dynamic	
Control	function	is	responsible	for	navigating	the	robot	safely	through	
the	factory,	and	thus	realizes	states	such	as	wait	and	movesTowards.	

The	 bottom	 part	 of	 Figure	 5-9	 shows	 the	 realization	 of	 the	
functions	in	the	logical	architecture.	It	has	been	modelled	in	terms	of	
a	 SysML	 Internal	 Block	 Diagram,	 which	 has	 been	 chosen	 as	 the	
implementation	language.	The	Planning	&	Control	function	maintains	
the	“global”	state	of	the	transport	robot.	Figure	5-9	also	shows	how	
the	 interactions	 between	 the	 individual	 functions	 are	 realized,	
modelled	by	events	that	are	transmitted	between	the	interfaces	along	
the	 connections.	 For	 example,	 an	 incoming	 newTask	 event	 to	 the	

Planning	&	Control	function	causes	a	request	to	the	Bidding	function,	
which	 will	 eventually	 come	 back	 with	 the	 result	 of	 the	 respective	
bidding	process.	This	in	turn	causes	the	Planning	&	Control	function	
to	request	state	changes	of	the	Dynamic	Control	function	in	order	to	
perform	the	required	operations.	

Fig. 5-9: Robot top-level functional architecture (top), and its realization in the logical
viewpoint	

5.3 Modeling CES Functional Architectures 107

	

Typically,	a	large	number	of	scenarios	are	specified	for	reasonably	
complex	systems	and	contexts.	Moreover,	the	individual	functions	will	
be	 further	 decomposed	 along	 the	 modelling	 process.	 Supporting	
engineers	 in	ensuring	that	the	architecture	designed	adheres	to	the	
requirements	 specified	 in	 the	 scenarios	 is	 of	 crucial	 importance	 in	
order	 to	 avoid	 design	 errors.	 Figure	 5-10	 shows	 how	 this	 can	 be	
achieved	 with	 the	 proposed	 modelling	 approach	 by	 explicating	
internal	state	changes	of	the	individual	functions	in	terms	of	SysML	
state	machine	diagrams.	While	state	machines	are	defined	mainly	to	
model	behavior,	they	also	provide	a	natural	way	to	specify	dynamicity	
in	functional	architectures	and	the	interaction	between	functions	in	
order	to	coordinate	state	changes	throughout	the	CES	architecture.	

However,	 relating	 individual	 states	 with	 the	 system	 states	
specified	 in	 the	 scenarios,	would	 require	 a	 great	 deal	 of	 effort	 and	
becomes	highly	complex—	for	example,	if	only	combinations	of	states	
of	 different	 functions	 match	 particular	 scenario	 states.	 A	 more	
convenient	and	suitable	way	is	to	identify	interaction	points,	or	more	
precisely,	transitions,	in	the	state	machines,	with	corresponding	state	
changes	 in	 the	 scenarios.	This	 is	 shown	 in	Figure	5-10.	The	 angled	
boxes	 denote	 the	 events	 (and	 in	 turn	 state	 transitions)	 that	 are	
associated	 with	 establishing	 object	 relationships	 in	 the	 scenario	
specification.		

As	 SysML	 state	machines	 provide	 a	 large	 number	 of	 features,	 a	
small	subset	of	them	have	been	selected	and	some	design	rules	have	
been	 defined	 to	 make	 the	 approach	 effectively	 applicable.	 More	
details	about	this	can	be	found	in	[CrESt	2019].	

	

Fig. 5-10: Planning & control — state-machine diagram	

108 Architectures for Dynamically Coupled Systems

	

5.3.3 Analysis

The	section	concludes	with	a	brief	overview	of	an	automated	analysis	
that	can	be	applied	in	order	to	check	the	consistency	of	the	functional	
architecture	modelled	with	a	scenario	specification.	To	this	end,	both	
the	scenario	specification	and	 the	 functional	architecture,	 including	
the	state	machine	diagrams,	are	automatically	translated	into	a	target	
automaton	 model	 (in	 our	 case	 RTana2	 [Stierand	 et	 al.	 2016]).	 The	
translation	has	to	identify	state	changes	by	events	as	explained	above.	
In	 the	 current	 implementation,	 this	 is	 achieved	 by	 name	matching.	
The	 analysis	 is	 basically	 a	 refinement	 check	 that	 fails	 if	 the	
architecture	model	cannot	“follow”	the	scenario	specification,	that	is,	
where	either	expected	events	do	not	occur	(e.g.,	a	hasToFulfill	event	of	
one	 robot),	 or	 events	 occur	 unexpectedly	 (hasToFulfill	 events	 from	
multiple	robots).	Note	that	consistency	analysis	has	been	developed	
in	the	context	of	all	SPES	projects,	such	as	with	the	AutoFOCUS	tool	
[Pohl	et	al.	2012,	Section	5.5].	We	now	apply	this	important	analysis	
step	to	dynamic	systems.	

5.4 Extraction of Dynamic Architectures

Reference	architectures	can	be	used	to	define	common	structures	in	
software	product	lines	for	CES	engineering.	Therefore,	they	determine	
the	 static	 and	 dynamic	 compositions	 of	 the	 underlying	 software	
architecture.	 Reference	 architectures	 can	 either	 be	 defined	 from	
scratch	 or	 extracted	 from	a	 set	 of	 system	 architectures	 for	 specific	
contexts	 expected	 for	 the	 CSG.	 Extraction	 enables	 identification	 of	
existing	 features	 through	 successively	 establishing	 a	 reference	
architecture	 by	 analyzing	 system	 architectures.	 The	 extraction	
process	 captures	 the	 commonalities	 and	 variations	 of	 the	
architectures	 analyzed.	 For	 that	 reason,	 the	 reference	 architecture	
forms	the	basis	for	the	development	of	further	products	and	can	be	
successively	extended	by	the	extraction	process.	

The	 methods	 we	 present	 for	 extracting	 reference	 architectures	
from	a	set	of	architecture	models	is	semi-automated.	Logical	system	
architectures	for	a	static	context	are	developed	upfront	and	extrinsic	
matches	 (common	 parts	 in	 each	 architecture)	 with	 the	 current	
reference	architecture	are	identified	automatically	 in	a	second	step.	
All	 components	 of	 static	 system	 architectures	 that	 do	 not	 match	
extrinsically	in	the	reference	architecture	are	automatically	assigned	
to	 the	 reference	 architecture.	 To	 minimize	 the	 number	 of	 false	
assignments,	this	assignment	is	then	reviewed	by	a	domain	engineer	

Consistency analysis

5.4 Extraction of Dynamic Architectures 109

	

manually.	 The	 remaining	 extrinsic	matches	 are	 further	 analyzed	 to	
identify	 differences.	 For	 this	 purpose,	 fully	 automated	 variant	 and	
similarity	analyses	are	performed	during	the	extraction	process.	

We	begin	this	section	by	introducing	general	principles	of	software	
product	 line	 engineering	 and	 continue	with	 an	 explanation	 of	 how	
new	 domain	 artifacts	 can	 be	 derived	 from	 the	 bases	 of	 multiple	
application	 artifacts.	 As	 these	 techniques	 rely	 strongly	 on	 the	
establishment	 of	 reference	 architectures,	 this	 section	 concludes	 by	
introducing	 the	 Family	Mining	 [Wille	 et	 al.	 2014]	 approach,	 which	
provides	mechanisms	for	establishing	reference	architectures	based	
on	a	set	of	architectures	that	already	exist.	

5.4.1 Methods

To	 extract	 dynamic	 system	 architectures	 from	 existing	 system	
architectures,	this	section	is	structured	as	follows.	First,	we	introduce	
reference	 architectures,	 which	 describe	 the	 common	 structures	 of	
product	lines.	Second,	we	use	the	concept	of	software	product	lines,	
for	which	we	present	a	product-driven	approach.	Finally,	we	discuss	
the	 extraction	 with	 the	 Family	 Mining	 approach	 in	 the	 context	 of	
employed	methods,	 that	 is,	 the	 Static	 Connectivity	 Matrix	 Analysis	
(SCMA)	 [Schlie	 et	 al.	 2018]	 and	 the	 Reverse	 Signal	 Propagation	
Analysis	(RSPA)	[Schlie	et	al.	2017],	which	are	both	explained	in	detail	
below.	 Clone-and-own	 [Riva	 and	 Rosso	 2003]	 is	 a	 straightforward	
reuse	 strategy	 that	 describes	 the	 copying	 and	 subsequent	
modification	of	an	existing	system	to	create	a	new	system	variant.	

With	regard	to	software	architectures,	this	straightforward	reuse	
strategy	 leads	 to	a	vast	quantity	of	 redundant	and	similar	artifacts.	
Moreover,	a	 later	 transition	towards	structured	reuse,	such	as	with	
software	 product	 lines,	 inevitably	 requires	 the	 comparison	 of	 all	
existing	variants	prior	 to	 the	 actual	migration.	The	development	of	
dynamic	open	systems	from	scratch	adds	a	new	level	of	complexity	to	
the	system	as	it	involves	designing	new	functionality	at	the	same	time.	
Thus,	a	step-by-step	development	based	on	a	specific	context	of	the	
CSG	by	reusing	a	common	reference	architecture	is	promising.	In	this	
process,	the	common	parts	of	the	system	are	reused	in	the	reference	
architecture	 of	 the	 system,	while	 new	parts	 represent	 the	dynamic	
part	of	the	system.	

SCMA	[Schlie	et	al.	2018],	[Schlie	et	al.	2019]	is	a	procedure	that	
enables	the	evaluation	of	multiple	MATLAB/Simulink	model	variants	
simultaneously.	 The	 transformation	 of	 models	 into	 a	 matrix	 form	
reduces	the	complexity	of	the	models	and	allows	large-scale	systems	

Static Connectivity
Matrix Analysis (SCMA)

110 Architectures for Dynamically Coupled Systems

	

to	 be	 compared	with	 each	 other	 in	 their	 entirety.	Moreover,	 SCMA	
identifies	all	 similar	structures	between	 the	system	portfolio	under	
comparison,	even	with	model	parts	being	completely	relocated	during	
clone-and-own.	

During	development,	model-based	systems	are	subject	to	frequent	
modifications.	Manual	identification	of	all	modifications	performed	is	
typically	 not	 feasible,	 especially	 for	 large-scale	 systems.	 However,	
precise	identification	and	subsequent	validation	of	the	modifications	
is	 essential	 for	 the	 overall	 evolution.	 RSPA	 is	 a	 procedure	 that	
identifies	and	clusters	variations	within	evolving	MATLAB/Simulink	
models.	

With	 each	 cluster	 representing	 a	 clearly	 delimitable—i.e.,	
separate—variation	point	between	models,	model	engineers	can	not	
only	specifically	focus	on	single	variations,	but	by	using	their	domain	
knowledge,	they	can	relate	and	verify	them.	

One	 of	 the	 main	 challenges	 in	 the	 development	 of	 dynamic	
architectures	 is	 capturing	 changes	 in	 the	 system’s	 context	 and	
subsequently	adapting	 the	system	to	adjust	 to	 these	changes.	Thus,	
the	 resulting	 architecture	must	 allow	 a	 dynamic	 reconfiguration	 in	
response	 to	 a	 changing	 context	 of	 the	 CSG.	 To	 this	 end,	 dynamic	
software	components	of	the	architecture	may	only	be	relevant	for	a	
set	of	contexts,	and	therefore,	multiple	alternative	implementations	of	
a	component	may	exist.	

Software	 product	 line	 engineering	 (SPLE)	 deals	 with	 similar	
challenges.	 In	SPLE,	 software	 components	or	 software	modules	are	
flexibly	 configured	 to	 different	 application	 scenarios.	 Different	
binding	times,	that	is,	the	times	of	selecting	and	deriving	the	concrete	
software	 variant	 of	 these	 modules	 are	 possible	 —	 for	 example,	
configuration	time,	compilation	time,	 initialization	time,	or	runtime.	
Dynamic	open	system	architectures	can	be	seen	as	software	with	a	
binding	time	at	runtime.	Consequently,	development	mechanisms	of	
SPLE	 can	 be	 applied	 to	 the	 development	 of	 flexible	 system	
architectures.	

5.4.2 Software Product Line Engineering

A	software	product	 line	(SPL)	enables	software	developers	to	tailor	
their	software	products	to	individual	customer	needs	[Clements	et	al.	
2001],	 [Apel	 et	 al.	 2013].	 To	 this	 end,	 an	 SPL	 captures	 the	
commonalities	and	variabilities	of	a	given	set	of	software	systems	and	
derives	concrete	software	products	by	means	of	a	variant	deviation	
mechanism.	 This	mechanism	 takes	 a	 collection	 of	 desired	 software	

Reverse Signal
Propagation Analysis

(RSPA)

Family Mining

Software product line
engineering (SPLE)

5.4 Extraction of Dynamic Architectures 111

	

functionalities,	called	a	configuration,	as	an	 input	and	automatically	
derives	a	software	variant	from	the	SPL.	

As	 for	 reference	 architectures,	 there	 are	 extractive	methods	 for	
SPLE	 as	well	 as	 proactive	 approaches	 that	 aim	 to	 establish	 an	 SPL	
from	scratch.	Reactive	SPLE	 [Apel	et	al.	2013]	aims	 to	combine	 the	
strengths	of	both	approaches.	The	aim	of	this	process	is	to	handle	the	
fact	 that	products	might	be	added	 to	 the	SPL	 in	 later	phases	of	 the	
product	life	cycle,	or	that	specific	software	variants	are	altered	after	
their	 derivation,	 which	 often	 occurs	 in	 practical	 applications.	 To	
achieve	this	aim,	the	reactive	SPLE	as	displayed	in	Figure	5-11	starts	
with	an	initial	SPL,	which	consists	only	of	a	basic	set	of	products	that	
is	 created	 from	 scratch,	 and	 later	 uses	 extractive	 mechanisms	 to	
evolve	 the	 SPL	 and	 incorporate	 changes	 to	 the	 requirements	 and	
product	variants	—	that	is,	that	existing	products	may	be	altered,	or	
new	products	may	be	included	[Apel	et	al.	2013].	

5.4.3 Product-Driven Software Product Line Engineering

Product-driven	software	product	line	engineering	is	a	form	of	reactive	
SPLE	that	focuses	on	the	step-by-step	establishment	and	development	
of	a	software	platform	based	on	established	artifacts	considering	new	
requirements	 arising	 from	 application	 engineering.	 Using	 an	
extractive	 approach,	 new	domain	 artifacts	 can	be	derived	 from	 the	
basis	of	multiple	application	artifacts.	The	process	 for	developing	a	
new	 software	 component	 variant	 using	 the	 product-driven	 SPLE	

Fig. 5-11: Reactive product line engineering (based on [Pohl et al. 2005])	

112 Architectures for Dynamically Coupled Systems

	

approach	is	illustrated	in	Figure	5-12	as	an	activity	diagram	(AD)	and	
consists	of	the	following	steps:	

1. The	“Draft	software	component	variant”	activity	provides	a	
name	and	a	short	functional	description.	

2. The	check	whether	the	functionality	fulfilled	by	the	software	
component	variant	is	also	fulfilled	by	a	software	component	
of	the	reference	architecture	is	done	in	the	“Comparison	with	
reference	architecture”	activity.	If	this	is	the	case,	the	names	
of	both	components	should	be	identical.	

3. If	the	software	component	variant	identified	in	the	reference	
architecture	can	be	assigned	to	the	application	architecture,	
the	 activity	 “Assign	 software	 component	 variant	 to	
application	architecture”	will	do	this.	

4. If	the	current	software	component	has	no	counterpart	in	the	
reference	 architecture,	 the	 “Reevaluation	 of	 assignment”	
activity	 requires	 that	 the	 domain	 engineers	 recheck	 the	
assignment	again		

5. If	 no	 software	 component	 variant	 is	 identified	 in	 the	
reference	architecture,	no	synergies	can	be	provided	by	the	
current	software	platform,	and	thus	an	implementation	from	
scratch	 is	 necessary	 in	 the	 “Implementation	 from	 scratch”	
activity.	

6. The	 activity	 “Comparison	with	 extrinsic	matches”	 analyzes	
the	 similarity	 of	 the	 components	 based	 on	 structural	 and	

Fig. 5-12: Product-driven software product line engineering	

5.4 Extraction of Dynamic Architectures 113

	

semantic	 aspects	 of	 the	 extrinsic	 matches	 to	 identify	
commonalities	 and	 differences	 between	 the	 software	
components.	

7. A	similar	implementation	based	on	this	candidate	is	possible	
and	performed	if	a	similar	candidate	exists.	This	is	done	in	the	
activity	“Implementation	based	on	similar	candidate.”	

8. Commonalities	and	differences	can	be	analyzed	 in	detail	 in	
the	 “Variability	 analysis”	 activity	 to	 identify	 possible	
variation	 points	 and	 variants,	 if	 similar	 available	 software	
component	variants	can	be	identified.	

9. Based	on	 the	variability	analysis,	 the	 “Software	 component	
implementation”	 activity	 includes	 the	 creation	 of	 a	 new	
software	component	such	that	its	configuration	matches	its	
extrinsic	matches.	

10. The	activity	 “Reference	architecture	adaption”	 includes	 the	
adaption	of	the	reference	architecture	to	incorporate	a	new	
component.	

5.4.4 Family Mining — A Method for Extracting Reference
Architectures from Model Variants

To	extract	variability	 relations	between	existing	block-based	model	
variants,	such	as	MATLAB/Simulink	models	or	SysML	statecharts	(cf.	
[Alalfi	et	al.	2014],	[Font	et	al.	2015],	[Martínez	et	al.	2014],	[Nejati	et	
al.	 2007],	 [Rubin	 and	 Chechik	 2012],	 [Rubin	 and	 Chechik	 2013a],	
[Rubin	and	Chechik	2013b],	[Ryssel	et	al.	2010],	[Ryssel	et	al.	2012]),	
the	Family	Mining	approach	was	developed	[Wille	et	al.	2014].	The	
approach	provides	a	generic	algorithm	that	is	not	only	applicable	to	
different	 block-based	 modelling	 languages,	 but	 also	 enables	
customization	 by	 providing	 user-adjustable	 metrics	 [Wille	 et	 al.	
2016],	[Wille	et	al.	2018].	

To	present	the	workflow	of	this	Family	Mining	approach,	Figure	5-
13(a)	depicts	the	steps	required	to	compare	input	systems,	locate	the	

Coarse-grained analysis

114 Architectures for Dynamically Coupled Systems

	

most	similar	elements	to	match	them	with	one	another,	and	to	derive	
a	150%	model	starting	from	a	set	of	imported	input	models.		

Moreover,	Figure	5-13(b)	illustrates	how	the	approach	can	be	used	
to	capture	the	systems’	underlying	architecture	by	assessing	all	input	
models	(i.e.,	the	entire	portfolio)	at	once	[Schlie	et	al.	2018].	Hence,	
the	 structural	 components	 (here	MATLAB/Simulink	 subsystems)	 of	
the	 input	 systems,	 along	 with	 their	 hierarchical	 relationships,	 are	
assessed	and	 related	 to	derive	 the	overall	 architecture	of	 the	 input	
portfolio	and	 to	 simultaneously	 capture	 redundant	model	parts	 (cf.	
ACC	in	Figure	5-13(b)).	Subsequently,	the	workflow	shown	in	Figure	
5-13(a)	 can	 be	 applied	 in	 a	 fine-grained	 fashion	 to	 only	 those	
components	warranting	such	analysis,	for	instance	to	locate	variation	
points	at	a	fine	level	of	detail	[Schlie	et	al.	2017]	and	to	derive	a	final	
150%	model	 [Schlie	et	 al.	2019].	 Such	a	150%	model	 (cf.	 Figure	5-
13(c)	 for	 an	 excerpt)	 contains	 all	 possible	 model	 elements	 with	
annotations	 to	 indicate	 where	 variants’	 respective	 elements	
originated	from	and	variation	points	between	them.	To	extract	such	
variability	information	and	represent	it	in	a	centralized	form,	meaning	
the	150%	model,	the	workflow	evaluates	block-based	model	variants	
in	 three	 sequentially	 processed	 phases	 (cf.	 compare,	 match,	 and	
merge	in	Figure	5-13(a)).	

In	the	first	phase,	called	the	compare	phase,	the	identification	of	
model	relationships	is	the	primary	goal	of	interest.	For	this	purpose,	
the	 imported	 model	 instances	 are	 compared	 with	 each	 other.	 The	
workflow	 allows	 for	 variants	 to	 be	 compared	 at	 different	 levels	 of	

Fine-grained analysis

Compare

Fig. 5-13: Workflow of the custom-tailored Family Mining approach for identifying
variability relationships between block-based model variants

5.4 Extraction of Dynamic Architectures 115

	

granularity	 and	 using	 different	 techniques.	 First,	 systems	 can	 be	
compared	iteratively,	selecting	a	base	model	(e.g.,	the	smallest	model)	
and	 processing	 the	 remaining	 n-1	 models	 iteratively,	 each	 further	
model	 variant	 then	 serving	 as	 a	 comparison	model	 for	 the	 current	
comparison	 phase.	 In	 this	 phase,	 the	 structure	 of	 the	 block-based	
input	 models	 with	 their	 nodes	 (e.g.,	 functional	 blocks	 for	
MATLAB/Simulink	 systems)	 and	 their	 directed	 edges	 (e.g.,	 signals	
used	to	relay	data	between	nodes)	is	exploited.	To	compare	the	nodes	
of	the	input	model,	the	proposed	workflow	starts	with	the	start	nodes	
of	 the	models	 (e.g.,	 input	blocks	 that	 introduce	data)	 and	 traverses	
nodes	following	the	direction	of	data	flow	and,	at	all	times,	compares	
nodes	 based	 on	 the	 user-adjustable	 similarity	 metric.	 This	 metric	
calculates	a	similarity	value	in	the	interval	[0. .1],	with	1.0	indicating	
100%	 similarity.	 This	 similarity	 value	 is	 stored	 in	 a	 comparison	
element,	along	with	the	elements	being	compared	and	their	possible	
relationship	 within	 analyzed	 models	 under	 comparison.	 Next,	 the	
traversal	 algorithm	 follows	 the	 outgoing	 edges	 of	 the	 node	 and	
compares	 them	 until	 no	 further	 compared	 nodes	 can	 be	 found.	
Another	technique	offered	by	the	workflow,	SCMA	[Schlie	et	al.	2018],	
abstracts	from	the	models’	inherent	graph	structure	and	describes	the	
models	 in	 a	 matrix	 form,	 representing	 only	 salient	 system	
information,	as	described	below.	With	models	being	structured	in	a	
hierarchical	 fashion,	 with	 each	 hierarchical	 element	 denoted	 as	 a	
subsystem	in	MATLAB/Simulink,	each	subsystem	is	transformed	into	
matrix	 form	 separately.	 As	 a	 result,	 the	 overall	 complexity	 of	 such	
model-based	 systems	 is	 reduced	 drastically,	 allowing	 for	 the	
comparison	of	multiple	systems	at	once,	rather	than	in	an	incremental	
fashion.	This	allows	system	parts	that	warrant	a	fine-grained	analysis	
to	be	 identified.	Hence,	 such	 fine-grained	analysis	can	be	employed	
only	when	warranted,	omitting	unnecessary	comparisons.	

A	 more	 fine-grained	 comparison	 procedure,	 RSPA	 [Schlie	 et	 al.	
2017],	compares	block-based	systems	by	assessing	changes	between	
individual	 signals	 that	 always	 connect	 two	 blocks	 and	 grouping	
affected	blocks	into	delimitable	variation	points.	In	contrast	to	SCMA,	
RSPA	compares	exactly	two	models,	and	can	therefore	be	integrated	
within	 the	 iterative	 comparison	 of	 an	 entire	 system	 portfolio.	 Like	
SCMA,	 RSPA	 identifies	 areas	within	models	where	 variations	 exist,	
allowing	 for	 a	 precise	 targeting	 of	 such	 parts	 in	 the	 context	 of	 the	
overall	workflow.	

In	 the	 second	 phase	 of	 the	 workflow,	 the	 matching	 phase,	 the	
elements	that	are	the	most	similar	are	matched	with	one	another	and	
are	 assigned	 with	 their	 specific	 relationship	 (i.e.,	 their	 variability),	

Similarity

Match

116 Architectures for Dynamically Coupled Systems

	

based	on	their	similarity	value.	Multiple	possible	matching	partners	
may	exist	 for	a	distinct	element	(e.g.,	a	block	from	one	model	being	
compared	 with	 multiple	 blocks	 from	 a	 different	 model).	 Such	
ambiguities	 are	 identified	 and	 resolved	 during	matching.	 Here,	 the	
matching	 algorithm	 analyzes	 the	 comparison	 elements	 from	 the	
“compare”	phase	and	checks	whether	other	comparison	elements	that	
comprise	one	of	the	contained	model	elements	exist.	In	this	case,	the	
matching	element	with	the	highest	similarity	value	is	chosen.	If	both	
compared	elements	have	the	same	similarity	value,	these	comparison	
elements	are	sorted	to	the	end	of	the	list	and	the	algorithm	tries	to	
solve	the	conflict	by	matching	other	comparison	elements	first.	If	the	
conflict	 remains,	 a	 decision	 wizard	 is	 called	 to	 identify	 the	 desired	
match	by	executing	additional	user-specified	 logic	or	by	 requesting	
direct	feedback	from	the	user.	

In	 contrast,	 SCMA	 explicitly	 utilizes	 comparison	 results	 from	
multiple	 input	 models	 to	 determine	 similarities	 across	 system	
boundaries	and	across	respective	locations	therein.	Relating	similar	
comparison	 elements	 from	 multiple	 models	 to	 one	 another,	 while	
exploiting	 the	 hierarchy	 of	 compared	 elements,	 allows	 information	
about	the	model	portfolio	being	analyzed	to	be	retrieved.	Moreover,	
redundant	 or	 highly	 similar	 functionality,	 which	 may	 reside	 at	
different	 locations	 within	 systems,	 can	 be	 identified.	 Such	
redundancies	 can	 then	 be	 processed	 separately	 prior	 to	 the	 final	
phase,	 the	 transformation	 of	 compared	 artifacts	 and	 their	
relationships	within	a	centralized	form.	

In	the	third	and	final	phase,	called	the	“merge”	phase,	the	merge	
algorithm	creates	a	150%	model	to	store	the	variability	relationships	
identified.	To	this	end,	the	algorithm	extends	a	copy	of	the	base	model	
by	merging	 all	matched	 components	 into	 this	model.	 Based	 on	 the	
similarity	values	from	the	“compare”	phase,	the	algorithm	determines	
the	explicit	variability	by	categorizing	the	elements	 into	mandatory	
parts	(i.e.,	common	parts	of	all	models),	optional	parts	(i.e.,	common	
parts	of	some	models),	and	alternative	parts	(i.e.,	mutually	exclusive	
parts	between	models).	During	this	process,	all	model	elements	that	
were	not	previously	part	of	the	base	model	are	copied	to	the	150%	
model.	

This	 150%	model	 generated	 enables	 domain	 experts	 to	 analyze	
the	variability	identified	in	detail.	Moreover,	it	may	serve	as	a	basis	for	
the	 comparison	 of	 the	 next	 remaining	 comparison	 model.	 The	
proposed	algorithm	 thus	 iteratively	 compares	and	merges	all	 input	
models	 into	 a	 single	 150%	 model	 that	 stores	 the	 variability	
information	for	the	model	family	analyzed.	

Merge

5.5 Functional Safety Analysis (Online) 117

	

5.4.5 Summary

In	 summary,	 SPLE	 enables	 software	 engineers	 to	 capture	
commonalities	and	variabilities	of	a	given	set	of	software	systems	and	
to	derive	concrete	software	products	by	means	of	a	variant	derivation	
mechanism	 during	 CES	 engineering.	 To	 combine	 the	 strengths	 of	
creating	SPLEs	from	scratch	with	the	advantages	of	extractive	SPLE,	
the	reactive	product-driven	SPLE	approach	describes	a	step-by-step	
establishment	 and	 development	 of	 a	 software	 platform	 based	 on	
established	artifacts.	The	Family	Mining	approach	starts	with	 input	
models,	which	are	first	subject	to	a	coarse-grained	analysis,	denoted	
SCMA.	 In	 the	 SCMA,	 similar	parts	 that	warrant	 further	 analysis	 are	
identified,	while	identical	(meaning	redundant)	parts	within	models	
are	 eliminated.	 By	 omitting	 unnecessary	 comparisons,	 the	 Family	
Mining	 approach	 then	 directs	 subsequent	 analysis	 procedures	 to	
those	similar	parts.	Specifically,	we	employ	a	fine-grained	comparison	
metric	to	capture	the	variability	of	individual	model	elements	at	fine-
grain	 level	 (e.g.,	 varying	 labels	 or	 different	 internal	 properties).	
Comparison	 results	 of	 the	 fine-grained	 analysis	 are	 combined	with	
information	 from	 the	 coarse-grained	analysis	 to	derive	one	holistic	
150%	model.	

5.5 Functional Safety Analysis (Online)

A	 common	 way	 to	 ensure	 the	 correct	 functional	 behavior	 of	 an	
existing	 system	 is	 systematic	 testing	 against	 requirements.	 This	
testing	 usually	 occurs	with	 a	model	 or	 setup	 of	 the	 system	 that	 is	
already	running	instead	of	an	architectural	model.	Therefore,	we	call	
this	 testing	 online	 analysis	 with	 regard	 to	 functional	 safety.	 If	 the	
system	under	 test	 (SUT)	 is	 a	 CSG,	 there	 are	 further	 safety-relevant	
requirements	regarding	the	collaboration.	These	cannot	be	properly	
tested	with	just	a	single	CES	as	the	SUT.	

As	 described	 in	 Section	 5.2,	 the	 entire	 idea	 of	 collaboration	
between	different	CESs	is	highly	dependent	on	communication.	If	the	
communication	 is	 faulty,	 no	 collaboration	 is	 possible.	 A	 single	 CES	
should	still	be	able	 to	react	when	faced	with	 faulty	communication.	
Therefore,	 the	 recognition	of	 faulty	communication	 is	an	 important	
situation	that	must	be	tested.	

For	 this	 purpose,	 we	 have	 developed	 a	 method	 to	 inject	
communication	 errors	 into	 a	 CSG	 as	 the	 SUT.	 This	 allows	 faulty	
communication	 to	 be	 simulated	 deterministically	 to	 test	 and	 verify	
various	kinds	of	error-detection	mechanisms.	

118 Architectures for Dynamically Coupled Systems

	

For	 evaluation	 purposes,	 we	 implemented	 this	 method	 with	
AUTOSAR	components	as	an	example.	The	result	is	a	prototypical	test	
environment	 that	 connects	 multiple	 AUTOSAR	 components.	 This	
environment	 enables	 us	 to	 intercept	 the	 communication	 between	
components	and	manipulate	the	data	exchanged.	

5.5.1 Functional Testing

Software	development	for	embedded	systems	typically	starts	with	the	
specification	of	the	desired	behavior.	Such	specifications	often	contain	
expectations	of	output	signals	considering	certain	input	signals.	For	
example,	“If	the	distance	to	the	car	in	front	falls	below	100	m	then	the	
brake	must	be	applied”	could	be	a	basic	specification	of	an	emergency	
brake	system.	The	scenario	statecharts	introduced	in	Section	5.2	can	
also	 serve	 as	 a	 specification	 of	 the	 behavior.	 The	 software	 is	
implemented	based	on	such	specifications.	

To	test	an	implementation,	the	software	must	be	stimulated	with	
input	signals	and	the	output	signals	must	be	recorded.	The	device	that	
stimulates	the	inputs	and	records	the	outputs	is	called	the	test	driver.	
The	 tracking	 and	 evaluation	 of	 those	 signals	 against	 functional	
requirements	is	called	functional	testing.	A	schematic	representation	
of	this	basic	procedure	for	software	testing	can	be	seen	in	Figure	5-14.	

	

Test	solutions	connect	a	test	driver	with	the	CES	or	CSG	to	be	tested	
to	set	the	inputs	and	record	the	outputs.	

Fig. 5-14: Software simulation — schematic representation

5.5 Functional Safety Analysis (Online) 119

	

Basic	approaches	 for	 functional	 testing	consider	a	single	embedded	
system	 communicating	with	 the	 environment	but	 not	 connected	 to	
other	 systems.	 To	 test	 the	 software	 of	 a	 CES	 within	 a	 CSG,	 the	
communication	 with	 other	 systems	 must	 be	 considered.	
Communication	with	 other	 systems	 basically	 adds	 new	 inputs	 and	
outputs	 to	 the	 test	 setup.	 If,	 for	 example,	 another	 CES	 in	 a	
collaborative	adaptive	cruise	control	sends	some	information	about	a	
traffic	 jam	ahead,	 this	 information	must	 be	 forwarded	 to	 the	 other	
participants.	

Another	consideration	is	to	view	an	entire	system	group	as	a	single	
system	to	be	tested.	In	this	case,	the	communication	between	several	
single	 systems	 must	 also	 be	 simulated	 and	 recorded,	 just	 like	 the	
communication	of	a	single	CES	with	the	environment.	Each	individual	
CES	 communicates	with	 the	 environment	 on	 its	 own	 and	 each	CES	
communicates	with	 other	 CESs.	 A	 schematic	 representation	 of	 this	
communication	of	an	entire	CSG	can	be	seen	 in	Figure	5-15.	 In	our	
approach,	 we	 considered	 CSGs	 with	 a	 static	 configuration,	 which	
means	changes	in	the	reconfiguration	such	as	the	addition	or	removal	
of	CESs	are	not	considered	here.	

5.5.2 Communication Errors

The	collaboration	between	several	CESs	adds	new	challenges	to	the	
testing	process.	An	important	aspect	is	to	ensure	that	each	individual	
system	is	capable	of	dealing	with	communication	errors.	Before	we	
start	 discussing	 ways	 of	 simulating	 communication	 errors,	 let	 us	
introduce	two	kinds	of	errors.	

Fig. 5-15: Communication within a CSG

120 Architectures for Dynamically Coupled Systems

	

In	further	references,	these	different	kinds	of	errors	will	be	called	
detected	and	undetected	errors.	If	communication	errors	are	detected	
by	 the	 system	 itself,	 these	 errors	 are	 called	 detected	 errors.	 In	
embedded	 software,	 detected	 errors	 can	 often	 be	 considered	 as	
another	 kind	 of	 an	 “exceptional”	 input	 signal.	 Information	 such	 as	
“communication	 error	 occurred”	 can	 be	 considered	 as	 “normal”	
information.	Processing	that	information	in	a	simulation	environment	
is	equal	to	using	information	like	“distance	to	the	car	in	front.”	Typical	
examples	of	detected	errors	are	error	flags,	DTCs	(diagnostic	trouble	
codes),	 and	similar	data	 that	explicitly	 signals	 some	malfunction	or	

irregular	system	behavior.	If	the	detected	errors	are	considered	to	be	
a	 kind	of	 input	 signal,	 they	 can	obviously	be	 tested	by	 additionally	
stimulating	those	“error	detected”	flags	and	recording	the	behavior	in	
the	same	way.	

On	the	other	hand,	undetected	communication	errors	are	just	the	
reception	 or	 the	 transmission	 of	 incorrect	 values.	 To	 simulate	
undetected	errors	during	functional	safety	analysis,	the	test	solution	
must	replace	or	manipulate	the	values	sent	from	one	CES	to	another	
with	the	desired	false	values.	Following	this	approach,	fault	detection	
mechanisms	 such	 as	 timeout	 detection	 of	 cyclic	 messages	 or	
plausibility	checks	of	input	signals	can	be	tested	in	CSG	testing.	If	the	
tested	system	is	given	incorrect	inputs,	the	behavior	of	a	plausibility	
check	 can	 be	 verified.	 By	 creating	 the	 possibility	 to	 modify	 the	
communication	 between	 several	 collaborative	 embedded	 systems,	
undetected	 faults	 can	 be	 injected.	 This	 approach	 is	 called	 fault	
injection.	It	is	illustrated	in	Figure	5-16.	

Fig. 5-16: Communication flow with included test solution

121

	

In	this	figure,	instead	of	sending	the	information	directly	from	CES	
1	 to	 CES	 2,	 the	 information	 is	 sent	 to	 the	 test	 solution	 and	 then	
forwarded	to	CES	2.	During	the	modeling	of	those	tests,	an	additional	
flag	to	override	certain	signal	values	before	forwarding	them	to	CES	2	
can	be	added	as	part	of	the	test	modeling.	If	this	flag	is	set	from	the	
test	 case	 modelled,	 an	 additionally	 modeled	 faulty	 value	 can	 be	
transferred	 to	 CES	 2	 instead	 of	 the	 actual	 value	 from	 CES	 1.	 The	
behavior	 of	 CES	 2,	 having	 received	 the	 “faulty”	 value,	 can	 still	 be	
recorded	and	evaluated	if	it	fits	the	specification.	

5.6 Conclusion

The	development	of	dynamically	coupled	collaborative	systems	poses	
new	challenges	for	engineers.	The	methods	presented	in	this	chapter	
support	CES	engineers	in	tackling	these	challenges.	They	have	been	
selected	in	order	to	cover	the	different	design	phases	and	to	show	that	
the	 challenges	 require	 continuous	 consideration	 of	 the	 various	
aspects	 along	 the	 design	 process,	 such	 as	 requirements	 elicitation	
(including	 the	collaboration	of	 individual	CESs	 in	a	CSG),	 functional	
design	that	ensures	consistency	with	these	requirements,	and	logical	
architectures	that	enable	the	systems	to	handle	dynamicity,	as	well	as	
approaches	for	testing	CSG	designs.	

Some	 important	 aspects	 have	 been	 omitted.	 For	 example,	 the	
design	flow	introduced	in	Figure	5-1	shows	some	“conceptual”	flows,	
which	 would	 involve	 additional	 methods	 for	 the	 design	 of	
intermediate	models	and	analysis	results.	The	aspect	of	traceability,	
which	 would	 be	 needed	 to	 support	 engineers	 in	 continuously	
assessing	 those	 intermediate	 design	 models	 for	 adherence	 to	 the	
system	requirements,	is	not	discussed	either.	

5.7 Literature
[Alalfi	et	al.	2014]	M.	Alalfi,	E.	Rapos,	A.	Stevenson,	M.	Stephan,	T.	Dean,	J.	Cordy:	Semi-

Automatic	Identification	and	Representation	of	Subsystem	Variability	in	Simulink	
Models.	In:	Intl.	Conference	on	Software	Maintenance	and	Evolution	(ICME),	2014.	

[Alexander	 and	Maiden	2004]	 I.	Alexander,	N.	Maiden	 (Eds.):	 Scenarios,	 Stories,	Use	
Cases:	Through	the	Systems	Development	Life-Cycle.	Wiley,	Chichester,	2004.	

[Apel	et	al.	2013]	S.	Apel,	D.	Batory,	C.	Kästner,	G.	Saake:	Feature-Oriented	Software	
Product	Lines:	Concepts	and	Implementation.	Berlin/Heidelberg:	Springer,	2013.	

[Clements	et	al.	2001]	P.	Clements,	L.	Northrop:	Software	Product	Lines:	Practices	and	
Patterns.	Addison-Wesley,	2001.	

5.7 Literature

122 Architectures for Dynamically Coupled Systems

	

[CrESt	2019]	CrESt	Consortium:	EC2.AP2.D2	Methods	for	Architecture	Design	of	Open	
Systems,	2019.	

[Damm	 and	 Harel	 2001]	 W.	 Damm,	 D.	 Harel:	 LSCs:	 Breathing	 Life	 into	 Message	
Sequence	Charts.	In:	Formal	Methods	in	System	Design	19:1,	2001.	

[Font	et	al.	2015]	J.	Font,	M.	Ballarín,	Ø.	Haugen,	C.	Cetina:	Automating	the	Variability	
Formalization	of	 a	Model	Family	by	Means	of	Common	Variability	Language.	 In:	
Proc.	of	the	Intl.	Conference	on	Software	Product	Line	(SPLC),	2015.	

[Franca	 2019]	 Franca	 project:	 ”Welcome	 to	 Franca”	 November	 25,	 2019:	
http://franca.github.io/franca/,	accessed	on	November	25,	2019.	

[Harel	1987]	D.	Harel:	Statecharts:	A	Visual	Formalism	 for	Complex	Systems.	 In:	Sci.	
Comput.	Programming	8,	1987.	

[Harel	 and	 Marelly	 2003]	 D.	 Harel,	 R.	 Marelly:	 Come,	 Let's	 Play:	 Scenario-Based	
Programming	Using	LSCs	and	the	Play-Engine.	Springer-Verlag,	2003.	

[Marron	et	al.	2018]	A.	Marron,	Y.	Hacohen,	D.	Harel,	A.	Mülder,	A.	Terfloth:	Embedding	
Scenario-Based	Modeling	 in	 Statecharts.	 In:	MORSE	workshop	 at	MoDELS	2018,	
Copenhagen,	2018.	

[Martínez	et	al.	2014]	J.	Martínez,	T.	Ziadi,	J.	Klein,	Y.	l.	Traon:	Identifying	and	Visualising	
Commonality	 and	 Variability	 in	 Model	 Variants.	 In:	 Proc.	 of	 the	 European	
Conference	on	Modeling	Foundations	and	Applications	(ECMFA),	2014.	

[Martínez	 et	 al.	 2015]	 J.	 Martínez,	 T.	 Ziadi,	 T.	 F.	 Bissyandé,	 J.	 Klein,	 Y.	 l.	 Traon:	
Automating	 the	 Extraction	 of	 Model-Based	 Software	 Product	 Lines	 from	Model	
Variants.	 In:	 Proc.	 of	 the	 Intl.	 Conference	 on	 Automated	 Software	 Engineering	
(ASE),	2015.	

[Nejati	 et	 al.	 2007]	 S.	 Nejati,	 M.	 Sabetzadeh,	 M.	 Chechik,	 S.	 Easterbrook,	 P.	 Zave:	
Matching	and	Merging	of	Statecharts	Specifications.	In:	Proc.	of	the	Intl.	Conference	
on	Software	Engineering	(ICSE),	2007.	

[Nejati	 et	 al.	 2012]	 S.	 Nejati,	 M.	 Sabetzadeh,	 M.	 Chechik,	 S.	 Easterbrook,	 P.	 Zave:	
Matching	and	Merging	of	Variant	Feature	Specifications.	In:	IEEE	Transactions	on	
Software	Engineering	(TSE),	2012,	pp.	1355-1375.	

[Pohl	 et	 al.	 2005]	 K.	 Pohl,	 G.	 Böckle,	 F.	 van	 der	 Linden:	 Software	 Product	 Line	
Engineering:	Foundations,	Principles	and	Techniques.	Springer-Verlag	New	York,	
2005.	

[Pohl	 et	 al.	 2012]	 K.	 Pohl,	 H.	 Hönninger,	 R.	 Achatz,	 M.	 Broy	 (Eds.):	 Model-Based	
Engineering	 of	 Embedded	 Systems:	 The	 SPES	 2020	 Methodology.	 Springer,	
Heidelberg/New	York,	2012.	

[Pohl	et	al.	2016]	K.	Pohl,	M.	Broy,	H.	Daembkes,	H.	Hönninger	(Eds.):	Advanced	Model-
Based	 Engineering	 of	 Embedded	 Systems:	 Extensions	 of	 the	 SPES	 2020	
Methodology.	Springer,	Heidelberg/New	York,	2016.	

[Riva	and	Rosso	2003]	C.	Riva,	C.	D.	Rosso:	Experiences	with	Software	Product	Family	
Evolution.	In:	Proc.	of	the	Intl.	Workshop	on	Principles	of	Software	Evolution,	2003.	

[Rubin	 and	 Chechik	 2012]	 J.	 Rubin,	 M.	 Chechik:	 Combining	 Related	 Products	 into	
Product	 Lines.	 In:	 Proc.	 of	 the	 Intl.	 Conference	 on	 Fundamental	 Approaches	 to	
Software	Engineering	(FASE),	2012.	

http://franca.github.io/franca/

5.7 Literature 123

	

[Rubin	and	Chechik	2013a]	J.	Rubin,	M.	Chechik:	N-Way	Model	Merging.	In:	Proc.	of	the	
European	Software	Engineering	Conference/Foundations	of	Software	Engineering	
(ESEC/FSE),	2013.	

[Rubin	 and	 Chechik	 2013b]	 J.	 Rubin,	 M.	 Chechik:	 Quality	 of	 Merge-Refactorings	 for	
Product	 Lines.	 In:	 Proc.	 of	 the	 Intl.	 Conference	 on	 Fundamental	 Approaches	 to	
Software	Engineering	(FASE),	2013.	

[Ryssel	 et	 al.	 2010]	 U.	 Ryssel,	 J.	 Ploennigs,	 K.	 Kabitzsch:	 Automatic	 Variation-Point	
Identification	in	Function-Block-Based	Models.	In:	Proc.	of	the	Intl.	Conference	on	
Generative	Programming	and	Component	Engineering	(GPCE),	2010.	

[Ryssel	et	al.	2012]	J.	Ploennigs,	K.	Kabitzsch,	U.	Ryssel:	Automatic	Library	Migration	for	
the	 Generation	 of	 Hardware-in-the-Loop	 Models.	 In:	 Science	 of	 Computer	
Programming,	2012,	pp.	83-95.	

	[Schlie	 et	 al.	 2017]	 A.	 Schlie,	 D.	Wille,	 L.	 Cleophas,	 I.	 Schaefer:	 Clustering	 Variation	
Points	in	MATLAB/Simulink	Models	Using	Reverse	Signal	Propagation	Analysis.	In:	
Proceedings	 of	 the	 International	 Conference	 on	 Software	 Reuse	 (ICSR),	 2017.	
Springer,	Salvador,	Brazil,	2017.	

[Schlie	 et	 al.	 2018]	 A.	 Schlie,	 S.	 Schulze,	 I.	 Schaefer:	 Comparing	 Multiple	
MATLAB/Simulink	 Models	 Using	 Static	 Connectivity	 Matrix	 Analysis.	 In:	
Proceedings	 of	 the	 International	 Conference	 on	 Software	 Maintenance	 and	
Evolution	(ICSME),	2018.	IEEE,	Madrid,	Spain,	2018.	

[Schlie	 et	 al.	 2019]	 A.	 Schlie,	 C.	 Seidl,	 I.	 Schaefer:	 Reengineering	 Variants	 of	
MATLAB/Simulink	 Software	 Systems.	 In:	 Security	 and	Quality	 in	 Cyber-Physical	
Systems	Engineering,	Springer,	2019.	

[Stierand	 et	 al.	 2016]	 I.	 Stierand,	 P.	 Reinkemeier,	 S.	 Gerwinn,	 T.	 Peikenkamp:	
Computational	Analysis	of	Complex	Real-Time	Systems	-	FMTV	2016	Verification	
Challenge.	In:	Proc.	of	the	Intl.	Workshop	on	Analysis	Tools	and	Methodologies	for	
Embedded	and	Real-Time	Systems	(WATERS),	2016.	

[Vogelsang	 2014]	 A.	 Vogelsang:	 Model-based	 Requirements	 Engineering	 for	
Multifunctional	Systems.	Phd	thesis,	TU	München,	2014.	

[Wille	et	al.	2014]	D.	Wille:	Managing	Lots	of	Models:	The	FaMine	Approach,	In	Proc.	of	
the	Intl.	Symposium	on	Foundations	of	Software	Engineering	(FSE),	ACM,	2014,	pp.	
817-819.	

[Wille	et	al.	2016]	D.	Wille,	S.	Schulze,	C.	Seidl,	I.	Schaefer:	Custom-Tailored	Variability	
Mining	 for	 Block-Based	 Languages	 In:	 Proc.	 of	 the	 Intl.	 Conference	 on	 Software	
Analysis,	Evolution,	and	Reengineering	(SANER),	2016.	

[Wille	et	al.	2018]	D.	Wille,	Ö.	Babur,	L.	Cleophas,	C.	Seidl,	M.	v.	d.	Brand,	 I.	Schaefer:	
Improving	Custom-Tailored	Variability	Mining	Using	Outlier	and	Cluster	Detection.	
In:	Science	of	Computer	Programming,	no.	163,	2018,	pp.	62-84.	

[Yakindu	 2019]	 YAKINDU	 Statechart	 Tools,	 November	 25,	 2019:	
https://www.itemis.com/en/yakindu/state-machine/,	accessed	on	November	25,	
2019.	

[Zhang	 et	 al.	 2011]	 X.	 Zhang,	 Ø.	 Haugen,	 B.	 Møller-Pedersen:	 Model	 Comparison	 to	
Synthesize	 a	Model-Driven	Software	Product	Line.	 In:	Proc.	 of	 the	 Intl.	 Software	
Product	Line	Conference	(SPLC),	2011.	

https://www.itemis.com/en/yakindu/state-machine/

	

	

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

 Architectures for Dynamically Coupled Systems 124

http://creativecommons.org/licenses/by/4.0/

6

Modeling and Analyzing
Context-Sensitive Changes

during Runtime

For collaborative embedded systems, it is essential to consider not only the behavior of
each system and the interaction between systems, but also the interaction of systems with
their often dynamic and unknown context.

In this chapter, we present a solution approach based on process building blocks—
describing both the modelling approach as well as the model execution approach—for
engineering and operation to achieve the goal of developing systems that deal with
dynamics in their open context at runtime by re-using the models from the engineering
phase.

Jan Christoph Wehrstedt, Siemens AG
Jennifer Brings, University of Duisburg-Essen
Birte Caesar, Helmut Schmidt University Hamburg
Marian Daun, University of Duisburg-Essen
Linda Feeken, OFFIS e.V
Constantin Hildebrandt, Helmut Schmidt University Hamburg
Wolfram Klein, Siemens AG
Vincent Malik, Siemens AG
Boris Wirtz, OFFIS e.V.
Stefanie Wolf, Siemens AG

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_6

125

https://doi.org/10.1007/978-3-030-62136-0_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_6&domain=pdf

126 Modeling and Analyzing Context-Sensitive Changes during Runtime

6.1 Introduction and Motivation

Software-intensive embedded systems differ from classic systems in
that they interact with their operational context through sensors and
actuators [Daun et al. 2016]. The same holds for collaborative
embedded systems (CESs) and collaborative (embedded) system
groups (CSGs), as their behavior and functions are strongly influenced
by changes in the systems’ contexts. For example, dynamic traffic
conditions—such as pedestrian behavior (which is very difficult to
predict), construction work, or other unexpected traffic
participants—are major challenges to be met by a platoon of
autonomous cars. Similar challenges arise for adaptable and flexible
factories in the case of producing individualized products or new
variants of the product mix. If the system acts autonomously, a
decision has to be taken very quickly on how to react to changes
during runtime. This also concerns the operator who has to decide
how to deal with the system due to changes.

Therefore, methods for coping with these changes during
operation must be developed, and this requires the development of
suitable methods and models that can be used during operation.
These methods must be developed and validated during the
engineering phase, which requires the reuse or rather the migration
of models from the engineering phase towards runtime.

6.2 Solution Concept

To achieve the goal of developing systems that can handle the
dynamics of their open context and to reuse the models from
engineering in order to deal with these changes during operation, we
present a novel solution approach as described in Figure 6-1; the
notation will be explained later in this section.

Fig. 6-1: Process steps for developing models for CESs interacting with their context
and their execution during operation

Initially, we develop a modeling approach for both the system and the
context: as ontologies are a suitable technology for enabling semantic

CESs operate in open
dynamic contexts

CESs must be able to
cope with context

changes during
operation

Modeling the system
and the context

6.3 Ontology and Modeling 127

interoperability, they allow the creation of information models that
link machine-readable meaning to information, thus enabling CESs to
mutually understand the shared information. This allows the system
and context models to be reused for different applications and also
guarantees a certain completeness of the information.

Based on that, we provide insights into a scenario analysis
approach that identifies, depicts, and analyzes certain contextual
situations based on a graphical modeling notation. In this approach,
spatial/context constraints are captured as invariants, which change
over time. We then present different approaches for model creation,
using the example of modeling the capabilities of collaborative
embedded systems. Subsequently, in Section 6-4, we describe how to
develop decision methods based on these models and runtime
information. This leads to the models generated being integrated into
executable models that can be used for system analysis. We explain
this general approach with different examples: a capabilities check of
a system group to fulfill requirements given in a context situation and
the seamless integration of simulation for validation of dynamic
system behavior.

Some of the methods presented can be broken down into a set of
sub-methods with certain interdependencies and specific types of
artifacts (see Figure 6-2). To show the relationships between such
sub-methods (e.g., how to combine them), to clearly assign them to
the design phase or to the runtime of a CES/CSG, and to classify their
degree of formalization and automation, we choose the following
notation:

6.3 Ontology and Modeling

The development and operation of CESs that can cope with a
frequently changing environment has become a major field of
research. Of particular interest is a CES's ability to operate in open
contexts, that is, situations where context objects (e.g., other CESs)

Contributions

CrESt process building
block notation

CESs operate in open
contexts

Fig. 6-2: CrESt process building block (PBB) notation

128 Modeling and Analyzing Context-Sensitive Changes during Runtime

enter or leave the CES's context at runtime [Schlingloff et al. 2016]. As
CESs are usually embedded in a network of CESs (i.e., a CSG), an
individual CES must be able to process and communicate complex
information from/to changing communication partners during its life
cycle in order to provide its functionality.

This addresses the development of the models as well as the
modeling approach itself. Ontologies are becoming the appropriate
means for these systematic approaches. In the following section, we
therefore address a modeling approach for the system and context to
develop models that can cope with online decisions.

6.3.1 Ontology Building

Ontologies provide a suitable technology for formalizing different
aspects of a CES and could potentially be the provider of data,
information, and knowledge for different software functionalities
[Sabou et al. 2019]. In the case of a CES in the manufacturing domain,
an ontology can be used to formalize manufacturing-related
capabilities (see Sections 6.3.2 and 6.4.2), features relevant for
reconfiguration of a manufacturing system (see Section 6.3.3), or
serve as input information for a simulation of the manufacturing
system (see Section 6.4.1). The development of an ontology is a non-
trivial task that requires high efforts from different stakeholders.
Therefore, an efficient ontology building procedure is crucial in order
to have a positive cost-benefit trade-off. The latter is the goal of the
method described below, which is summarized by Figure 6-3.

An ontology may take a variety of forms, but it will of necessity
include a vocabulary of concepts and some specification of their
meaning, including definitions and an indication of how concepts are
interrelated. In general, the above-mentioned concepts and
relationships (including attributes) form what is referred to as the
terminology box (TBox), while the axioms (e.g., individuals of the
ontology) form the assertional box (ABox) that follows the definitions
of the TBox [Hildebrandt et al. 2018].

The method consists of three PBBs. The first PBB focuses on the
elicitation of requirements for the ontology under development and
the documentation of these requirements. The elicitation of
ontological requirements, as presented in [Hildebrandt et al. 2018a],
begins with a set of project requirements. During the documentation
of the requirements of a CES, requirement models (e.g., sequence
charts) of the CES that uses the ontology are annotated with
ontological requirements. Ontological requirements are stated as

Ontologies as a solution
concept

Ontologies must be
derived systematically

Ontologies define
terminologies

A three-step approach
to ontology building

6.3 Ontology and Modeling 129

competency questions. These are an informal notion of a query that
should be answered by the ontology in a certain way, for example,
“Which processes can be performed by machine X and what sensor
measures which data?”.

The second PBB is concerned with building the TBox of the
ontology under development, which is described in detail in

[Hildebrandt et al.2020]. This PBB begins with a search for
information resources that provide the relevant terms and
relationships in order to build the ontology under development.
Potentially suitable information resources are industry standards
(e.g., ISO or IEEE standards [VDI 2005] for the process description or
[IEC 2016] for properties and features), scientific publications, or
project reports. Standards are preferred due to the high maturity of
the concepts and relationships used as well as their potentially wide
dissemination. When the proposed method is applied, heavyweight
ontologies are created which formalize the knowledge of a domain
(e.g., process description) in a reusable manner and can therefore be
used as ontology design patterns. As presented in [Hildebrandt et al.
2020] several ontology design patterns have already been published.
In an ontology building project, these ontology design patterns are
combined to obtain the ontology under development.

After having built the TBox of the ontology, we can begin with
building the ABox of the ontology, which is sometimes referred to as
the knowledge graph. The ABox contains all the relevant real-world
facts (e.g., features or properties of a manufacturing process “Milling”

Building the ABox

Fig. 6-3: Process building block for the ontology building method

130 Modeling and Analyzing Context-Sensitive Changes during Runtime

that was or will be performed) that should be contained in the
answers to the competency questions stated at the beginning. In order
to create the ABox, we use the ontology design tool we developed,
which automatically transforms engineering artifacts (e.g., 3D CAD,
AutomationML [Lüder et al. 2017]) into the ABox via an extract,
transform, load pipeline. If there are no engineering artifacts
available, we use a semi-automatic approach that relies on ontology
design patterns again, see [Hildebrandt 2020a].

The final result is an ontology that describes facts about a CES that
can be shared with other CESs. An application of an ontology in the
domain of CESs is shown in Section 6.3.3, 6.3.3, 6.4.1, and 6.4.2
respectively.

6.3.2 Capability Modeling

The capability of a technical system describes whether and with what
quality the system is able to perform a specific task or fulfill a specific
goal, while the task or the goal may vary with the context the system
is operating in. The quality of the activity that is performed by the
system depends on the context (i.e., on current requirements or
boundary conditions), as well as on the immanent properties of the
system (cf. [Reschka 2016], [Weiß et al. 2019]).

Capability models are used to formalize and document the
capabilities of a CES or CSG. They are usually defined at design time of
a CES or CSG or even prior to that, but they are predominantly used
for runtime evaluations (e.g., a manufacturability check of a product
based on the capabilities of available production systems).

Figure 6-4 gives an overview of the creation of capability models,
distinguishing between the metamodel level, the domain capability
model, the potential extension of the domain model based on project-
specific boundary conditions, and the integration of the project-
specific capabilities into the system model.

In the following, we explain the four sub-methods of the capability
modeling approach, shown in Figure 6-4, in more detail.

Capability metamodel creation: The capability metamodel defines
the structure of a capability model and its abstract syntax (cf.
[Sprinkle et al. 2010]). It is neutral to any domain or application case.
The metamodel is created based on a specification that may be
derived from the requirements that various domains have with

Capabilities of technical
systems

Capability models
formalize CES and CSG

capabilities

Approach for creating
capability models

6.3 Ontology and Modeling 131

respect to capability descriptions. We present a basic version of such
a metamodel for capabilities in Figure 6-5.

In this metamodel, a capability is characterized by metadata such
as a name and an ID, as well as by properties and pre- or
postconditions (e.g., a required condition of a workpiece before
applying a production capability in the discrete manufacturing
domain). In addition, capabilities may relate to each other or may in
turn be composed of capabilities. Such characteristics of a capability
can be standardized for a certain domain by developing domain
capability models.

Fig. 6-4: Method for creating capability models

Fig. 6-5: Metamodel for capabilities

132 Modeling and Analyzing Context-Sensitive Changes during Runtime

Domain capability model creation: The capability model for a
certain domain is created by identifying the capabilities of a domain
based on its defined scope and by considering existing ontologies as
well as expert knowledge and industry standards. These domain
capabilities are the input for a domain capability model that is
independent from any specific system manufacturer. In addition, the
domain capability model should be extendable in order to enable
project-specific modifications (e.g., for niche or special applications or
in case of technical innovations). To give an example, a model for
manufacturing capabilities that applies to adaptable and flexible
factories in the discrete manufacturing domain can be created. A
domain capability model for discrete manufacturing must cover a
defined structure and uniform nomenclature, as well as a means of
describing manufacturable product features and typical restrictions
and boundary conditions of the production systems. Moreover,
potential interdependencies between capabilities—for example, with
regard to production process chains and assembly sequences—must
be taken into account (cf. [Wolf et al. 2020]). Example 1-1 shows an
exemplary capability description in the discrete manufacturing
domain:

Example 6-6: Capability “drilling”
Metadata:

Name: Drilling
ID: 331-01

Properties (excerpts only):
 Related manufacturing features: blind hole, through-hole
 Diameter (mm)
 Depth (mm)

Project-specific capability model creation: For niche or special
applications, or in the case of technical innovations, extensions to the
existing domain capability model may be necessary. When a project-
specific capability model is created, the domain capability model is
used as a basis. The system under development, for which the
capabilities need to be modeled, provides the input for the extension
of the domain capability model. The result of this method is a project-
specific capability model applicable to CESs and CSGs.

Integration of capabilities into the system model: Finally, within a
specific project, the capabilities of each CES and/or CSG must be
described and interlinked with the system model. In this step,
capabilities are assigned to the system and its sub-systems while

Domain capability
model

Project-specific
capability model

Integration into system
model

6.3 Ontology and Modeling 133

taking the system-specific constraints on these capabilities into
account. Example 6-7 shows the capability “drilling” of an exemplary
machine with specific values. Please note that the generic capabilities
modeled in the domain capability model can be instantiated not only
for a specific production setup (i.e., distinct machines), but also for
specific products to be produced to allow manufacturability checks
during the operation phase of a factory (see Section 6.4.2 “Capability
Matching” for further details). With regard to a manufacturing system,
the properties of a capability may have a range of possible values (cf.
Example 6-7), whereas in the case of a product to be produced,
properties may have just a single value (e.g., diameter d = 10 mm).

Example 6-7: Capability “drilling” of Machine A

Metadata:
Name: Drilling
ID: 331-01

Properties (excerpts only):
 Related manufacturing features: blind hole, through-hole
 Diameter (mm): 3 - 30
 Depth (mm): <= 100

As the capabilities of a system may be subject to variability, care must
be taken to ensure that a differentiation between current and
theoretical capabilities is possible. This is especially relevant if a
system performs a reconfiguration or re-parameterization, as this
usually implies changes in the capabilities of the system (see Section
6.3.3. The artifact that is finally generated is the system model, with
capabilities and variability, which forms the basis for runtime
evaluations.

Capability models can be implemented as ontologies (e.g., using
the methodology in Section 6.3.1) or as feature models (cf. Section
6.3.3 and [Wolf et al. 2020]).

6.3.3 Variability Modeling for Context-Sensitive
Reconfiguration

As stated in Section 6.3.2, certain CESs can be reconfigured during
runtime, which means that the capabilities provided in a certain state
can differ from the capabilities in a future state. This ability to change
between different states is called reconfiguration. As CESs interact in
an open and dynamic environment, a context-sensitive
reconfiguration is desirable. Therefore, the goal of the engineering

Capabilities are subject
to variability

Reconfiguration during
runtime extends the
available capability

134 Modeling and Analyzing Context-Sensitive Changes during Runtime

method variability modeling for context-sensitive reconfiguration is
to support the creation of context-sensitive variability models (CSVM)
for runtime usage. Context-sensitive variability models are dedicated
models that represent different configurations a system can take.
According to [Mauro et al. 2016], the problem space of a context-
sensitive variability model consists of three parts: a feature model, a
context model, and cross-tree constraints. Accordingly, the
engineering method must include a separate creation phase for each
part.

Figure 6-8 shows the overview of the engineering method, as well
as the runtime usage. The first step is the creation of a feature model

in which all common and variable parts of a system are captured
[Kang et al. 1990]. To identify and extract this information, the system
model, which is composed of different engineering artifacts, must be
analyzed. For a manufacturing system, this system model could be a
3D-CAD drawing in the form of a step file or control code according to
IEC 61131. In the second step, a variability context model is generated
that contains all relevant context information for triggering the
reconfiguration of a system. For this purpose, the system’s context
must be analyzed. Accordingly, a concept is developed that is
illustrated for the manufacturing domain and helps to identify the
relevant information for reconfiguration — for example, other CESs
providing certain capability such as handling or a certain product
requirement such as a drilling hole diameter. For this purpose,
different approaches, for example, [Marks et al. 2018], are analyzed
and combined. Subsequently, to conclude the third step of the
engineering procedure, the context model must be integrated with the
feature model by formulating cross-tree constraints.
Cross-tree constraints are used to describe the dependencies between
components that are required, for example, to provide a certain
capability or to specify that a certain capability can only be provided
in a certain configuration. These logical formulas are phrased as

Fig. 6-8: Procedural overview variability modeling for context-sensitive
reconfiguration

6.3 Ontology and Modeling 135

described in [Kang et al. 1990]. Once the third step of the engineering
procedure has been completed, the problem space of the context-
sensitive variability model is defined. The solution space is then used
to enable the system to provide a self-description of its current
configuration, including a description of the capabilities available.
Therefore, the fourth step of the engineering method is the SPARQL
query creation. SPARQL [SPARQL 2020] is a query language that
builds upon the W3C standard Web Ontology Language [OWL 2020]
and can be used to create, update, or query ontologies.

To create the SPARQL statements, the terminology box (TBox) that
comprises the terms and relationships for describing a real-world
phenomenon in an abstract manner must be considered [Asunción et
al. 2004]. In the case of reconfiguration of modular manufacturing
systems, the TBox describes how each system has to be characterized
to be able to collaborate with other modules of the manufacturing
system — for example, the module type package in the process
industry [Ladiges et al. 2018], referred to in Figure 6-8 as
“Heavyweight System Ontology,” which is created following the
ontology building method of Section 6.3.1. Thus, each reconfiguration
requires an update of the system description such that it is always
aligned with the current configuration of the manufacturing system.
The SPARQL statements created are used to create and alter the
assertional box (ABox), which contains the axioms (i.e., individuals of
the ontology) [Baader et al. 2003] that represent the system
description. The SPARQL statements are separated into snippets and
related to features of the feature model. Only those features are
represented in the system description that are selected in the current
configuration. A detailed description can be found in [Caesar et al.
2019]. Once the fourth step is complete, the problem and solution
space of the context-sensitive variability model is defined and can be
used for reconfiguration during runtime, see Figure 6-8. Details of the
variability binding algorithm can be found in Chapter 18.

6.3.4 Scenario-Based Modeling

During requirement elicitation, use case descriptions are a well-
established means of gaining insight into the system to be designed.
However, use case descriptions and requirement models (as needed
in Section 6.3.1 for ontology building) are often informal and lack a
concise semantics, meaning that it is difficult to reuse them later on in
the development process. If scenarios are expressed using a
specification language that is intuitive and lightweight but still concise

Scenarios can be
described by use case
models

136 Modeling and Analyzing Context-Sensitive Changes during Runtime

and with a formal background, integration in the overall process (and
even scenario-based development) becomes much easier.

In traffic-related applications (such as the implementation of
maneuvers of a platoon of vehicles on a highway), it is especially
important to express spatial properties and constraints. Traffic
Sequence Charts (TSCs) are a visual formalism that allows intuitive
and concise specification of traffic scenarios based on a formal
semantics [Damm et al. 2018]. TSCs are based on acyclic graphs of
chart nodes. Chart nodes capture constraints over a time interval and
can be combined into a chart using sequence, choice, or parallel
composition. In a chart, the constrained time intervals are seamless
— that is, there is no time gap within a sequence of two nodes. Chart
nodes include simple invariants (constraints that hold throughout the
complete constrained interval), conditions (constraints holding at
least once), and complex nodes specifying communication/event
patterns or containing complete charts.

Spatial views describe spatial constraints between objects,
represented by symbols in a topological view. Spatial views can be
used as base constraints for invariant and condition nodes. TSCs are
interpreted with respect to a modular world model that defines object
classes, interfaces, and (if necessary) behaviors. World model
modules are exchangeable, as long as appropriate interfaces are
provided.

Traffic sequence charts
visualize traffic

scenarios

Spatial views are used
as base constraints

Fig. 6-9: TSC excerpt of an overtaking maneuver

6.3 Ontology and Modeling 137

The combination of spatial, time, and communication constraints
allows traffic scenarios to be defined intuitively. For example, the TSC
excerpt in Figure 6-9 describes an overtaking maneuver: during the
first invariant, car 1 is somewhere (within the box with dotted lines)
behind car 2. During the second invariant, car 1 is still behind car 2,
but somewhere in both lanes. In the third invariant, car 1 is
somewhere next to car 2, etc.

An important aspect for a specification language for CSGs is to
represent spatial patterns regardless of the concrete number of
systems in the group. For example, a platoon driving on a highway
lane can be considered as a sequence of vehicles on that lane
connected by spatial and non-spatial relationships. In a TSC, this is
expressed using the ellipsis notation; an example can be seen in the
lower part of Figure 6-10. The individual vehicles are represented by
car symbols parameterized with the position of the vehicle in the
group, ranging from iRhs (head of the group) to iLhs (tail of the
group). All vehicles drive in the same velocity range, and each adjacent
pair of vehicles travels in bounded longitudinal and lateral distance.

Showing detailed information for many objects can quickly
become overwhelming and leads to important information being
overlooked and lost. Therefore, TSCs offer the possibility to define on-
the-fly visual abstractions by introducing abbreviation symbols.
These symbols abbreviate spatial patterns in full depth but can be
customized to display the most important information only, therefore
(in some sense) highlighting the relevant essence of the group in the
current situation. For example, Figure 6-10 introduces an
abbreviation symbol that is parameterized in a start and end vehicle
index (thus allowing selection of subgroups) as well as traveling
speed. The individual vehicles are represented by car symbols.

Figure 6-11 shows two invariants being valid for the same time
interval. The upper invariant describes the inner structure of a
platoon, the lower one its relationship to the context. As the picture
describes normal operation, there must be no other vehicle in the

Spatial patterns

Abstractions help
manage complexity

Fig. 6-10: Vehicle group symbol abbreviation

138 Modeling and Analyzing Context-Sensitive Changes during Runtime

immediate neighborhood of the platoon (depicted by the small
crossed out car in the upper left corner of the box with dotted lines).

The patterns introduced allow the specification of complex
collaborative maneuvers, such as how a platoon can circumvent an
obstacle. The integrated formalism of TSCs provides the possibility to
analyze the specified maneuvers, for example, by means of
consistency checks as presented in [Becker 2020].

6.4 Model Integration and Execution

During operation, the behavior of the system or the CSG must be
validated taking the context into consideration. This can be done using
simulation models, for example. Because generating these models
requires high effort, it is unavoidable to automatically generate and
calibrate them based on data from the real system and the knowledge
of the system and context behavior. This leads to an integration of
simulation into the design and runtime phase.

6.4.1 Model Generation for Simulation Models

Model Generation via Knowledge Graph

With heterogeneous input data for the system and context, the
automated generation of an executable model requires knowledge of
the given system and context structure as well as an efficient
connection of input data. As the context and system information are
usually stored in heterogeneous data sources and formats, a common

Patterns allow
specification of complex

situations

Operational behavior
must be validated

Coping with
heterogeneous input

data

Fig. 6-11: Separation of concerns: platoon inner structure and context

6.4 Model Integration and Execution 139

data model, including context as well as system information, must be
extracted and combined.

This variety of data can be managed using ontologies as described
above, represented through the application of a knowledge graph (see
Section 6.3.1). In order to gain a single source of data description, the
data model of the system, as well as the context used in the knowledge
graph, is linked to the original data sources and formats. Queries can
then be used to filter the relevant data and their linkage for the
generation of simulation models. The models are matched using
defined interfaces. As output of the knowledge graph, both models are
extracted by export functions using requests leading to an executable
simulation model.

The following properties of the knowledge graph make this
approach applicable as an interface for heterogenous input data in
dynamic context: in order to avoid the high effort of the classical and
often manual generation of models as described above, the knowledge
graph approach requires no predefined data model, offers fast access
to complex hierarchical structures, as well as semantic search and
analysis.

Application to a Real Production System

During operation of a production system, there are several ways to
operate the system depending on requirements regarding available
resources, production orders, or production time and costs.
Therefore, the future system behavior must be predicted and the best
operation strategy identified based on the current state.

The generalized system and context data models in the knowledge
graph are concretely filled with current context information such as
production plans, resource availability, and product mix provided by
the context information artifact [Rosen et al.2020]. In addition, the
system model is represented by different engineering artifacts, such
as operation strategies, the production machines and their
capabilities (see Section 6.3.2), as well as the plant layout (see Figure
6-12).

Depending on the simulation task—for example, material flow
analysis or 3D-kinematic analysis—the adapted data from the
knowledge graph can be used to generate different types of simulation
models for discrete or continuous production processes. For both
aspects, the independent generation of the context and system model
represented either as a process model or as operation strategies,
including their coupling, is possible. Moreover, different simulation

Ontologies help with
managing the variety
of data

Simulation can be used
for different tasks

140 Modeling and Analyzing Context-Sensitive Changes during Runtime

models can be generated automatically by varying the parameters

dependent on the operation strategy. A final assessment of the
different simulation results is performed using selected KPIs (e.g.,
throughput, buffer utilization, productivity, costs, energy) in order to
identify the “best” operation strategy.

For example, as described in Section 6.3.3 for different
configurations, simulation models can be generated to select the best
suitable reconfiguration or rather to provide the evaluation of
different strategies to allow the operator to make a decision (see
Chapter 3).

6.4.2 Capability Matching

Context dynamicity leads to rapid changes in the operational
environment of a CES (cf. [Tenbergen et al. 2018]). To cope with these
changes, CESs may dynamically recombine at runtime to form a CSG
that aims to fulfill a certain, usually context-dependent, goal. Note that
CESs and CSGs do not always share the same goals or aim to fulfill
complementing goals [Daun et al. 2019]. Due to the dynamic
formation, configurations can occur where individual participants
aim to achieve conflicting goals [Brings 2020]. As the dynamic
formation of CSGs at runtime can hardly be foreseen at design time, a
method is needed to examine whether a system group configuration
actually provides the capabilities that are required under certain
contextual boundary conditions. Therefore, we developed a method,
based on model matching techniques, that enables such examinations
by applying the following step-by-step approach (cf. Figure 6-13):
(1) Derivation of required capabilities: The first step is to determine

which generic capabilities and especially which combinations of

Required capabilities
may change due to
context dynamicity

Capability matching
procedure

Fig. 6-12: Knowledge graph for factory simulation

Layout
(Visio)

Machine Data
(AutomationML)

PlantSim
COM

COM

XML

Knowledge Graph

PlantSim
COM

Product Data
(Excel)

COM

Request Manufacturable?

List of Possible
Machines

Control Strategies
(UML)

XML

Factory
P1

M1

O1

P2

Lay out M2

M3

hasMachine

(x,y)

6.4 Model Integration and Execution 141

capabilities meet the requirements imposed by the goal or task of
the CSG (e.g., the fulfillment of a customer’s production request in
an adaptable and flexible factory). The domain capability model
introduced in Section 6.3.2 can be used to describe these
capabilities needed for a certain goal attainment.

(2) Matching of available and required capabilities and determination
of suitable CSG configurations: The next step is to answer the
question of whether, based on the available CESs, a CSG can be
formed that is able to provide these required capabilities. At this
point, the system models of the individual CESs, with their
capabilities and corresponding variability, are mapped to the
required capabilities in order to identify suitable capability
combinations and determine appropriate CES and CSG confi-
gurations (cf. Section 6.3.3 for reconfigurations).

(3) Evaluation of alternatives: Finally, if there is more than one
possibility to form the CSG, the most appropriate option must be
identified by using optimization criteria or considering timing or
strategic aspects. The results are a certain combination of
capabilities with allocated systems and a defined CSG
configuration.

 Figure 6-13 shows the process building blocks for this method.

In the following, we illustrate the application of this method for the
adaptable and flexible factory use case. In this use case, the
requirements for the capabilities of CESs arise from a production
request for an individualized product. The factory is equipped with
production systems represented by various CESs and we must
examine whether they can form a suitable CSG for the fulfillment of
the production request.

Capability matching for
the adaptable and
flexible factory

Fig. 6-13: Process building blocks for capability matching

142 Modeling and Analyzing Context-Sensitive Changes during Runtime

 Figure 6-14 illustrates schematically how the generic capabilities
of the domain (or project-specific) capability model (see Section 6.3.2)
are instantiated for the product and the production systems, thus
generating the required and provided capabilities that form the basis
for the matching.

For capability matching, a check determines whether the required
capabilities, represented by the production view in Figure 6-14, match
the capabilities provided by the resources of the factory as shown in
the function view in Figure 6-14.

Consequently, the integration of the production view and the
function view allows us to examine whether a certain product can be
produced by the adaptable and flexible factory. Figure 6-15 illustrates
the combination of the production view and the function view.

The figure shows three machines—lathe, milling machine, and
polishing machine—as well as their production functions (i.e., instan-
tiated capabilities from the domain or project-specific capability
model). In addition, two different production process sequence
variants for manufacturing the product with the given production
systems are shown. There are some common steps between these two
production processes (e.g., at the beginning, the raw material is first
turned with the lathe, then drilled and turned again). Other steps
differ: for example, screw thread tapping is conducted either on the
lathe (Example I) or on the milling machine (Example II). In both
cases, different intermediate products are exchanged between the
lathe and the milling machine. Depending on the choice made, the

Instantiation of generic
capabilities from the

domain capability model

Integration of
production and

function view

Fig. 6-14: Schematic sketch showing the instantiation of generic capabilities

6.5 Conclusion 143

process can differ in time and costs. Therefore, the time and costs for
each step must be calculated so that the optimal solution can be found.

For further information on the views presented and the principles
of the matching method, please refer to [Daun et al. 2019a].

6.5 Conclusion

This chapter illustrated a modeling approach for analyzing the
behavior of CESs during operation by re-using models from the
engineering phase. We illustrated this approach for selected
examples, addressing the main line of this developing approach. To
improve the quality and reduce the effort for each step, additional
improvements are necessary that lead to reusable ontologies,
standardization of concepts, and interfacing to allow integration of
tools. This leads to possible extensions not described in this chapter.

Even if the model generation process can then be executed
automatically, a lot of effort is still required to develop the underlying
ontologies in advance. Therefore, the ABox and TBox necessary for
building the ontologies based on existing and established engineering
artifacts must also be developed. Using databases also reduces this

Fig. 6-15: Integration of production view and function view to check manufacturability

144 Modeling and Analyzing Context-Sensitive Changes during Runtime

effort as the manual mapping between the ABox, TBox, and the
industrial application can be reused more easily [Hildebrandt 2020a].

In addition to further reduction of efforts for the modeling,
automatic model validation is also a big benefit. This can be done
using review models [Daun et al. 2020]. All these approaches are part
of a vision to introduce model-based development approaches to non-
experts in engineering and operation and efficient model generation
and execution during runtime.

6.6 Literature
[Asunción et al. 2004] G.-P. Asunción, F.-L. Mariano, O. Corcho: Ontological Engineering:

With Examples from the Areas of Knowledge Management, e-Commerce and the
Semantic Web. 1st Edition, Springer-Verlag, London, 2004.

[Baader et al. 2003] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, D. Nardi:
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge university press, 2003.

[Becker 2020] J. S. Becker: Partial Consistency for Requirement Engineering with
Traffic Sequence Charts. Software Engineering, 2020.

[Brings 2020] J. Brings, M. Daun, T. Weyer, K. Pohl: Goal-Based Configuration Analysis
for Networks of Collaborative Cyber-Physical Systems. In: 35th ACM Symp. Applied
Computing, 2020, pp. 1387–1396.

[Caesar et al. 2019] B. Caesar, M. Nieke, A. Köcher, C. Hildebrandt, C. Seidl, A. Fay, I.
Schaefer: Context-Sensitive Reconfiguration of Collaborative Manufacturing
Systems. In: 9th IFAC Conf. Manufacturing Modelling, Management and Control
(MIM), Germany, Berlin, 2019, pp. 307–312.

[Damm et al. 2018] W. Damm, E. Möhlmann, T. Peikenkamp, A. Rakow: A: Formal
Semantics for Traffic Sequence Charts. In: Principles of Modeling – Essays
Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, 2018, pp. 182-
205.

[Daun et al. 2016] M. Daun, B. Tenbergen, J. Brings, T. Weyer: SPES XT Context Modeling
Framework. In: Advanced Model-Based Engineering of Embedded Systems,
Springer, 2016, pp. 43-57.

[Daun et al. 2019] M. Daun, V. Stenkova, L. Krajinski, J. Brings, T. Bandyszak, T. Weyer:
Goal Modeling for Collaborative Groups of Cyber-Physical Systems with GRL. In:
34th ACM Symp. Applied Computing, 2019, pp. 1600–1609.

[Daun et al. 2019a] M. Daun, J. Brings, P.A. Obe, et al.: Using View-Based Architecture
Descriptions to Aid in Automated Runtime Planning for a Smart Factory. In: 2019
IEEE Int. Conf. Software Architecture (ICSA-C). pp. 202–209.

[Daun et al. 2020] M. Daun, J. Brings, T. Weyer: Do Instance-Level Review Diagrams
Support Validation Processes of Cyber-Physical System Specifications: Results from
a Controlled Experiment. In: Int. Conf. Software and System Processes, 2020.

[Hildebrandt 2020a] C. Hildebrandt: Lightweight Industrial Ontology Design Support:
A Tool for ABox Creation Based on Ontology-Design Patterns. Online:
https://github.com/ConstantinHildebrandt/lion; accessed on: 02/28/2020.

https://github.com/ConstantinHildebrandt/lion

6.6 Literature 145

[Hildebrandt et al. 2018] C. Hildebrandt, S. Törsleff, B. Caesar, A. Fay: Ontology Building
for Cyber-Physical Systems: A Domain Expert Centric Approach. In: 14th IEEE Conf.
Automation Science and Engineering, CASE, 2018, pp. 1079-1086.

[Hildebrandt et al. 2018a] C. Hildebrandt, S. Törsleff, T. Bandyszak, B. Caesar, A.
Ludewig, A. Fay: Ontology Engineering for Collaborative Embedded Systems –
Requirements and Initial Approach. In: Modellierung in der Entwicklung von
kollaborativen eingebetteten Systemen (MEKES), 2018, pp. 57-66.

[Hildebrandt et al. 2020] C. Hildebrandt, A. Köcher, C. Küstner, C.-M. Lopez-Enriquez,
A.W. Müller, B. Caesar, C.S. Gundlach, A. Fay: Ontology Building for Cyber-Physical
Systems: Application in the Manufacturing Domain. IEEE T. Autom. Sci. Eng., 2020.

[IEC 2016] International Electrotechnical Commission (IEC). (2016) IEC 61360 -
Common Data Dictionary (CDD - V2.0014.0014). Online:
http://cdd.iec.ch/cdd/iec61360/iec61360.nsf, accessed on: 02/28/2020.

[Kang et al. 1990] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Carnegie-Mellon University,
USA, Pennsylvania, Pittsburgh, 1990. – Technical Report.

[Ladiges et al. 2018] J. Ladiges, A. Fay, T. Holm, U. Hempen, L. Urbas, M. Obst, T. Albers:
Integration of Modular Process Units Into Process Control Systems. In: IEEE
Transactions on Industry Applications, Vol. 54, No. 2, 2018, pp. 1870–1880.

[Lüder et al. 2017] A. Lüder, N. Schmidt: AutomationML in a Nutshell. In: Handbuch
Industrie 4.0 Bd. 2. Springer Vieweg, Berlin, Heidelberg, 2017, pp. 213-258
(available in German only).

[Marks et al. 2018] P. Marks, X. L. Hoang, M. Weyrich, A. Fay: A Systematic Approach for
Supporting the Adaptation Process of Discrete Manufacturing Machines. In:
Research in Engineering Design Vol. 29, No. 4, 2018, pp. 621–641.

[Mauro et al. 2016] J. Mauro, M. Nieke, C. Seidl, I. C. Yu: Context-Aware Reconfiguration
in Evolving Software Product Lines. In: Tenth Int. Workshop on Variability
Modelling of Software Intensive Systems, USA, New York, 2016, pp. 41–48

[OWL 2020] OWL 2 Web Ontology Language – World Wide Web Consortium (W3C),
https://www.w3.org/TR/owl2-overview/; accessed on 04/27/2020.

[Reschka 2016] A. C. Reschka: Fertigkeiten- und Fähigkeitengraphen als Grundlage des
sicheren Betriebs von automatisierten Fahrzeugen im öffentlichen Straßenverkehr
in städtischer Umgebung. Dissertation, Technische Universität Braunschweig, 2017
(available in German only).

[Rosen et al. 2020] R. Rosen, D. Beyer, J. Ficher, W. Klein, V. Malik, J.C. Wehrstedt:
Flexible Produktion durch digitale Zwillinge in der Produktion. In: Kongress
Automation 2020, VDI, 2020 (available in German only).

[Sabou et al. 2019] M. Sabou, S. Biffl, A. Einfalt, L. Krammer, W. Kastner, F.J. Ekaputra:
Semantics for Cyber-Physical Systems: A Cross-Domain Perspective. In: Semantic
Web – Interoperability, Usability, Applicability, 2019.

[Schlingloff et al. 2016] B.-H. Schlingloff, H. Stubert, W. Jamroga: Collaborative
Embedded Systems — A Case Study. In: 3rd Int. Workshop on Emerging Ideas and
Trends in Engineering of Cyber-Physical Systems (EITEC), 2016, pp. 17–22.

[SPARQL 2020] SPARQL Query Language for RDF – World Wide Web Consortium (W3C
https://www.w3.org/TR/rdf-sparql-query/ accessed on 07/23/2020.

http://cdd.iec.ch/cdd/iec61360/iec61360.nsf
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/rdf-sparql-query/

146 Modeling and Analyzing Context-Sensitive Changes during Runtime

[Sprinkle et al. 2010] J. Sprinkle, B. Rumpe, H. Vangheluwe, G. Karsai: Metamodelling:
State of the Art and Research Challenges. In: Model-Based Engineering of
Embedded Real-Time Systems. Int. Dagstuhl Workshop, 2007, Springer Berlin
Heidelberg 2010, pp. 57-76.

[Tenbergen et al. 2018] B. Tenbergen, M. Daun, P. A. Obe, J. Brings: View-Centric Context
Modeling to Foster the Engineering of Cyber-Physical System Networks. In: IEEE
Int. Conf. Software Architecture, ICSA, 2018, pp. 206–216.

[VDI 2005] VDI/VDE Richtlinie 3682: Formalised process descriptions - Concept and
graphic representation, Beuth Verlag Berlin 2005-9.

[Weiß et al. 2019] S. Weiß, B. Böhm, J. Vollmar, B. Caesar, A. Fay: Modellierung von
Fähigkeiten industrieller Anlagen für die auftragsgesteuerte Produktion. In:
Kongress Automation 2019, VDI, 2019 (available in German only).

[Wolf et al. 2020] S. Wolf, B. Caesar, A. Fay, B. Böhm: Erstellung eines Domänenmodells
zur Beschreibung von Fähigkeiten fertigungstechnischer Anlagen für die
auftragsgesteuerte Produktion. In: Kongress Automation 2020, VDI, 2020
(available in German only).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

7

Handling Uncertainty in
Collaborative Embedded

Systems Engineering

As collaborative embedded systems operate autonomously in highly dynamic contexts,
they must be able to handle uncertainties that can occur during operation. On the one
hand, they must be able to handle uncertainties due to the imprecision of sensors and the
behavior of data-driven components for perceiving and interpreting the context to enable
decisions to be made during operation. On the other hand, uncertainties can emerge from
the collaboration in a collaborative group, related to the exchange of information (e.g.,
context knowledge) between collaborative systems. This chapter presents methods for
modeling uncertainty early in development and analyzing uncertainty during both design
and operation. These methods allow for the identification of epistemic uncertainties that
can occur when various, potentially heterogeneous systems are required to collaborate.
The methods also enable graphical and formal modeling of uncertainties and their
impact on system behavior (e.g., in the course of dynamic traffic scenarios). Furthermore,
this chapter investigates the quality of outputs issued by data-driven models used to equip
collaborative embedded systems with uncertainty-resilient machine learning capability.

Torsten Bandyszak, University of Duisburg-Essen
Lisa Jöckel, Fraunhofer IESE
Michael Kläs, Fraunhofer IESE
Sebastian Törsleff, Helmut Schmidt University Hamburg
Thorsten Weyer, University of Duisburg-Essen
Boris Wirtz, OFFIS e.V.

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_7

147

https://doi.org/10.1007/978-3-030-62136-0_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_7&domain=pdf

148 Handling Uncertainty in Collaborative Embedded Systems Engineering

7.1 Uncertainty in Collaborative Embedded Systems

Collaborative embedded systems (CESs) are often safety-critical,
operate in dynamic contexts within a collaborative system group
(CSG), and must be capable of reacting to unforeseen situations
without human intervention. Uncertainty that can occur during
operation should be considered systematically during engineering to
enable CESs to cope with uncertainties autonomously. This section
first introduces an ontology for understanding uncertainty in CESs. It
then continues with an explanation of different kinds of uncertainty
using the platooning example.

7.1.1 Conceptual Ontology for Handling Uncertainty

In order to lay the foundation for understanding uncertainty that can
occur during the operation of CESs, we have developed a lightweight
ontology. This ontology defines core concepts for describing the
different facets of uncertainty. It thereby provides the basis for
seamless consideration of uncertainty in the engineering and
operation of CESs. However, the ontological concepts are generic
enough to describe different kinds of uncertainties, as we will see in
Section 7.1.2. The ontology focuses on uncertainty that occurs during
runtime, which differs from design-time uncertainty (e.g., ambiguous
requirements) [Ramirez et al. 2012]. Nevertheless, the ontology is
used during the design of CESs. Figure 7–1 shows the ontology as a
UML class diagram.

As can be seen in Figure 7–1, uncertainty is the central concept of
our ontology. However, other concepts are necessary to fully account
for uncertainty and its consequences. Uncertainties are always related
to certain information (e.g., about the operational context in which a
CES is operating) that stems from a specific source (e.g., a sensor or
another CES). With regard to information, uncertainty means that it is
not clear whether the information is valid as processed in a specific
scenario during the operation of CESs. In that scenario, information is
processed by an agent to make a decision or to perform some activity
based on the information. Hence, an agent perceives the uncertainty
related to specific information. In order to cope with uncertainty, it
needs to be quantified to allow for automated uncertainty handling
approaches to be applied — for example, using probabilistic or fuzzy
approaches.

Core concepts for
describing uncertainty

Uncertainty related to
information

7.1 Uncertainty in Collaborative Embedded Systems 149

Fig. 7-1: Core ontology for describing uncertainty

In a scenario, risks may occur due to uncertainty. The term risk is used
in a generic way here; it covers safety hazards but also, for example,
economic risks. A risk can have a negative impact—for example, an
accident—as well as a specific likelihood of occurrence. Uncertainty
can be mitigated in two ways: 1) by mitigating the risk—that is, by
reducing the likelihood or severity of an impact—or 2) by reducing
the uncertainty that originally triggers the risk. Hence, the ontology
includes the risk mitigation and the uncertainty mitigation concepts.

An uncertainty also always has at least one cause — that is, a
reason why the uncertainty occurs. We can use the type concept to
distinguish between different causes of uncertainty. We decided to
relate the type of an uncertainty to its cause and not to the uncertainty
itself, since categorizing uncertainties often relates to abstract
sources of uncertainty, such as imprecision of sensors (cf., e.g.,
[Ramirez et al. 2012]), failures of communication networks, or
insufficient trust in other agents (cf., e.g., [Yu et al. 2013]). Section
7.1.2 illustrates such types of uncertainty using the example of
autonomous vehicles.

7.1.2 Different Kinds of Uncertainty

In this section, we consider the use case of “Cooperative Vehicle
Automation,” which enables vehicles to form platoons on highways in
order to reduce fuel consumption and increase traffic throughput (cf.
[Jia et al. 2016]). As explained in Chapter 1, there are specific

InformationUncertainty

Risk Scenario

Source

1

0..*
provides

0..*

1..*
is processed in

0..* 1..*

refers to

Quantification

1

0..*
quantifies

Agent

0..*

1..*

perceives

Cause

Risk
MitigationImpact

Likelihood

Uncertainty
Mitigation

Type

1..*
0..*

originates
from

1..*0..*

occurs in

0..*

1

categorizes

1..*

0..*
is motivated by

1..*

0..*
reduces

0..*

0..*
evolves

0..*

0..*

results in

0..* 0..*
reduces

0..1

0..*

1..*

addresses
0..*

0..*
reduces

Relationship between
uncertainty and risk

Cause and types of
uncertainty

Uncertainty in
“Cooperative Vehicle
Automation”

150 Handling Uncertainty in Collaborative Embedded Systems Engineering

uncertainty-related challenges that emerge from this use case. In the
following, we consider these challenges in more detail in order to
illustrate different kinds of uncertainty that can occur during the
operation of CESs. Specifically, we place particular emphasis on
uncertainties rooted in the operational context of CESs, which is
highly dynamic. The operational context comprises other CESs (e.g.,
other cars equipped with cooperative ACC (CACC) systems, which are
engaged in or able to join a platoon) as well as non-collaborative
context objects (e.g., pedestrians or vehicles steered manually).

An exemplary situation is depicted in Figure 7–2. It shows a
platoon consisting of a certain number of vehicles (three of which are
shown), as well as another non-collaborative vehicle driving ahead of
the platoon leader (labeled “LV” in Figure 7–2). Furthermore, the car
labeled “JV” attempts to join the platoon, which requires message
exchange and coordination with the platoon leader. In the subsequent
sections, we make use of this example to illustrate various concepts.
Where applicable, we distinguish between the system under
consideration (SUC) and its context objects (COs). For instance, in
Figure 7–2, the platoon leader could be the SUC, whereas the
messages it receives from other cars, as well as the other cars
themselves and surrounding objects (e.g., road signs), are considered
COs.

Fig. 7-2: Uncertainty in the open and dynamic context of CESs

There are three different sources of uncertainty under consideration:

1. Perception-related uncertainty: Due to the inherent imprecision of
sensor devices, information representing the current context
situation of a system may be invalid. CESs also share context
information in order to jointly mitigate uncertainties. Each vehicle
is equipped with sensory devices — such as a radar sensor or
cameras for perceiving obstacles, other traffic participants, and

System under
consideration and

context objects

Uncertainty relates to
perception, data quality,

and communication

7.2 Modeling Uncertainty 151

traffic signs. For example, an onboard camera sensor may be
affected by dirt on the camera lens, resulting in uncertainty
regarding the context information. Furthermore, the timing of
events related to the context perception may cause uncertainties
(e.g., caused by time delays in the transmission of sensor signals,
see Section 7.2.2).

2. Data-related uncertainty: This kind of uncertainty is caused by
limitations in the results of data-driven components (DDCs).
These DDCs extract context knowledge from information sources
(e.g., sensors). This context knowledge can then be processed
further by some application logic (in this case, a CACC system). For
instance, traffic signs detected by onboard cameras are
recognized by embedded DDCs that contain artificial intelligence
(AI) models that process camera images (see Section 7.3.2).

3. Epistemic runtime uncertainty: CESs exchange context
information in order to reason about the current context
situations they face. Uncertainty can be caused by epistemic
concerns pertaining to the representation of the information that
is exchanged and processed by CESs (see Section 7.3.1). For
instance, context information about the goals of platoon members
may be subject to ambiguity or incompleteness.

Since these uncertainties have different causes (cf. Section 7.1.1),
uncertainty is a multi-faceted and cross-cutting concern that requires
a multitude of methods and techniques to enable CESs to handle such
uncertainty autonomously during operation. The following sections
present different methods for modeling and analyzing uncertainty
that are complementary in our comprehensive uncertainty handling
framework. Each method aims at handling a specific kind of
uncertainty listed above. Furthermore, the different methods target
both the development time (e.g., modeling methods) as well as
runtime methods (e.g., wrapper components enabling the
quantification of a DDC’s uncertainty).

7.2 Modeling Uncertainty

In the following, we present approaches for modeling uncertainty,
including a language for modeling early uncertainty information and
relating it to other artifacts and a domain-specific method for
capturing behavioral uncertainty in traffic scenarios.

Complementary
methods for handling
uncertainty

152 Handling Uncertainty in Collaborative Embedded Systems Engineering

7.2.1 Orthogonal Uncertainty Modeling

In the engineering of CESs, uncertainties that may occur during
operation must be considered systematically. In the early stages of
requirements engineering in particular, potential runtime
uncertainties must be identified and documented so that stakeholders
can analyze and consider them appropriately. The ultimate goal of
considering such uncertainty during engineering is to design CESs
that are able to safely handle uncertainties during operation.

Depending on project-specific demands, various different artifact
types are used in a complementary manner to model a CES under
development and other relevant information, such as the operational
context. Typical modeling perspectives used in requirements
engineering distinguish structural, functional, and behavioral aspects
of the CES and its context. Uncertainties are not limited to a single
artifact but rather affect different aspects modeled in several artifacts.
For example, perception-related uncertainty due to the failure of a
sensor (see Section 7.1.2) is reflected in all three modeling
perspectives: the interface between the CES and the sensor device—
where the uncertainty appears in the form of missing or corrupted
data—is captured in structural models; sensor data is processed by
CES functions modeled in the functional perspective; and finally,
sensor failure may result in certain (mis-)behavior, where uncertainty
can be detected, and uncertainty may affect the CES behavior.

Hence, uncertainty can be considered a cross-cutting concern,
similar to variability (cf., e.g., [Bachmann et al. 2003], Chapter 18).
Describing uncertainty by attaching uncertainty information to model
elements across different artifacts (e.g., denoting sensor data as the
information subject to uncertainty) has two essential drawbacks:

1. The information necessary to specify uncertainty is documented
redundantly at multiple locations attached to model elements. For
instance, sensor data may be modeled in structural models and as
input for functions in functional models.

2. Uncertainty information is spread across several models. This
makes it difficult to structure uncertainty information and trace
essential parts of an uncertainty description (e.g., the cause of
uncertainty) throughout the various artifacts. Furthermore, it is
difficult to capture relationships between different uncertainties.

In the following, we present a modeling technique [Bandyszak et al.
2018b], [Bandyszak et al. 2020] to support the systematic
identification and documentation of runtime uncertainties during the

Orthogonality of
uncertainty

Difficulties in capturing
uncertainty information

Orthogonal uncertainty
models

7.2 Modeling Uncertainty 153

entire engineering process. The core idea is to capture information
that describes uncertainty (see Section 7.1.1) in a separate artifact and
connect this information to other engineering artifacts (called “base
artifacts”) through trace links. These first-class uncertainty artifacts
created using a dedicated graphical modeling language are called
“orthogonal uncertainty models” (OUMs). OUMs provide a central
artifact for analyzing uncertainties and how they affect and must be
accounted for during engineering.

Modeling Concepts and Notation

OUMs employ a specific perspective on the operation of an SUC. The
modeling concepts and the corresponding graphical notation are
introduced in Table 7-3. As we can see, the core concepts for
describing uncertainty are captured using UML-like stereotype
notation and specific iconic representations to foster understanding
of the uncertainty information modeled. The visual notation
comprises node types and connector elements for modeling
uncertainty relationships within the OUM, as well as establishing
relationships to other artifacts.

In order to model uncertainty from the dedicated perspective of a
CES during operation (i.e., the “agent” under consideration), we define
some specialized extensions to the ontology defined in Section 7.1.1.
While the actual information subject to uncertainty is captured in the
base artifacts, the OUM uses the observation point concept to specify
where uncertainty becomes visible. Furthermore, the cause of an
uncertainty is subdivided into its rationale (i.e., the reason why
uncertainty occurs) and activation condition elements. Rationales and
activation conditions can be combined in a tree-like structure using
conjunction/disjunction nodes to describe the cause of uncertainty.

The possible effects of an uncertainty (i.e., risks and impacts of
uncertainty, see Section 7.1.1) are captured using effect links that
point to base artifact elements — for example, system functions
affected by uncertainty. In contrast, uncertainty mitigations are
modeled in the base artifacts (e.g., specific functions that cope with
uncertainty) and related to the uncertainty modeled in OUMs. The
OUM also allows relationships between different uncertainties to be
modeled, including causal and amplification relationships (see Table
7-3).

Graphical modeling
language

Modeling uncertainty
observation and cause

Modeling uncertainty
relationships

154 Handling Uncertainty in Collaborative Embedded Systems Engineering

Modeling
element Explanation Visual notation

Uncertainty This element is used to capture the
uncertainty itself and identify it, which allows
related uncertainty information (further
specified by the other model elements) to be
grouped and also allows distinction between
different uncertainties.

Uncertainty
relation

This connection node visualizes trace
relationships of the concepts outlined above
by means of an n-ary association.

Uncertainty
element
connector

This edge type establishes relationships
between uncertainty and observation point
elements as well as uncertainty causes
(causal combinations of rationale and
activation condition elements).

Rationale This element describes the root cause of the
uncertainty — i.e., the source that originally
introduces uncertainty.

Activation
condition

This element describes the condition under
which an uncertainty can become active
during operation.

Uncertainty
cause
conjunction/
disjunction

The cause of an uncertainty can be
considered a causal (AND/OR) combination
of a set of uncertainty rationales and a set of
activation conditions. These manifest in a
binary tree with two kinds of control nodes.

Observation
point

This element documents the artifacts in
which an uncertainty is present and where
the system can detect the said uncertainty.

Uncertainty
relations

These relationships document situations
where one uncertainty can cause or amplify
another uncertainty (i.e., when active, it may
sustain effects and thereby complicate the
mitigation of the amplified uncertainty).

Trace
relation

This relationship is used to trace uncertainty
information to base artifact elements.

Effect
relation

This relationship refers to the effect an
uncertainty has on either the SUC or its
context.

Mitigation
relation

This relationship, pointing from a base artifact
element to a corresponding OUM uncertainty
element, captures possible mitigations that
either counteract uncertainty once it has
occurred (i.e., to reduce possible negative
effects), or prevent uncertainty from
becoming active.

Tab. 7-3: OUM concepts and notation [Bandyszak et al. 2020]

Example

Figure 7–3 shows an example OUM (middle part) as well as some
exemplary base artifacts (upper and lower part). The latter include a
structural context model, a functional model, and a behavioral model
of the exemplary CACC system. To reduce complexity, only excerpts
related to the joining maneuver are depicted. Moreover, a sequence

?
<<Uncertainty>>

Label

<<Rationale>>

Label

<<Activation Condition>>

Label

&& ||

<<Observation Point>>

Label

<<causes>>

<<amplifies>>

<<trace>>

<<Effect>>
?

<<Mitigation>>

7.2 Modeling Uncertainty 155

diagram shows interactions between two vehicles—each equipped
with a CACC—in the course of the joining maneuver.

Fig. 7–4: Orthogonal uncertainty model example

The exemplary OUM specifies two uncertainties. First, there can be
uncertainty related to inconsistent context information. In this
example, the context is perceived in the form of camera data
processed by a DDC (cf. Section 7.3.2), as well as by context
information communicated by other vehicles, because in the joining
maneuver, the leader vehicle informs the joining vehicle about the gap
to be taken. The uncertainty of inconsistent information occurs when
the gap information obtained by the DDC (e.g., indicating an obstacle

Inconsistent information
from different sources

156 Handling Uncertainty in Collaborative Embedded Systems Engineering

in the gap) differs from the information communicated by the platoon
leader (e.g., gap is free). The rationale of this uncertainty could be a
failure of the camera sensor or misbehavior of the DDC that interprets
the camera data. A potential effect may be the inability to safely
complete the joining maneuver. This uncertainty is described further
in [Bandyszak et al. 2018a].

Another uncertainty modeled in this exemplary OUM relates to
uninterpretable messages from other vehicles. In Figure 7–4, this
message exchange is illustrated in a sequence diagram. This
uncertainty may be caused by technical communication failures of the
V2V network, or inconsistent ontologies underlying the
representation of the data that is exchanged (cf. Section 7.3.1). For
example, during the join maneuver, goals (e.g., target destination and
driving preferences) must be exchanged between the vehicle that
requested to join a platoon and the platoon leader. However, when
inconsistent ontologies are used to specify goals (e.g., considering
different concepts for electric vehicles), the goals of the joining vehicle
cannot be interpreted, which in turn affects the corresponding CACC
function.

7.2.2 Modeling Uncertainty in Traffic Scenarios

When designing a CES, it is important to estimate the impact of
uncertainties (as early as possible) in order to be able to make
qualified design decisions. Therefore, semi-formal uncertainty
modeling techniques (such as the OUM presented in Section 7.2.1),
which are especially helpful for understanding uncertainty in early
design phases, must be complemented with formal modeling
approaches, which allow quantification of the possible influence on
CSG behavior throughout the design process.

For this aim, uncertainties must be modeled mathematically—for
example, as random variable or probabilistic distribution—and the
effects of uncertainties on behavior must be identified and modeled,
resulting in probabilistic CES/CSG behavior models. Probabilistic
behavior models can be used as a base for mathematical analysis —
for example, by probabilistic model checking or stochastic analysis
(e.g., by using repeated simulation).

Within the mathematical analysis, the probabilistic behavior
model is assessed with regard to an evaluation criterion within the
context of a scenario. Typical evaluation criteria are risk or quality of
service. Mathematical assessment of the impact of uncertainties can
help to guide the design process in many areas, including:

Uncertainty in inter-
vehicle communication

Formal modeling of
uncertainties

Assessing uncertainty
impact according to

defined criteria

7.2 Modeling Uncertainty 157

1. Estimating the kind of mitigation required for uncertainties (or
the degree of weakening the influence of uncertainties, if they
cannot be completely mitigated)

2. Developing and choosing more uncertainty resilient
implementations and strategies

3. Assessing the fulfilment of safety requirements (especially if
homologation is required)

Summarizing the above, for behavioral modeling of uncertainties, a
behavior model is extended to a probabilistic or stochastic behavior
model. For assessment, a scenario model and an evaluation criterion
are also required. These model components are described in more
detail in the following. We start with scenario modeling, which is
necessary to describe the situation for which the assessment is
performed.

Modeling Traffic Scenarios for CSGs

Modeling a traffic scenario with the participation of CSGs requires a
specification language with the ability to express dynamically
changing relationships (including spatial relationships) between a
variable number of CESs involved in a CSG.

Traffic sequence charts (TSCs) [Damm et al. 2017], [Damm et al.
2018] are one such formalism that allow intuitive and concise
graphical specification of dynamic constraints based on formal
semantics. TSCs (which—with a different focus—are also described in
Chapter 6) are based on acyclic graphs of chart nodes. Chart nodes
capture constraints over a time interval and can be combined into a
chart using sequence, choice, or parallel composition. In a TSC, the
constrained time intervals are seamless — that is, there is no time gap
within a sequence of two nodes.

Chart nodes include simple invariants (constraints that hold
throughout the complete constrained interval) and conditions
(constraints holding at least once), as well as complex nodes that
specify communication/event patterns or contain complete charts.
Spatial views describe spatial constraints between objects,
represented by symbols in a topological view. Spatial views can be
used as base constraints for invariant and condition nodes.

For example, the TSC excerpt in Figure 7-5 describes a scenario in
which the car with index n+1 joins a platoon consisting of the vehicles
with index 1 (platoon head) to n (platoon tail) driving at speed v. The
TSC consists of four chart nodes: the first chart node is an invariant

Scenario-based
behavioral modeling

Traffic sequence charts
(TSCs)

TSC example

158 Handling Uncertainty in Collaborative Embedded Systems Engineering

that contains a spatial view and describes the phase where the
approaching car is still far away from the platoon (which is
represented by an abstract symbol, see Chapter 6 for more detail).
Phase 2 is described by two nodes holding in parallel: the spatial
invariant expresses that the approaching car is closer to the platoon
but has not yet reached the distance for initiating a join maneuver.
During phase 2, the approaching car sends a join request to the last
car of the platoon, which eventually answers granting the right to join.
In phase 3, the approaching car actually joins the platoon, and then
phase 4 is reached, in which the car is part of the platoon.

Fig. 7–5: TSC excerpt describing a car joining a platoon

7.2 Modeling Uncertainty 159

TSCs are interpreted with respect to a modular world model, which
defines object classes, interfaces, and behaviors. World model
modules are exchangeable, as long as suitable interfaces are provided.
Consequently, behavior modules can be specified using different
specification languages (with suitable interfaces) — for example,
hybrid automata or stochastic/probabilistic hybrid automata. This
flexibility can be used for combining the same scenario specification
with different CES implementation variants or CESs whose
granularity has been refined during the development process.

Behavioral Uncertainty Modeling

As a first step for behavioral uncertainty description, the occurrences
of uncertainties must be identified and modeled mathematically. For
behavioral modeling, it is mostly runtime uncertainties—which
influence the behavior of the model—that are relevant. These
uncertainties can be separated into two classes, depending on the
timing of interactions. Discrete time uncertainties deal with discrete
events, such as sending and receiving messages, or sensors resulting
in discrete signals (see Section 7.1.2). Continuous time uncertainties
deal with continuous interactions, such as following a trajectory or
sensors continuously reporting the location of objects (at least the
start and end of object detection are discrete events). Both classes
include uncertainties due to time delays and data distortion, but only
discrete time events can be completely missed.

Discrete time event misses can be modeled mathematically by a
random variable connected with a probability. Data distortions occur
with a certain probability distribution. A discrete time delay can be
modeled by a random variable with a probability distribution. Time
delays for continuous uncertainties may involve time compaction or
dilation and are a little more complicated, but can still be covered by
a (more complex) probability distribution.

These mathematical uncertainty models can be embedded in
hybrid automata behavior models, resulting in probabilistic hybrid
automata incorporating uncertainty behavior.

Risk Assessment

The last missing building block describes the use of the probabilistic
behavioral CES/CSG model involving uncertainty. There are two main
analysis methods: probabilistic model checking [Katoen 2016] can
compute the probability with which an evaluation criterion (such as a
criticality or a quality of service measure) is reached. Probabilistic

World models

Considering uncertainty
related to timing

Discrete time and
continuous time
uncertainties

Probabilistic and
stochastic model
checking

160 Handling Uncertainty in Collaborative Embedded Systems Engineering

model checking is mathematically more stable but is more applicable
for small systems due to its complexity. Stochastic model checking
[Kwiatkowska et al. 2007] (which is done by performing many
simulation runs) is not as exact, but the performance is less
challenging. During simulation, the probabilistic elements of the
probabilistic behavior model must be instantiated according to the
associated probability distribution. The resulting simulation runs are
then assessed with respect to the evaluation criterion. Similar to
probabilistic model checking, the results can be used as a quality
measure for the behavior modeled.

7.3 Analyzing Uncertainty

In addition to modeling uncertainty semi-formally and formally, more
specific analysis methods are necessary to fully account for the
various kinds of uncertainty (see Section 7.1.2). Uncertainty analysis
methods cover, among other things, guidance for identifying potential
uncertainty sources as well as eliciting more specific information for
(automatically) estimating uncertainty. In the following, we present a
classification scheme that helps identify epistemic uncertainties, as
well as an approach to provide situation-aware estimates of the
uncertainty in an outcome of a DDC during operation of CESs.

7.3.1 Identifying Epistemic Uncertainties

This section presents a classification scheme that facilitates the
identification and classification of epistemic uncertainties resulting
from information exchange in CSGs (see Section 7.1.2). For this
purpose, we first describe the different types of epistemic
uncertainties that may occur in this context. We then present the
epistemic uncertainty classification scheme for runtime information
exchange (EURECA) and its application during requirements
engineering. For an in-depth presentation of the approach, including
formal modeling of knowledge and epistemic uncertainties (as well
mitigation strategies, etc.), please refer to [Hildebrandt et al. 2019].

In this section, we use an example in which the SUC is a platoon
leading vehicle that runs on a combustion engine and the CO is an
electric vehicle that wants to join the platoon (see Section 7.1.2). As
epistemic uncertainties result only from a lack of understanding
regarding a message the SUC receives, all examples concern messages
sent from the CO to the SUC. As we show in the following, epistemic

Epistemic uncertainties
in platooning

7.3 Analyzing Uncertainty 161

uncertainties can appear at the type level and at the instance level.
Uncertainty sources at the type level are rooted in the terminological
knowledge utilized by CESs to specify messages. In simple terms,
terminological knowledge is comparable to a vocabulary that includes
the relationships between vocabulary items and is from here on
referred to as the TBox [Krotzsch et al. 2014]. At each level—that is,
type and instance level—four different classes of uncertainties can be
distinguished. Figure 7–6 illustrates a subset of these classes (T1, T3,
I1, and I2). As we can see, the set difference of the SUC TBox (upper
ellipse at the top of Figure 7–6) and the CO TBox (lower ellipse) is not
empty, resulting in various uncertainties. The uncertainty classes
illustrated and additional classes are detailed in the following.

Uncertainty Sources at the Type Level

There are four classes of uncertainties that may occur at the type level.
All of these uncertainties result from a mismatch between the TBox of
the SUC and the CO used for specifying and interpreting the messages
to be exchanged at runtime.

Fig. 7–6: Epistemic uncertainties at type and instance level

The first class of type-level uncertainties results from a known
difference in scope (T1) between the TBox of the SUC and the CO. This
uncertainty occurs whenever the CO sends the SUC a message that
includes a TBox element that is not included in the SUC’s TBox. The
difference in scope is known insofar as the unknown TBox element has
a known relationship to a known TBox element, which may allow for

Type level

Instance level

T3

SUCCO

T1

...

IncreaseDownhill
Recuperation

hasSupportingGoal
ReachNext
ChargingStation

M
es

sa
ge

I2

MaximumFuel
Consumption

...

...

I1

MinimizeEnergy
Consumption

Concept

Object relationship

Key:

Type relationship

Missing instance

Missing relationship

Instance

MaximumPower
Consumption

Known difference in
scope

162 Handling Uncertainty in Collaborative Embedded Systems Engineering

some kind of mitigation at runtime. For instance, if the message
contains an element “MinimizeEnergyConsumption” with the
relationship “hasSupportingGoal” connecting it to the element
“IncreaseDownhillRecuperation,” the SUC may understand the first
two elements but not the last one since it is not an electric vehicle.

The second class occurs whenever there is an unknown difference
in scope (T2). In this case, the message contains an unknown TBox
element that has an unknown relationship to a known TBox element.
This makes mitigation at runtime more challenging. For instance, if
the message from the CO contains an element “DesiredStateAtDes-
tination” with the relationship “hasStateOfCharge” to the element
“StateOfCharge,” the SUC may understand the first element but not the
second and third as these are concepts specific to an electric vehicle.

The third class of type-level uncertainties results from a distinct
scope (T3). In this case, the unknown TBox element has no attachment
to the SUC’s TBox whatsoever and mitigation is barely possible. For
instance, a message from the CO containing the goal
“ReachNextChargingStation” might not be understood by the SUC at
all because it has no relationship to any known concept.

Uncertainties of the fourth class occur whenever a message
indicates an inconsistent ontological commitment (T4). For instance, if
the CO informs the SUC about its consumption in the measurement
unit kWh, whereas the SUC measures its consumption in liters, this
may lead to uncertainty even if the SUC’s TBox contains the elements
kWh and consumption.

Uncertainty Sources at the Instance Level

While the previously described type-level uncertainties result from
terminological differences, the following uncertainties pertain to the
actual information contained in a message. The first class,
semantically inconsistent information (I1), occurs when a message
contains a value that violates the semantic definition of a relationship
that it refers to. For example, the SUC is informed by the CO about its
“MaximumPowerConsumption” with regard to the goal
“MinimizeEnergyConsumption.” Even if the SUC understands the
former concept in a different context (such as its power outlet), this
message will result in uncertainty as the SUC running a combustion
engine would consider only “MaximumFuelConsumption” a valid
concept in this context.

Situationally incomplete information (I2) as a source of uncertainty
occurs whenever a message contains a set of statements that does not
satisfy the requirements of the situation at hand. For instance,

Unknown difference in
scope

Distinct ontologies
scope

Inconsistent ontological
commitment

Situationally incomplete
information

7.3 Analyzing Uncertainty 163

consider a CO that wants to join a platoon and the SUC as the platoon
leader requires the information “MaximumFuelConsumption.”
However, if the CO provides only the ”Destination” in its message, the
SUC will perceive the message as incomplete.

The third class of instance-level uncertainties results from
situationally inconsistent information (I3), which occurs whenever the
content of a message is inconsistent with regard to the information
expected by the SUC for the situation at hand. Consider a platoon
where the vehicles regularly broadcast their range in kilometers. If the
platoon now descends a steep road, the virtually constant braking
might actually increase the reported range of the CO (the electric
vehicle). The SUC, however, might expect a range decrease over time
and thus considers the reported range to be situationally inconsistent.

The fourth class of instance-level uncertainties results from
missing type membership (I4). This class of uncertainty occurs when a
message contains an information item that lacks a type membership.
For instance, the SUC might receive geographical coordinates from a
CO but no information on what these coordinates refer to.

EURECA

In order to systematically analyze and capture the previously
described uncertainties at the instance and type level, we developed
an epistemic uncertainty classification scheme for runtime
information exchange (EURECA). The two-dimensional scheme is
depicted in Table 7-7.

SUC ontology Ontology element
Type-level
uncertainty

Instance-level
uncertainty

T1 T2 T2 T4 I1 I2 I3 I4

Goal ontology

hasSupportingGoal x
DesiredStateAtDestination x
ReachNextChargingStation x
hasConsumption x
MaximumPowerConsumption x
MaximumFuelConsumption x
Range x
GeographicalCoordinates x

Tab. 7-7: EURECA applied to the platooning example

The first column is populated with the SUC ontology that the
uncertainties captured relate to. In our examples, we considered only
the SUC’s goal ontology, but other ontologies obviously might be
subject to epistemic uncertainties as well. The second column lists the
concrete ontology elements that are subject to epistemic uncertainty
according to the analysis performed. A checkmark indicates which

Situationally
inconsistent information

Missing type
membership

Two-dimensional
classification scheme

164 Handling Uncertainty in Collaborative Embedded Systems Engineering

specific epistemic uncertainty has been identified for an ontology
element. Note that in our example, each ontology element is subject to
exactly one type of epistemic uncertainty; however, the elements
could also be subject to multiple types. Instead of checkmarks, we
could also indicate the specified communication scenario in which an
element is subject to uncertainty (cf. [Hildebrandt et al. 2019]). This
approach is generally recommended due to improved traceability
when new scenarios are added or scenarios are changed during
subsequent requirements engineering iterations — for example,
when an agile development approach is applied.

The epistemic uncertainty classes identified are rooted in an
analysis of the underlying ontological foundations of knowledge
exchange and are not the result of domain-specific considerations.
Hence, while evaluation has been performed only for the automotive
domain, we are confident that EURECA can also be applied to other
domains — for example, distributed energy production and adaptive
factories.

7.3.2 Assessing Data-Driven Uncertainties

Components with data-driven models [Solomatine and Ostfeld 2008],
such as those obtained when applying AI and machine learning
methods, are becoming increasingly important for complex software-
intensive systems. In particular, CESs intended to collaborate in an
open context have to process various kinds of sensor inputs to
recognize and interpret their situation in order to handle changes in
their environment and interact with previously unknown agents.
Unlike traditionally engineered components, which are developed by
software engineers who define their functional behavior using code
or models, the functional behavior of a DDC is learned automatically
from gathered data through an algorithm.

As a consequence, the functional behavior expected from a DDC
can be specified only in part on its intended application domain,
usually based on a number of example cases for which data was
previously collected and augmented with additional information.
Consequently, we cannot provide assurance that such a component
will behave as intended in all cases [Kläs 2018], resulting in data-
related uncertainty (see Section 7.1.2).

In our example, the current speed limits have to be considered
when a vehicle wants to join an existing platoon (cf. Figure 7–2). One
information source for current speed limits can be a DDC that provides
traffic sign recognition (TSR) based on data of the camera sensor in

Assuring correct
behavior of a DDC

Example situation

7.3 Analyzing Uncertainty 165

the CESs of interest (as shown in Figure 7–3). At the latest since 2012,
deep convolutional neural networks have proven their superior
performance for this kind of task and can be considered as a state-of-
the-art approach for TSR [Krizhevsky et al. 2017]. Nevertheless,
uncertainty remains inherent in the outcome of our TSR component
since we cannot specify for all possible combinations of pixel values
within an image what kind of traffic sign should be reported.

Because the use of DDCs is an important source of uncertainty in
CESs, the uncertainty they introduce must be appropriately
understood and managed not only during design time but also during
operation. In the following, we first present a classification for the
different sources of uncertainty relevant when applying a DDC, and
then introduce ”uncertainty wrappers” as a means of quantifying and
analyzing the level of uncertainty for any specific situation at runtime.

Three Types of Uncertainty Sources

The sources of uncertainty in DDCs can be separated into three major
types: uncertainties caused by limitations in terms of model fit, data
quality, and scope compliance [Kläs and Vollmer 2018]. Whereas
model fit focuses on the inherent uncertainty in data-driven models,
data quality covers the additional uncertainty caused by their
application to input data obtained in suboptimal conditions, and scope
compliance covers situations where the model is probably applied
outside the scope for which the model was trained and validated.

In our example, limitations in model fit may be caused by
restrictions in the number of model parameters, input variables
considered, and data points available to train the model. Limitations
in data quality may be caused by weather conditions, such as rain,
natural and artificial backlight, a dirty camera lens, and other factors
that make it more difficult for the TSR component to reliably
recognize the correct traffic sign on the given image. Finally,
limitations in scope compliance occur when a model is used outside
its target application scope (TAS). For example, if our TSR component
was intended to be used for passenger cars in Germany, its application
in a different country will make its outcomes questionable because the
component was most likely built and validated only for German traffic
signs.

Managing Uncertainty during Operation

The uncertainty wrapper approach was developed to better deal with
uncertainty inherent in the outcomes of data-driven models during

Considering both design
and runtime of DDCs

Examples for
uncertainty sources

166 Handling Uncertainty in Collaborative Embedded Systems Engineering

operation. It supports this purpose by encapsulating the data-driven
model to enrich the model outcomes with dependable and situation-
aware estimates of uncertainty. This allows the CES that processes
these outcomes to make more informed and dependable decisions.

The approach is holistic in the sense that it addresses uncertainty
caused by limitations in model fit, data quality, and scope compliance.
Moreover, it is generic in the sense that it is model agnostic — that is,
it states no requirements on the data-driven model it encapsulates.
Specifically, it does not require that the existing model be adapted nor
that the model provides specific kinds of outcomes.

The uncertainty wrapper approach consists of a selection of
concepts that extend and refine the uncertainty ontology introduced
in Section 8.1, equations that allow quantification and aggregation of
uncertainties from different types of sources [Kläs and Sembach
2019], an architectural design proposal, and a tooling framework for
building and validating uncertainty wrappers [Kläs and Jöckel 2020].

Uncertainty Wrapper – Architecture and Application

In the following, we introduce the most prominent elements of the
uncertainty wrapper architecture and relate them. Moreover, we
illustrate them on a simplified application example in the context of
the previously introduced example case.

The wrapper encapsulates the existing data-driven model and
extends its outcome with dependable uncertainty estimates (Figure 7–
8).

Fig. 7-8: Uncertainty wrapper architecture and example applications

In our example, the outcome of the model could be the information
about whether the data-driven model has recognized a “speed limit

Characteristics of
uncertainty wrappers

Extension of DDC
outcomes

Example for
application

7.3 Analyzing Uncertainty 167

50” sign or not (cf. Figure 7–2). The uncertainty is then expressed by
the likelihood that the outcome provided is not correct.

Besides the data processed by the data-driven model, the data-
driven model input may contain further data that is used by the
wrapper to assess the degree of uncertainty in the model outcome. For
example, the GPS signal may be used to determine whether the vehicle
is still in Germany, a task which is conducted by the scope model. The
result is then provided as a scope factor evaluation result to the scope
compliance model, which calculates the likelihood of scope
incompliance considering the results for all scope factors.

Moreover, the rain sensor signal may be also used as an input.
Based on this signal, the quality model determines the level of
precipitation, which is anticipated to have an influence on the
recognition performance of the data-driven model. Together with the
results of other quality factors, the quality impact model then
determines a situation-aware uncertainty estimate using a decision
tree model as a white box approach.

Finally, the uncertainty information provided by the scope
compliance and quality impact model are combined to give a
dependable uncertainty estimate that considers the requested level of
confidence.

In Figure 7–8, we illustrate this for three cases. In Case A, we get
an extremely high uncertainty because the DDC is used in New York,
which is outside the TAS. In Case B, we obtain low uncertainty since
the component is used in its TAS under good quality conditions. In
Case C, we would end up with a moderate uncertainty since the rain
makes the recognition task more difficult.

Uncertainty Wrappers – Limitations and Advantages

In order to build an uncertainty wrapper, in addition to the existing
data-driven model, we need data for a representative set of cases from
the TAS, most preferably augmented with labels that indicate quality
deficits. Alternatively, quality deficit augmentation frameworks such
as the one presented in [Jöckel and Kläs 2019] may be applied.

In comparison to a more traditional approach, where uncertainty
is estimated by the data-driven model itself, the use of uncertainty
wrappers provides advantages in practice. Its uncertainty estimates
are unbiased since it does not rely on data used during the training of
the data-driven model. Moreover, the uncertainty assessment is
broader because it considers more types of uncertainty sources,
including the commonly neglected scope compliance, and also
information that is relevant for uncertainty but not for the primary

Further data to assess
scope compliance

Quality and quality
impact model

Examples for
application results

Unbiased and broader
uncertainty assessment

168 Handling Uncertainty in Collaborative Embedded Systems Engineering

objective of the data-driven model. Finally, uncertainty wrappers can
simplify safety assessments of data-driven models by not only
providing statistically safeguarded uncertainty estimates at a
requested confidence level, but also promising more comprehensible
evaluations by domain and safety experts since they decouple the
uncertainty analysis from the “black box” as which most data-driven
models are still considered.

7.4 Conclusion

CESs operate in highly dynamic contexts and thus have to cope with
uncertainties during operation. This uncertainty cannot be fully
anticipated during design, since CESs are increasingly autonomous
and adaptive, and CSGs may take various forms. Nevertheless, it is
crucial to systematically consider potential runtime uncertainties
during the engineering of CESs. This requires methods for identifying,
modeling, and analyzing uncertainty to develop CESs capable of
coping with uncertainty during operation autonomously.

This chapter approached the complex task of uncertainty handling
during CES engineering by first conceptualizing uncertainty. To this
end, we presented an uncertainty ontology that defines core concepts
to describe uncertainty. Among other aspects, this ontology provides
a means of describing and understanding causes of uncertainty and
relating uncertainty to information gathered through certain sources
(e.g., sensors) and processed by CESs.

Based on the ontology and a characterization of different kinds of
uncertainty relevant for CESs and CSGs, we presented methods for
modeling uncertainty, and for analyzing uncertainty and its effects
during both design and operation. To model uncertainty graphically,
especially during early phases, we presented a modeling language for
specifying uncertainty in dedicated artifacts — that is, orthogonal
uncertainty models. As a more formal approach, we presented a
behavioral modeling approach based on traffic sequence charts for
analyzing risks in dynamic traffic scenarios. As part of the analysis
methods, we presented a classification scheme for identifying
epistemic uncertainties in the information exchange among CESs.
Furthermore, we presented an analysis method to support the safe
operation of DDCs by equipping them with a wrapper that provides
reliable information on situation-specific uncertainty.

Uncertainty ontology

Versatile modeling and
analysis methods

7.5 Literature 169

7.5 Literature
[Bachmann et al. 2003] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh,

A. Vilbig: A Meta-model for Representing Variability in Product Family
Development. In: Software Product-Family Engineering. LNCS Vol. 3014, Springer,
2003, pp. 66–80.

[Bandyszak et al. 2018a] T. Bandyszak, P. Kuhs, J. Kleinblotekamp, M. Daun: On the Use
of Orthogonal Context Uncertainty Models in the Engineering of Collaborative
Embedded Systems. In: Joint Proceedings of the Workshops at Modellierung 2018.
CEUR Vol. 2060, 2018. pp. 121–130.

[Bandyszak et al. 2018b] T. Bandyszak, M. Daun, B. Tenbergen, T. Weyer: Model-Based
Documentation of Context Uncertainty for Cyber-Physical Systems. In: Proc. IEEE
14th Int. Conference on Automation Science and Engineering (CASE). IEEE, 2018,
pp. 1087–1092.

[Bandyszak et al. 2020] T. Bandyszak, M. Daun, B. Tenbergen, P. Kuhs, S. Wolf, T. Weyer:
Orthogonal Uncertainty Modeling in the Engineering of Cyber-Physical Systems. In:
IEEE Transactions on Automation Science and Engineering, Vol. 17, No. 3, 2020, pp.
1250–1265.

[Damm et al. 2017] W. Damm, S. Kemper, E. Möhlmann, T. Peikenkamp, A. Rakow:
Traffic Sequence Charts – From Visualization to Semantics. Technical Report 14
AVACS, No. 117, 2017.

[Damm et al. 2018] W. Damm, E. Möhlmann, T. Peikenkamp, A. Rakow: A Formal
Semantics for Traffic Sequence Charts. In: Principles of Modeling – Essays
Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, LNCS, Vol. 10760,
2018, pp. 182–205.

[Hildebrandt et al. 2019] C. Hildebrandt, T. Bandyszak, A. Petrovska, N. Laxman, E.
Cioroaica, S. Törsleff: EURECA: Epistemic Uncertainty Classification Scheme for
Runtime Information Exchange in Collaborative System Groups. SICS Software-
Intensive Cyber-Physical Systems, Vol. 34, No. 4, 2019, pp. 177–190.

[Jia et al. 2016] D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen: A Survey on Platoon-Based
Vehicular Cyber-Physical Systems. IEEE Communications Surveys Tutorials, Vol.
18, No. 1, 2016, pp. 263–284.

[Jöckel and Kläs 2019] L. Jöckel, M. Kläs: Increasing Trust in Data-Driven Model
Validation – A Framework for Probabilistic Augmentation of Images and Meta-Data
Generation Using Application Scope Characteristics. In: 38th Int. Conf. Computer
Safety, Reliability and Security (SafeComp). Springer, 2019, pp. 155–164.

[Katoen 2016] J.-P. Katoen: The Probabilistic Model Checking Landscape. In: Proc. 31st
Ann. ACM/IEEE Symp. Logic in Computer Science (LICS). ACM, 2016, pp. 31–45.

[Kläs 2018] M. Kläs: Towards Identifying and Managing Sources of Uncertainty in AI
and Machine Learning Models - An Overview. arXiv preprint, arXiv:1811.11669.

[Kläs and Jöckel 2020] M. Kläs, L. Jöckel: A Framework for Building Uncertainty
Wrappers for AI/ML-Based Data-Driven Components. In: 3rd Int. Workshop on
Artificial Intelligence Safety Engineering (WAISE) - submitted, 2020.

[Kläs and Sembach 2019] M. Kläs, L. Sembach: Uncertainty Wrappers for Data-Driven
Models – Increase the Transparency of AI/ML-Based Models through Enrichment
with Dependable Situation-Aware Uncertainty Estimates. In: 2nd Int. Workshop
Artificial Intelligence Safety Engineering (WAISE). Springer, 2019, pp. 358–364.

170 Handling Uncertainty in Collaborative Embedded Systems Engineering

[Kläs and Vollmer 2018] M. Kläs, A. M. Vollmer: Uncertainty in Machine Learning
Applications – A Practice-Driven Classification of Uncertainty. In: 1st Int. Workshop
Artificial Intelligence Safety Engineering (WAISE). Springer, 2018, pp. 431–438.

[Krizhevsky et al. 2017] A. Krizhevsky, I. Sutskever, G. E. Hinton: ImageNet
Classification with Deep Convolutional Neural Networks. Communications of the
ACM, Vol. 60 No. 6, 2017, pp. 84–90.

[Krotzsch et al. 2014] M. Krotzsch, F. Simancik, I. Horrocks: Description logics. IEEE
Intelligent Systems, Vol. 29, No. 1, 2014, pp. 12–19.

[Kwiatkowska et al. 2007] M. Kwiatkowska, G. Norman, D. Parker: Stochastic Model
Checking. In: Formal Methods for Performance Evaluation. Springer, 2007, pp. 220–
270.

[Ramirez et al. 2012] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng: A Taxonomy of
Uncertainty for Dynamically Adaptive Systems. In: 7th Int. Symp. Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2012, pp. 99–
108.

[Solomatine and Ostfeld 2008] D. Solomatine, A. Ostfeld: Data-Driven Modelling: Some
Past Experiences and New Approaches. Journal of Hydroinformatics, Vol. 10, No. 2,
2008, pp. 3–22.

[Yu et al. 2013] H. Yu, Z. Shen, C. Leung, C. Miao, V. R. Lesser: A Survey of Multi-Agent
Trust Management Systems. IEEE Access, Vol. 1, 2013, pp. 35–50.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Dynamic Safety Certification
for Collaborative Embedded

Systems at Runtime

Traditionally, integration and quality assurance of embedded systems are done entirely
at development time. Moreover, since such systems often perform safety-critical tasks and
work in human environments, safety analyses are performed and safety argumentations
devised to convince certification authorities of their safety and to certify the systems if
necessary. Collaborative embedded systems, however, are designed to integrate and
collaborate with other systems dynamically at runtime. A complete prediction and
analysis of all relevant properties during the design phase is usually not possible, as many
influencing factors are not yet known. This makes the application of traditional safety
analysis and certification techniques impractical, as they usually require a complete
specification of the system and its context in advance. In the following chapter, we
introduce new techniques to meet this challenge and outline a safety certification concept
specifically tailored to collaborative embedded systems.

David Santiago Velasco Moncada, Fraunhofer IESE
Daniel Schneider, Fraunhofer IESE
Ana Petrovska, Technical University of Munich
Nishanth Laxman, Technical University of Kaiserslautern
Felix Möhrle, Technical University of Kaiserslautern
Stefan Rothbauer, Siemens AG
Marc Zeller, Siemens AG
Chee Hung Koo, Robert Bosch GmbH
Samira Safdari, Expleo Germany

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_8

171

https://doi.org/10.1007/978-3-030-62136-0_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_8&domain=pdf

172 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

8.1 Introduction and Motivation

Embedded systems are presently evolving from stand-alone closed
embedded systems towards open and collaborative embedded
systems (CESs). In CESs, collaboration can take place on different
scales—from small, predefined groups of systems to large,
heterogenous collectives of systems at a global level—and there will
be an evolution from smaller scales to larger scales of collaboration
[Damm et al. 2019]. Collaboration between CESs means sharing
information concerning context perception, reasoning, and actuation.
It means acting in unison with each other to reach a suoperordinate
goal or to render a higher level service that could not be achieved by
single systems alone.

The potential in this is very significant. For many existing
applications, it will become possible to improve important
performance properties (e.g., speed or efficiency), decrease resource
consumption (e.g., fuel consumption), and improve safety (e.g., in a
platooning scenario) simultaneously. The implications for society and
the economy are correspondingly huge, as the systems envisioned
have the potential to completely transform and improve our societies
and economies in a groundbreaking way.

There are, however, a number of challenges that must be tackled
before this vast potential can be unlocked. Most importantly,
established engineering approaches—and safety engineering
approaches and standards in particular—focus on closed systems and
cannot be applied to future CESs without further ado.

Traditional safety engineering approaches typically require a
complete understanding and specification of the system (and its
context) under consideration at design time. CESs, however, may be
integrated with other CESs at runtime and thus form collaborative
system groups (CSGs) dynamically. Some of these systems may not
even be on the market during the design phase of others. Therefore,
the goal of obtaining a full specification of all possible variations of
CSGs is generally not feasible at design time, and new safety
certification approaches are required.

CrESt set out to investigate corresponding solution ideas based on
a range of complementary industrial use cases. A key premise of our
proposed safety assurance approach is that the required information
is only partially available at design time and must be completed at
runtime. This assumption means that certain parts of the assessment

8.2 Overview of the Proposed Safety Certification Concept 173

process that traditionally take place at design time have to be
postponed until runtime, when all variables can be resolved. This
applies in particular to the final verdict as to whether the integrated
CSG is safe or not. Nevertheless, we consider it essential to conduct as
much preparatory work as possible during the design phase to ensure
that the final assessment at runtime can be performed efficiently and
in a largely automated way.

The remainder of this chapter is structured as follows: Section 8.2
gives a brief overview of the proposed safety certification process.
Section 8.3 describes the integration of modular safety cases at
runtime to obtain a coherent safety case for the systems group.
Section 8.4 addresses the inner details of the modular contracts at
different levels and how they can be standardized. Finally, Section 8.5
concludes this chapter with a summary.

8.2 Overview of the Proposed Safety Certification
Concept

Our safety certification concept stipulates a two-stage process. The
first step concerns the preparatory work at design time. Here, each
CES is equipped with a modular safety case. In each modular safety
case, the respective CES is conceived as a stand-alone system and an
interface for the integration with other modular safety cases is
defined. The main purpose of these modular safety cases is to provide
safety arguments and evidence to enable better decision-making at
runtime. To this end, modular safety cases include the working
conditions of their respective CESs, such as requirements that are
placed on the environment or other CESs. Furthermore, they specify
guarantees that may or may not be given by the CES for its own
services provided, depending on whether certain conditions are met
or not. Hazard and risk analysis make it easier to understand potential
hazards that may originate from a system. Context modeling and
analysis allow identification of the uncertainties that may arise in a
particular context, as well as shared resources that have to be
coordinated between systems. Fault analysis investigates possible
malfunctions and drives the definition of safety measures. Finally, all
these aspects are then combined into a modular safety case for each
system.

The second step in our safety certification concept concerns the
integration of the modular safety cases at runtime with respect to the
planned collaboration. For this purpose, information on how the CESs

174 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

are organized among themselves and what types of dependencies
emerge as a result is required. This information can, for example,
originate from a human integrator who arranges the CESs (adaptable
factory) or it can be generated by a machine — for example, from
onboard computers (vehicle platooning). The resulting system
architecture therefore reflects the interdependencies between the
CESs, which are needed to integrate their modular safety cases.
Finally, the integrated safety case is evaluated and used to assess the
safety of the CSG as a whole.

To perform the second step, both semi-automated approaches
with human intervention (cf. Section 8.3) and fully automated
approaches (cf. Section 8.4) are feasible, depending on the context. In
the case of a semi-automated approach, a human operator can be kept
in the loop through manual selection of a suitable configuration, for
example. In the case of full automation, the systems can negotiate
their relevant properties on a peer-to-peer basis. This can be done on
a contract basis by providing and demanding guarantees for services
exchanged. At runtime, the safety of the collaboration is continuously
monitored in a feedback loop. If the conditions for safe cooperation
are no longer met, the systems must react accordingly — for example,
by graceful degradation or termination of cooperation.

8.3 Assuring Runtime Safety Based on Modular Safety
Cases

As already motivated, CESs must react to ongoing, constant changes
in their open, dynamic context. However, for the systems to react at
runtime, the CESs must first be aware of their relevant context
[Petrovska and Grigoleit 2018] so that they can subsequently monitor
and assess the type and impact of the context change. Additionally, in
parallel, uncertainties resulting from these changes have to be
handled effectively. To allow an efficient certification for the CSG at
runtime, a dynamic risk assessment is performed. The systematic
documentation of all relevant evidence enabled by modular safety
cases helps safety engineers during the certification process.

In the context of an adaptable factory, major trends such as the
growing individualization of products and volatility of product mixes
lead to a situation where every product is produced differently and is
routed according to the current production situation [Koren 1999],
[Yilmaz 1987]. In this chapter, we demonstrate our methods using a
small case study as a running example. Reconfigurable industrial CESs

8.3 Assuring Runtime Safety Based on Modular Safety Cases 175

(such as a robot arm and a tray as a storage unit) are used to assemble
a small roll that consists of a roll body, an axle, and two metal discs as
depicted in Figure 8-1.

Fig. 8-1: Case study description for an adaptable factory

 Modeling CESs and their Context

In practice, CESs are typically developed either within one original
equipment manufacturer or by different suppliers. Moreover, when
CESs form collaborative system groups (CSGs), the CSGs can hardly be
analyzed a priori as relevant context because they are typically not
explicitly defined at design time. On the contrary, they are formed, at
least to a certain extent, emergently at runtime, which is actually a key
trait and strength of CESs and the open ecosystems they enable. A CSG
fulfills a global goal that an individual CES cannot fulfill alone. Of
course, as already motivated, the increased complexity of the
functionality requires different verification, validation, and
certification approaches.

One method for testing a CES for consistency and correctness is the
use of executable models, referred to as monitors. A monitor observes
the execution of a system and determines whether it meets the given
requirements [Goodloe and Pike 2010]. The monitor can then register
and log the violations found during the test. In particular, in CSGs,
monitors may help in detecting specification violations when the
requirements are described as goals. One of the main characteristics
of these goals is that they are influenced by the orchestration of the
different CESs. However, for the systems to react at runtime, the CESs
must first be aware of their relevant context through the constitution
of runtime models of the context where the CESs operate, so that they
can subsequently monitor and assess the type and impact of context
changes on the systems (this is explained further in Section 8.3.3).

176 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

Modeling the Context

Context awareness is generally accomplished through the creation of
context models, which depict relevant aspects of the context for the
CES. The context models are initially created at design time of the
systems, and updated accordingly during runtime. However, in
practice, there are differences in the context modeling concepts
among different manufacturers and suppliers. This exacerbates the
integration effort of different data models to integrate CESs, causing a
"semantic heterogeneity" [Jirkovský et al. 2016]. The use of ontologies
unfolds the potential to serve as a conceptual as well as a technological
representation of such data models to cope with the semantic
heterogeneity and enable semantic interoperability [Negri et al.
2016].

Content Ontology

We propose an ontology, shown in Figure 8-2, that integrates
elements of two types of context: (1) classes and relationships of the
interacting CESs, known as the operational context, and (2) sources of
information with respect to the CESs, seen as the context of
knowledge.

Fig. 8-2: Context ontology

The operational context models the interaction between a system
under analysis and other systems in the environment, whereas the
context of knowledge focuses on relevant knowledge sources that
possess information about the system under analysis [Daun et al.
2016]. The aim of integrating these two types of context together is to

8.3 Assuring Runtime Safety Based on Modular Safety Cases 177

gather relevant classes for constructing a context model that includes
relevant information that can subsequently be used to check
specification violations during runtime monitoring.

Our proposed ontology allows a distinction between the system
under analysis and the parts of the context that may influence the
system but that cannot be changed. The system under
consideration/analysis is called the “context subject.” The context,
composed of context objects, is that part of the environment that is
relevant to the context subject. To allow the distinction between parts
of the context that are collaborative and context objects that do not
collaborate, we name a context object “collaborative context object.”
This distinction permits the identification of the entities that interact
with the context subject, their dependencies with the context subject,
and dependencies among context objects.

From a functional perspective, collaborative context objects
provide services or functions that are accessible to the context subject.
In our ontology, context object function entities are used to document
the dependencies and the exchange of data between the context
subject and these context functions. From a behavioral perspective, to
enrich the documentation of a context function, we use context object
state and context state variable entities. These entities provide
information about the different states, and their related variables, that
define the behavior of a context function. Furthermore, these context
states define the context object behavior of collaborative objects in the
context.

In the context of knowledge, the ontology integrates entities that
provide and/or constrain the collaborative objects in the context. In
particular, we are interested in safety guarantees and hazards that
provide information and constrain context objects and the context
subject based on standard rules.

Modeling Context in the Adaptable Factory

The creation of a context model is a process that is executed at both
design time and runtime. At design time, the functional, structural,
and behavioral aspects of the operational context of the CESs are
modeled into a generic context ontology. This generic ontology can
then be refined to create a domain-specific ontology that captures all
relevant information of the domain — in our case, the adaptable
factory use case. Both ontologies are represented as OWL files. The
resulting ontology enables CESs to store context-related information
and draw conclusions from this information. The domain-specific
ontology of the adaptable factory serves two purposes: the ontology

178 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

(1) defines the input data, defining in particular where the data is
located and what the relationships between different data are. For a
mechatronic object, for instance, the ontology may specify where this
CES is located (i.e., its position in the machine cell). This results in
purpose (2), where the ontology can be used to find constraints in the
data. A mechatronic object may specify, for instance, the maximum
speed at which the CES moves.

At runtime, the CESs are identified and a CSG configuration is
selected. This information is then replicated into the adaptable factory
context ontology: for each CES identified, a new individual (i.e., the
instance of an entity in the ontology) is created and all the relevant
information is stored as data properties of the new individual. Finally,
the information stored in the context ontology is queried to build a
runtime context model. For implementation and evaluation purposes,
the runtime context model is stored in an XML file.

 Runtime Uncertainty Handling

The term “uncertainty” is used in different ways in different research
fields. Uncertainty and its impact are being extensively explored by
research communities in areas such as economics, software and
systems engineering, robotics, artificial intelligence, etc. In the field of
cyber-physical systems, there are multiple definitions for uncertainty,
and the one provided by [Ramirez et al. 2012], serves as a rationale
for our collaborative systems: “Uncertainty is a system state of
incomplete or inconsistent knowledge such that it is not possible for
the system to know which of two or more alternative
states/configurations/values is true.” As explained, CESs interact and
integrate at runtime; the uncertainties that occur during runtime,
more specifically the ones that might create safety-critical scenarios
for CSGs, are of prime importance here.

Two types of uncertainties can be distinguished: epistemic
uncertainties and aleatory uncertainties [Perez-Palacin and
Mirandola 2014]. The epistemic type refers to the uncertainties that
arise due to incomplete knowledge or data, and the aleatory type of
uncertainty is the result of the randomness of certain events.
Epistemic uncertainties can be handled effectively by collecting
additional information, meaning that the uncertainty then ceases to
exist. In contrast, aleatory uncertainties are relatively complicated
because of their inherent randomness. The concept presented will
help to address most of the epistemic types of uncertainties and few

8.3 Assuring Runtime Safety Based on Modular Safety Cases 179

of the aleatory type. The main viewpoint of handling uncertainties
explained in this section would be from that of safety assurance.

Concept Overview

The outline of the concept is to provide a quantified, well-reasoned,
and well-defined mapping of the uncertainties identified to their
corresponding mitigation steps. The CSG is constantly monitored at
runtime for occurrences of uncertainty and, based on the definitions
and parameters of these occurrences, runtime adaptations of
configurations for CESs or any further specific measures defined in the
mapping are undertaken to ensure safety.

Development of a U-Map for the Adaptable Factory

The solution approach is centered around the development of an
uncertainty map (U-Map) artifact during design time. This artifact is
used as the knowledge base at runtime for monitoring and executing
mapped mitigation measures for uncertainty occurrences. The first
step in the development of a U-Map is identifying the relevant
uncertainty and its classification. This step is the most vital and also
the most time-consuming. Here, all possible uncertainties are listed
based on various classifications from research, the most recent and
extensive being the one from [Cámara et al. 2015]. To aid the process
of identifying uncertainties with respect to the information exchange
between CESs from an ontological perspective, the classification
provided by [Hildebrandt et al. 2019] is used. Both of these
classifications are used as a checklist to identify possible uncertainties
at runtime, specific to the use case. Once identified, concrete instances
of uncertainty must be defined. In due process, uncertainties that can
be resolved during the design of the CSG but have not been considered
in general system development have to be updated. These instances
have to be further iterated and quantified as monitor specifications so
that they can be detected at runtime. Examples include ambiguity in
sensor measurements, inconsistency in service descriptions,
incompleteness in self-descriptions of CESs, or incompleteness in
information exchange. The next step involves identifying all possible
failures that might occur from these uncertainties that might put the
system into a hazard state and might subsequently lead to an accident
or harm. To aid this, standardized hazards and failures from [ISO
2010] are considered for the adaptable factory and from [ISO 2018]
for vehicle platooning. Bayesian networks [Halpern 2017] and the
Dempster-Shafer theory [Shafer 1976] based on probability theory
are found to be effective for mapping the uncertainties identified to

180 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

possible failures and hazards. As an outcome, we notice that each
uncertainty can lead to multiple hazards and every hazard can be a
result of one or more uncertainty occurrences. The next step involves
mapping these hazards to their corresponding mitigation measures.
For the use case of the adaptable factory, an intermittent step of
rectification acts as an additional layer of safety assurance, which is
feasible because of the semi-automated approach employed. The
uncertainties that can be eliminated by rectification measures occur
predominantly in information exchange between individual CESs. In
certain cases, the system may still be in a hazardous state even after
the uncertainty has been eliminated through rectification. To
maintain safety, these hazards must be further mapped to appropriate
mitigation measures. The mitigation measures can be either based on
present industrial standards or they can be reconfiguration identified
as degradation modes. In certain scenarios, these degradation modes
alone are not sufficient and additional protective measures have to be
taken.

Fig. 8-3: Visualization of a U-Map

In the end, an extensive set of identified uncertainties is mapped
to an even bigger set of possible hazards, which in turn is mapped to
a rather small set of degradation modes and protective measures. This
U-Map makes implementation simple and does not have an exploded
range of mitigation measures that have to be undertaken specifically
to handle every uncertainty. However, creating such a map and
ensuring its completeness to handle all possible uncertainties at
runtime can be a complex task, which presently relies greatly upon
the research communities’ identified sources of uncertainty, which in
themselves might not be complete. Furthermore, we consider
subjective probability for uncertainty occurrence [Shafer 1976],

8.3 Assuring Runtime Safety Based on Modular Safety Cases 181

which in itself might be imprecise. A U-Map can be visualized as
shown in Figure 8-3.

At runtime, with the help of this U-Map, the necessary rectification
measures are taken by the safety engineers, thereby eliminating
relevant uncertainties before safety approval. The degradation modes
and additional protective measures serve as an input for further
explanation of dynamic safety certification, in that they enable the
appropriate configuration and safety measures to be chosen.

 Runtime Monitoring of CESs and their Context

The generated runtime context model from Section 8.3.1 can be used
to deliver relevant information that enables runtime
analysis/monitoring.

With the information available from the context model explained
in Section 8.3.1 and the specifications for uncertainty detection from
the DTU map as explained in Section 8.3.2, monitors can be created to
monitor the properties of interest in a given CES. The monitors and
the specifications are created at design time; however, the monitors
are executed during runtime. For example, it may be desirable to
monitor the speed of a mechatronic object to determine whether the
said speed obeys safety requirements. A common way to create a
runtime monitor is to translate assertions about the state of a context
element into rigorous specification formalisms [Bartocci et al. 2018],
such as LTL formulas, to subsequently create instrumentation files
with the monitor specifications. In our example, a domain expert can
provide the assertion “It is always the case that CES1 moves at a speed
of 2 mm/s” and this can be translated into the LTL formula
.1ݏ݁ܿ)ܩ ݀݁݁ݏ ≤ 2); this formula can be used to create the monitor
specification [Bartocci et al. 2018] as instrumentation files1 that have
to be integrated into the CES. The runtime monitor specification must
be created during design time and the instrumentation files generated
should be integrated during development. At runtime, these monitor
specifications, including the specifications from the DTU map, will be
represented in the form of modular safety cases. In the context of an
adaptable factory, a centralized software that is responsible for task
orchestration and system assessment can identify and compile the
monitoring requirements dynamically to allow for the final approval
by safety engineers in a semi-automated certification process.

1 http://fsl.cs.illinois.edu/index.php/MOP

http://fsl.cs.illinois.edu/index.php/MOP

182 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

 Integrated Model-Based Risk Assessment

Due to frequent changes in the products being manufactured,
adjusting a factory quickly is a major challenge. This raises concerns
with regard to dependability due to unknown configurations at
runtime. Thus, apart from functional aspects (i.e., the check of
whether a factory is able to manufacture a specific product), safety
aspects as well as product quality assurance aspects must be
addressed. In flexible production scenarios, a risk assessment must be
conducted after each reconfiguration of the production system. Since
this is a prerequisite for operating the factory in the new
configuration, a manual approach can no longer effectively fulfil the
objectives for assuring safety in highly flexible manufacturing
scenarios. During production, every process step has the potential to
influence the quality of the product in an undesirable way, for
example depending on the precision of the equipment used, or
random failures while executing the process step. This is captured in
a Process Failure Mode and Effects Analysis (process FMEA) with the
concept of failure modes of a process step as well as the respective
severity. The process FMEA also defines measures for detecting and
dealing with unwanted effects on product quality. Since both the
factory's configuration and its products change constantly in
adaptable factory scenarios, a process FMEA must be performed
dynamically during operation.

In the context of industrial production systems, the safety
standards ISO 13849 [ISO 2006] or IEC 62061 [IEC 2005] provide
guidelines for keeping the residual risks in machine operation within
tolerable limits. For every production system, a comprehensive risk
assessment is required, which includes risk reduction measures if
necessary (e.g., by introducing specific risk protective measures such
as fences). The resulting safety documentation describes the
assessment principles and the resulting measures that are
implemented to minimize hazards. This documentation lays the
foundation for the safe operation of a machine and it proves
compliance with the Machinery Directive 2006/42/EC of the
European Commission [European 2006].

In this section, we present an approach for the model-based
assessment of flexible and reconfigurable manufacturing systems
based on a meta-model. This integrated approach captures all
information needed to conduct both risk assessment and process
FMEA dynamically during the runtime of the manufacturing system in
an automated way. The approach thus enables flexible manufacturing

8.3 Assuring Runtime Safety Based on Modular Safety Cases 183

scenarios with frequent changes in the production system up to a lot
size of one.

Meta-model SQUADfps

To address the aforementioned problem statement for a dynamic
assessment at runtime, a meta-model called SQUADfps (machine
Safety and product QUAlity assessment for a flexible proDuction
system) is presented [Koo, Rothbauer et al. 2019]. This metamodel
considers hazards and failure modes due to both safety and quality
issues. Four categories are introduced within the SQUADfps
metamodel: process definition, abstract services, production
equipment, and process implementation. This depicts the modularity
within an adaptable factory scenario. This integrated model-based
approach allows information not only from each item of modular
production equipment (i.e., CESs within CrESt) to be considered
during the assessment, but also from the production context.

With the focus on quality assurance, an integrated CES that
provides services for production (EquipmentService) steps brings
along information about its possible failure modes
(EquipmentFailureMode) at runtime. Equipment that provides
quality measures (CoveredFailureMode) brings along the information
about the effectiveness of the measures (e.g., detection) regarding
specific failure modes (EquipmentFailureMode). The suitability of the
planned production schedule—that is, the equipment’s suitability to
provide the required services—can be analyzed by conducting a
model-based quality assessment process FMEA, taking the production
recipe and the services required into account, as shown in Figure 8-4.
For the risk assessment, possible hazards introduced into the overall
production system during process implementation can be captured
and checked against the available SafetyFunction to determine
whether safety requirements are fulfilled.

The benefits of applying SQUADfps for the dynamic certification of
CSGs in an adaptable factory are twofold: firstly, this metamodel
allows risk-related information to be captured dynamically at
runtime. Secondly, the risk information—be it hazards or failure
modes along with the analysis of this information—provides input for
the modular safety cases systematically. The process of conducting a
dynamic safety certification is discussed in subsequent paragraphs.

184 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

Fig. 8-4: Meta-model SQUADfps for a dynamic machine safety and product quality
assessment at runtime [Koo, Rothbauer et al. 2019]

Based on the case study described, we now present the results
generated using SQUADfps to aid understanding.

Case Study Example

Table 8-5 shows the product recipe R = r1, …, r6 for producing a pulley
wheel, specifying the required process steps. For each recipe step
required, the relevant failure modes are listed and a measure of their
severity (Sev) is given as they would impact the final product. This
information can be added by the design team of the product, as they
know exactly how each failure mode will impact the final product. For
each failure mode in the product recipe, a measure of the detectability
(Det) by scheduled quality measures is also given. For example, the
failure mode Misplacement of the service Pick & place can be detected
visually with high certainty (detection value is one) but the failure
mode Crimping will likely go unnoticed as these can only be detected
by stress tests that are not considered in this process instantiation.

Consider the first process instantiation P in Table 8-5, consisting
of process steps p1, …, p6a. Process P is capable of producing the pulley
wheel, as it provides all the services required and in the correct order.
For each deployment of a required recipe step to a process step on a
concrete item of equipment, the occurrence—the information
regarding failure mode frequency (Occ)—can be added to the model.
This information is provided by the vendor of the production
equipment that provides production services and the operator will

8.3 Assuring Runtime Safety Based on Modular Safety Cases 185

possibly also update these values based on local production
experience (e.g., environment conditions).

Recipe R Failure Mode Se
v

Service O
cc

Process P D
et

R
PN

O
cc

’

Process P’ D
et

’

R
PN

’

r1: Deliver
tray

Misplacement 4 Convey 2 p1: Belt
conveyer

1 8 2 p’1: Belt
conveyer

1 8
Shock 5 1 1 5 1 1 5

r2: Mount
axle

Misplacement 4 Pick &
place

2 p2: Robot
arm

1 8 2 p’2: Robot
arm 2

1 8
Crimping 2 4 5 40 2 2 8

r3: Circular
grease roll

Too little 5 Apply liquid 4 p3: Robot
arm

1 20 4 p’3: Robot
arm 2

1 20
Too much 2 4 1 8 4 1 8

r4: Mount
1st disc

Misplacement 4 Pick &
place

2 p4: Robot
arm

1 8 2 p’4: Robot
arm 2

1 8
Crimping 3 4 5 60 2 2 12

r5: Circular
grease 2nd

disc

Too little 5
Apply liquid

4 p5: Robot
arm

1 20 4 p’5: Robot
arm 2

1 20

Too much 2 4 1 8 4 1 8

r6: Mount
roll on 2nd

disc

Misplacement 4 Pick &
place

2 p6: Robot
arm

1 8 2 p’6: Robot
arm 2

1 8

Crimping 5 4 5 100 2 2 20

 Visual
inspection p6a: Worker p’6a: Laser

scanner

Table 8-5: Case study process definition and two possible deployments of the Process
P and P’ (production schedules)

Looking at the risk priority numbers (RPN), the chosen process
deployment P for producing the product seems to come at a high risk
of not reaching the required quality goals, which is indicated by the
high value of the RPN. An alternate process instantiation using more
reliable equipment and higher precision quality measures can be seen
in Process P’ in Table 8-1. The equipment Robot arm 2 has a lower
probability of introducing the critical crimping failure mode (Occ
value 2 for Robot arm 2 vs. Occ value 4 for Robot arm 1) and a high-
precision laser scanner is used as a quality measure. As we can see,
the concrete instantiation of the process on actual equipment
influences the occurrence values for each failure mode of a production
step as well as detection values. As a consequence, the risk
measured—for example, using the product of occurrence and severity
(RPN)—will differ and the highest values of RPN are lowered from
100 to 20.

Considering machine safety, the results generated using model-
based risk assessment for the various integrated CESs can be seen in
Table 8-6 (for the production schedule P’). In this table, the
combination of the risk parameters F (Frequency), S (Severity) and P
(Possibility for avoidance) will determine the risk level (which is
represented as the Performance Level PL used for safety analysis).

186 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

 Process

P’

Interaction

Task T
F Hazard H S P PL’

Safety

Function
PL

Robot arm
2

Loading of roll
body with axle

F2
(high)

h1: Shearing
due to robot
movement

S2
(high)

P2
(high) PL e

Safety-
sensitive
cover

PL e

Belt
conveyor

Loading of roll
body with axle

F2
(high)

h2: Squeezing
due to belt
getting caught

S1 (low) P1 (low) PL b Light
curtain PL d

Robot arm
2

Maintenance of
robot’s handling
tool

F1 (low)
h3: Bruising due
to robot
movement

S1 (low) P1 (low) PL a
Safety-
sensitive
cover

PL e

Table 8-6: Exemplary results for the model-based risk assessment

In the exemplary safety risk assessment shown, we can see that the
integrated robot (CES) might cause a hazard ℎଵ shearing when the
operator loads the material into the assembly cell. The runtime
assessment system evaluates this risk as PL e (very high risk
according to ISO 13849-1) based on different data from the context
and allocates a possible existing safety function to ℎଵ. As the
integrated safety-sensitive cover for the robot has a very high
reliability (also PL e), it provides proof that the risk of ℎଵ can be
mitigated during the interaction task. A similar analysis procedure is
also performed for all relevant hazards to generate the foundation for
the safety risk assessment.

This approach is of a qualitative nature, which in practice is very
effective for prioritizing measures for the main problems. It can be
extended to deliver quantitative measures of production risk. The
approach aims to assist humans in finding an optimal solution for
producing a product while considering both machine safety and
product quality aspects.

 Dynamic Safety Certification

The goal of a dynamic and runtime safety certification in the context
of an adaptable factory allows an accelerated operational safety
approval (i.e., certification) after system modifications are performed.
With the dynamic safety certification method presented, automated
capture and analysis of runtime data can be performed more
efficiently. In the production domain, the human’s role as the person
responsible remains significant to guarantee system safety in
accordance with the European Machinery Directive [European 2006].
Therefore, a human-in-the-loop assurance based on the concept of
modular safety cases [Kelly 2007] is proposed for the adaptable
factory use case.

8.3 Assuring Runtime Safety Based on Modular Safety Cases 187

The concept of using a modular safety case allows relevant
requirements (i.e., safety goals) and analysis results (i.e., argument
and evidence) to be documented in a systematic way for the required
certification process. The initiation of these modular safety cases
highlights the context-relevant requirements that must be fulfilled by
the specific runtime system configuration—as already mentioned
earlier—to deal with monitoring, uncertainty, and risk requirements.
Dealing with all these requirements successfully and the completion
of modular safety cases at runtime will contribute to the overall
certification of the adapted CSG.

Fig. 8-7: Dynamic safety certification for adaptable factory

An interactive tool called AutoSafety [Koo, Vorderer et al. 2019]
has been developed to help operators and safety engineers to assess
and approve the adaptable assembly demonstrator at runtime (the
dynamic safety certification process is shown in Figure 8-7). This
semi-automated certification approach builds up the safety case of the
CSG by integrating modular safety cases of the integrated modular
systems while considering relevant runtime safety aspects (e.g.,
runtime measures) identified during reconfiguration. Moreover,
AutoSafety will be able to highlight the status of each modular safety
case individually with regard to whether they are successfully fulfilled
based on runtime data. When automated analyses of certain runtime
variables are conducted, the respective modular safety cases can be
updated automatically. Humans can also perform updates to ensure
the correctness, accuracy, and completeness of the results. For highly
adaptable factory scenarios in the future, this dynamic runtime

188 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

certification approach will be able to accelerate the safety approval
procedure and minimize manual engineering efforts required for
assessment and documentation.

8.4 Design and Runtime Contracts

This part of the chapter explains the use of contracts within the
specification, development, and standardization of safety-critical
collaborative systems. The concepts are illustrated in connection with
the use case "Vehicle Platooning"

One of the biggest challenges with collaborative systems is to
ensure that the systems behave safely — not only as individuals but
also as an integrated system. At the same time, a collaborative system
can only be successfully introduced into the market if its safety can be
assured — for example, based on an adequate certification process.
This could be achieved as part of the design time engineering or based
on a combination of design time engineering and runtime
assurance/certification measures. In the first case (i.e., safety
assurance achieved during design time engineering), a traditional
method of system development would be pursued, with the difference
being that this would be done for the integrated system, which is an
abstract construct. However, this requires that the CESs and CSGs are
known to a sufficient extent — for example, by means of
comprehensive standardization of system and service characteristics
for a domain. The second case (i.e., safety assurance based on a
combination of design time engineering and runtime
assurance/certification measures) is ideal, given the natural
dynamics of collaborative systems. To achieve this, we require a fully
integrated and comprehensive solution (e.g., runtime certification, an
infrastructure for communication, certain standardization — for
example, with regard to interoperability, tracking, evaluation,
enforcement, etc.). However, it is impossible to decide what this
solution should look like for future systems, although we can make
pragmatic assumptions as far as we require these aspects for our
work. In this project, we have focused in particular on closing the gap
between traditional design time certification and runtime
certification. We have done this by introducing an approach for
collaborative systems specification that relies heavily on contract-
based design and engineers the exchange of guarantees and
demands/assumptions during runtime. During the design phase,
contracts allow the distribution of responsibilities of the participants

8.4 Design and Runtime Contracts 189

to be defined, and during runtime, they allow safe behavior to be
enforced.

 Design-Time Approach for Collaborative Systems

One of the main drivers in the definition of our approach is the lack of
understanding of how to establish a safe collaboration. Therefore, it is
not our aim to find the best solution for a particular aspect. Instead,
we are aiming for a more comprehensive solution that could help us
to better understand the problem and thus distinguish and highlight
the more important aspects when considering certification for safe
behavior. For this reason, the approach defines the need to specify and
certify the CSG itself. The goal is to make the CSG specification the
standard that defines the minimum requirements for collaboration in
a specific scenario (in our case, a vehicle platoon). System developers
who want to participate in such collaboration must then comply with
the specification and the associated domain regulations.

Creating the CSG Specification

To build a CSG specification systematically, we consider the following
refinement steps.

At the business/domain level, the CSG designer must initially
define the aim or subject matter of the collaboration. We believe that,
given the nature of collaborative systems, service-oriented
architectures (SOA) [Bell 2008] offer useful concepts for specifying
this aspect. These include the specification of the functions and
objectives of collaboration, roles, allowable system compositions,
structural configurations, environmental constraints, and the
definition of service contracts.

At the functional level, and by following a traditional top-down
approach, the reference architecture that defines how functionality
and responsibilities are distributed among roles is built. This includes
defining the minimum requirements, the behavior, and functions of
the roles and their dependencies, and setting the flexibility points. As
mentioned above, runtime contracts could be used to enable such
flexibility points. We consider ConSerts [Schneider 2013] to be a
useful technique for realizing this concept since they are contracts
that are specifically designed to be exchanged during runtime.
ConSerts include concepts for defining the quality of the data to be
exchanged, and they can be used to define the reactions to contract
violations and discrepancies that will guide the change of behavior in
the system.

190 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

At the contract level, the design decisions have been refined
enough so that the CSG designer can define the final list of
requirements in the form of verifiable contracts. This should be done
in a more formal way to avoid misinterpretations by the CES
developers.

Safety-Relevant Activities

In parallel to the design, the safety activities are performed:
At the business/domain level, the safety engineer should be able

to perform the hazard and risk analysis for the CSG thanks to an initial
list of system functions. This takes place at two levels:

At the CSG level, the consequences of the fail behavior of functions
at CSG level must be investigated — for example, platoon deceleration.
A lack in deceleration of a platoon can lead to a mass collision. This
clearly has a higher severity than a single vehicle collision.

At the role level, the fail behavior of the subsystems in the
collaboration, according to the initial function distribution among the
roles, must be investigated with regard to its effect on the integrated
system.

At the functional level, and given the specification of the safety
goals and a first draft of the functional architecture, fault analysis can
be performed in the form of a Component Fault Tree (CFT) [Domis
and Trapp 2009]. This allows safety measures to be identified and the
current design to be adapted to avoid or mitigate these failures. Safety
measures are represented by safety requirements, which can be
mapped directly to the collaboration roles. With a safety strategy in
mind and the design that reflects it, it is then possible to create the
functional safety concept for the CSG level.

At the contract level, and similar to the procedure for the
architecture design, the safety requirements mentioned must be
defined in terms of verifiable safety contracts.

 Contracts Concept

As mentioned above, the CSG specification defines the functionality
and behavior that the roles will take on in a collaboration. This is
partly defined by functional and safety contracts. These contracts are
considered as pure design-time contracts since they are exchanged
and consumed only during the CSG-CES development time. On the
other hand, ConSerts should be exchanged during runtime. In this
approach, this means that ConSerts must also be developed and be

8.4 Design and Runtime Contracts 191

standardized as part of the CSG specification so that they can also be
successfully exchanged and consumed at runtime.

In the context of the vehicle platoon use case:
• Functional contracts were primarily defined based on the state
machine of each role. They define the behavior relevant for
collaboration in a particular state.
• Safety contracts define the reaction to failure situations.
Therefore, they mainly refer to the transitions in the state machine
that connect normal states and failed operational states (including
degraded states).
• ConSerts were engineered as an additional function of the system
in close relation to the service contracts defined in the context of
the service-oriented architecture.
• Service contracts define the specific messages exchanged
between leader and follower. Therefore, ConSerts were defined in
the form of guarantees of the safety-relevant data being
exchanged.
• ConSerts are consumed according to the reference architecture
for three purposes: to support flexibility, to allow valid CSG
compositions, and to drive change of states.

Flexibility aspect: If demands and guarantees are met, the
collaboration is allowed. Flexibility is supported because demands
define a range in which guarantees can satisfy them. If the guarantees
remain within this acceptable range, collaboration is allowed.

Valid compositions: A valid composition means that a demand is
satisfied by a specific guarantee. If this is not the case, the
collaboration should theoretically be terminated. We consider the
validation of demands vs guarantees in two ways:

Contract violation: A violation is deemed to have occurred when
the vehicle with demands can prove on its own that the service
provider is not acting in accordance with its guarantees.

Contract discrepancy: A discrepancy arises when a demand
cannot be satisfied by any guarantee.

Change of states: A contract violation is engineered in the platoon
scenario such that when it occurs, the vehicle that detects the
violation will preventively transition into a degraded mode for a
certain time and notify the system causing the problem. In the event
of a contract discrepancy, the collaboration with the provider is
terminated. This will finally lead to the division of the platoon into
sub-platoons.

192 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

 Runtime Evaluation of Safety Contracts

A full detailed runtime analysis and safety assurance of all
collaboration scenarios, including all environmental conditions, is not
possible for real systems. Functional and safety contracts provide the
means to operate on an adequate abstraction that has been prepared
by diligent development time engineering. The use of safety contracts
of different CESs requires the development of an environment capable
of composing and evaluating these contracts at runtime. In the vehicle
platoon use case investigated, safety contracts are used to define the
reaction to failure situations, and safety guarantees are expressed as
a means for tolerating deviation from a nominal behavior.

Simulative Approach for Validation of Safety Contracts

In order to validate the safety contracts designed and evaluate the
behavior of the overall system when failures occur, a simulative
approach can be used. Simulations and model-based evaluation of
safety contracts are used during the development phase to observe
the system behavior and validate the expectation of the safety
engineer at design time. In the simulation, various manipulations,
such as data corruption, invalid data due to a hardware defect, and
other possible failures can be injected into the system [Isermann
2017]. An executable model of the collaborative embedded system
should be created first as a means of validating the required safety
functionalities.

Safety contracts separate requirements into assumptions and
guarantees, which help to decrease the complexity of verifying the
implementation against its specifications. Using a formal approach
such as failure detection and isolation (failure handling) to do this
allows the process of contract evaluation to be automated.

Case Study: Vehicle Platoon Example

The aim of the vehicle platoon use case is due to maintaining a short
inter-vehicle distance. This would be achieved by exploiting real-time
knowledge of the driving behavior of each vehicle in the platoon
through onboard sensors and wireless communication among
platoon members. If a sensor or communication failure occurs, or the
respective safety guarantees become worse due to context changes,
then the real-time knowledge would not be reliable, which puts the
platoon in an unsafe mode. Therefore, both failures and changes in
safety guarantees must be detected and compensated to keep the
system working under any circumstance. Using a graceful degradation
concept would help the system to remain operational (with a

8.4 Design and Runtime Contracts 193

degraded performance) in at least some such conditions. Note that the
simulative approach used in the CrESt project is not executed in a fully
realistic scenario due to effort limitations; instead, a highly simplified
scenario has been used. The simulation model focuses on a platoon
system that is already running, consisting of three vehicles running on
one straight highway without any tunnels, curves, or inclines. In the
simulation runs, one predefined safety contract is evaluated as an
example. The results of the simulation are presented in Figure 8-8 and
Figure 8-9. These figures show the system behavior in the event of a
distance measurement sensor failure.

Fig. 8-8: Example: Generation and handling of errors with Simulink

Fig. 8-9: Example of error injection simulation results in a longitudinal platooning
model using Simulink

As shown above, the failure injection block (in the left side) in Figure
8-8 is implemented as a MATLAB function in Simulink and is located
before the sensor inputs into the controller block. It can generate
invalid sensor values at a specified time with the desired repetition
rate of the error. Moreover, the failure detection and degradation

194 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

function validates the incoming data before it is passed on to the
controller. Figure 8-9 shows the course of the platooning without
applying error detection and degradation. Here, it becomes obvious
that a sensor defect causes a deviation in the platooning distances
because of the impacted controller performance. The third vehicle
from Figure 8-8 is still following the previous vehicle because it is
receiving correct speed data.

8.5 Conclusion

In this chapter, we presented a concept for safety certification of
collaborative embedded systems. We highlighted the most distinct
characteristics that distinguish them from classical systems. It is
mainly their dynamicity that makes predicting their behavior difficult
and therefore renders traditional safety certification techniques
impractical. Based on these considerations, we presented new
techniques and adaptations of existing techniques to enable a safety
certification process that is specifically tailored to collaborative
embedded systems.

We have outlined a two-step process. On the one hand, this process
comprises the preliminary work during the design phase. All CESs are
equipped with modular cases that contain an interface for integration
with other safety cases. Since there are still many unknowns during
the design phase, the second part of the safety certification process is
performed at runtime, when all variables can be resolved. At runtime,
the modular safety cases are integrated and evaluated according to
the planned collaboration. Our concept comprises the monitoring of
context changes at runtime and facilitates the handling of
uncertainties. This enables a largely automated process that can be
repeated efficiently during dynamic reconfigurations at runtime.

8.6 Literature
[Bartocci et al. 2018] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D.

Ničković, S. Sankaranarayanan: Specification-Based Monitoring of Cyber-Physical
Systems: A Survey on Theory, Tools and Applications. In: Lecture Notes in Computer
Science, Springer, Cham. 2018, pp. 135-175.

[Bell 2008] M. Bell: Service-Oriented Modeling: Service Analysis, Design, and
Architecture. Wiley Publishing, 2008.

[Cámara et al. 2015] J. Cámara, G. Moreno, D. Garlan: Reasoning about Human
Participation in Self-Adaptive Systems. In: 2015 IEEE/ACM 10th International

8.6 Literature 195

Symposium on Software Engineering for Adaptive and Self-Managing
Systems, IEEE, 2015, pp. 146-156.

[Damm et al. 2019] W. Damm, P. Heidl: Position paper on Safety, Security, and
Certifiability of Future Man-Machine Systems, Results of the SafeTRANS Working
Group “Resilient, Learning, and Evolutionary Systems”, https://www.safetrans-
de.org/en/activities/Roadmapping.php, 2019.

[Daun et al. 2016] M. Daun, J. Brings, T. Weyer, B. Tenbergen: Fostering Concurrent
Engineering of Cyber-Physical Systems: A Proposal for an Ontological Context
Framework. In: 2016 3rd International Workshop on Emerging Ideas and Trends
in Engineering of Cyber-Physical Systems (EITEC), IEEE, 2016, pp. 5-10.

[Domis and Trapp 2009] D. Domis, M. Trapp: Component-Based Abstraction in Fault
Tree Analysis. In: International Conference on Computer Safety, Reliability and
Security, Springer-Verlag, 2009, pp. 297-310.

[European 2006] European Commission: Machinery Directive 2006/42/EC 2006. 2006.

[Goodloe and Pike 2010] A. Goodloe, L. Pike: Monitoring Distributed Real-Time
Systems: A Survey and Future Directions. 2010.

[Halpern 2017] J. Y. Halpern: Reasoning about Uncertainty. MIT press, 2017.

[Hildebrandt et al. 2019] C. Hildebrandt, T. Bandyszak, A. Petrovska, N. Laxman, E.
Cioroaica, S. Törsleff: EURECA: Epistemic Uncertainty Classification Scheme for
Runtime Information Exchange in Collaborative System Groups. SICS Software-
Intensive Cyber-Physical Systems, 34(4), (2019), pp. 177-190.

[IEC 2005] International Electrotechnical Commission (IEC): IEC 62061: Safety of
machinery — Functional Safety of Safety-Related Electrical, Electronic and
Programmable Electronic Control Systems. 2005.

[Isermann 2017] R. Isermann: Fahrerassistenzsysteme 2017: Von der Assistenz zum
automatisierten Fahren — 3. Internationale ATZ-Fachtagung Automatisiertes
Fahren. Springer-Verlag (available in German only).

[ISO 2006] International Organization for Standardization (ISO): ISO 13849–1: Safety
of Machinery — Safety-Related Parts of Control Systems – Part 1: General Principles
for Design. 2006.

[ISO 2010] International Organization for Standardization (ISO): ISO 12100: Safety of
Machinery - General Principles for Design — Risk Assessment and Risk Reduction.
2010.

[ISO 2018] International Organization for Standardization (ISO): ISO 26262-3: Road
Vehicles — Functional Safety — Part 3: Concept Phase. 2018.

[Jirkovský et al. 2016] V. Jirkovský, M. Obitko, V. Mařík: Understanding Data
Heterogeneity in the Context of Cyber-Physical Systems Integration. In: IEEE
Transactions on Industrial Informatics 13, no. 2, 2016, pp. 660-667.

[Kelly 2007] T. Kelly: Using Software Architecture Techniques to Support the Modular
Certification of Safety-Critical Systems. In: ACM International Conference
Proceeding Series, Vol. 248, 2007, pp. 53–65.

[Kephart and Chess 2003] J.O. Kephart, D.M. Chess: The Vision of Autonomic
Computing. In: Computer 36, no. 1, 2003, pp. 41-50.

[Koo, Rothbauer et al. 2019] C. H. Koo, S. Rothbauer, M. Vorderer, K. Höfig, M. Zeller:
SQUADfps: Integrated Model-Based Machine Safety and Product Quality for

https://www.safetrans-de.org/en/activities/Roadmapping.php
https://www.safetrans-de.org/en/activities/Roadmapping.php

196 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

Flexible Production Systems. In: International Symposium on Model-Based Safety
and Assessment, Springer, 2019, pp. 222–236.

[Koo, Vorderer et al. 2019] C. H. Koo, M. Vorderer, S. Schröck, J. Richter, A. Verl:
Assistierte Risikobeurteilung für wandlungsfähige Plug-and-Produce
Montagesysteme. In: VDI-Kongress Automation, 2019, pp. 41–54 (available in
German only).

[Koren et al. 1999] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, A. Galip
Ulsoy, H. van. Brussel: Reconfigurable Manufacturing Systems. CIRP Annals, Vol. 48,
1999, pp. 527–540.

[Negri et al. 2016] E. Negri, L. Fumagalli, M. Garetti, L. Tanca: Requirements and
Languages for the Semantic Representation of Manufacturing Systems. In:
Computers in Industry 81, 2018, pp. 55-66.

[Perez-Palacin and Mirandola 2014] D. Perez-Palacin, R. Mirandola: Uncertainties in the
Modeling of Self-Adaptive Systems: A Taxonomy and an Example of Availability
Evaluation. In: Proceedings of the 5th ACM/SPEC international conference on
Performance engineering, 2014, pp. 3-14.

[Petrovska and Grigoleit 2018] A. Petrovska, F. Grigoleit: Towards Context Modeling for
Dynamic Collaborative Embedded Systems in Open Context. In: MRC@ IJCAI, 2018,
pp. 41-45.

[Ramirez et al. 2012] A. J. Ramirez, A. C. Jensen, B. H. Cheng: A Taxonomy of Uncertainty
for Dynamically Adaptive Systems. In: 2012 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE.
2012, pp. 99-108.

[Schneider and Trapp 2013] D. Schneider, M. Trapp: Conditional Safety Certification of
Open Adaptive Systems. In: ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 2013.

[Shafer 1976] G. Shafer: A mathematical theory of evidence (Vol. 42). Princeton
university press, 1976.

[Yilmaz and Davis 1987] O. S. Yilmaz, R. P. Davis: Flexible Manufacturing Systems:
Characteristics and Assessment. In: Engineering Management International, Vol. 4,
1987, pp. 209–212.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	

	

9

Goal-Based Strategy
Exploration

When	collaborative	embedded	systems	(CESs)	connect	to	form	a	group,	this	collaborative	
system	group	(CSG)	can	achieve	goals	that	are	beyond	the	reach	of	individual	systems.	
The	goals	such	a	group	can	achieve	depend	on	the	constituent	collaborative	embedded	
systems.	Consequently,	the	ability	of	a	collaborative	system	group	to	adapt	itself	is	driven	
by	 the	 capabilities	 of	 its	 collaborative	 embedded	 systems.	 This	 tight	 interconnection	
impedes	the	manual	handling	of	adaptation	strategies.	Therefore,	this	chapter	introduces	
a	 goal-based	 approach	 for	 strategy	 exploration	 that	 considers	 the	 peculiarities	 of	
collaborative	system	groups	and	collaborative	embedded	systems.	The	chapter	sets	out	
the	model-based	approach	to	adaptive	system	(group)	design,	incorporating	the	goals	of	
collaborative	 system	 groups	 and	 individual	 systems,	 and	 outlines	 corresponding	
automated	validation	methods.	We	demonstrate	the	applicability	of	our	approach	for	a	
case	example	of	collaborative	transport	robots.	

	

Patricia Aluko Obe, University of Duisburg-Essen
Jennifer Brings, University of Duisburg-Essen
Marian Daun, University of Duisburg-Essen
Linda Feeken, Offis e.V.
Elham Mirzaei, InSystems Automation GmbH
Martin Neumann, InSystems Automation GmbH
Jochen Nickles, Siemens AG
Simon Rösel, Model Engineering Solutions GmbH
Markus Sauer, Siemens AG
Holger Schlingloff, Fraunhofer FOKUS
Ingo Stierand, Offis e.V.
Jan-Stefan Zernickel, InSystems Automation GmbH

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_9

197

https://doi.org/10.1007/978-3-030-62136-0_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_9&domain=pdf

198 Goal-Based Strategy Exploration

	

9.1 Introduction

The	 development	 of	 collaborative	 embedded	 systems	 (CESs)	 faces	
challenges	due	to	the	high	degree	of	complexity	that	results	from	the	
interplay	of	various	CESs	within	a	collaborative	system	group	(CSG).	
CSGs	are	formed	by	CESs	to	achieve	goals	that	individual	CESs	cannot	
achieve	 on	 their	 own.	 For	 example,	 collaborative	 autonomous	
transport	 robots	 (CESs)	 can	 form	 fleets	 (CSGs)	 to	 optimize	 the	
transportation	of	goods	in	a	factory.	In	a	CSG,	it	is	not	only	the	CESs	
that	have	goals;	the	CSG	also	has	goals	which	in	turn	result	from	the	
goals	 of	 the	 CESs.	 However,	 the	 different	 goals	 may	 be	 partially	
contradictory.	For	example,	an	individual	robot	may	be	interested	in	
conserving	its	battery	life,	while	the	fleet	as	a	whole	is	interested	in	
minimizing	disruption	in	production.	The	decentralized	organization	
and	 the	 dynamicity	 of	 such	 CSGs	 (for	 example,	 robots	may	 join	 or	
leave	the	fleet	during	runtime)	makes	them	highly	complex	and	their	
development	challenging.	

Therefore,	 we	 propose	 a	 goal-based	 approach	 for	 strategy	
exploration	that	considers	the	peculiarities	of	CSGs	and	CESs.	In	detail,	
we	introduce	a	goal	modeling	approach	tailored	to	the	specification	of	
goals	for	CESs	and	CSGs	and	show	how	strategies	can	be	developed	
based	 on	 these	 goals	 and	 operationalized.	 We	 demonstrate	 the	
applicability	 of	 our	 approach	 for	 a	 case	 example	 from	 the	 industry	
automation	 domain.	 Specifically,	 we	 illustrate	 the	 impact	 that	
different	strategies	for	a	fleet	of	autonomous	transport	robots	have	on	
the	fulfilment	of	goals	by	the	individual	robots.	

9.2 Goal Modeling for Collaborative System Groups

Goal	models	 are	 used—often	 in	 the	 early	 development	 phases—to	
document	objectives	that	a	system	under	development	should	achieve	
[van	Lamsweerde	2001].	Goals	typically	document	the	rationales	for	
more	concrete	and	technical	requirements,	as	well	as	design	decisions	
[van	 Lamsweerde	 2001],	 [Yu	 1997].	 For	 a	 recent	 overview	 of	 goal	
modeling,	 please	 refer	 to	 [Horkoff	 et	 al.	 2017].	While	 several	 goal	
modeling	languages	have	been	proposed,	we	focus	on	the	use	of	the	
Goal-oriented	Requirement	Language	(GRL),	which	is	part	of	the	ITU-
standardized	 User	 Requirements	 Notation	 [International	
Telecommunication	Union	2012]	and	a	good	fit	for	CESs	and	CSGs	(cf.	
[Daun	et	al.	2019],	[Brings	et	al.	2020]).	

Challenges

Goal-based strategy
exploration

Goals document
objectives and

rationales

9.2 Goal Modeling for Collaborative System Groups 199

	

GRL	is	based	on	the	i*	framework	[Yu	1997]	but	is	less	restrictive	
regarding	the	use	of	the	notational	elements	(cf.	[Horkoff	et	al.	2008]).	
GRL	encompasses	the	use	of	actors	to	denote	stakeholders	that	have	
some	goals	to	be	achieved	by	using	a	system	under	development	—	
that	is,	they	may	depend	on	other	actors	to	achieve	their	goals.	Most	
notably,	in	agent-oriented	software	engineering,	actors	are	also	used	
to	model	technical	systems	[Bresciani	et	al.	2004],	as	is	the	case	here.	

In	GRL,	the	intentions	of	actors	can	be	further	specified	by	means	
of	 several	 types	 of	 intentional	 elements.	 Intentional	 elements	 are	
subdivided	into	(hard)	goals,	soft	goals,	tasks,	resources,	and	beliefs,	
which	are	related	via	decompositions	and	contribution	 links.	 In	 the	
following,	we	illustrate	how	the	use	of	goal	modeling	can	foster	the	
engineering	of	CSGs.	

No	reasonable	system	is	supposed	to	behave	absolutely	arbitrarily.	
Each	system	has	goals	that	it	has	to	achieve.	A	CSG	is	formed	through	
the	cooperation	of	the	CESs,	 therefore	the	goals	of	the	CSG	must	be	
considered	 as	 early	 as	 during	 the	 design	 phase.	 The	 following	
distinction	between	goals	is	quite	natural:	we	refer	to	 local	goals	as	
goals	of	a	CES	and	global	goals	as	goals	of	a	CSG.	Global	goals	are	goals	
that	each	CES	of	the	CSG	aims	to	achieve,	while	local	goals	are	goals	
that	represent	the	interests	of	individual	CESs.	

This	allows	us	to	separate	goals	of	the	CSG	from	goals	of	the	CESs	
but	 also	 to	 denote	 relationships	 between	 both	 —	 for	 example,	 to	
identify	 where	 the	 CSG	 depends	 on	 the	 individual	 CESs	 in	 its	 goal	
fulfillment	and	vice	versa.	This	 is	 important	 information,	as	we	will	
see	later	on	that	these	dependencies	drive	design	decisions	and	result	
in	 the	 definition	 of	 explicit	 strategies.	 Figure	9-1	 shows	 an	 excerpt	
from	the	GRL	goal	model	of	an	 individual	 transport	robot.	The	goal	
model	emphasizes	the	transportation-related	goals	of	the	CESs.	The	
goal	model	depicts	the	robots’	responsibilities	for	route	calculation,	
performing	transport	tasks,	and	bidding	for	transport	tasks.	For	each	
robot,	 detailed	 sub-goals	 are	derived	 that,	 for	 example,	 define	how	
charging	is	to	be	handled	and	how	robot	breakdowns	must	be	treated.	

As	we	can	see,	the	goal	model	specifies	three	important	high-level	
goals	(which	are	defined	directly	after	the	root	node)	regarding	the	
safety	of	humans,	conducting	the	transport,	and	the	robustness	of	the	
robot.	 These	 goals	 are	 then	 refined	 until	 fine-grained	 tasks	 are	
reached,	 such	 as	 the	 tasks	 to	 determine	 obstacle	 positions	 and	 to	
communicate	 the	 obstacle’s	 position.	 These	 goals	 identified	 for	 the	
individual	robots	are	closely	related	to	the	overall	goals	of	the	CSG—
the	fleet	of	robots—as	each	individual	robot	depends	on	the	fleet	of	

Goal-oriented
Requirements Language

Intentional elements

Local goals and global
goals

CSG goals vs. CES goals

Hierarchically
structuring goals

200 Goal-Based Strategy Exploration

	

robots	 and	 vice	 versa.	 We	 investigated	 this	 issue	 in	 [Brings	 et	 al.	
2019],	[Brings	et	al.	2020]	in	more	detail.	

	
Fig. 9-1: GRL goal model for the individual transport robots

Tr
an

sp
or

t

AN
D

Ro
ut

e
Ca

lc
ul

at
io

n

Bi
dd

in
g

Re
ce

iv
e

Ta
sk

Ca
lc

ul
at

e
Bi

d

Pe
rf

or
m

 T
ra

ns
po

rt
AN

D

Co
ns

id
er

 R
ou

te
s o

f
ot

he
r R

ob
ot

s
Co

ns
id

er
 O

bs
ta

cl
es

Fi
nd

 O
pt

im
al

 R
ou

te
AN

D

Lo
ad

in
g

U
nl

oa
di

ng

Re
ro

ut
in

g

De
te

ct
 O

bs
ta

cl
es

Co
m

m
un

ic
at

e
Ro

ut
e

De
te

rm
in

e
St

ar
t/

En
d-

Po
sit

io
n

of
 T

ra
ns

po
rt

Ch
ec

k
if

O
bs

ta
cl

e
is

st
ill

Va

lid

Do
 n

ot
 C

on
sid

er

Hu
m

an
s

Id
en

tif
y

Re
al

 O
bs

ta
cl

esAN
D

AN
D

Lo
ad

 a
t D

iff
er

en
t

He
ig

ht
s

Lo
ad

 a
t D

iff
er

en
t

W
ei

gh
ts

Ba
tt

er
y

M
an

ag
em

en
t

De
te

ct
 D

ef
ec

t B
at

te
ry

Ch
ar

gi
ng

Av
oi

d
Cr

iti
ca

l B
at

te
ry

Le

ve
l

U
se

 a
t B

at
te

ry

Le
ve

l 4
0-

80
%

AN
D

Fi
ni

sh
 W

or
k

an
d

Ch
ar

ge
Ch

ar
ge

 a
nd

 F
in

ish
 W

or
k

Ha
nd

le
 B

re
ak

do
w

n

AN
D

AN
D

Co
m

m
un

ic
at

e
O

th
er

Se
ns

or
y

Ac
cu

ra
cy

Co
m

m
un

ic
at

e
O

bs
ta

cl
e

De
te

rm
in

e
O

bs
ta

cl
e

Po
sit

io
n

AN
D

Co
ns

id
er

 O
th

er
 P

hy
sic

M

ea
su

re
m

en
ts

In
fo

rm
 O

th
er

s A
bo

ut

Co
m

pl
et

io
n

AN
D

Bi
d XO

R Gl
ob

al
 C

ho
ic

e

Co
m

m
un

ic
at

e
Bi

d

Lo
ca

l C
ho

ice

Re
ce

iv
e

De
te

rm
in

e
W

in
ne

r

AN
D

Ba
tt

er
y

Le
ve

l

Cu
rr

en
t p

os
iti

on

Al
go

rit
hm

Ap
pr

op
ria

te
ne

ss

AN
D

AN
D

9.3 Goal-Based Strategy Development 201

	

9.3 Goal-Based Strategy Development

Collaboration	 can	 enable	 embedded	 systems	 to	 achieve	 goals	 that	
cannot	be	achieved	by	a	single	system	on	its	own.	Having	identified	
such	goals	(e.g.,	by	using	the	approach	from	Section	9.2),	one	of	the	
next	engineering	challenges	is	to	develop	behavior	(or	strategies)	for	
the	collaborating	systems	that	will	enable	the	goals	to	be	achieved.	In	
this	 section,	 we	 present	 concepts	 for	 going	 from	 identified	 goals	
towards	behavior	and	we	apply	the	concepts	to	an	example	in	the	use	
case	of	autonomous	transport	robots.	

The	goals	of	a	CSG	and	of	 the	 individual	CESs	describe	what	the	
systems	 should	 achieve	 at	 runtime.	 In	 general,	 those	 goals	 are	
described	 in	 a	way	 that	 is	 understandable	 for	humans.	There	 is	no	
specification	of	the	conditions	under	which	the	goals	are	achieved	or	
how	to	identify	goal	fulfillment.	For	example,	for	a	goal	such	as	“the	
maintenance	costs	of	the	system	group	are	minimized,”	at	design	time,	
there	is	no	information	about	which	maintenance	costs	are	minimal	
but	 still	 realistic:	 maintenance	 costs	 of	 zero	 are	 desirable	 but	 this	
cannot	 be	 achieved	 in	 a	 dynamic	 system.	 Additionally,	 there	 is	 no	
specified	point	in	time	for	checking	whether	this	goal	is	fulfilled	and,	
furthermore,	it	is	not	clear	what	measurements	are	needed	to	predict	
maintenance	costs.	

Key	 performance	 indicators	 (KPIs)	 are	 used	 to	 make	 goal	
fulfillment	 measurable:	 KPIs	 relate	 goals	 to	 observable	 system	
variables	 and	measure	 the	 degree	 to	which	 goals	 are	 fulfilled	 over	
time.	 Each	 goal	 is	 reflected	 by	 at	 least	 one	 KPI	 in	 order	 to	 enable	
assessment	of	the	system	behavior	at	each	point	in	time	with	respect	
to	the	goals.	We	look	at	KPIs	in	more	detail	in	Section	9.4.	

We	describe	system	behavior	in	terms	of	strategies:	from	a	formal	
perspective,	a	strategy	of	a	system	is	a	function	that	maps	the	history	
of	 the	 system	 behavior	 and	 its	 context	 to	 a	 (new)	 valuation	 of	 the	
system	variables.	In	other	words,	a	strategy	is	an	instruction	for	the	
system	regarding	how	to	behave	in	any	situation	it	could	face.	When	
designing	a	collaborative	embedded	system,	we	aim	for	strategies	that	
ensure	the	fulfillment	of	all	goals	“as	well	as	possible,”	using	KPIs	to	
measure	the	degree	of	goal	fulfillment.	

Due	to	potential	conflicts	between	goals	and	unpredictable	context	
behavior,	 it	 is	 not	 always	possible	 to	 find	 a	 strategy	 that	 fulfills	 all	
goals	completely.	Hence,	we	have	to	decide	which	strategy	is	the	best	
match	for	the	goals,	even	if	there	is	no	perfect	solution.	The	definition	
of	a	quality	measure	 for	 strategies	 supports	 this	decision:	a	quality	
measure	 is	 a	partial	 order	 relation	on	 the	 set	of	 all	 strategies	 for	 a	

Collaboration enables
goal achievement

Starting with goals

Defining key
performance indicators

Defining strategies

Conflicts

202 Goal-Based Strategy Exploration

	

system.	In	particular,	a	quality	measure	is	a	function	that	takes	two	
strategies	of	a	system	and	decides	whether	one	of	those	strategies	is	
better	than	the	other	one.	Not	all	strategies	are	comparable,	hence	the	
quality	 measure	 is	 only	 a	 partial	 order.	 By	 deciding	 whether	 one	
strategy	 is	 better	 than	 another	 one,	 the	 quality	 measure	 resolves	
potential	conflicts	between	goals	—	for	example,	by	prioritizing	the	
list	of	existing	KPIs.	The	relationship	between	goals,	KPIs,	and	quality	
measures	is	summarized	in	Figure	9-2.	

	
Fig. 9-2: Relationship between goals, KPIs, and quality measures of strategies	

In	 the	 following,	 we	 present	 a	 proof	 of	 concept	 example	 that	
illustrates	the	benefit	of	defining	KPIs	and	quality	measures	based	on	
goals	for	finding	appropriate	strategies.	

In	 the	 use	 case	 of	 autonomous	 transport	 robots,	one	 of	 the	 key	
objectives	is	the	transformation	from	a	central	fleet	management	to	a	
decentral	one.	This	requires	a	definition	of	how	the	robots	distribute	
transport	tasks	among	the	fleet	such	that	not	only	goals	of	individual	
robots,	 but	 also	 goals	 of	 the	 complete	 fleet,	 are	 fulfilled.	 In	 this	
example,	we	focus	on	the	distribution	of	transport	tasks	and	the	global	
goal	of	having	equal	wear	and	tear	among	all	robots	of	the	fleet.	This	
goal	 has	 industrial	 relevance,	 since	 it	 supports	 predictive	
maintenance	and	a	reduction	in	maintenance	costs	for	the	robots	—	
since	 all	 robots	 can	 be	maintained	 in	 a	 single	 appointment	 with	 a	
service	 team	 instead	 of	 needing	 a	 service	 team	 every	 time	 a	 robot	
reaches	some	given	threshold	for	distance	driven.	

To	make	this	goal	measurable,	we	define	a	KPI	for	the	difference	
between	distances	driven	per	robot.	More	precisely,	we	observe	the	
difference	between	the	robot	with	the	least	distance	driven	and	the	
robot	with	the	most	distance	driven.	To	keep	the	example	simple,	we	
omit	additional	KPIs	that	may	also	be	relevant	for	the	goal.	We	also	
focus	 on	 the	 decision	 on	 the	 distribution	 of	 transport	 jobs.	 Here,	
therefore,	a	strategy	for	a	transport	robot	is	determined	completely	
by	defining	which	transport	tasks	the	robot	takes	over.	

	

Application to the
autonomous transport

robots

Making goals
measurable

9.3 Goal-Based Strategy Development 203

	

We	define	the	quality	measure	for	strategies	as	follows:	
A	strategy	s	is	better	than	strategy	u	if	the	KPI	“difference	between	

the	robot	with	the	least	distance	driven	and	the	robot	with	the	most	
distance	 driven”	 after	 fulfilling	 a	 task	 is	 smaller	 (or	 equal)	 when	
applying	s	than	when	applying	u.	

We	define	three	alternative	strategies	for	task	distribution	among	
robots:		

• Strategy	1:	The	robot	with	the	lowest	distance	covered	so	far	
takes	over	the	job.	

• Strategy	2:	The	robot	with	the	lowest	additional	distance	to	
cover	for	the	task	fulfillment	takes	over	the	job.	

• Strategy	 3:	 For	 each	 robot,	 calculate	 the	 difference	 in	 the	
distance	 covered	 if	 the	 robot	 takes	over	 the	 job.	The	 robot	
with	the	smallest	calculated	difference	value	takes	over	the	
job.	

Considering	 the	 quality	 measure	 introduced	 above,	 we	 can	 use	
examples	 to	 show	 that	 the	 first	 two	 strategies	 are	not	 comparable.	
Furthermore,	we	can	formally	show	that	the	third	strategy	is	better	
than	the	first	and	the	second	one.	This	qualitative	comparison	can	be	
complemented	 by	 a	 quantitative	 simulation-based	 comparison:	 we	
used	 a	 MATLAB	 model	 of	 the	 fleet	 of	 robots	 and	 generated	 100	
random	 topologies	 for	 the	 factory,	 each	 defined	 by	 the	 distances	
between	relevant	locations	in	the	factory,	such	as	machines,	charging	
stations,	and	storage	facilities.	Each	factory	generated	consists	of	5	to	
30	relevant	locations.	The	distances	between	locations	were	chosen	
at	 between	 5	 and	 50	 meters.	 For	 each	 of	 those	 factory	 maps,	 we	
generated	 a	 list	 of	 100	 transport	 tasks	 between	 locations	 of	 the	
respective	 factory.	 Each	 of	 the	 three	 strategies	 for	 distributing	 the	
tasks	among	the	fleet	of	robots	was	applied.	The	number	of	robots	per	
fleet	was	chosen	randomly	as	between	2	and	20.	As	the	initial	state	of	
the	fleet,	each	robot	was	randomly	set	to	one	of	the	locations,	and	an	
initial	value	for	the	distance	already	covered	was	chosen	randomly	as	
between	0	and	200	meters.	After	each	task	distribution,	the	difference	
between	 the	 minimum	 and	 maximum	 costs	 of	 the	 robots	 after	
fulfilling	 all	 tasks	 they	 took	 over	 was	 calculated	 according	 to	 the	
quality	measure.	The	simulation	showed	the	following	results:	

1 In	 the	 simulation,	 we	 were	 able	 to	 verify	 that	 strategy	 3	
performs	better	than	the	two	other	strategies	with	regard	to	
the	 quality	 measure	 defined	 above.	 Additionally,	 the	

Quality measures for
strategies

Alternative strategies

Comparing strategies

204 Goal-Based Strategy Exploration

	

simulation	 showed	 that	 strategy	 1	 and	 strategy	 2	 are	 not	
comparable.	

2 As	 a	 quantitative	 result	 of	 the	 strategy	 comparison,	 we	
observed	that	the	average	differences	between	the	maximum	
and	minimum	costs	of	robots	of	the	same	fleet	is	the	smallest	
if	 the	robots	behave	according	to	strategy	3:	 the	mean	cost	
difference	between	robots	with	strategy	3	is	just	81%	of	the	
cost	difference	between	robots	with	strategy	1,	and	just	88%	
of	the	cost	difference	between	robots	with	strategy	2.	

Figure	9-3	shows	the	evolution	of	the	average	difference	between	the	
highest	 and	 lowest	 costs	 of	 robots	 over	 the	 number	 of	 distributed	
transport	 tasks	 for	 the	 three	 strategies.	 The	 figure	 illustrates	 that	
strategy	 3	 performs	 the	 best	 with	 regard	 to	 minimization	 of	 cost	
differences.	Strategy	1	has	the	least	convincing	performance.	

Fig. 9-3: Simulative comparison of cost differences for different strategies	

Our	 simulation	 shows	 that	 choosing	 the	 right	 strategy	 has	 a	
measurable	 impact	 on	 the	 performance	 of	 the	 fleet	 of	 robots.	 An	
explicit	 definition	 of	 a	 quality	 measure	 for	 strategies	 in	 the	 early	
design	phase	allows	us	to	identify	good	strategies	that	had	not	been	
thought	 of	 before	 (here,	 Strategy	 3,	 the	 best	 of	 the	 strategies	
considered,	was	introduced	as	a	new	strategy	after	the	definition	of	
the	 quality	 measure).	 Hence,	 considering	 strategies	 and	 quality	

Choosing strategies
impacts fleet
performance

Number	of	transport	jobs	

Av
er
ag
e	
di
ffe
re
nc
e	
be
tw
ee
n	
m
in
im
al
	

an
d	
m
ax
im
al
	co
ve
re
d	
di
st
an
ce
	o
f	

ro
bo
ts
	

9.4 Goal Operationalization (KPI Development) 205

	

measures	 in	 the	 development	 of	 autonomous	 transport	 robots	 is	 a	
method	 that	 helps	 to	 improve	 the	 performance	 of	 the	 fleet	
significantly.	In	our	evaluation,	the	fulfillment	of	the	optimization	goal	
“equal	cost	distribution	among	the	fleet”	has	been	improved	by	nearly	
20%.	

9.4 Goal Operationalization (KPI Development)

Developing	 a	 fleet	 of	 robots	 capable	 of	 performing	 transport	 jobs	
without	 central	 management	 necessitates	 good	 tracking	 of	
fleet/robot	performance	in	fulfilling	a	set	of	goals.	

The	fleet	of	robots	must	fulfill	multi-level	goals.	Some	of	the	goals	
must	be	fulfilled	absolutely,	while	others	can	be	fulfilled	in	relation	to	
other	goals.	This	defines	some	kind	of	trade-off	between	these	goals	
that	 have	no	 conflicts	with	 each	 other.	 In	 other	words,	 the	 level	 of	
fulfillment	of	these	goals	must	be	measured	and	analyzed	at	runtime	
to	evaluate	the	strategy	performance	that	defines	how	and	with	which	
priority	these	goals	must	be	accomplished.	

In	 order	 to	 measure	 the	 fulfillment	 of	 the	 goals	 as	 well	 as	
determine	 how	 well	 the	 fleet/automated	 guided	 vehicle	 (AGV)	 is	
performing,	we	have	to	define	KPIs.	These	KPIs	serve	as	feedback	data	
to	the	strategy	components,	which	can	lead	to	strategy	adjustments	to	
achieve	better	goal	accomplishment	if	the	present	accomplishment	is	
not	 good	 enough.	 In	 a	 multi-level	 goal	 system,	 it	 is	 helpful	 to	
categorize	the	KPIs.	These	categorizations	are	specific	to	a	use	case	
and	would	make	 it	 easier	 to	 define	 the	 trade-off	 between	 goals.	 In	
other	words,	this	would	give	indications	of	the	prioritization	of	such	a	
goal,	as	well	as	of	the	definition	of	the	interconnections	between	the	
goals	and	also	the	impact	of	not	achieving	them	among	each	other.	An	
example	of	KPI	categorization	for	autonomous	transport	robots	is	as	
follows:	

q Local/global	KPI	
q Historical/real-time	KPI	

Definition	9-4:	Local	KPIs	
The	term	local	KPI	refers	to	the	indicator	that	reveals	how	much	a	local	
goal	is	fulfilled	during	the	performance	of	the	robot.	

Definition	9-5:	Global	KPI	
The	term	global	KPI	refers	to	the	indicator	that	reveals	how	much	a	global	
goal	is	fulfilled	during	the	performance	of	the	fleet	of	robots.	

Goals in the fleet of
robots

Determining goal
fulfillment using KPIs

206 Goal-Based Strategy Exploration

	

Definition	9-6:	Historical	KPI	
These	KPIs	reveal	the	quantity	of	goals	fulfilled	during	a	certain	period	of	
the	fleet	performance	—	for	example,	one	week.	These	KPIs	can	be	used	
for	long-term	analysis	and	adjustments	of	the	strategy	catalog	at	design	
time.	

Definition	9-7:	Real-time	KPI	
These	KPIs	reveal	the	quantity	of	goals	fulfilled	at	runtime.	These	KPIs	can	
be	used	in	analysis	to	adjust	a	strategy	at	runtime.	

	

Example	9-8:	Decentralized	fleet	of	robots	
As	an	example,	the	following	table	shows	a	list	of	goals	and	their	relevant	
KPIs.	

Table	 KPIs	

Go
al
s	

Battery	health	and	
safety	

Minimum/maximum	
cell	voltage	[V]	 Real-time/local	

Equal	wear	and	
tear	

Distance	covered	by	
each	robot	in	a	given	
time	frame	
compared	to	the	
distances	covered	by	
other	robots	

Real-time/local	

As	soon	as	possible	
job	fulfillment	

The	difference	
between	the	earliest	
pick-up	time	and	
real	pick-up	time	[s]	

Historical/global	

As	soon	as	
necessary	
fulfillment	

The	time	frame	
between	real	
delivery	time	and	
latest	due	date	per	
transport	job	[s]	

Historical/global	

	
A	 set	 of	 goals	 for	 the	 autonomous	 transport	 robot	 use	 case	 is	 as	
follows:	

q Battery	health	and	safety:	Transport	robots	must	not	 let	their	
battery	deplete	or	overcharge.	

q Equal	wear	and	tear:	The	transport	robots	must	operate	in	such	
a	 way	 that	 all	 transport	 robots	 of	 the	 same	 age	 show	
approximately	the	same	usage.	

9.5 Modeling Methodology for Adaptive Systems with MATLAB/Simulink 207

	

q As	soon	as	possible	fulfillment:	The	fleet	of	robots	must	fulfill	
all	incoming	jobs	as	soon	as	they	are	requested.	

q As	soon	as	necessary	fulfillment:	The	fleet	of	robots	must	fulfill	
all	incoming	jobs	exactly	at	the	time	they	are	expected	to.	

By	 formalizing	 the	 KPIs	 identified	 and	 implementing	 them	 in	 a	
monitoring	tool,	we	can	keep	track	of	how	well	a	strategy	is	fulfilling	
the	desired	set	of	goals.	

9.5 Modeling Methodology for Adaptive Systems
with MATLAB/Simulink

The	development	of	CESs/CSGs	requires	a	well-founded	approach	for	
dealing	 with	 a	 number	 of	 difficulties	 that	 result	 from	 the	 high	
complexity	of	the	scenarios	involved	and	that	have	to	be	incorporated.	
For	 instance,	 an	autonomous	 fleet	of	 robots	must	 react	 to	dynamic	
changes	in	the	policy	of	the	manufacturing	execution	system	(MES),	
or	 the	 number	 and	 nature	 of	 its	members,	 in	 such	 a	 way	 that	 the	
overall	functionality	and	efficiency	of	the	CSG	is	safeguarded.	To	give	
an	example,	the	virtual	exploration	of	strategies	to	address	different	
goals	is	essential	to	improve	a	system’s	efficiency,	cf.	Section	9.2.	In	
this	context,	the	consistent	application	of	a	model-based	development	
process	 for	 CESs	 offers	 a	 variety	 of	 benefits,	 such	 as	 early	 and	
systematic	 validation	 of	 functional	 requirements	 that	 describe	 the	
CSG/CES	behavior.	Different	engineering	 solutions	 can	be	based	on	
suitable	system	model	variants	that	are	validated	and	compared	in	a	
fully	 or	 partly	 virtual	 context.	 Moreover,	 Simulink	 models	 can	
interface	 with	 typical	 robot	 middleware	 or	 communication	
frameworks,	such	as	the	Robot	Operating	System	(ROS).	For	instance,	
Simulink	models	may	define	ROS	nodes	or	generate	standalone	ROS	
nodes	based	on	C++	for	use	in	an	ROS	network.	

The	 model-based	 approach	 greatly	 benefits	 from	 tailored	 tool	
chains,	 which	 automate	 a	 large	 number	 of	 development	 activities,	
including	 requirements	 management,	 modeling	 and	 simulation,	 as	
well	as	integrated	quality	assurance.	For	instance,	in	the	case	of	the	
fleet	of	robots,	the	monitoring	of	the	distribution	process	for	incoming	
tasks	can	be	automatically	included	in	the	Simulink	model.	The	virtual	
representation	 provides	 a	 sound	 foundation	 for	 developing,	
maintaining,	 and	 extending	 the	 actual	 system	 and	 its	
hardware/software/mechanical	components	efficiently.	

With	 regard	 to	 the	 model	 notation,	 the	 domain-independent	
language	Simulink	is	suitable	for	describing	the	functional	behavior	of	

Adaptive systems face a
plethora of complex
scenarios to be
accounted for

Need for tailored tool
chains

Using Simulink

208 Goal-Based Strategy Exploration

	

the	CSG	and	the	CESs	as	well	as	their	context.	In	the	case	of	a	fleet	of	
robots,	 the	 manufacturing	 execution	 system	 broadcasts	 different	
global	 goals	dynamically	 to	 the	 fleet	of	 robots.	Typically,	 the	global	
goals	define	a	trade-off	between	the	following	competing	objectives:	

1. Economy:	Minimize	the	total	distance	driven	by	all	CESs	—	i.e.,	the	
transport	robots.	

2. Robustness:	Keep	the	job	queue	lengths	of	each	robot	as	short	as	
possible.	

3. Performance:	 Maximize	 the	 number	 of	 jobs	 executed	 per	 time	
unit.	

4. Maintenance:	 Distribute	 the	 tasks	 such	 that	 all	 robots	 drive	 a	
similar	distance.	

As	mentioned	in	the	preceding	paragraphs,	KPIs	are	used	to	represent	
the	goals	 in	a	measurable	way.	A	suitable	collaboration	strategy	for	
the	 collaborative	 robot	 fleet	 members	 must	 be	 designed	
corresponding	to	the	given	goals,	cf.	Sections	9.2	and	9.3.	Therefore,	
the	fundamental	part	of	the	modeling	is	dedicated	to	the	distribution	
of	 the	 incoming	 transport	 jobs	 depending	 on	 the	 dynamically	
changing	 objectives.	 The	 collaborative	 fleet	 of	 robots	 consists	 of	 a	
finite	 number	 of	 robots	 that	 redundantly	 control	 and	maintain	 the	
required	data	 structures,	 such	 as	 job	queues,	 distances	driven,	 and	
their	batteries’	states	of	charge.	Based	on	this	data,	a	bidding	process	
determines	the	collaborative	robot	fleet	member	with	the	lowest	job	
execution	cost.	The	global	goals	are	encoded	using	a	suitable	bidding	
parameter	vector.	The	context	model,	which	represents	 the	highest	
level	in	the	hierarchy	of	system	models,	describes	the	interaction	of	
the	 transport	 robot	 with	 its	 environment	 —	 for	 example,	 the	
manufacturing	 execution	 system.	Furthermore,	 a	 suitable	 transport	
robot	 architecture	 that	 is	 capable	 of	 addressing	 adaptivity	 can	 be	
introduced	 based	 on	 a	 hierarchical	 decomposition.	 This	 approach	
yields	a	decomposition-type	model	that	defines	each	transport	robot’s	
components	 and	 interfaces.	 Most	 notably,	 the	 collaborative	 AGV	
controller	 (CAC)	 hosts	 the	 logic	 for	 calculating	 the	 bidding	 values	
based	on	the	current	system	state	and	goals.	Correspondingly,	each	
CAC	model	consists	of	the	following:	

q A	 reconfiguration	 unit,	 which	 is	 triggered	 whenever	 a	 new	
transport	 job	 is	 published	 or	 the	 collaborative	 robot	 fleet	
constituents	are	altered	

9.5 Modeling Methodology for Adaptive Systems with MATLAB/Simulink 209

	

q A	processing	unit	for	the	transport	robot	goals	—	that	is,	bidding	
values	for	the	autonomous	task	distribution	are	computed	from	
the	CAC	data,	as	well	as	from	the	bidding	parameters	associated	
with	the	currently	active	transport	robot	goal	and	the	member-
specific	local	goals	(e.g.,	maintaining	a	minimum	battery	level)	

q A	bidding	unit	that	determines	which	robot	receives	the	published	
task	

q A	unit	 that	holds	and	updates	 the	CAC	data	 (battery	 level,	path	
lengths,	etc.)	

q Units	 that	 manage	 the	 interface	 with	 ROS	 to	 determine	 path	
lengths	and	battery	states	

Figure	 9-9	 shows	 the	 resulting	 components	 in	 the	 system	
decomposition	model.	The	 system	behavior	 is	 fully	 composed	 from	
the	 behavior	models	 of	 each	 component.	 These	 component-related	
behavioral	models	represent	the	third	level	in	the	hierarchy	of	system	
models.	

	
Fig. 9-9: System decomposition model in Simulink

The	 expected	 adaptive	 system	 response,	 which	 is	 subject	 to	
dynamically	varying	manufacturing	execution	system	policies,	must	
be	fully	captured	in	the	requirements	of	the	fleet	of	robots.	Compared	
to	natural	language-based	approaches,	which	are	still	widely	used	in	
practice,	 formalized	 requirement	 formats	 give	 rise	 to	unambiguous	
representations	of	requirements	of	the	fleet	of	robots.	Moreover,	with	
the	model-based	 approach,	 formalized	 requirement	 formats	 can	be	
fully	integrated	in	the	sense	that	state-based	or	event-based	triggers	
and	the	required	signal	response	can	be	fully	defined	using	references	
to	model	entities,	such	as	signal	specifications	or	design	parameters.	

Capturing MES policies
in the requirements

210 Goal-Based Strategy Exploration

	

In	conjunction	with	the	efficient	definition	of	appropriate	test	cases,	
virtual	validation	of	adaptive	CSG	behavior	can	be	automated	based	
on	automatic	test	execution	and	assessment.	The	assessment	relies	on	
the	 comparison	 of	 the	 logged	 output	 signals	 of	 the	 executable	
Simulink	CSG	model	with	the	expected	output	signals	as	defined	in	the	
formalized	requirement.	

9.6 Collaboration Framework for Goal-Based
Strategies

9.6.1 Fleet Management in Collaborative Resource Networks

A	fleet	management	system	of	the	transport	robots	coordinates	and	
monitors	 the	 use	 and	 status	 of	 a	 CSG,	 including	 the	 offered	
functionalities	emerging	from	the	available	resources.	For	example,	a	
group	 of	 transport	 robots	 offering	 the	 operational	 resource	 of	
transporting	 items.	 In	 a	 collaborative,	 goal-based	 approach,	 these	
functionalities	 should	 be	 realized	 in	 a	 decentralized	 fashion	 and	
distributed	 to	 the	 transport	 robots	 so	 that	 they	 can	 be	 executed	
collectively	in	a	fleet	of	robots.	As	mentioned	before,	this	requires	the	
ability	of	each	CES	to	achieve	its	individual	goals	and	to	contribute	in	
an	optimal	way	to	the	goals	of	the	fleet/CSG.	

A	 collaboration	 framework	 provides	 the	 generic	 collaboration	
functionalities	needed	during	development	and	operation	of	the	CESs	
and	 the	 CSG.	 These	 functionalities	 support	 the	 CESs	 in	 making	
informed	 decisions.	 Each	 CES,	 thereby,	 decides	 independently	 and	
takes	 appropriate	 actions.	 This	 allows	 for	 self-governing	 and	 self-
organizing	 functionalities	 to	 have	 secure	 and	 trusted	 interactions	
between	the	CESs	in	the	CSG.	Most	importantly,	the	framework	must	
provide	 the	 capability	 to	 set	 up	 and	 execute	 interactions	 and	
communication	between	the	CESs	in	the	CSG.	

Fleet management
systems coordinate

resource usage

The collaboration
framework provides

generic functionalities

9.6 Collaboration Framework for Goal-Based Strategies 211

	

	

	
Fig. 9-10: Example AGV scenario for goal-based, collaborative fleet management

Figure	9-10	shows	an	exemplary	scenario	for	a	collaborative,	goal-
based	fleet	management.	The	exemplary	scenario	represents	a	factory	
floor	as	 the	 scope	of	 a	 fleet	of	 robots	with	 two	production	units	as	
transport	robots,	three	AGVs	as	CESs,	and	one	delivery	unit	as	a	CES.	
Products	output	by	the	production	units	must	be	transported	to	the	
delivery	 unit	 by	 autonomous	 transport	 robots.	 For	 this	 exemplary	
scenario	 and	 considering	 only	 the	 transport	 resource	 allocation,	 a	
collaboration	framework	must	enable:	

q The	production	units	to	announce	new	transport	requests	
q The	robots	to	receive	transport	request	announcements	
q The	 robots	 and	 the	 productions	 units	 to	 coordinate	 the	

assignment	and	fulfillment	of	tasks	
q All	 system	 components	 to	 monitor	 relevant	 information	 and	

behavior	 in	 order	 to	 elaborate	 on	 the	 level	 of	 achievement	 of	
individual	and	fleet	goals	

The	following	section	explains	how	such	a	collaboration	framework	
can	be	designed	based	on	a	set	of	communication	patterns	and	a	typed	
object	 model	 for	 a	 decentrally	 organized	 CSG.	 The	 communication	
patterns	 provide	 models	 of	 how	 the	 CESs	 can	 communicate	 and	
hereby	interact	with	each	other.	The	typed	object	model	ensures	that	
the	basic	communication	data	model	between	the	CESs	matches	and	
is	extensible.	

212 Goal-Based Strategy Exploration

	

9.6.2 Collaboration Framework

A	 collaboration	 framework,	 like	 the	 one	 provided	 by	 Coaty	
(https://coaty.io),	 is	 designed	 to	 enable	 autonomous	 Internet	 of	
Things	 (IoT)	 devices,	 as	well	 as	 people	 and	 services,	 to	 interact	 in	
changing	 scenarios.	 Here,	 we	 apply	 it	 to	 a	 self-organizing	 fleet	
management,	whereby	the	following	properties	must	be	fulfilled:	

q Loose	coupling:	CESs	must	be	able	 to	 interact	 independently	of	
each	 other.	 Thus,	 a	 tight	 coupling	 with	 other	 CESs	 or	 system	
components	 would	 hinder	 the	 collaboration	 approach.	 A	
preferable	 approach	 would	 not	 apply	 device-centric	
communication	 concepts	but	 instead,	 a	decentralized	 and	data-
centric	 concept	 based	 on	 an	 event	 architecture,	 as	 typically	
applied	in	publish-subscribe	communication	principles.	This	also	
allows	CESs	to	participate	in	or	leave	CSGs	on	demand.	

q Any-to-any	communication:	CESs	must	be	able	to	interact	in	one-
to-one,	one-to-many,	many-to-one,	or	many-to-many	CES-to-CES	
communication	 scenarios.	 In	 addition,	 all	 communication	
scenarios	 should	 be	 available	 as	 one-way	 communication	 for	
publishing	 and	 subscribing	 information	 topics	 and	 two-way	
communication	for	request-response	communication.	

q Interoperability:	Besides	having	a	standard	set	of	communication	
patterns	 for	 modeling	 the	 interaction	 between	 CESs,	 for	
interoperability,	 an	 extensible	 data	 model	 for	 CES	 interaction	
must	be	established.	

q Collaboration	functions:	CESs	must	be	able	to	take	advantage	of	
generic	collaboration	functions,	such	as	negotiation	or	consensus	
finding.	This	is	especially	important	to	enable	implementation	of	
the	multi-level	goal	strategies	for	CES	and	CSG.	

q Programmability,	extensibility,	and	portability:	The	collaboration	
framework	must	be	designed	in	such	a	way	that	it	can	be	easily	
extended	and	programmed.	

The	exemplary	collaborative	 IoT	 framework	Coaty	 fulfills	 these	key	
properties.	It	is	based	on	a	lightweight	and	modular	architecture	that	
allows	 extensibility	 by	 means	 of	 specific	 connectors,	 adapters,	
building	blocks,	etc.	

The	framework	uses	event-based	communication	flows	with	one-
way/two-way	 and	 one-to-many/many-to-many	 communication	
patterns	 to	 realize	 decentralized	 prosumer	 scenarios	 for	 CESs.	 It	
thereby	combines	the	characteristics	of	both	classic	request-response	
and	publish-subscribe	communication,	but	maintains	the	data-centric	
and	loose-coupling	characteristics.	In	contrast	to	classic	client-server	

The IoT framework
Coaty

Event-based
communication flows

https://coaty.io

9.6 Collaboration Framework for Goal-Based Strategies 213

	

systems,	all	participants	in	the	system	are	equal	in	that	they	can	act	
both	 as	 producers/requesters	 and	 consumers/responders.	 These	
communication	patterns	(cf.	Figure	9-11)	allow	data	to	be	discovered,	
queried,	 shared,	 and	 updated	 on	 demand	 in	 a	 distributed,	
decentralized	CSG.	In	addition,	the	collaborative	IoT	framework	Coaty	
allows	for	a	distributed	implementation	of	triggering	context-specific	
remote	operations	and	dynamic	context-specific	information	routing	
between	 CESs	 by	 its	 IORouting	 concept.	 The	 IORouting	 concept	
(https://coatyio.github.io/coaty-js/man/developer-guide/#io-
routing)	 introduces	 a	 way	 to	 dynamically	 route	 information	 flows	
between	information	sources	of	a	CES	and	information	actors	that	use	
the	 information.	 This	 information	 routing	 takes	 place	 based	 on	
changes	in	the	observed	operation	context	of	the	CSG.	The	challenging	
issue	 of	 reaching	 programmability	 in	 such	 highly	 complex,	
distributed,	 asynchronous	 systems	 of	 CESs	 in	 a	 CSG	 is	 achieved	 by	
applying	 the	reactive	programming	paradigm.	The	extensible	 typed	
object	 model	 applied,	 with	 a	 set	 of	 basic	 core	 object	 types,	 can	
represent	domain-specific	 system	characteristics	 such	 as	 tasks,	 etc.	
Furthermore,	 each	 CES	 is	 represented	 as	 an	 object	 such	 that	
interoperability	can	be	maintained	without	losing	extensibility.	

Applying	this	kind	of	collaboration	framework,	a	set	of	CESs	that	
form	a	CSG	can	collaborate	by	means	of	a	decentralized	 interaction	
and	communication	network.	

	
Fig. 9-11: Collaborative IoT framework communication pattern as realized in Coaty

https://coatyio.github.io/coaty-js/man/developer-guide/#io-routing
https://coatyio.github.io/coaty-js/man/developer-guide/#io-routing

214 Goal-Based Strategy Exploration

	

9.6.3 Collaboration Design in Decentralized Fleet
Management

The	collaboration	framework	referred	to	above	allows	us	to	perform	
and	 model	 the	 collaboration	 design	 of	 a	 decentralized	 fleet	
management.	 The	 following	 five	 different	 functional	 areas	must	 be	
designed	for	the	collaboration:	

1. Modeling	 and	 announcement	 of	 tasks	 to	 the	 fleet	 of	 robots	
with	 their	 functional	and	non-functional	 requirements	 to	be	
executed	

2. Observation	of	these	tasks	by	the	individual	transport	robots	
3. Monitoring	 local	 system’s	 and	 fleet	 of	 robots’	 states	 at	 each	

individual	transport	robot	
4. Application	of	 the	 transport	robots’	goals	and	 the	goals	of	a	

fleet	of	robots	to	calculate	an	offer	for	tasks	
5. Decentralized	coordination	of	the	decision,	based	on	the	CES	

offers,	about	which	CES	receives	the	task	

Let	us	consider	the	exemplary	scenario	from	Figure	9-10;	this	could	
be	 designed	 in	 a	 simplified	 way	 as	 follows:	 all	 transport	 robots	
observe	transport	tasks	and	other	relevant	system	states.	All	systems	
observe	 transport	 task	 bids.	 The	 production	 unit	 issues	 a	 new	
transport	task,	with	weight,	pick-up	and	drop-off	positions,	a	bidding	
strategy,	 and	a	bidding	period.	The	 robots	 calculate	a	 cost	 function	
based	on	their	individual	goals	and	the	fleet	goals	and	issue	the	result	
as	 a	 transport	 task	 bid	 to	 the	 CSG.	 Each	 robot	 evaluates	 the	 bids	
received	for	the	defined	bidding	period	and	then	decides	whether	it	
wins	the	negotiation.	If	it	does,	the	CES	announces	the	self-assignment	
of	 the	 task	 and	 the	 CSG	 places	 the	 task	 in	 its	 local	 job	 queue	 and	
executes	the	task	in	accordance	with	its	priorities	in	the	job	queue.	

As	mentioned	before,	this	scenario	is	very	simplified	and	does	not	
include	any	 failure	handling	etc.	 It	 shows	 that	 transport	 robots	can	
interact	 with	 each	 other	 in	 a	 fleet	 of	 robots	 using	 a	 collaboration	
framework	 in	 a	 powerful	 way,	 allowing	 collaborative	 goal-based	
strategies	to	be	modeled	and	implemented	in	a	structured	way	that	
can	be	validated.	

9.7 Conclusion

CESs	connect	to	form	a	group	in	order	to	achieve	local	and	global	goals	
by	following	the	best	possible	strategy.	The	interconnection	between	
goals,	KPIs,	monitoring,	and	strategy	shapes	the	core	concept	of	the	

9.8 Literature 215

	

goal-based	strategy	exploration	method.	In	this	chapter,	we	presented	
the	 concepts	 for	 moving	 from	 identified	 goals	 towards	 strategy	
development.	We	then	applied	the	concepts	to	an	example	from	the	
use	case	of	collaborative	autonomous	transport	robots.	 In	doing	so,	
we	focused	on	the	challenge	of	how	to	develop	a	set	of	strategies	in	
which	 multi-level	 goals	 must	 be	 achieved.	 Therefore,	 the	 goal	
fulfillment	must	be	measured	and	qualified	for	each	strategy.	

We	 also	 introduced	 the	 modeling	 tool	 and	 collaboration	
framework	to	support	the	application	of	this	approach	to	an	industrial	
use	case	to	reveal	some	of	the	challenges	in	forming	such	a	CSG.	

9.8 Literature

[Bresciani	et	al.	2004]	P.	Bresciani,	A.	Perini,	P.	Giorgini,	F.	Giunchiglia,	J.	Mylopoulos:	
Tropos:	 An	 Agent-Oriented	 Software	 Development	 Methodology.	 In:	
Autonomous	Agents	and	Multi-Agent	Systems	8	(3),	2004,	pp.	203–236.	

[Brings	et	al.	2019]	J.	Brings,	M.	Daun,	T.	Bandyszak,	V.	Stricker,	T.	Weyer,	E.	Mirzaei,	M.	
Neumann,	 J.	 S.	 Zernickel:	 Model-Based	 Documentation	 of	 Dynamicity	
Constraints	for	Collaborative	Cyber-Physical	System	Architectures:	Findings	
from	 an	 Industrial	 Case	 Study.	 In:	 Journal	 of	 Systems	 Architecture	 -	
Embedded	Systems	Design	97,	2019,	pp.	153–167.	

[Brings	 et	 al.	 2020]	 J.	 Brings,	M.	 Daun,	 T.	Weyer,	 K.	 Pohl:	 Goal-Based	 Configuration	
Analysis	 for	 Networks	 of	 Collaborative	 Cyber-Physical	 Systems.	 In:	
Proceedings	of	the	35th	Annual	ACM	Symposium	on	Applied	Computing,	SAC	
’20.	Brno,	Czech	Republic,	2020,	pp.	1387–1396.	

[Daun	et	al.	2019]	M.	Daun,	V.	Stenkova,	L.	Krajinski,	J.	Brings,	T.	Bandyszak,	T.	Weyer:	
Goal	Modeling	for	Collaborative	Groups	of	Cyber-Physical	Systems	with	GRL:	
Reflections	 on	 Applicability	 and	 Limitations	 Based	 on	 Two	 Studies	
Conducted	in	Industry.	In:	Proceedings	of	the	34th	ACM/SIGAPP	Symposium	
on	Applied	Computing,	SAC	2019,	Limassol,	Cyprus,	April	8-12,	2019.	

[Horkoff	et	al.	2008]	J.	Horkoff,	G.	Elahi,	S.	Abdulhadi,	E.	Yu:	Reflective	Analysis	of	the	
Syntax	 and	 Semantics	 of	 the	 I*	 Framework.	 In:	 Advances	 in	 Conceptual	
Modeling	 –	 Challenges	 and	 Opportunities.	 Lecture	 Notes	 in	 Computer	
Science.	Springer,	Berlin,	Heidelberg,	2008,	pp.	249–260.	

[Horkoff	 et	 al.	 2017]	 J.	 Horkoff,	 F.	 B.	 Aydemir,	 E.	 Cardoso,	 T.	 Li,	 A.	Maté,	 E.	 Paja,	M.	
Salnitri,	 L.	 Piras,	 J.	 Mylopoulos,	 P.	 Giorgini:	 Goal-Oriented	 Requirements	
Engineering:	 An	 Extended	 Systematic	 Mapping	 Study.	 In:	 Requirements	
Engineering,	September	2017,	pp.	1–28.	

[International	 Telecommunication	 Union	 2012]	 International	 Telecommunication	
Union:	User	Requirements	Notation	(URN),	Z	151,	2012.	

216 Goal-Based Strategy Exploration

	

[van	 Lamsweerde	 2001]	 A.	 van	 Lamsweerde:	 Goal-Oriented	 Requirements	
Engineering:	A	Guided	Tour.	In:	Proceedings	of	the	Fifth	IEEE	International	
Symposium	on	Requirements	Engineering,	2001,	pp.	249–62.	

[Yu	 1997]	 E.	 S.	 K.	 Yu:	 Towards	 Modelling	 and	 Reasoning	 Support	 for	 Early-Phase	
Requirements	Engineering.	In:	Proceedings	of	the	Third	IEEE	International	
Symposium	on	Requirements	Engineering,	1997,	pp.	226–235.	

	

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

10

Creating Trust in Collaborative
Embedded Systems

Effective collaboration of embedded systems relies strongly on the assumption that all
components of the system and the system itself operate as expected. A level of trust is
established based on that assumption. To verify and validate these assumptions, we
propose a systematic procedure that starts at the design phase and spans the runtime of
the systems. At design time, we propose system evaluation in pure virtual environments,
allowing multiple system behaviors to be executed in a variety of scenarios. At runtime,
we suggest performing predictive simulation to get insights into the system’s decision-
making process. This enables trust to be created in the system part of a cooperation. When
cooperation is performed in open, uncertain environments, the negotiation protocols
between collaborative systems must be monitored at runtime. By engaging in various
negotiation protocols, the participants assign roles, schedule tasks, and combine their
world views to allow more resilient perception and planning. In this chapter, we describe
two complementary monitoring approaches to address the decentralized nature of
collaborative embedded systems.

Samira Akili, Humboldt Universität zu Berlin
Emilia Cioroaica, Fraunhofer IESE
Thomas Kuhn, Fraunhofer IESE
Holger Schlingloff, Fraunhofer FOKUS

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_10

217

https://doi.org/10.1007/978-3-030-62136-0_10
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_10&domain=pdf

218 Creating Trust in Collaborative Embedded Systems

10.1 Introduction

In its most general meaning, trust is the belief of one agent in the
capabilities and future actions of another agent. Relying on this belief,
the trustor hands over control to the trustee and faces negative
consequences if the trustee does not perform as expected. In
collaborative embedded systems (CESs), trust is important on several
levels, as depicted in Figure 10-1. Firstly, the components of the
collaborative system group (CSG) need to trust each other in order to
pursue common goals. Secondly, in safety-critical contexts, the
(human) user needs to trust the CSG to work as specified, and the CSG
itself needs to trust its environment to behave as laid down in the
specification. Thirdly, as each CES in the group may consist of
components from many different vendors, it needs some self-reliance,
that is, trust in its own components.

Besides the question “Who trusts whom?”, the question “Why trust?”
defines another dimension in the analysis of trust. Trustworthiness
can be established by a trustee in several ways: via certificates from
trusted third parties, via a history of reliable actions, or by giving
insights into its decision-making process. In the following, we
comment on each of these in the context of collaborative embedded
systems. Certificates from trusted third parties are used to increase the
trustworthiness of the trustee via the reputation of the certifying
institution. For example, an autonomous car would not be allowed to
enter a platoon if the software has not been certified by the respective
authorities. Certificates are usually issued for the design of a system.
At runtime, if certificates are used, there must be a mechanism that
can show that the certificates are original and unmodified.

Fig. 10-1: Aspects of trust around CESs

10.2 Building Trust during Design Time 219

A history of reliable actions can be established at design time — for
example, by means of extensive testing. This is the preferred way if
the system is deterministic, that is, in any given situation, it has a
unique, reproducible behavior. However, when nondeterministic
agents have to negotiate in their operation, this history is primarily
established during runtime. For example, in a group of transport
robots bidding for a certain job, a robot may be singled out if it has a
“bad reputation” of not accomplishing jobs on time. In game theory,
several scenarios, such as “tit for tat” and the “prisoner’s dilemma,”
have been investigated to develop a theory of trust in the presence of
competition.

Insights into the decision-making process is a trust-building
measure because it allows the trustor to predict the actions of the
trustee in advance. For collaborative embedded systems, this can be
realized by having each agent communicate not only decisions and
actions, but also goals, plans, and other reasons. Since the decision-
making process takes place at runtime, this communication is
inherently dynamic.

In the rest of this chapter, we elaborate on three methods for
building trust in collaborative systems. In Section 10.2, we describe an
architectural pattern that can be used for the certification of systems
at design time. In Section 10.3, we describe a method of predictive
simulation that allows trust to be built at runtime. In Section 10.4, we
describe online monitoring as a method for extrapolating future
behavior of a system from its past and present actions.

10.2 Building Trust during Design Time

In this section, we introduce the concept of a prototypical platform
that supports certification of software behavior. Trust at design time
is then built by verifying software execution in a multitude of
scenarios.

The introduction of autonomy into technical systems brings new
challenges for safety and security. Since the majority of accidents on
the roads are caused by driver error, one way of increasing safety is
to take away some of the driver’s responsibilities. However, such
autonomy is only permissible if a corresponding trust can be
established in the technical components. If the level of autonomy is
increased by the integration of third-party components, additional
trust checks are required. This is necessary because a software
component delivered as a black box can contain logic bombs

220 Creating Trust in Collaborative Embedded Systems

[Avizienis et al. 2004]. A vehicle that is part of a platoon is a
collaborative embedded system designed to be under the control of a
collaboration function. This collaboration function can negotiate
tactical goals with other vehicles, such as the creation of a vehicle
platoon. After an agreement on common goals has been reached,
system functions that follow the agreed goals are activated.

However, even though a collaborative system’s interaction with
other systems happens at runtime, its safety architecture is decided in
early development stages, at design time. A testing environment must
therefore provide the ability to evaluate the system behavior in
interaction with other systems whose behavior is unpredictable.
Having a high number of successful test scenarios gives a high
confidence that the CES will behave as specified during runtime and
therefore deserves trust. For example, in the automotive domain, the
behavior of a vehicle in a platoon must be tested in a high number of
scenarios with other cars in order to give confidence that it complies
with functional and non-functional specifications for platooning.
Testing billions of scenarios on the road with actual cars is not
feasible. Therefore, testing the system’s behavior in simulated
scenarios is imperative.

The testing framework we present in this section allows a high
number of test scenarios to be executed for collaboration functions.
Evaluation is performed in a virtual environment using simulation.
The modular architecture of the framework allows the evaluation of
additional software components of other autonomous systems, such
as robots.

In the area of testing collaborative systems, existing approaches
propose evaluation of the architecture of the ecosystems formed
around them. In addition to the systems and components involved in
an operational collaboration, the ecosystem contains actors that make
the technical collaboration possible and also benefit from it, such as
organizations, users, and developers. In these approaches, the
evaluation is done by measuring the health of these ecosystems [da
Silva Amorim et al. 2017], [da Silva Amorim et al. 2016]. The main
aspects for evaluating the health are robustness, productivity, and
niche creation. In contrast to these approaches, we evaluate
collaborative systems by considering the quality of service. When
systems start to collaborate, the collaborative group presents a new
interface to its environment. With a visualization tool, we provide
easily understandable information about the effects of interactions
between systems. The information demonstrates the effects of

Design time verification
requires testing in an

extended set of
scenarios

10.2 Building Trust during Design Time 221

emergent services that can influence the health of the whole
ecosystem.

In [Kephart and Chess 2003], autonomous elements mutually
provide and utilize services in order to achieve individual goals. The
vision is to have flexible relationships between autonomous software
agents, with these relationships being established via negotiations.
Relationships are represented by service provisions, and an
independent manager oversees the agreements. This approach is
oriented towards analysis of agents’ interaction in an ecosystem. It
provides a good base for reasoning about a system’s interactions. The
approach we present complements this work by providing a testing
framework for analyzing the effects of collaborations.

Testing framework for CSGs

The testing framework follows the model view controller [Krasner
and Pope 1988] architectural pattern, which is explained below. This
allows modular components that can be exchanged when technical
advancements are made. It also supports the reuse of components.
The framework supports testing of collaborative embedded systems
in holistic scenarios. These scenarios are formed with the help of
digital twins. A digital twin is a simulation model of some embedded
system in the real world that is linked to this system throughout its
lifetime. The digital twins accurately represent the effects of actions
and predicted intentions of a collaborative embedded system (CES) in
the collaborative system group (CSG). The framework displays the
effects of decisions taken by collaboration functions. In our context, a
digital twin comprises real-world data and simulation models. The
simulation models accurately represent the physical process of a real-
world device. For example, within a platoon, the lead vehicle decides
to increase the speed. The task of the collaboration function of a
follower vehicle is to adjust the speed accordingly. In our testing
framework, the lead vehicle and other cars are pure virtual entities for
testing this collaboration function. For the follower vehicle, we have
an actual ANKI car [ANKI 2020] (a model car on a scale of 1:10, with
on-board electronics) that provides real-time data such as speed and
position. We create a digital twin of this vehicle by combining a coarse
simulation model with this data. In the framework, the behavior of the
collaboration function can be observed via the digital twin. In contrast
to a purely virtual approach, our framework allows the interaction
between the hardware and the software to be tested in the physical
car.

222 Creating Trust in Collaborative Embedded Systems

Model

Model view controller [Krasner and Pope 1988] is an architectural
pattern that divides the function of a framework into three
components. We will demonstrate how this pattern can be used for
testing CSGs. The functionality of a testing framework is to allow
creation or integration of simulation models of CESs, definition of
scenarios, execution of test cases, and evaluation of results.

The basic task of the modeler component is to provide an editor
for the definition of pure virtual entities of the CSG. Moreover, a digital
twin—that is, the combination of real-world data with a coarse
behavioral model of a CES—can be created in this component. This
modular structure allows simple and interchangeable units. Both pure
virtual entities and digital twins can be represented as functional
mock-up units (FMU) that can be executed in combination by a co-
simulation platform.

As a concrete implementation of this concept, Fraunhofer FERAL
[Kuhn et al. 2013] is a simulation environment used for rapid
development of architecture prototypes through coupling of
simulators, simulation models, and high-level models. It enables
abstract simulation models to be coupled with very detailed
simulation models and digital twins. The integration of virtual agents
and digital twins allows the evaluation of controlled decisions of real
cars in an extended set of scenarios. The simulator provides the
necessary environment for simulating and running the behavior of
multiple virtual CESs.

As an example of a real-world agent, ANKI cars are small-scale
model vehicles that can be programmed using the ANKI Software
Development Kit (SDK). This SDK provides access to the sensors and
actuators, and also to some higher-level functionality of the ANKI cars.
Each ANKI car is equipped with infrared sensors that read encodings
embedded in the track. Figure 10-2 shows the underside of an ANKI
car. The infrared sensor is positioned at the front and the drive motor
at the rear.

Combining the real
world with the virtual

world

Fig. 10-2: ANKI car/real-world agent

10.2 Building Trust during Design Time 223

An additional Bluetooth Low Energy (BLE) module enables a duplex
connection between every physical ANKI car and the SDK running on
a Linux machine. Messages through the BLE connection go in two
directions: commands from the simulator are sent from the simulator
to the ANKI car via the SDK, and position information is sent back to
the simulator. Position data consists of a combination of lane and
segment numbers, with this data being obtained by the infrared
sensor whenever the car crosses a checkpoint on the track.

View

The visualization engine of our framework receives information from
the modeler component. It displays the results of a co-simulation by
animating objects that reflect the dynamics within a test scenario.
Since modularization is at the component level in our approach, the
interfaces are complex. For an accurate representation of the behavior
of the CSG, a high amount of complex information is necessary. The
co-simulation platform produces information about the behavior of
the CSG with a variable degree of accuracy that can be adjusted
according to the testing intentions. If, for example, visualization of the
effect of a communication failure in a platoon is intended, then
messages describing this failure must be produced in the co-
simulation framework. In the visualization engine, the failure can be
displayed via a red alert symbol, for example. This means that it is
possible to “zoom” into specific details of the simulated scenario.
However, this possibility is limited by the bandwidth and computation
power available.

As a concrete implementation of the view component of a testing
framework, the Unity 3D game engine can provide a meaningful
visualization for the scenarios and decision effects. For example, if a
control decision has the effect of leading to a crash, this will be shown
in the simulation. The modeler and view component can be combined
with the observer design pattern. This is a behavioral pattern in which
a subject maintains a list of observers and notifies them of any state
changes by calling one of their methods. In our context, the subject is
the message sent from the modeler to the view component. Each CES
is an observer that reacts to this message by updating its state (i.e.,
position, speed, and acceleration).

224 Creating Trust in Collaborative Embedded Systems

Controller
In our framework, the controller is the component that interacts
directly with the user via web services. Through the controller, the
user can define scenarios for the evaluation. The controller sends
information about these scenarios to the modeler. It provides a
service to the real-world object, which contains information about the
pure virtual objects in the CSG. Other services include simulated
sensor and actuator values. These services can be combined through
service compositions. For example: the CACC (collaborative adaptive
cruise controller) in a car can subscribe to a service giving GPS
coordinates and to a service for the rotational speed of the wheels, and
can thus provide a service of reference acceleration. These services
are defined and composed in the controller and then passed to the
modeler.

As an implementation example, Google Blockly [Blockly 2020]
provides an intuitive framework for the definition of test scenarios. It
provides a language of blocks, where each block represents a possible
step in a test case. The semantics of a block can be defined in a suitable
programming language. The test designer can use drag and drop to
form complex test cases from the blocks. In our testing framework,
this graphical modelling of a test case is transformed into JavaScript
code that is parsed by our co-simulation tool FERAL. From there, it is

Fig. 10-3: Evaluation scenario visualized in Unity 3D from both a bird’s-eye view and
first-person perspective

10.3 Building Trust during Runtime 225

used to drive the Unity3D visualization. Figure 10-4 presents part of a
test case that describes the behavior of two virtual cars in a platoon.

In this section, we have shown how to combine real-world and
virtual-world entities in order to test a CSG. The collaborative
behavior of one CES in the group is tested in the simulation, whereas
its physical behavior is tested on the actual hardware platform. This
allows us to explore a wealth of collaboration scenarios with real-
world components without the risk of damage to the actual hardware.

10.3 Building Trust during Runtime

The previous section exhibited an approach and a prototypical
implementation for building trust at design time. However, some
aspects of trust can only be built during runtime, since not all
operational context can be foreseen in the design. In this section, we
describe a method of predictive simulation that allows trust to be built
at runtime.

During runtime, trust can be built through the addition of
predictive simulation and dynamic safeguarding on the CESs. For this
purpose, a software component simulating some aspects of the
behavior of a CES is used. The abstraction can be with respect to three
different aspects: timing behavior, functional behavior, and
communication behavior. In order to allow an efficient online
evaluation, only parts of the behavior should be modeled. With
suitable abstraction, the simulation can be executed faster than the
actual system behavior. It is therefore possible to foresee some effects
of decisions before they are implemented in the real world. Moreover,
the behavior of the simulated objects can be compared with the actual

Fig. 10-4: Control algorithm of one virtual car

226 Creating Trust in Collaborative Embedded Systems

behavior of the physical entities. We can therefore detect hardware
issues before they lead to problems. Such an approach requires the
evaluation of the collaboration behavior at runtime. Predictive
simulation and dynamic safeguarding can be used to build trust
between the collaborative systems. For example, in a platoon, the
follower vehicle needs to trust the lead vehicle not to make an
emergency brake without a previous alert. Both the lead vehicle and
the follower vehicle can run a simulation of the collaboration function.
The follower vehicle can use a predictive simulation to calculate
expected behaviors of the lead vehicle; if the lead vehicle behaves as
expected, this increases its reputation. Therefore, the other vehicles
may, for example, decrease the safety distance in the platoon. The lead
vehicle itself can use dynamic safeguarding of its behavior. For
example, it can simulate the collaboration function with respect to
emergency braking and alerting. If it detects that there might be an
emergency brake without prior alert, it can trigger an operational
failover procedure that, for example, sends an alarm to the other cars.
With this kind of runtime monitoring, it can increase its overall
trustworthiness.

Predictive simulation is applicable for collaborative embedded
systems in various domains. In the following, we focus on the specific
context of automotive software engineering. In order to build trust,
we can evaluate the collaboration function of a connected vehicle in a
runtime predictive simulation. The collaboration function is deployed
on the vehicle together with its corresponding abstractions.
Complementary to the original algorithm, an abstraction defines an
acceptable behavior range of output values for each combination of
input values and internal state of the algorithm. When the car is
driving on the road, the abstract behavior is continuously evaluated
in simulated scenarios, where the simulated environment is an
abstraction of the actual environment as observed by the sensors of
the car. Correctness and trustworthiness of the collaboration function
are validated by observing the effects of the simulation. In our work,
we consider a distinction between correctness and trustworthiness. A
software component that successfully passes all systematic tests and
shows a correct behavior may still not be worthy of trust. This can
happen if, at a later point in time, the software component shows an
unexpected malicious behavior because of hidden timing bombs
[Avizienis et al. 2004]. This means that the behavior is evaluated in a
secured virtual environment (Figure 10-5, phase 1). Since the
simulation is faster than the real evolution of the scenario, possible
errors in the implementation of the collaboration function can be

10.3 Building Trust during Runtime 227

detected in advance and protective measures can be taken. For
example, if a car in a platoon receives an alert from the lead vehicle
while leaving the platoon, the simulation could show the effects of
neglecting the alert.

Dynamic safeguarding builds trust in the conformity of the
collaboration function with its abstract representation (Figure 10-5,
phase 2). This technology requires the parallel execution of the
collaboration function and its abstractions (timing behavior,
functional behavior, and communication behavior). Conformity is
checked by comparing the actual behavior of the software with the
ranges allowed by the abstraction. For example, if there is an
emergency braking in the platoon, each car must apply a very accurate
force to the brakes in order to avoid a collision with the preceding or
succeeding car. The simulation could check whether the actual force
applied to the brakes is within the force limits that were previously
validated.

Predictive simulation can be realized with two possible strategies.
Firstly, it can be based on a set of well-defined situations that evaluate
the behavior in a virtual environment. Secondly, linked predictive
simulation virtualizes the vehicle’s current situation and predicts
sensor data to reflect a forecast situation from the near future. Linked
predictive simulation evaluates the abstractions in situations that are
not covered by the first strategy. For example, in a platoon, when the
lead car approaches an obstacle, we can monitor the abstraction of the
collaboration function that sends adjusted desired speed commands
to the following vehicles. If we observe that the collaboration function
fails with this task, there is a big problem. Usually, today, this is solved
by handing control back to the driver. Therefore, the lead car needs
sufficient time to possibly override the decisions of the collaboration

Fig. 10-5: Phases of the runtime trust evaluation method

228 Creating Trust in Collaborative Embedded Systems

function if they are detected to be faulty. Thus, the execution of
predictive simulation must be fast enough to allow operational
failover solutions.

Figure 10-6 depicts predictive simulation and dynamic
safeguarding in a closed control loop. The abstractions of the
collaboration functions are executed in a secured simulated
environment. During this predictive simulation, the order, type, and
number of events are recorded and form the reference to which the
actual execution of the software function on the electronic control unit
is compared. The deviations between the expected behavior and the
actual behavior are fed to a decision component that decides who
controls the vehicle. If considerable deviations are detected, the
execution of the software function is stopped and a higher trusted
failover behavior is executed instead.

The software function is the subject of trust evaluation.
Implementation of the method on safety-critical systems requires
trusted design and verification of the platform components with
appropriate ASIL (automotive safety integrity levels) set for each of
them. Predictive simulation and dynamic safeguarding are a means to
increase the trust and safety of the collaboration in a CSG. At the core
of these methods is an abstract function description that is monitored
during runtime. In the following, we elaborate on approaches that
deal with monitoring the actual system behavior with respect to a
formal specification.

10.4 Monitoring Collaborative Embedded Systems

While the above approach requires a full-scale system model in order
to be able to override faulty system behavior, this may not always be

Fig. 10- 6: Platform concept

10.4 Monitoring Collaborative Embedded Systems 229

feasible. In this section, we present runtime verification as a
lightweight method of monitoring a system for correct and safe
operation. The general assumption is that a human supervisor can
intervene and start a recovery routine if some faulty runtime behavior
is detected. The runtime verification methods we present can be used
to establish trust of a user in the CSG. As in the approach above, this is
achieved by giving insights into the decision-making process.

There are manifold sources of runtime faults of an embedded
system, and even more of a collaborative embedded system group
(CSG). Within such a system, we have to deal with problems stemming
from coordination and communication, concurrency, conflicting
goals, and more.

In the remainder of this chapter, we describe the basic concepts of
runtime monitoring and identify the challenges of applying it to
collaborative embedded system groups. We then introduce two
techniques that address some of the challenges identified.

Runtime Monitoring

Runtime monitoring is a popular approach for verifying the behavior
of complex systems at runtime by checking the observed execution
against a specification [Leucker and Schallhart 2009], [Bartocci et al.
2018]. This approach enables a fallback policy to be invoked if a
deviation of the actual behavior from the specified behavior is
detected. In the typical setup, the system under monitoring (SUM) is
instrumented such that it emits signals or events that are processed
by a monitor. The monitor, usually being much smaller and simpler to
verify than the SUM, provides a formal guarantee of the detection of
certain property violations. There have been many suggestions for
specification languages, which vary in their complexity and
expressiveness.

In general, there are two different approaches to constructing a
runtime monitor for distributed systems. The monitor can be an
additional computational entity of the system or it can be part of each
component in the system. A centralized approach is often easier to
implement, especially for systems already deployed. Furthermore, a
centralized approach adds almost no computational overhead to each
component. In contrast, a distributed approach scales naturally with
an increasing number of components. This holds even if components
are added dynamically at runtime. Moreover, there are applications
(such as autonomous vehicle platooning) that are simply unfit for a
monitoring third party.

230 Creating Trust in Collaborative Embedded Systems

Within the context of collaborative embedded systems, we are
especially concerned with distributed runtime monitoring
approaches. Since each CES in a CSG has its own goals and plans, it is
more natural for a CES to also have its own monitor. Hence, in our
approach, each component of the system is equipped with a monitor
such that the monitors themselves build a collaborative system group
(cf. Figure 10-7). In order to evaluate properties that rely on
information produced by more than one component, monitors
communicate by exchanging messages. Furthermore, a centralized
monitor has to scale with the increasing number of systems at runtime
and must be updated whenever a system with new capabilities (and
thus new specifications) joins the collaborative group at runtime.

Runtime Monitoring of Collaborative System Groups

In a collaborative system group, collaborative embedded systems
work together to achieve a shared goal and thereby provide a specific
functionality. The successful completion of this core function requires
collaboration, which is implemented by the use of interaction
protocols for coordination or negotiation. As interaction protocols are
thus the foundation of a CSG’s behavior, the runtime monitoring of
those protocols is at the core of our approach. Before providing an
example and introducing two specification formalisms, we derive
requirements for the runtime monitoring of CSGs:

Distributedness: To enable collaboration, CSG members exchange
information via messages and perform local computations. If no global
clock exists, asynchronous communication must be supported by the
CSG architecture. Additionally, observable behavior can be described
at the group level and at the individual level. While properties relating
to the behavior of a single CES can be checked locally by monitoring
methods for the verification of cyber-physical systems [Luckcuck et

Fig. 10-7: (a) Centralized runtime monitoring (b) Distributed runtime monitoring

10.4 Monitoring Collaborative Embedded Systems 231

al. 2019], the specification of the group behavior requires a language
suitable for the expression of distributed system properties.

Embeddedness: Being an embedded system, a CES is usually subject
to stringent timing requirements. For automotive applications, the
variability in timing is usually bounded by a range of milliseconds,
whereas for the transport robot use case deadlines are given in
seconds and originate from the CSG’s context, for example,
manufacturing execution system (MES) execution cycles. If the
systems repeatedly fail to adhere to the timing requirements, the
faults can accumulate and ultimately cause a fleet failure. Another
consequence of acting in the physical world and, more precisely, of
being connected via a wireless network, is the possibility of message
loss. Finally, embedded systems have limited computational
resources and are often powered by battery. Thus, implementations
must be efficient and the number of messages exchanged for
negotiation between CESs, as well as for communication between
monitors, should be minimal.

Runtime Monitoring of Interaction Protocols

In this section, we provide an example of an interaction protocol of the
transport robot use case, which serves as the subject for our runtime
monitoring approach. We then introduce two specification
formalisms, each targeting different aspects of the challenges
identified for runtime monitoring of CSGs and give a high-level
description of how to apply them to the example introduced.

Figure 10-8 shows an Agent UML (AUML) [Cabac et al. 2004]
sequence diagram of the distributed order assignment, an auction-
based algorithm, used to assign transport jobs in the transport robot
use case. AUML is a natural fit for the description of interaction
protocols because it is widespread, relatively easy to use, and can
serve as a semi-formal development artifact at every stage of the
system design process.

The protocol is initiated whenever a machine broadcasts the need
for transport to the fleet. Two general things should be noted here.
First, a protocol deadline of 120 seconds is specified in the top left
corner to ensure the (timely) termination of the protocol. Second, we
use different execution lines for the CES and CSG, yet the former is by
definition a member of the latter. This is necessary to model the
perspective of a CES, where a monitor ultimately resides. Initially, the
MES addresses the entire CSG via a broadcast message, represented
by an empty circle arrowhead. After the announcement is received, all
robots will wait two seconds before continuing with the protocol,

232 Creating Trust in Collaborative Embedded Systems

which is specified as (d:5) under the message. At this point, two
concurrent threads (parallel vertical bars) are run per robot: one for
sending messages and one for receiving messages. This way, no false
assumptions about the order of events are incorporated into the
model. The robot will then continue to inform the fleet about its
readiness to participate in the current auction. A diamond box with a
cross represents an “exclusive or” decision — that is, a robot should
only ever send one of the two messages. Every other member of the
CSG makes an analogous decision. All participating units then
calculate their bids in a subroutine (which is not shown in the
diagram) and notify the fleet again via broadcast. Each CES announces
its bid via broadcast message and waits for all other bids to arrive,
with the same number of bids as participation announcements
expected in total. The bids of all participating CESs should be received
within 10 seconds, which is represented by the vertical line on the
right-hand side of the figure. The winner is determined using the bids
received, where the robot with the highest bid wins; IDs can be used
for symmetry breaking. The black circular arrowhead indicates that
the winning CES will then notify the machine with a reliable message
that is sent until it has been acknowledged.

Fig. 10-8: An AUML diagram of distributed order assignment in the autonomous
transport robots use case

10.4 Monitoring Collaborative Embedded Systems 233

Monitoring Functional Correctness

Certifying distributed algorithms are a distributed runtime
monitoring technique [Voellinger and Akili 2018]. For its
(distributed) input-output pair (i, o), a certifying distributed
algorithm (CDA) computes, in addition to the output o, a witness w. A
witness is an object which can be used in a formal argument for the
correctness of the input-output pair. A witness predicate Γ holds for
the triple (i, o, w) if the pair (i, o) is correct. The witness predicate is
decided by a distributed checker algorithm at runtime. The idea is that
a user of a CDA does not have to trust the actual algorithm but rather
the checker, which is simpler and can be formally verified. Using the
terminology of runtime verification, a checker acts as a monitor for a
system running a CDA. The system itself is instrumented to
additionally compute a witness.
CDAs can be used to verify functional correctness at runtime. With
respect to the distributed order assignment (Figure 10-8), we
identified the following functional specification:

 Agreement: All robots agree on the winner triple (winnerID,
winner bid, jobID)

 Existence: There is a robot with the winnerID
 Maximum: The winner’s bid is maximal among all bids

For a robot k, we consider its unique identifier as input (ik := {k}) and
a triple containing the ID of its determined winner, the bid of its
determined winner, and job ID as local output (ok := {(winnerIDk,
winnerBidk , jobIDk)}. The witness of robot k consists of its own bid as
well as a set containing the outputs of all other robots (wk := (bidk,
{ol | l ∈ ID and l ≠ k}).

We distinguish between input, output and witness of single robots
and those of the whole CSG. We denote the latter as global input I,
global output O and global witness W, and define these as the union of
the corresponding local items of all robots.

We formalize the specification as the three global predicates Γagree,
Γexist, Γmax over the global input, output, and witness.

If Γagree holds for (I, O, W), then the property agreement holds. For
each of the global predicates, we introduce a local predicate that can
be checked by a monitor for each robot: γagree, γexist, γmax. We forgo the
formalization of the predicates but only state their meaning.

The local predicate γagree holds for robot k if its winner triple equals
the winner triple of all other robots. If γagree holds for all robots, Γagree

holds for the CSG. The predicate γmax holds for a robot if its bid is less
than or equal to its winner bid. The predicate γmax must hold for all

234 Creating Trust in Collaborative Embedded Systems

robots. However, note that this predicate would hold for all robots
even if each robot had a different winnerBid to compare its bid with.
To verify the maximum among all bids, each robot has to compare its
bid with the same winner bid. However, with γagree holding for all
robots, this is ensured. Hence, if γmax and γagree hold for all robots, Γagree

holds for the CSG. The predicate γexist holds for a robot k if its ID and
bid equals its winner-ID and -bid, that is, if k chooses itself as a winner.
There must be one robot for which γexist holds. Together with γagree

holding for all robots, this ensures that there is exactly one winner.
Hence, if γexist and γagree hold for all robots, Γexist holds for the CSG.

The monitor of a robot k must communicate with the monitors of
all other robots in order to collect their outputs, which are contained
in wk. Based on (ik, ok, wk), the monitor of a robot evaluates γagree, γexist,
γmax based on its robot input, output, and witness. To decide Γagree, Γexist

and Γmax, the monitors have to combine their results, for example,
using a spanning tree as communication topology. To ensure the
correctness of the result, a reliable message passing mechanism such
as remote procedure call must be used for this exchange.

Monitoring Correct Timing Behavior
Temporal logics are widely employed in the field of runtime
monitoring to specify system properties [Bauer et al., 2011]. A well-
established specification language for monitoring is Metric Temporal
Logic (MTL), which enriches the temporal operators □ (always), ◇
(sometime), and U (until) with quantitative timing constraints. The
syntax of MTL is given by:

φ ::= ⊥ | p | (φ → ψ) | (φ U t ψ)
The until operator has a scalar constraint t ∈]0, ∞[, which

intuitively corresponds to a deadline. Other operators can be defined
as usual: ¬φ := (φ → ⊥), ⊤ := ¬⊥, (φ ∨ ψ) := (¬φ → ψ), (φ ∧ ψ) := ¬(¬φ
∨ ¬ψ), (φ ⊕ ψ) := ((φ ∨ ψ) ∧ ¬(φ ∧ ψ)) , ◇t φ := (⊤ Ut φ), □t φ := ¬◇t
¬φ, etc. In order to define the semantics of an MTL formula with
respect to some SUM, the SUM is instrumented to produce a trace of
timestamped events ρ = (τ1, σ1), (τ2, σ2), ..., (τn, σn) ∈ (ℝ ≥0×Σ)∗ over a
finite alphabet Σ. The length of a trace is denoted as |ρ|. The semantics
of ⊥, p, and → is deϐined as in classical Boolean logic. For example, (ρ,
i) ⊨ (φ → ψ) if (ρ, i) ⊨ φ implies (ρ, i) ⊢ψ. The semantics of the until
operator Ut is as follows:

(ρ, i) ⊨ (φ Ut ψ) if there exists a j such that
i < j < |ρ|, (ρ, j) ⊨ ψ, τj − τi ≤ t,
and (ρ, k) ⊨ φ for all k with i < k < j

10.4 Monitoring Collaborative Embedded Systems 235

In other words, ψ must be true some time before the deadline t has
been passed and before that, φ has to continually hold.

With respect to the protocol presented, the following formula
expresses that within five seconds after receiving the announce
message, each robot declares its participation or non-participation in
the bidding:

φ1 = (announce → (□5 ¬(participate ⊕ not-participate)))

Analogously, the following formula expresses the 10 second timeout
for placing a bid:

φ2 = (participate → □10 bid)

One such monitor checking the formulas above runs for each robot.
Thus, the method is implicitly constrained to specify properties of the
actions and observations of a single robot.

The Boolean semantics of MTL given above has been extended to a
real-valued semantics, where the truth value of a formula is a real
number (where ∞ represents true and -∞ false) [Dokhanchi et al.
2014]. This value gives the robustness of validity or falsity of a
formula φ: If φ evaluates to the positive robustness ε, then the
specification is true and, moreover, the trace can tolerate
perturbations up to ε and still satisfy the specification. Similarly, if the
robustness is negative, then the specification is false and, moreover,
the trace under ε perturbations still do not satisfy it. This is useful for
monitoring, e.g., properties such as “If a town sign is detected, within
3 seconds, the speed is reduced to 50 km/h”, which is formulated as

(town-sign → ◇3 (speed<50))

In each timed event, the truth value of the basic event (speed<50)
could depend on the value of the actual speed minus 50, thus a trace
where the speed is reduced to 40 km/h has a higher robustness value
than one where it is reduced only to 49 km/h.

In [Lorenz and Schlingloff 2018], we use a similar idea, however,
instead of giving a fuzzy semantics to basic propositions, we let the
truth value reflect the robustness with which deadlines are met. In our
logic RVTL, the truth value of a formula with respect to a finite trace
depends on the distance between the end of the trace and the bounds
of the temporal operators in the formula. Formally,

(ρ,i)⟦◇t φ⟧ = (τi+t) - τn, if (τi+t)≥τn and (ρ,k)⟦◇t φ⟧<∞ for all i≤k≤n,
and (ρ,i)⟦◇t φ⟧ = inf {(ρ,j)⟦φ⟧ | (τi+t)≥τj}, else.

236 Creating Trust in Collaborative Embedded Systems

Intuitively, if the deadline extends past the end of the trace and φ is
not satisfied until then, the truth value of ◇t φ reflects how much time
is left to satisfy φ. Otherwise, the truth value coincides with the
classical meaning in MTL. Therefore, the value (ρ,i)⟦◇t φ⟧ provides
runtime information about the distance between the current time step
and the deadline t for φ. It quantifies how much time is left for φ to
become true before its deadline is surpassed. The value of the dual
formula (ρ,i)⟦ □t φ⟧ is calculated similarly:

(ρ,i)⟦□t φ⟧ = τn - (τi+t), if (τi+t)≥τn and (ρ,k)⟦□t φ⟧ >-∞ for all i≤k≤n,
and (ρ,i)⟦□t φ⟧ = sup {(ρ,j)⟦φ⟧ | (τi+t)≥τj}, else.

That is, if the deadline extends past the end of the trace, then the truth
value of □t φ reflects the “obligation” to obey φ for some prolonged
time; otherwise, the truth value coincides with the classical meaning.
With such a semantics, we can issue a warning already if deadlines are
nearly missed, even before an error occurred. A typical formula is

φ3 = (orderCreated→ ◇600 orderCompleted)

which states that every transport job should be completed within ten
minutes. Monitoring this formula for several days in a real production
environment shows situations where “near misses” accumulate more
and more, until finally “real misses” of the deadline occur. In a
collaborative work environment, such an agglomeration of problems
can be an early indication that the size of the fleet needs to be
increased.

10.5 Conclusion

In this chapter, we elaborated on a notion of trust in the context of
collaborative embedded systems. We discussed how different aspects
of trust can be addressed at design time and runtime. During design
time, testing the behavior of collaboration functions in an extended
set of test scenarios creates trust by enabling software behavior
certification. During design time, the prediction of software and
system behavior gives insights into decisions. In the case of dangerous
predictions, failover behavior can be triggered. We then presented
runtime monitoring — a lightweight method for establishing trust of
a user in a CSG. To this end, we introduced two runtime monitoring
techniques: certifying distributed algorithms and runtime verification
with temporal logics. Certifying distributed algorithms are tailored for
distributed runtime monitoring and therefore well-suited for
application to non-intermediate interaction through negotiation

10.6 Literature 237

protocols. The method supports distribution of a specification for the
global behavior of the system in a way that partial specifications can
be checked locally at each component. Temporal logics, on the other
hand, are a good fit to address the challenges posed by the physical
embedding of a CES. They can be used to express the timing of
behaviors as typically required for embedded systems. Moreover,
multi-valued variants of linear temporal logic can even help to detect
progressing fault chains before they lead to failures.

10.6 Literature
[ANKI 2020] Overdrive – https://anki.com/en-us/overdrive.html; accessed on

07/14/2020.

[Avizienis et al. 2004] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr: Basic Concepts
and Taxonomy of Dependable and Secure Computing. In: IEEE Transactions on
Dependable and Secure Computing, 2004, pp.11-33.

 [Bartocci et al. 2018] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger: Introduction to
Runtime Verification. In: Lectures on Runtime Verification, 2018, pp. 1-33.

[Bauer et al. 2011] A. Bauer, M. Leucker, C. Schallhart: Runtime Verification for LTL and
TLTL. In: ACM Transactions on Software Engineering and Methodology (TOSEM),
2011, pp. 1-64.

[Blockly 2020] Google Blockly – https://developers.google.com/blockly; accessed on
07/14/2020.

[Cabac et al. 2004] L. Cabac, D. Moldt: Formal Semantics for AUML Agent Interaction
Protocol Diagrams. In: International Workshop on Agent-Oriented Software
Engineering, 2004, pp. 47-61.

[da Silva Amorim et al. 2016] S. da Silva Amorim, J. D. McGregor, E. S. de Almeida, C. von
Flach, G Chavez: Software Ecosystems Architectural Health: Challenges x Practices.
In: Proceedings of the 10th ECSA Workshops. ACM, 2016, pp. 1-7.

 [da Silva Amorim et al. 2017] S. da Silva Amorim. F. S. S. Neto, J. D. McGregor, E. S. de
Almeida, C. von Flach, G Chavez: How Has the Health of Software Ecosystems Been
Evaluated?: A Systematic Review. In: Proceedings of the 31st Brazilian Symposium
on Software Engineering. ACM, 2017, pp. 14–23.

[Dokhanchi et al. 2014] A. Dokhanchi, B. Hoxha, G.s Fainekos: On-Line Monitoring for
Temporal Logic Robustness. 5th International workshop on Runtime Verification
(RV 2014), Toronto. Springer LNCS 8734, 2014, pp. 231-246.

[Kephart and Chess, 2003] J. O. Kephart, D. M. Chess: The Vision of Autonomic
Computing. Computer, vol. 36, no. 1, pp. 41–50, 2003.

[Krasner and Pope 1988] G. Krasner, S. Pope: A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk -80. In: Journal of Object-Oriented
Programming.

[Kuhn et al. 2013] T. Kuhn, T. Forster, T. Braun, R. Gotzhein: Feral — Framework for
Simulator Coupling on Requirements and Architecture Level. In: Formal Methods

https://anki.com/en-us/overdrive.html
https://developers.google.com/blockly

238 Creating Trust in Collaborative Embedded Systems

and Models for Codesign (MEMOCODE), 2013 EleventhIEEE/ACM International
Conference on. IEEE, 2013, pp. 11–22.

[Leucker and Schallhart 2009] M. Leucker, C. Schallhart: A Brief Account of Runtime
Verification. In: The Journal of Logic and Algebraic Programming, Vol. 78 Issue 5,
2009, pp. 293-303.

[Lorenz and Schlingloff 2018] F. Lorenz, H. Schlingloff: Online-Monitoring Autonomous
Transport Robots with an R-valued Temporal Logic. 14th International IEEE
Conference on Automation Science and Engineering (CASE), 2018.

[Luckcuck et al. 2019] M. Luckcuck, M. Farrel, L. Dennis, C. Dixon, M. Fisher: Formal
Specification and Verification of Autonomous Robotic Systems: A Survey. In: ACM
Computing Surveys (CSUR), 2019, pp.1-41.

[Voellinger and Akili 2018] K. Völlinger, S. Akili: On a Verification Framework for
Certifying Distributed Algorithms: Distributed Checking and Consistency. In:
International Conference on Formal Techniques for Distributed Objects,
Components, and Systems, 2018, pp. 161-180.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Language Engineering for
Heterogeneous Collaborative

Embedded Systems

At the core of model-driven development (MDD) of collaborative embedded systems
(CESs) are models that realize the different participating stakeholders’ views of the
systems. For CESs, these views contain various models to represent requirements, logical
functions, collaboration functions, and technical realizations. To enable automated
processing, these models must conform to modeling languages. Domain-specific
languages (DSLs) that leverage concepts and terminology established by the stakeholders
are key to their success. The variety of domains in which CESs are applied has led to a
magnitude of different DSLs. These are manually engineered, composed, and customized
for different applications, a process which is costly and error-prone. We present an
approach for engineering independent language components and composing these using
systematic composition operators. To support structured reuse of language components,
we further present a methodology for building up product lines of such language
components. This fosters engineering of collaborative embedded systems with modeling
techniques tailored to each application.

Arvid Butting, RWTH Aachen University
Andreas Wortmann, RWTH Aachen University

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_11

239

https://doi.org/10.1007/978-3-030-62136-0_11
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_11&domain=pdf

240 Language Engineering for Heterogeneous Collaborative Embedded Systems

11.1 Introduction

Engineering collaborative embedded systems (CESs) and
collaborative system groups (CSGs) usually demands the cooperation
of experts from various domains with different backgrounds,
methods, and solution paradigms that contribute to different
viewpoints (e.g., requirements, functional, logical, or technical
viewpoints) of the system [Pohl et al. 2012].

The need to translate domain-specific solution concepts into
software artifacts introduces a conceptual gap between the experts’
problem domains and the solution domain of software engineering.
This gap can give rise to accidental complexities [France and Rumpe
2007] due to the mismatch of solving problem domain challenges with
solution domain (programming) concepts.

Model-driven development (MDD) [France and Rumpe 2007] is a
software engineering paradigm that lifts models to the primary
development artifacts. In contrast to program code, which reifies
concepts of the solution domain, models can leverage domain-specific
concepts and terminology to express concepts of the problem domain,
which facilitates contribution by domain experts. Models can also be
more abstract and leave implementation details to smart software
engineering tools (e.g., model transformations or code generators).

To enable models to be processed automatically, they must
conform to explicit modeling languages [Hölldobler et al. 2018].
Engineering modeling languages is a challenging endeavor due to the
multitude of formalisms and technologies involved, such as (i)
grammars [Hölldobler and Rumpe 2017] or metamodels [Eysholdt et
al. 2009] to define the languages’ syntax, (ii) the Object Constraint
Language (OCL) [Cabot and Gogolla 2012] or programming languages
to define their well-formedness, and (iii) code generators [Kelly and
Tolvanen 2008] or model transformations [Mens and van Gorp 2006]
to realize their semantics (in the sense of meaning [Harel and Rumpe
2004]). As “software languages are software too” [Favre 2005], they
are also subject to all the challenges typical to complex software as
well. And similar to general software engineering, reuse is also the key
to the efficient engineering of modeling languages. This holds
especially for engineering collaborative embedded systems under the
contribution of domain experts through viewpoints that are realized
via domain-specific languages.

Collaborative
embedded systems

Model-driven
development

11.1 Introduction 241

Software language engineering (SLE) [Hölldobler et al. 2018] is a
field of research that investigates the engineering, maintenance,
evolution, and reuse of software languages. Research in SLE has
produced a variety of solutions for reusing languages and language
parts. However, the approaches for reusing complete (comprising
realizations of syntax and semantics) language parts are missing,
which severely hampers modeling for CESs and CSGs.

To address this, we present a method for modularizing modeling
languages as language components, composing these, and ultimately
building product lines of modeling languages to increase the reuse of
languages beyond clone-and-own [Dubinsky et al. 2013].

Example 11-1: A family of architecture description languages
Consider a company that develops software for various kinds of CESs that
operate in a smart factory. The company employs an architecture
description language (ADL) [Medvidovic and Taylor 2000] to develop
software component models for the software architecture of the CESs. The
different kinds of CESs yield particularities regarding their software
architecture. For some systems, it should be possible to perform dynamic
reconfiguration of their software architecture based on mode automata
[Butting et al. 2017], while for other systems, this is not allowed due to
security restrictions. Similarly, some systems support dynamic re-
deployment of software components to other systems, while this is not
intended for other systems. To reify this properly in the models, the
company uses different variants of ADLs — that is, variants of logical and
technical viewpoints [Pohl et al. 2012]. These variants have several
common language concepts and share large parts of the code generators
employed. Without proper language modularization and reuse, these
language variants co-exist in the form of cloned-and-owned, monolithic
software tools.

In the following, Section 11.2 introduces the MontiCore language
workbench, which our solution builds upon. Section 11.3 then
introduces our notion of language components, before Section 11.4
explains their composition. Section 11.5 explains how we leverage
composable language components to structure language reuse
through explicit variability models, which we employed in CrESt to
develop variants [Butting et al. 2019] of the MontiArc ADL [Haber et
al. 2012] tailored to the use cases of “Autonomous Transport Robots”
and “Adaptable and Flexible Factory” (cf. Chapter 1). Section 11.6
concludes this chapter.

Software
language
engineering

242 Language Engineering for Heterogeneous Collaborative Embedded Systems

11.2 MontiCore

MontiCore [Hölldobler and Rumpe 2017] is a language workbench
[Erdweg et al. 2015] that facilitates the engineering of compositional
modeling languages. MontiCore languages are based on a context-free
grammar (CFG) that defines the (concrete and abstract) syntax of the
respective language to which its models must conform. MontiCore
uses this CFG to generate a parser that can process models of that
language, along with abstract syntax classes that can store the
machine-processable representation of the models once they have
been parsed.

After parsing, the models are translated into abstract syntax trees
(ASTs) — that is, instances of the abstract syntax classes generated
from the grammar. Using MontiCore’s extensional function library,
these models are checked for well-formedness and other properties,
transformed, and ultimately translated into other models, reports,
source code, or other target representations. All of these activities rely
on MontiCore’s modular visitors that process parts of the AST. Visitors

[Gamma et al. 1995] separate operations on object structures from the
object structures themselves and thus enable the addition of further
operations without requiring modifications to the object structures.

To facilitate operation on different nodes of the AST, MontiCore
supports the definition of symbols—meaningfully abstracted model
parts—based on grammar rules. Symbols are stored in symbol tables
and can be resolved within a language as well as by other languages,
enabling different forms of language composition.

Using CFGs and symbol tables, MontiCore supports the modular
composition of languages through extension, embedding, and
aggregation: language extension enables a CFG to extend another CFG,
thereby inheriting all productions of the extended CFG. This process
produces a new AST that may reuse productions of the extended CFG.
This is useful, for example, for extending a base language in different
ways with domain-specific extensions that would otherwise

Abstract syntax tree

Symbols

Fig. 11–2: The quintessential components of MontiCore’s language processing tool
chain support model loading, checking, and transformation

11.3 Language Components 243

convolute the base. Language embedding is the integration of selected
productions of the client CFG into extension points of the host CFG.
The resulting AST is the AST of the host CFG with a sub-AST of the
client CFG embedded into selected nodes. This supports the creation
of (incomplete) languages that provide an overall structure but
demand (domain-specific) extension. Language aggregation is the
integration of languages through references between their modeling
elements. These references are resolved using MontiCore’s symbol
table framework and do not yield integrated ASTs. Instead, the models
of the integrated languages remain separate artifacts. This supports,
for example, the separation of different, yet integrated, concerns in
models, such as structure and behavior.

For well-formedness checking and code generation, MontiCore
provides generic infrastructures that can be customized by adding
well-formedness rules (context conditions) and FreeMarker
[Forsythe 2013] templates that define the code generation by
processing the AST using template control structures and target
language text. Consequently, a MontiCore language usually comprises
a CFG, context conditions, and FreeMarker templates.

11.3 Language Components

Component-based software engineering is a paradigm for increasing
software reusability by means of modularization. This paradigm is
successfully applied in different domains and well suited for the
engineering of embedded systems. The techniques of this paradigm
can be applied to software languages as well. As a consequence, all
advantages of component-based software engineering, such as
increased reusability and better maintainability, can be leveraged to
facilitate SLE. Similar to [Clark et al. 2015], we use the term language
component for modular, composable software language realizations.

Definition 11-3: Language component
A language component is a reusable unit encapsulating a potentially
incomplete language definition. A language definition comprises the
realization of syntax and semantics of a (software) language.

This definition reduces the notion of language components to the
constituents of the language infrastructure without being dependent
on a specific technological space [Kurtev et al. 2002]. Ultimately, this
means that a language component is a set of artifacts that form a

244 Language Engineering for Heterogeneous Collaborative Embedded Systems

reusable unit. This set includes both handwritten as well as generated
artifacts of language-processing tooling. For textual languages, it may
include, for example, a grammar as a description of the syntax, the
source code realizing well-formedness rules, a generated parser, and
a generated AST data structure. In other technological spaces, a
language component may contain a metamodel instead of a grammar
and parser. Some language workbenches, such as MontiCore, enable
language engineers to customize generated artifacts. Such
handwritten customizations are part of a language component as well.

Ideally, software components are black boxes whose internal
workings are not relevant in their environment [McIlroy 1968].
Consequently, language components may also hide implementation
details from their environment. To this end, language engineers can
plan explicit extension points of a language component for which
other language components can provide extensions. The realization of
the extension points and extensions depends on the technological
space used to realize the language components. In MontiCore, for
example, syntax extension points can be realized through
underspecification in grammars realized as interfaces or external
productions [Hölldobler and Rumpe 2017]. Other language
constituents, such as code generators, may yield different
mechanisms for extension points and extensions.

Fig. 11–4: Artifacts of a language component can be distributed among software
modules and some artifacts belong to multiple language components

A language component consists of many interrelated artifacts that
may be distributed across different software modules and a single
software module may contain artifacts for one or more language
components (cf. Figure 11–4). This is due to the fact that the
modularization of software into modules is typically driven by build
tools (e.g., Maven or Gradle) that intend a different level of granularity.

Extension points

Artifact organization

11.3 Language Components 245

Furthermore, an artifact may be part of multiple language
components.

Example 11-5: BaseADL language component in MontiCore
The BaseADL language component contains a context-free grammar to
describe the concrete and abstract syntax of a basic architecture
description language (ADL). From this grammar, MontiCore generates a
set of AST and symbol table classes that represent the abstract syntax data
structure, a parser, a visitor infrastructure, and an infrastructure for
realizing and checking context conditions. The handwritten context
conditions, code generator classes, and templates are part of the language
component as well.

In this example, the language engineers have planned two extension
points for the BaseADL language component. One extension point can be
extended to introduce a new notation for components and another one to
introduce a new kind of connector. The extension point for components,
for example, can be extended to add dynamic components that contain a
mode automaton (cf. Example 11-1).

To identify, analyze, compose, and distribute language
components, the large number of source code artifacts that realize the
language component have to be extracted from the software modules.
The constituents of a language component can be described and typed
through a suitable artifact model [Butting et al. 2018b]. This produces
the opportunity to identify the constituents of a language component
by means of an artifact data extractor in a semi-automated process.
This process collects potential artifacts of a language component,
starting with a central artifact such as a grammar or a metamodel.
With an underlying artifact model, an artifact data extractor can
extract all associations from this artifact to other artifacts. For
instance, in the technological space of MontiCore, this automated

246 Language Engineering for Heterogeneous Collaborative Embedded Systems

extraction handles the identification of all Java classes that realize
context conditions that can be checked against abstract syntax classes
generated from a grammar.

However, the result of this automatic extraction (1) can produce
artifacts that are not intended to be part of a language component or
(2) can lack artifacts intended to be part of the language component.
Therefore, handwritten adjustments of this result must be considered.
In other technological spaces, these data extractors must be provided
accordingly.

11.4 Language Component Composition

In general, the engineering of language components as described in
Section 11.3 is the basis for building languages by composing
language components. There are various forms of language

composition [Erdweg et al. 2012] that are supported by different
language workbenches [Méndez-Acuña et al. 2016]. Some forms of
language composition produce composed languages that can process
integrated model artifacts, while other forms—such as language
aggregation—integrate languages whose models remain in individual
artifacts. Certain kinds of language composition—for example,
language extension and language inheritance—require that one
language depends on another language. These forms are not suitable
for independent engineering of the participating languages and, when
applied to language components, may introduce dependencies to the
language component context. Some forms of language composition
also require configuration with integration “glue,” such as adapters
between two kinds of symbols [Nazari 2017]. Therefore, care must be
taken to select a suitable form of language composition.

For the composition of language components, we generalize the
concrete form of language composition and denote that each
composition of two language components is specified through a

Forms of language
composition

Language component
composition operators

Fig. 11–6: Composing two language components A and B requires composition of their
constituents

11.4 Language Component Composition 247

configuration, as depicted in Figure 11–6. The configuration connects
an extension point of a language component with an extension of
another language component and states which form of composition
has to be applied. Depending on the form of composition, the
composition may also have to be configured with glue code. The actual
composition of two language components is realized through the
composition of their constituents. To this end, composition operators
must be defined for each kind of constituent individually.

For example, MontiCore enables the composition of language
components through embedding. The actual embedding has to be
performed for handwritten constituents—such as grammars, context
conditions, and generators—but also for generated constituents such
as the AST data structures, the symbol table, and the visitor
infrastructure. Thus, for all these constituents, an individual
composition operator that realizes the embedding must be defined.

MontiCore enables grammars to inherit from one or more other
grammars. If a grammar inherits from another (super-)grammar, it
can reuse and, optionally, extend or override the productions of the
super-grammar. This influences the syntax through the generated
parser and the integrated AST infrastructure, but also affects many
other parts of the language-processing infrastructure generated from
a grammar. Multi-inheritance in grammars can be used to compose
two independently developed grammars and through this, realize
language embedding. Therefore, the composition operator for
embedding a MontiCore grammar into another MontiCore grammar
produces a new grammar that inherits from both source grammars
[Butting et al. 2019]. Furthermore, a grammar production integrating
extension point and extension are generated, depending on the kind
of syntax extension point (e.g., an interface production) and the kind
of extension (e.g., a parser production).

In the context of language composition, we distinguish between
intra-language and inter-language context conditions. Intra-language
context conditions check the well-formedness of the syntax of a single
language component, while inter-language context conditions affect
syntax elements of more than one language component. Intra-
language context conditions are part of a language component,
whereas we regard inter-language context conditions as part of the
configuration of the composition. Context conditions in MontiCore are
evaluated against the abstract syntax by means of a visitor. To this
end, composing context conditions of different language components
requires the composition of the underlying visitor infrastructures.
This is realized via inheritance and delegator visitors [Heim et al.

Composing grammars

Composing context
conditions

248 Language Engineering for Heterogeneous Collaborative Embedded Systems

2016]. Once the visitors are integrated, the context conditions can be
checked against the integrated structure.

Code generators are commonly used for translating models into
implementations that can be executed on embedded systems.
However, few techniques for the composition of code generators exist,
and these rarely enable composition of independent code generators.
Code generator composition is challenging, as the result of the
composition should produce correct code. While this is generally
impossible, we can support language engineers in developing code
generators that produce code that is structurally compatible with
code generated by other code generators [Butting et al. 2018a]. This
is realized by requiring each generator to indicate an artifact interface
to which the generated code conforms. An adapter resolves potential
conflicts between the artifact interfaces of two different code
generators.

A further challenge in code generator composition is the
coordination of the code generator execution. For some forms of
composition, such as language embedding, code generators have to
exchange information and thus comply with each other in a similar
way to the generated code. To this end, generators provide generator
interfaces to which the code generators conform. Again, potential
conflicts between two code generators that are to be composed are
resolved via adapters.

11.5 Language Product Lines

Reuse of languages or language parts is not only beneficial for
language engineers due to the decreasing development cost and the
increase in the language tooling quality, but also for language users,
as the accidental complexity [Brooks 1987] posed by the effort of
learning the syntax of new languages is reduced. In the context of
engineering CESs and CSGs, language product lines are very
applicable. Despite the variety in fields of application for which CESs
and CSGs are employed, their model-driven engineering often relies
on the same general-purpose modeling languages (e.g., UML) to
describe aspects such as the geometry of physical entities of CESs,
their system functions, collaboration functions, their communication
paradigms, architectures, goals, capabilities, and much more.

This raises a gap between the problems in the application domain
and the ability to express these in the modeling languages in a
compact and understandable way. Enriching general purpose

Composing code
generators

11.5 Language Product Lines 249

modeling language with application domain-specific language
concepts helps to bridge this gap. Modular language engineering in
terms of developing language components as presented in Section
11.3 and composing these as presented in Section 11.4 can be used to
realize product lines of languages [Butting et al. 2019]. Such language
product lines enable systematic reuse of language components for a
family of similar languages and, therefore, enable individual tailoring
of the modeling languages to the application fields of CESs and CSGs.

The variability of the language product line in terms of language
features is modeled as a feature diagram, where language features are
realized as language components. Therefore, a binding of the product
line connects features with the language components that realize
them. Furthermore, the binding configures the pairwise language
component compositions that occur in all products of the language
product line.

Example 11-7: MyADL language product line

The company developing CESs described in Example 11-1 can employ a
language product line for their ADLs to eliminate clones of redundant
language parts and the resulting effort in maintaining and evolving these
individually. All ADL variants have a common base language, and different
combinations of extensions to this base language are considered in the
product line. The optional behavior of software components can be
modeled via input-output automata, an action language, or both. Some
application scenarios benefit from using SI units as data types for
messages sent via ports.

A product of the product line is specified via a feature
configuration. The language components of all selected features are
composed in pairs, as specified via the binding. The result of
composition is a language component. Derivation of languages from

Modeling language
product lines

250 Language Engineering for Heterogeneous Collaborative Embedded Systems

the product line is automated, but the resulting language component
can be customized manually (optional). Engineering reusable
language components and using these within language product lines
fosters separation of concerns among different roles, as depicted in
Figure 11–8.

 Language engineers develop language components and their
extension points independently of one another. The artifacts of a
language component are identified and collected via an artifact data
extractor.

 A product line manager selects suitable language components for a
field of application scenarios, arranges these in the form of a feature
model, and configures the composition of the language components in
a binding.

 A language product owner selects features of a language product
line that are useful for a concrete application and, on a pushbutton
basis, can use generated language-processing tools for this language.
The generated tooling can be customized (optional). In Figure 11–8,
the language product is an ADL with the name “MontiArc.”

 A modeler uses a language product through the generated language-
processing tools without being aware of the language product line —
for instance, to model specific system functions or collaboration
functions of collaborative transport robot systems.

 Fig. 11–8: Processes and stakeholders involved in engineering language product lines

251

11.6 Conclusion

We have presented concepts for composing modeling languages from
tried-and-tested language components. Leveraging these concepts
facilitates engineering of the most suitable domain-specific languages
for the different stakeholders involved in systems engineering. This
mitigates an important barrier in the model-driven development of
CESs and CSGs. Future research should encompass generalization of
language composition beyond technical spaces and support for
language evolution.

11.7 Literature
[Brooks 1987] F. P. Brooks, Jr.: No Silver Bullet: Essence and Accidents of Software

Engineering, IEEE Computer (20:4), 1987, pp 10-19.

[Butting et al. 2017] A. Butting, R. Heim, O. Kautz, J. O. Ringert, B. Rumpe, A. Wortmann:
A Classification of Dynamic Reconfiguration in Component and Connector
Architecture Description Languages. In: Proceedings of MODELS 2017. Workshop
ModComp, CEUR 2019, 2017.

[Butting et al. 2018a] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann:
Modeling Language Variability with Reusable Language Components, In:
International Conference on Systems and Software Product Line (SPLC'18), 2018,
ACM.

[Butting et al. 2018b] A. Butting, T. Greifenberg, B. Rumpe, A. Wortmann: On the Need
for Artifact Models in Model-Driven Systems Engineering Projects. In: Software
Technologies: Applications and Foundations, Springer, 2018, pp. 146-153.

[Butting et al. 2019] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann:
Systematic Composition of Independent Language Features. In: Journal of Systems
and Software, 152, 2019, pp. 50-69.

[Cabot and Gogolla 2012] J. Cabot, M. Gogolla: Object Constraint Language (OCL): A
Definitive Guide. In: International School on Formal Methods for the Design of
Computer, Communication and Software Systems, Springer, Berlin, Heidelberg,
2012, pp. 58-90.

[Clark et al. 2015] T. Clark, M. v. d. Brand, B. Combemale, B. Rumpe: Conceptual Model
of the Globalization for Domain-Specific Languages. In: Globalizing Domain-Specific
Languages (Dagstuhl Seminar), LNCS 9400, Springer, 2015, pp. 7-20.

[Dubinsky et al. 2013] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, K.
Czarnecki: An Exploratory Study of Cloning in Industrial Software Product Lines.
In: Proceedings of the 2013 17th European Conference on Software Maintenance
and Reengineering, CSMR ’13, Washington, DC, USA, 2013, pp. 25–34.

[Erdweg et al. 2012] S. Erdweg, P. G. Giarrusso, T. Rendel: Language Composition
Untangled. In: Proceedings of the Twelfth Workshop on Language Descriptions,
Tools, and Applications, 2012, pp. 1-8.

11.7 Literature

252 Language Engineering for Heterogeneous Collaborative Embedded Systems

[Erdweg et al. 2015] S. Erdweg et al.: Evaluating and Comparing Language
Workbenches: Existing Results and Benchmarks for the Future. In: Computer
Languages, Systems & Structures 44, 2015, pp. 24-47.

[Eysholdt et al. 2009] M. Eysholdt, S. Frey, W. Hasselbring: EMF Ecore based meta model
evolution and model co-evolution. In: Softwaretechnik-Trends 29.2, 2009, pp. 20-
21.

[Favre 2005] J. M. Favre: Languages Evolve Too! Changing the Software Time Scale. In:
Eighth International Workshop on Principles of Software Evolution (IWPSE'05)
IEEE, 2005, pp. 33-42.

[Forsythe 2013] C. Forsythe: Instant FreeMarker Starter. Packt Publishing Ltd, 2013.

[France and Rumpe 2007] R. France, B. Rumpe: Model-Driven Development of Complex
Software: A Research Roadmap. In: Future of Software Engineering 2007 at ICSE.
Minneapolis, IEEE, 2007, pp. 37-54.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Haber et al. 2012] A. Haber, J. O. Ringert, B. Rumpe: MontiArc - Architectural Modeling
of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-
03, RWTH Aachen University, 2012.

[Harel and Rumpe 2004] D. Harel, B. Rumpe: Meaningful Modeling: What's the
Semantics of "Semantics"?. In: IEEE Computer, Volume 37, No. 10, 2004, pp 64-72.

[Heim et al. 2016] R. Heim, P. Mir Seyed Nazari, B. Rumpe, A. Wortmann: Compositional
Language Engineering using Generated, Extensible, Static Type-Safe Visitors. In:
Conference on Modelling Foundations and Applications (ECMFA'16), LNCS 9764.
Springer, July 2016, pp. 67–82.

[Hölldobler and Rumpe 2017] K. Hölldobler, B. Rumpe: MontiCore 5 Language
Workbench Edition 2017. In: Aachener Informatik-Berichte, Software Engineering,
Band 32. Shaker Verlag, 2017.

[Hölldobler et al. 2018] K. Hölldobler, B. Rumpe, A. Wortmann: Software Language
Engineering in the Large: Towards Composing and Deriving Languages. In: Journal
of Computer Languages, Systems & Structures, 54, Elsevier, 2018, pp. 386-405.

[Kelly and Tolvanen 2008] S. Kelly, J. P. Tolvanen: Domain-Specific Modeling: Enabling
Full Code Generation. John Wiley & Sons, 2008.

[Kurtev et al. 2002] I. Kurtev, J. Bézivin, M. Aksit: Technological Spaces: An Initial
Appraisal. In: 4th International Symposium on Distributed Objects and
Applications (DOA), 2002.

[McIlroy 1968] M. D. McIlroy: Mass-Produced Software Components, Software
Engineering Concepts and Techniques. NATO Conference on Software Engineering,
Van Nostrand Reinhold, 1976, pp. 88-98.

[Medvidovic and Taylor 2000] N. Medvidovic, R. N. Taylor: A Classification and
Comparison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering 26.1, 2000, pp. 70-93.

[Méndez-Acuña et al. 2016] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale,
B. Baudry: Leveraging Software Product Lines Engineering in the Development of
External DSLs: A Systematic Literature Review. Computer Languages, Systems &
Structures, 46, 2016, pp. 206-235.

11.7 Literature 253

[Mens and van Gorp 2006] T. Mens, P. Van Gorp: A Taxonomy of Model Transformation.
Electronic notes in theoretical computer science 152, 2006, pp. 125-142.

[Nazari 2017] P. Mir Seyed Nazari: MontiCore: Efficient Development of Composed
Modeling Language Essentials. In: Aachener Informatik-Berichte, Software
Engineering, Band 29. Shaker Verlag, 2017.

[Pohl et al. 2012] K Pohl, H. Hönninger, R. Achatz, M. Broy (Eds.): Model-Based
Engineering of Embedded Systems, Springer-Verlag, Berlin Heidelberg, 2012.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Development and Evaluation
of Collaborative Embedded

Systems using Simulation

Embedded systems are increasingly equipped with open interfaces that enable
communication and collaboration with other embedded systems, thus forming
collaborative embedded systems (CESs). This new class of embedded systems, capable of
collaborating with each other, is planned at design time and forms collaborative system
groups (CSGs) at runtime. When they are part of a collaboration, systems can negotiate
tactical goals, with the aim of achieving higher level strategic goals that cannot be
achieved otherwise. The design and operation of CESs face specific challenges, such as
operation in an open context that dynamically changes in ways that cannot be predicted
at design time, collaborations with systems that dynamically change their behavior
during runtime, and much more. In this new perspective, simulation techniques are
crucially important to support testing and evaluation in unknown environments. In this
chapter, we present a set of challenges that the design, testing, and operation of CESs face,
and we provide an overview of simulation methods that address those specific challenges.

Emilia Cioroaica, Fraunhofer IESE
Karsten Albers, INCHRON AG
Wolfgang Boehm, Technical University of Munich
Florian Pudlitz, Technische Universität Berlin
Christian Granrath, RWTH Aachen University
Roland Rosen, Siemens AG
Jan Christoph Wehrstedt, Siemens AG

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_12

255

https://doi.org/10.1007/978-3-030-62136-0_12
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_12&domain=pdf

256 Development and Evaluation of Collaborative Embedded Systems using Simulation

12.1 Introduction

Modeling and simulation are established scientific and industrial
methods to support system designers, system architects, engineers,
and operators of several disciplines in their work during the system
life cycle. Simulation methods can be used to address the specific
challenges that arise with the development and operation of
collaborative embedded systems (CESs). In particular, the evaluation
of collaborative system behavior in multiple, complex contexts, most
of them unknown at design time, can benefit from simulation. In this
chapter, after a short motivation, we exemplify scenarios where
simulation methods can support the design and the operation of CESs
and we summarize specific simulation challenges. We then describe
some core simulation techniques that form the basis for further
enhancements addressed in the individual chapters of this book.

12.1.1 Motivation

Simulation is a technique that supports the overall design, evaluation,
and trustworthy operation of systems in general. CESs are a special
class of embedded systems that, although individually designed and
developed, can form collaborations to achieve collaborative goals
during runtime. This new class of systems faces specific design and
development challenges (cf. Chapter 3) that can be addressed with the
use of simulation methods.

At design time, a suitable simulation allows verification and
exploration of the system behavior and the required architecture
based on a virtual integration. At runtime, when systems operate in
open contexts, interact with unknown systems, or activate new1
system functions, the aspect of trust becomes of crucial importance.
Using later research and technology advancements, we foresee the
possibility of computing trust scores of CESs directly at runtime based
on the evaluation results of system behavior in multiple simulated
scenarios. The core simulation techniques presented in this chapter
form the basis for enhanced testing and evaluation techniques.

1 “New functions” are functions that have not been enabled before in the current

internal system configuration.

12.1 Introduction 257

12.1.2 Benefits of Using Simulation

Regardless of the domain, the use of simulation methods for
behavioral evaluation of systems and system components has
multiple benefits.

For a concrete scenario of complex interactions, simulation
methods are more exploratory than analytical methods. The
effectiveness of the exploration is achieved through the coupling of
detailed simulation models, while the efficiency of the exploration is
achieved by exercising a system or system group behavior in a
multitude of scenarios, including scenarios that contain failures.

Through the collaboration of CESs, collaborative system groups
(CSGs) that did not exist before are formed dynamically at runtime.
Moreover, the exact configuration of those CSGs is not known at
design time. In such situations, when systems operate in groups that
never existed before, there is insufficient knowledge about the
collaborative behavior and its effects. In this case, simulation can help
to discover the effects of different function interactions.

As a third benefit, the use of closed-loop simulation (X-in-the-loop
simulation) is a suitable approach for testing embedded systems (e.g.,
control units of collaborative assistant systems). The independence of
the simulated test environment from the implementation and
realization of the embedded system (system under test) generates
advantages, such as reusability of the simulations and cost savings in
system testing. One example is the testing of different control units—
for which the simulation environment can be reused without major
adaptions—independently of the implementation and realization
concept of the control unit. Only the interfaces of realized
functionality of the system under test have to be the same to enable
coupling of the simulation and testing environment.

A fourth major benefit is that the risk for the system user (e.g., car
passenger) can be reduced by using simulations during the system
testing process by virtual evaluation. The test execution in virtual
environments enables discovery of harmful behavior in a virtual
world, where only virtual and not real entities are harmed. Real
hazards can thus be avoided. In addition, the risk during the operation
of collaborative systems can be reduced by using predictive risk
assessment by means of simulation.

Additionally, the use of simulations for testing at system design
time can be used to make tests virtual, with an associated reduction in
hardware and prototypes. In particular, the costs for the production
of these real components can be reduced. In addition, making tests
virtual leads to early error detection and correction and thus to a

Simulation to support
effectiveness of
exploration

Simulation to evaluate
the function interaction

Closed loop simulation

Risk reduction

Virtualization of tests

258 Development and Evaluation of Collaborative Embedded Systems using Simulation

further reduction in development costs. This is especially useful as the
exact configuration of CSGs is not known at design time. Here,
simulation gives the opportunity to simulate sets of possible (most
likely) scenarios.

Furthermore, the independence of simulation models that reflect
the behavior of real components results in efficient development,
because in some use cases, simulations are not bound to real-time
conditions. Therefore, they can be executed much faster than in real
time and thus be used to reduce development time. It is also easier to
explore many more scenarios and variations of scenarios to gain a
better overview and trust in the systems.

As a seventh benefit, the use of simulation environments for
testing embedded systems is especially independent of external
influences of the environment and ensures that tests can be
reproduced. This allows efficient tracking and resolution of problems
exposed by the simulation and reproduction of the absence of the
problems in the updated system configuration.

The last benefit is that the internal behavior of the simulated
systems and their visualization are exposed in a broad way. The
traceability of the execution of a real system is limited due to
hardware and time restrictions. In the simulation, it is easier to log
relevant internal system execution and therefore to identify the
causes of problems and unexpected behavior.

In the context of developing and evaluating CESs, the use and
benefit of simulation—as described above—lie mainly in the first
phases of the entire life cycle. In addition, simulation is also used
during operation and service—that is, during the runtime of the
system. Thus, simulation represents a methodology that can be used
seamlessly across all life cycle phases. Accordingly, there are different
challenges for simulation as a development methodology and as a
validation technique.

12.2 Challenges in Simulating Collaborative Embedded
Systems

Even though there are multiple benefits from using simulation, the
aspect of simulation for CESs and CSGs poses particular challenges. In
this section, we describe the design time and runtime challenges.

Reduction of
development time

and costs

12.2 Challenges in Simulating Collaborative Embedded Systems 259

12.2.1 Design Time Challenges

To support the use of simulation during the design of collaborative
systems, as presented in Chapter 3, multiple challenges must be
addressed, as detailed in the following.

One challenge is the evaluation of function interaction at design
time, because in a simulation of CESs, functions of multiple embedded
systems, developed independently, must be integrated to allow
evaluation of the resulting system. This is necessary to discover and
fix unwanted side effects before the systems are deployed in the real
world. Also, the other relevant aspects for the simulation scenario,
such as the context or the dynamic behavior of the systems, must be
covered. To support this activity, the integration of different models
and tools is also important. Development of collaborative system
behavior relies on simulating models of different embedded systems
that are often developed with different tools. Furthermore, the
integration of different simulation models, sometimes at different
levels of detail, represents an important design engineering challenge.
This is because the design of CESs relies on the evaluation of
collaborative system behavior that can be expressed at different levels
of abstraction. Another challenge is the integration of different aspects
of the simulation scenario. The comprehensive simulation of
collaboration scenarios must cover several aspects to achieve a broad
coverage of scenarios. Examples are the context of the CSG, the
execution platform of thxe systems and the system group, including
the functional behavior, the timing behavior, and the physical
behavior of the systems and the system group. The different aspects
can require dedicated models and must therefore be covered by
specialized simulation tools. For a comprehensive simulation of the
whole scenario, these models and tools must interact with each other
and must be integrated via a co-simulation platform.

The use of simulation methods pursues specific strategic goals as
well. One of these methods is the virtual functional test, which uses
simulation to test a certain collaboration functionality or a certain
functionality of one system in the collaborating context. The models
of the other parts (systems, context, etc.) must include only those
details relevant for the functionality being tested.

Another purpose of the simulation is the virtual integration test.
Here, simulation tests the correct collaboration of the different
systems or parts of the systems in a virtual environment. The exact
structure of the CSG may not be available at design time and can be
subject to dynamic changes. Simulation can test multiple scenarios for
this structure for a multitude of situations. An early application of

Virtual functional test

Virtual integration test

260 Development and Evaluation of Collaborative Embedded Systems using Simulation

such tests in the design process, before the different systems are fully
designed and implemented, will allow early detection of potential
problems and hazards for the collaboration behavior.

One strategic goal for the application of simulation, especially in
early design phases, is to support a design-space exploration. The
possibility to support the evaluation of a lot of design alternatives and
to identify hazards and failures in the different simulation models
allows a strategic evolutionary search for a system variant that fulfills
the desired goals and requirements.

The determination of fulfilled requirements allows the simulations
to serve as automation tools for test cases. The results must then be
linked to the requirements to determine the coverage. Besides the
degree of coverage, additional system behavior can be investigated in
relation to the requirements. Due to the great complexity of
collaborative systems, automated algorithms must be increasingly
used. In Section 12.3, we present a possible approach to help
developers and testers meet this challenge.

12.2.2 Runtime Challenges

Even though properly tested during design time, CESs face multiple
challenges at runtime and the simulation techniques deployed at
runtime face particular challenges as well. In this subsection, we list
the challenges of CESs and CSGs as introduced in Chapter 2. We then
detail the challenges of using simulation to solve these runtime
challenges.

One particular challenge CESs face at runtime is operation in open
contexts. The external context may change in unpredictable ways
during the runtime operation of CESs. In particular, the environment
changes and the context of collaboration may change as well. For
example, in the automotive domain, a vehicle that is part of a platoon
may need to adapt its behavior when the platoon has to reduce the
speed due to high traffic. If the vehicle has a strong goal of reaching
the target destination at a specific time, it may decide to leave the
platoon that is driving at a lower speed and select another route to its
destination. For the remaining vehicles within the platoon, the
operational context has changed because the vehicle is now no longer
part of the platoon and instead, becomes part of the operational
context.

The operational context of a CSG may change dynamically as well,
either because a CES joins the group or because the CSG has to operate
in an environment that was not foreseen at design time. The CSG has

Design-space
exploration

Fulfillment of
requirements

Open context

12.2 Challenges in Simulating Collaborative Embedded Systems 261

to adapt its behavior in order to cope with the new environmental
conditions. For example, a vehicle under the control of a system
function in charge of maintaining a certain speed limit within a
platoon has difficulty maintaining the speed after it starts raining.

When CESs form at runtime, the runtime activation of system
functions poses additional challenges. When the behavior of CESs is
coordinated by the collaboration functions that negotiate the goals of
the systems and activate system functions, multiple challenges arise
when these system functions are activated for the first time. One
example is scheduling: the timing behavior of system functions
activated for the first time can influence the scheduling behavior of (a)
the interacting system functions, (b) the collaboration functions, and
(c) of the whole system.

In this case, the functional interaction must be evaluated because
when system functions are activated for the first time, the way in which
they interact with other system functions in specific situations can be
faulty.

Moreover, changing goals at runtime can also have consequences
on the CSG or the CESs. In order to form a valid system group, CESs
and/or the CSG may need to change their goals at runtime
dynamically, which may obviously have significant impact on the
system behavior.

The overall dynamic change of internal structures within a CSG is
impossible to foresee at design time. When a CES leaves a CSG, the
roles of the remaining participants and their operational context may
change as well. The same happens when a new vehicle joins the
platoon as a platoon participant that later on may take the role of
platoon leader. In turn, this leads to a dynamic change of system
borders of a CSG, which may change the overall functionality of the
CSG. For example, a vehicle ahead of the platoon is considered a
context object that influences the speed adjustments of the
approaching platoon. If the vehicle in front of the platoon decided to
join the platoon, then the borders of the initial platoon would be
extended.

Addressing the challenges mentioned above by using simulation
may even require using simulation at runtime, which, in turn, puts
further requirements on the simulation method.

Firstly, when simulation is used to control the behavior of safety-
critical systems, the real-time deadlines must be achieved. When
system behavior is evaluated at runtime, in a simulated environment,
then the simulation must deliver the results on time. This is necessary
in order to give the system the chance of executing a safe failover

Runtime evaluation of
changing goals

Runtime evaluation of
changes in the internal
structure

Using simulation at
runtime

Meeting real-time
deadlines

262 Development and Evaluation of Collaborative Embedded Systems using Simulation

behavior if the virtual evaluation discovers hazardous behavior of the
system under operation.

Secondly, predictive evaluation of system behavior is possible only
by achieving efficient simulation models. When system behavior is
evaluated at runtime, in a simulated environment, it must execute
faster than the wall clock. This imposes a high degree of efficiency on
the simulation models that are executed. For example, it may not be
feasible to execute detailed simulation models as parts of the
interacting platform because this may take too much time. Instead of
executing the detailed models, abstractions of the system behavior
can be executed. These abstractions must be directed towards the
scope of the evaluation. If scheduling behavior needs runtime
evaluation in a simulated environment, then the parts of the platform
that influence or are influenced by the scheduling will be executed.

However, in order to have accurate evaluation, the efficiency of
simulation must balance with the effectiveness of simulation models.
In order to perform a trustworthy system evaluation in a simulation
environment during runtime, the models must accurately reflect the
parts of the system under evaluation. However, because simulation
also needs to be efficient, effective simulation can be achieved by
using the abstraction models (for efficiency reasons) directed towards
the scope of the evaluation. This in turn requires extensive effort
during the design time of the system to create accurate models that
reflect selected parts (abstraction) of the internal system architecture.
For example, to enable evaluation of scheduling at runtime, systems
engineers must design the meaningful simulation models of the
platform that will be executed during scheduling analysis.

12.3 Simulation Methods

Simulation is a universal solution approach and is based on the
application and use of a few basic concepts from numerical
mathematics. In our case, simulation models are implemented in
software and use numerical algorithms for calculation. We speak of
time-discrete, discrete-event, or continuous simulation (continuous
time) depending on the mathematical concepts used, which
characterize the different handling of time behavior. Simulation tools
usually realize a combined strategy. The fact that simulation covers
several disciplines, combines different elements of a system, or
addresses the system and its context, leads to approaches for a
cooperation of different simulations, also called co-simulation. From

Enabling model
abstraction to achieve

efficiency

12.3 Simulation Methods 263

a practical point of view, data and result management are important
for supporting the simulation activities.

In the area of testing software functions, the three approaches
Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), and Hardware-
in-the-Loop (HIL) are relevant [VDI 3693 2016]. MIL simulation
describes the testing of software algorithms implemented
prototypically during the engineering phase. These algorithms are
implemented using a simulation models language, mostly in the same
simulation tool that is also used to simulate the physical system
(understood here as the dynamic behavior with its multidisciplinary
functions) itself. The SIL simulation describes a subsequent step. The
software is realized in the original programming or automation
language and is executed on emulated hardware and coupled with a
simulation model of the physical system. The third step is a HIL
simulation. Here, the program (or automation) code compiled or
interpreted and executed on the target hardware is tested against the
simulation of the physical system.

Simulation of technical systems usually consists of three steps:
model generation (including data collection), the execution of
simulation models, and the use of the results for a specific purpose. In
the following, we describe the methodology of simulation for these
three process steps.

In general, the data collection and generation of the models take a
lot of effort and time. For virtual commissioning, there are statements
that up to two-thirds of the total time is spent on these activities
[Meyer et al. 2018]. As a consequence, especially for CESs and CSGs in
partially unknown contexts, efficient methods for setting up the
model must be provided. Integrating the model generation directly
into the development process in order to generate up-to-date models
at any time is a good approach, as shown in Chapter 6.

The most common concept for seamless integration of all
information relevant in the entire life cycle of a product is product
lifecycle management (PLM). It integrates all data, models, processes,
and further business information and forms a backbone for
companies and their value chains. PLM systems are, therefore, an
important source for the creation of simulation models.

With the technical vision of a digital twins approach, the
importance of different kinds of models is increased. Digital twins are
abstract simulation models of processes within a system fed with real-
time data. For more information on supporting the creation of digital
twins for CESs, see Chapter 14. Semantic technologies are used to
realize the interconnectedness of all information and to guarantee the

Supporting model
creation

264 Development and Evaluation of Collaborative Embedded Systems using Simulation

openness of the approach to add further artifacts at any time [Rosen
et al. 2019]. These semantic connections, frequently realized by
knowledge graphs, can be used in future to generate executable
simulation models that are up to date with all available information
more efficiently.

Furthermore, existing models must be combined to form an
overall model of different aspects of the system and context. This
requires an exchange of models between different tools, which can be
solved via co-simulation [Gomes et al. 2017]. The FMI standard [FMI
2019] describes two approaches towards co-simulation. With model
exchange, only those models that can be solved with one single solver
are combined to form an overall mathematical simulation model,
whereas FMI for co-simulation uses units, consisting of models,
solvers, etc. that are orchestrated by a master. On the one hand, this
master must match the exchange variables described in the interfaces.
On the other hand, it must orchestrate the different time schemes of
the different simulators from discrete-event through time-discrete up
to continuous simulation [Smirnov et al. 2018]. For efficient
simulation of CSGs, the simulation chains must therefore be set up and
modified quickly and efficiently as they can change quite often
depending on the situation.

In order to set up an integrated development and modeling
approach, two aspects must be covered: firstly, different methods
must be assembled into an integrated methodology; and secondly,
interoperability and integration between different tools must be
established in order to set up an integrated tool chain (see Chapter
17). A special focus of co-simulation lies in HIL simulation, which uses
real control hardware. The remaining simulation models, with their
inherent simulation time, must be executed faster than real-world
time to ensure that the results are always available at the
synchronization time points with the physical HIL system. Thus, both,
the slowest model as well as the orchestration process, must be
executed faster than real-world time.

One key goal of simulation is validation and testing of the system
behavior. This requires the definition of test cases, the setup of the
simulation model, execution of the test cases, and finally, the
evaluation of the test. For context-aware CESs and CSGs in particular,
this may be a highly complex task with exponentially increasing
combinations. Finally, the test results must be compared with the
requirements. In Chapter 15, we therefore develop exhaustive testing
methods to cope with these challenges.

Enabling model
execution

Developing the use of
the results

12.3 Simulation Methods 265

One way to support the tester is to mark system-relevant
information in the requirements and link it to simulation events. A
markup language can be used to mark software functions and context
conditions within a document. After important text passages in the
requirements have been marked, they can be extracted automatically.
When the extraction process is completed, the information is linked
to the specific signals of the system. This results in a mapping table.
Since many simulators, models, and interfaces are used in the
simulation of CESs, a central point is created to combine them. In the
simulation phase, all signals of the function under test are recorded
and stored in log data. These log data contain all signal names and
their values for each simulation step. Once the simulation run is
complete, the log data can be processed further and linked to the
original requirements using the mapping table from the previous
phase. This allows the marked text phrases in the requirements to be
evaluated and displayed to the user.

Simulation methods are increasingly integrated into the design
and development process and used in all phases of the system life
cycle [GMA FA 6.11 2020]. Beyond development, validation, and
testing, simulation is used during operation with an increasing benefit
[Schlegner et al. 2017]. Specific applications include simulations in
parallel to operation in order to monitor, predict, and forecast the
behavior of the CESs. This means that simulation models must be
updated regarding the current state of the systems collaborating in a
CSG [Rosen et al. 2019]. Chapter 3 introduces a flexible architecture
for the integration of simulation into the systems architecture to
support the decision of the system or the operator.

For complex scenarios, the simulation has to cover not only the
functional behavior of a single system, but also the combined behavior
of the CSG and all relevant aspects, including, for example, the
resulting collaboration behavior, the context of the collaborative
system, the timing of the systems, and the communication between
the systems and with the context. The collaboration functions result
from the interaction between the functions of the different systems.
All these aspects must be addressed by simulation as early as possible
in the design process. It may not be sufficient to test them in a HIL
simulation when the implementation of the system has already widely
progressed. The MIL and SIL simulations must also address those
aspects.

Integration into process

266 Development and Evaluation of Collaborative Embedded Systems using Simulation

12.4 Application

The methods described above have several applications. First of all,
they support development, testing, and virtual integration, especially
in early phases of the system design. They also support the
development of extended simulation methods such as the ones used
for runtime evaluation of system trustworthiness, as presented in
Chapter 10; they support the generation of simulation models based
on a step-by-step approach, as presented in Chapter 6; and they
support the operator during system operation, as presented in
Chapter 3. Furthermore, they support system evaluation in real-world
scenarios.

During the design of CESs in particular, simulation methods can
help to check the current state of development, verify the correctness
and completeness of the current design, and explore the applicability
of the next steps and extensions. For collaborative systems, virtual
integration of different systems is a special challenge, especially in
early and incomplete stages of development. The purpose is to explore
the collaborative behavior as early as possible, detect possible
hazards and failures when they are much easier to change, and adapt
the design of the systems for the solution to these hazards and
failures.

Simulating the collaborative behavior in the early stages of
development—especially for applications like autonomous driving—
should include all relevant aspects of the underlying scenarios,
especially context and physical system behavior. Co-simulation
approaches can address the challenges involved in such a
comprehensive simulation. Chapter 13 provides more details on the
possibilities and tools for realizing such simulation approaches.

Building trust into collaborative embedded systems requires a
sustained evaluation and testing effort that spans from design time to
runtime. As detailed in the sections above, simulation is an important
technique that enables system and software testing at design time and
behavior evaluation during runtime. Within CrESt, as presented in
Chapter 10, an extension of existing simulation methods has been
realized. These methods either address runtime challenges at design
time or enable runtime evaluation of system behavior.

Addressing runtime challenges at design time is enabled by
extending the co-simulation method described in this chapter
towards integrating the real world (in which collaboration functions
and system functions execute on real hardware) with the virtual
world (formed by purely virtual entities). This allows the runtime

Simulation methods for
development, testing,

and virtual integration

Simulation methods as a
basis for extension

Simulation methods for
runtime evaluation

267

activation of system functions, for example, to be validated in an
extended set of scenarios that are easier and cheaper to explore
within a virtual environment.

Building on the challenges and methods described in this chapter,
simulation techniques deployable at runtime have been developed.
Coupled with monitoring components, simulation can be used for
runtime prediction of system behavior emerging from the runtime
activation of system functions. When simulation platforms are
deployed on CESs, the functional and timing interaction of a
collaboration function with system functions and the functional and
timing interactions between system functions can be predicted at
runtime. For details on how the simulated prediction is performed,
see Chapter 10 of this book.

12.5 Conclusion

Simulation methods support the development of CESs, verification
and validation of their continuous development, from the conceptual
phase when abstract behavioral methods can be coupled through co-
simulation and verification of system behavior after detailed models
are integrated, up to the final testing of systems before deployment.
We have analyzed the benefits and challenges of CESs and of
simulation methods that support their development and testing. We
have set the basis for future extensions beyond the current state of the
art and practice.

In order to realize these technological visions, it is important to
consider the economic benefits. This means that the effort and
ultimately the cost of deployment must not exceed the benefits. One
approach will be a step-by-step realization. This will ensure that
advanced simulation methods will be a success factor for validation
and testing of CESs.

12.6 Literature
[Alexander and Maiden 2004] I. Alexander, N. Maiden (Eds.): Scenarios, Stories, Use

Cases – Through the Systems Development Life-Cycle. Wiley, Chichester, 2004.

[Allmann et al. 2005] C. Allmann, C. Denger, T. Olsson: Analysis of Requirements-Based
Test Case Creation Techniques. IESE-Report No. 046.05/E, Version 1.0, June 2005.
Fraunhofer-Institute for Experimental Software Engineering IESE, Kaiserslautern,
2005.

 [FMI 2019] Functional Mock-up Interface (FMI) Specification 2.0.1, https://fmi-
standard.org/, accessed 03/01/2020.

12.6 Literature

https://fmi-standard.org/
https://fmi-standard.org/

268 Development and Evaluation of Collaborative Embedded Systems using Simulation

[GMA FA 6.11 2020] R. Rosen, J. Jäkel, M. Barth: VDI Statusreport 2020: Simulation und
digitaler Zwilling im Anlagenlebenszyklus. VDI/VDE, 2020 (available in German
only).

[Gomes et al. 2017] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe: Co-
Simulation: State of the Art. arXiv preprint arXiv:1702.00686, 2017.

[Meyer et al. 2018] T. Meyer, S. Munske, S. Weyer, V. Brandstetter, J. C. Wehrstedt, M.
Keinan: Classification of Application Scenarios for a Virtual Commissioning of CPS-
Based Production Plants into the Reference Architecture RAMI 4.0. In: Proceedings
of the VDI AUTOMATION-18: Seamless Convergence of Automation & IT, 2018.

 [Rosen et al. 2019] R. Rosen, J. Fischer, S. Boschert: Next Generation Digital Twin: An
Ecosystem for Mechatronic Systems? In: 8th IFAC Symposium on Mechatronic
Systems MECHATRONICS 2019: Vienna, Austria, 2019.

[Schegner et al. 2017] L. Schegner, S. Hensel, J. Wehrstedt, R. Rosen, L. Urbas:
Architekturentwurf für simulationsbasierte Assistenzsysteme in
prozesstechnischen Anlagen. Tagungsband Automation 2017, Baden-Baden 2017
(available in German only).

[Smirnov et al. 2018] D. Smirnov, T. Schenk, J. C. Wehrstedt: Hierarchical Simulation of
Production Systems. In: 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE), IEEE 2018, pp. 875-880.

[VDI 3693 2016] VDI/VDE 3693 Blatt 1:2016-08. Virtual commissioning - Model types
and glossary). Berlin: Beuth Verlag.

 [Zheng et al. 2014] Y. Zheng, S. E. Li, J. Wang, K. Li: Influence of Information Flow
Topology on Closed-Loop Stability of Vehicle Platoon with Rigid Formation. In: 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE,
pp. 2094-2100.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

13

Tool Support for Co-
Simulation-Based Analysis

The development of collaborative embedded systems (CESs) requires the validation of
their runtime behavior during design time. In this context, simulation-based analysis
methods play a key role in the development of such systems. Simulations of CESs tend to
become complex. One cause is that CESs work in collaborative system groups (CSGs)
within a dynamic context., which is why CESs must be simulated as participants of a CSG.
Another cause stems from the fact that CES simulations cover various cyber-physical
domains. The models incorporated are often managed by different tools that are
specialized for specific simulation disciplines and must be jointly executed in a co-
simulation. Besides the methodological aspects, the interoperability of models and tools
within such a co-simulation is a major challenge. This chapter focusses on the tool
integration aspect of enabling co-simulations. It motivates the need for co-simulation for
CES development and describes a general tool architecture. The chapter presents the
advantages and limitations of adopting existing standards such as FMI and DCP, as well
as best practices for integrating simulation tools and models for CESs and CSGs.

Karsten Albers, INCHRON AG
Benjamin Bolte, itemis AG
Max-Arno Meyer, RWTH Aachen University
Axel Terfloth, itemis AG
Anna Wißdorf, PikeTec

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_13

269

https://doi.org/10.1007/978-3-030-62136-0_13
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_13&domain=pdf

270 Tool Support for Co-Simulation-Based Analysis

13.1 Introduction

Today’s heterogeneous engineering tool environments and the rising
number of different systems engineering methods lead to the need for
tool interoperability. The development of collaborative embedded
systems (CESs) adds another factor to the complexity, as the
embedded systems involved must be able to work properly in
dynamically changing collaborative system groups (CSGs) and within
their environment. This leads to more complex development
scenarios, as additional methods must be applied to develop these
systems and system groups. In addition, more organizations and
stakeholders are involved, each potentially using their own modeling
methods and supporting tools. In this context, integrating software
development tools is a crucial prerequisite for the efficient
engineering of collaborative embedded systems. In order to set up an
integrated development and modeling approach, two aspects must be
covered: first, different methods must be assembled into an
integrated methodology; second, interoperability and integration
between different tools must be established in order to set up an
integrated tool chain. This chapter focuses on the second aspect.
While enabling tool interoperability is important for every kind of CES
and CSG development method, this chapter focusses especially on
enabling tool interoperability for co-simulation-based analysis
methods. Enabling interoperability for these kinds of methods is
especially challenging, as it requires data integration not only at the
level of model artifacts, but also at the level of a joint execution. The
focus of this chapter is complementary to Chapter 12, which covers
general simulation-based analysis methods.

After categorizing the different kinds of simulation models and
motivating the need for co-simulation, we describe a tool architecture
that enables co-simulation, together with the relevant standards FMI
and DCP. The concepts and approaches discussed are exemplified by
the “Collaborative Adaptive Cruise Control (CACC)” vehicle platoon use
case (see Chapter 1).

13.2 Interaction of Different Simulations

Simulating CESs and CSGs requires the co-simulation of various highly
complex models. There are a large number of models that interact

13.2 Interaction of Different Simulations 271

together to provide the functionality of the system under test (SUT)
within its context. These include:

 Environment models (e.g., city with streets and collaborative
traffic lights)

 Behavior models (e.g., CACC, platooning control)
 Sensor models (e.g., distance sensor)
 Dynamic models (e.g., vehicle physics)
 Models for the timing behavior of the execution platforms, the

implementation, and the communication
 CES/CSG interface models
 Communication models (e.g., wireless car communication)
 Uncertainty models (e.g., sensor and communication uncertainty)

All these models must be interoperable to enable information
exchange and time-synchronized execution. Each simulation tool can
execute one or multiple of the models listed.

Let us consider the vehicle platooning use case by way of
explanation. A platoon is a collaborative vehicle convoy that uses car-
to-car communication based on ad-hoc networks for collaboration.
The system that will be used for the platoon control is called
Collaborative Adaptive Cruise Control (CACC). This system enables
the distance between vehicles to be reduced. The vehicles following
the lead vehicle use the data transferred to calculate their relative
acceleration.

The simulation of complete scenarios can be realized by a co-
simulation of different tools and model. While these building blocks
apply to CESs and CSGs in general, the concrete types of environment
and physics models are typically specific to the use case. To evaluate
the behavior of the co-simulation participants, it is important that co-
simulation results can be reproduced reliably. In general, there is a set
of scenarios that are used repeatedly to compare the results of
different co-simulations. Since many embedded systems operate in a
safety-critical environment, test scenarios might also be prescribed by
safety standards. The scenarios and the focus of the analysis will
determine which simulated component parts are necessary to meet
the test goals. Only some parts of the functional behavior of the target
systems need to be included in the specific co-simulation execution
and therefore in the underlying models. Other parts can be either
substituted (for example, the pre-processing of sensor data) or
omitted entirely if they are not needed for the test execution. The
selected level of detail for the different model parts will also depend
on the test goals. For parts developed by suppliers, the level of detail

Platooning use case

Analysis

272 Tool Support for Co-Simulation-Based Analysis

available for the simulation models can also be limited. More abstract
models will increase the test performance and allow test and
validation in earlier phases of the development process. On the other
hand, the significance and the quality of the test results can be limited
for abstract models.

The first building block in Figure 13-1 includes tools capable of
simulating the context and environment of the systems under test
(SUT), such as the roads on which the vehicles are driving and the
interfering traffic. For the example use case, the simulation must cover
the individual vehicles of the platoon with their specific movements
and distances to each other. It should provide input sensor
information from the viewpoint of the systems, such as generated
camera images or radar vectors; alternatively, depending on the goal
of the simulation and the available or desired degree of detail, the
simulation should provide pre-processed data such as distances to
objects.

An ad-hoc approach is to use simple step-by-step instructions that
give the exact sequence of events in simulation scenarios. However, in
a co-simulation with numerous simulation models and simulators
interacting with each other, this approach is not very well suited to
modeling parallel events that might occur. Another common approach
is to use statecharts that are more suited for modeling the interaction
and collaboration of the models involved (Section 5.2). Tools that
support statecharts for test modeling include the YAKINDU Statechart
Tools (YSCT) [Yakindu 2020] and Time Partition Testing (TPT)
[PikeTec 2020].

Interactive 3D co-simulations support rapid prototyping scenarios
for the development of CESs and CSGs. Therefore, the CESs and CSGs
are visualized directly within their environment and interactive
changes of system behavior models, as well as environment models,
are supported in real time. CARLA [Carla 2020] is a vehicle and

Environment simulation

tim
in

g

fu
nc

tio
n

YAKINDU
Statechart Tools

.c.cC++ code

co-simulation platform custom
implementationMESSINA

en
vi

ro
nm

en
t

YAKINDU
Statechar t Tools

ph
ys

ic
s

Fig. 13-1: Co-simulation model platforms and tools

13.2 Interaction of Different Simulations 273

environment simulator tailored for evaluating automated driving
functions and therefore especially addresses the vehicle platooning
use case. It visualizes the environment, the vehicles and their
movements, and the complete traffic scenarios based on Unreal
Engine [Unreal 2020]. The view of the environment can be captured
by multiple sensors attached to different vehicles. The behavior of
vehicles can be influenced and set from other simulation tools. CARLA
supports interactive changes to objects of the virtual world in real
time to create various scenarios and directly visualize the impact on
CESs and CSGs in these varying contexts.

The functional behavior of the CSG can be modeled and simulated
with various approaches. MATLAB/Simulink [MathWorks 2020]
provides the ability to model and simulate many functions based on
sensor, image, or radar data processing. Toolboxes for image
processing and autonomous driving functions are available. An
exchange with other simulation tools can be provided using co-
simulation toolboxes such as the Functional Mock-up Interface (FMI)
slave interface. For other scenarios, especially for decision algorithms,
modeling the behavior with one or a set of statecharts can be a more
suitable approach, and this can be simulated with the YAKINDU
Statechart Tools, for example. Another possibility is to include either
implemented or generated target code (for example, in C++) in the co-
simulation.

Special simulation tools, such as chronSIM [INCHRON 2020a],
augment the co-simulation by incorporating the timing behavior of
the software, the execution platforms, the scheduling effects, and the
communication between and within systems. In particular, timing
effects and delays of the complete event chain, from the sensors,
through the processing, to the actuators are derived (see Figure 13-
2). The timing simulation replicates the timing of CESs implementing
the CSG. Based on the models of the systems and the software, the
simulator calculates resulting delays, end-to-end delays for the data
processing, as well as potential data losses and more.

Functional simulation

Timing simulation

274 Tool Support for Co-Simulation-Based Analysis

Uncertainties resulting from the data propagation, also in wireless
communication networks, are therefore incorporated in the overall
simulation. Additional uncertainties are part of other models and can
arise from inaccurate sensor measurement and processing of sensor
data, which should be reflected by the overall simulation. Fault
tolerance of the system under test (SUT) with respect to context
changes can be considered with predefined configuration parameters
for the tool platform, such as typical uncertainty distributions.
Therefore, multiple varying configurations could be derived (semi-
automatically) from rule sets or automata [PikeTec 2020b] defined in
test and scenario models.

Another relevant aspect is the physical, dynamic model of CESs.
For the vehicle platooning and autonomous transport robots use
cases, for example, the speed reduction by braking under various
conditions, the steering capabilities for trajectory planning, and so on
are part of these models. There are multiple solutions available with
various levels of complexity and accuracy. Again, MATLAB/Simulink
provides solutions and CARLA also includes a simplified dynamic
model.

The simulation of the physics and environment, together with
other co-simulation participants, must be executed in a time-
synchronized fashion. Usually, 3D visualization and physics engines
have their own timing and try to update the environment for
rendering new images as quickly as possible to provide a real-time
visualization. The joint execution of the simulation models and tools
involved requires a co-simulation platform. Examples are MESSINA

Physical dynamic
simulation

Co-simulation platforms

Fig. 13-2: An event chain in the timing simulator chronSIM

13.3 General Tool Architecture 275

provided by Expleo, xMOD provided by FEV, and TPT provided by
PikeTec. Custom implementations can also add co-simulation
platform features to tools like CARLA.

13.3 General Tool Architecture

This section provides details of a proper tool architecture, co-
simulation standards, and their application to the CES and CSG
simulation.

The need for a time-synchronized execution naturally leads to a
master-slave architecture. This architecture defines two roles for
tools participating in the co-simulation: the co-simulation master and
the co-simulation slave. The master manages a set of slaves,
coordinates interaction between them, handles time synchronization,
and makes co-simulation results accessible for subsequent analysis
steps. The co-simulation slave provides a simulation API (application
programming interface), which is used by the co-simulation master to
proceed with the simulation, together with a description of the slave’s
functional interface, such as signals that are consumed or produced
by other slaves.

This description of slave interfaces forms the basis for the
configuration of a co-simulation. Engineers have to specify the
mapping between the interfaces of the slaves involved to realize the
intended data flow between models. In addition, the simulation
duration and time step for updating the simulation models are defined
according to the requirements of the co-simulation participants
involved. This is necessary to achieve the required accuracy during
the simulation.

This configuration can be defined using a co-simulation
configuration service, which can be either a tool with a UI or an
automated service that applies a transformation from an existing
system or CSG model that contains the required information. In any
case, it is the co-simulation master’s obligation to process this
configuration correctly.

As the co-simulation of many co-simulation components can be
resource-intensive and time-consuming, especially when using real-
time 3D rendering, parallelization of the co-simulation components
over multiple processing units is beneficial to provide more
computing resources and to decouple components such as the co-
simulation master, modeling tools, and the visualization. This does not

Master-slave
architecture

Co-simulation
configuration

Distributed co-
simulation

276 Tool Support for Co-Simulation-Based Analysis

mean that the tools must be used in a distributed computing context;
they can also run on one computer without any distribution.

Figure 13-3 shows the exemplary architecture of an interactive co-
simulation. To enable a tool platform to support co-simulation,
various tools and models must be made interoperable. We identified
two standards as particularly relevant in the context of developing
CESs and CSGs. The first is Functional Mock-up Interface (FMI) and the
second is the Distributed Co-Simulation Protocol (DCP). These
standards can be applied by tool developers as a basis for setting up
co-simulation features or in combination with existing proprietary
solutions to extend tool interoperability. Both standards comply with
the main architectural principles and will be introduced in
subsequent sections.

13.4 Implementing Interoperability for Co-Simulation

The FMI for co-simulation standard [Modelica Association 2019a]
addresses the integration of heterogeneous simulation models and
tools that match the existing constraints for the development of CESs
and CSGs. It defines the required technical master-slave interface for
a master-slave architecture.

Each model is provided by a co-simulation slave called a
Functional Mock-up Unit (FMU). An FMU is a zip file containing at least
one executable binary library, along with an XML file that includes the
interface definition for the slaves. Libraries for multiple platforms can
be included to support portability. The FMI co-simulation master
dynamically loads and executes the binary libraries of all slaves. The
master-slave interface itself is defined as an API in the C programming

Tool interoperability

FMI standard

si
m

ul
at

io
n

to
ol

e.

g.
 ti

m
in

g

si
m

ul
at

io
n

to
ol

e.

g.
 p

hy
si

cs

&
en

vi
ro

nm
en

t

co-simulation platform

sl
av

es

m
as

te
r

DCP

tool
wrapper

pr
o-

pr
ie

ta
ry

proprietary

D
C

P

FMI

Fig. 13-3: Co-simulation tool architecture

13.4 Implementing Interoperability for Co-Simulation 277

language, with an underlying state machine that defines the order of
interface calls.

The FMU interface concept is based on a data-flow paradigm. A
model defines a set of input and output variables with simple data
types, such as real, integer, and string. The FMI master proceeds with
the simulation step by step. In each step, all FMUs are provided with
the current input values and are then executed. Finally, the output
variables are propagated to the input values for the next execution
cycle. Thus, data exchange occurs only between successive execution
steps.

FMI brings with it some constraints that may be relevant when
considering the FMI standard compared to proprietary approaches.
Structured data types do not have a direct counterpart in FMI but must
be substituted by simple variables, which flattens the hierarchical
data structure. Events can only be mapped to changes of input or
output values, such as rising and falling edges, which requires the
application of conventions between all co-simulation participants.
The same is true for synchronous operation calls, which would require
a complex protocol consisting of call and return events. Finally,
behavioral types supporting dynamic reconfiguration in CSGs cannot
be mapped in a meaningful way.

The co-simulation master controls the simulation progress and is
thus responsible for the time synchronization between all co-
simulation components involved. In FMI, each FMU implements the
fmi2DoStep function which gets the current simulation time point and
the duration of the next time step as parameters. The FMI master
decides on the step size, which can be of fixed or variable length. The
slaves proceed with the simulation for the requested step size. Slaves
can use a virtual clock to provide faster than real-time executions,
which is relevant for long-running simulations or repeated test
scenarios.

Co-simulation participants, such as visualization and physics
engines, might provide their own timing behavior that must be
synchronized. The first possibility is to use an external co-simulation
master to set the timing. Therefore, slaves (e.g., CARLA) must provide
a time synchronization interface. Second, if only one additional tool
with its own timing is used, this can be extended by a custom
implementation of a co-simulation master.

To cope with the standard, for each participating simulation
model, a co-simulation slave generator transforms the model into a
standalone executable co-simulation slave. The code generation
typically involves the generation of a code layer that implements the

FMI limitations

Time synchronization

Co-simulation slave
generator

278 Tool Support for Co-Simulation-Based Analysis

required functionality for data exchange and time synchronization
according to the simulation API realization used (e.g., FMU Interface)
so that co-simulation-slaves act as a black-box component for the co-
simulation master. Code generation can be used to support different
software and embedded) hardware platforms to reduce manual
implementation efforts and to improve quality. Figure 13-4 shows
how the co-simulation slave generation concept is applied for creating
FMUs.

The generator derives the meta-information description from the
model’s interface definition to describe input and output variables. In
addition, the code for the model execution library is generated, which
consists of code to access or implement the executable model and an
adapter for the FMU simulation API. If a modeling tool already
provides a code generation or interpreter for its models, then it is
good practice to reuse these and just add a generator for the required
adapter code. Finally, the model description and executable library
are bundled as an FMU zip file.

13.5 Distributed Co-Simulation

Distributing models in a co-simulation across multiple platforms is
another key interest for realizing complex simulations for CESs and
CSGs. A communication infrastructure for connecting the different co-
simulation participants is required. While distribution is a proposed
FMI use case, the realization of distribution and the communication
layer are left untouched by the standard.

If an external tool is required for simulating a slave model, a direct
execution within the FMI master is not possible as it assumes the
complete execution of the co-simulation within a single multi-
threaded process. A co-simulation tool wrapper is a specific co-
simulation slave that, instead of executing the model itself, delegates
all execution requests to the external simulation tool. This requires a
communication layer that must handle data exchange, time
synchronization, and invocation of simulation. Additionally, the co-

Co-simulation tool
wrapper

.c.c.c

.xml

generate

compile

.dll
.xml

bundle

.dll

Fig. 13-4: Building FMUs using C-code generation

13.5 Distributed Co-Simulation 279

simulation slave must adapt its simulation API to the communication
layer and handle data binding. The standard does not prescribe the
concrete communication protocol and therefore any existing protocol
can be reused.

To overcome the need for a tool-specific wrapper, the Distributed
Co-Simulation Protocol (DCP) was developed as an open,
accompanying standard to FMI [Krammer et al. 2018]. It standardizes
the distribution of models on different software and hardware
platforms, which is particularly important for handling models bound
to specific execution environments and to increase simulation
performance. DCP focusses particularly on the following aspects.
First, DCP is specifically designed for the integration of real-time and
non-real-time systems simultaneously. Therefore, it is possible to
perform co-simulations that combine hardware setups with digital
models. Second, DCP can be combined with other standards, such as
FMI and proprietary solutions. Third, DCP supports a wide range of
communication protocols (UDP, TCP, CAN, USB, Bluetooth 3) to
ensure interoperability on the application layer regardless of the
communication medium [Modelica Association 2019b].

DCP also applies a master-slave architecture. As in FMI, DCP
requires XML-based configuration data and defines a state machine
for the execution and communication life cycles of slaves. The
communication to the master and other slaves is handled via protocol
data units (PDU) defined by DCP. Thus, the specification provides a
precise basis and guidance for the implementation of DCP on the
master and slave side by tool developers.

The option to flexibly distribute master and slave to different
hardware and operating systems can be used effectively in CES and
CSG co-simulations to increase overall simulation performance and to
integrate interactive simulations or concrete hardware. In particular,
DCP enables synchronization in either real time or non-real time with
other non-DCP co-simulation slaves, such as plain FMUs or a co-
simulation tool wrapper using proprietary protocols.

The initial implementation effort for DCP is definitely higher
compared to reusing an existing proprietary protocol. However, once
implemented, masters and slaves can interoperate natively with other
platforms that support the standard. With regard to modeling
concepts, DCP has the same limitations as FMI.

Distributed Co-
Simulation Protocol -
DCP

DCP limitations

280 Tool Support for Co-Simulation-Based Analysis

13.6 Analysis of Simulation Results

During and after the execution of the simulations, a co-simulation
analysis service is necessary to evaluate and extract the simulation
results for conclusions and follow-up decisions.

For certain scenarios, the success can be determined by checking
whether the co-simulation participants reach/avoid a failure state or
meet predefined goals. The different simulators and tools can track
such conditions directly during the simulation execution.

For evaluations that cannot be executed directly in the co-
simulation platform, a useful approach is to record the execution and
system states in one or a set of trace files during the simulation. Based
on the information thus gathered, the fulfillment of requirements can
be checked and statistical information on the behavior can be derived.

Analysis and reporting tools read the machine-readable
simulation traces for further processing. The use of open formats can
help with processing of simulation traces from a larger set of tools in
a co-simulation. The information available from the different
simulations will be quite different, which will affect the required trace
formats. For example, state transitions for the state machines can be
recorded in a behavior model, allowing the engineers, for instance, to
validate models on an even deeper layer and enable gray and white-
box verification. For the timing behavior, execution states, events, and
data processing chains should be recorded. A synchronization of the
trace files from the different simulation tools is necessary for the
evaluation of cross-over aspects. Time stamps from the common time
base or shared frequent events can make synchronization easy.

Another advantage of traces is that they make it easier to
determine the reasons for an observed behavior, such as a failed
requirement. Critical situations can be visualized and explored by
tools like chronVIEW [INCHRON 2020b].

13.7 Conclusion

In this chapter, we addressed the task of enabling tool interoperability
for co-simulation-based analysis methods for CESs and CSGs. A
particularly challenging aspect for enabling tool support for co-
simulations is that the tool integration must facilitate a joint execution
of model artifacts that are integrated at a data level.

A distributed master-slave architecture with well-defined
interfaces is the basis for orchestrating and coordinating
heterogeneous models and tools into a co-simulation. The FMI and

13.8 Literature 281

DCP standards support this architecture. FMI-compliant models can
be reused and executed on different co-simulation platforms, which
may serve a specific purpose. DCP-enabled platforms and tools can
easily be connected. Both standards can be combined with existing
proprietary solutions, enabling reuse of simulation tools, platforms,
and communication infrastructure.

The data-flow-oriented approach of FMI and DCP has limitations
with regard to applicable modeling concepts and this constrains the
applicability for co-simulation scenarios that require dynamic
reconfiguration of CSGs. Here, proprietary approaches may be a better
fit. The standards also do not define a model for connecting slaves.
This is the responsibility of the concrete master implementations.
Thus, CSG models that describe such model relationships must be
mapped specifically for each master implementation and are not easy
to reuse.

The distributed setup enables integration of heterogeneous co-
simulation tools, which may even support interactive changes to the
models during runtime. As a result, the development process can
potentially be improved in certain ways. First, an explorative
development of models without time-consuming code generation
steps is provided. Second, many functional components from various
vendors can be combined for rapid prototyping and early testing
scenarios. Third, the visualization of test scenarios has potential to
improve the communication with the stakeholders involved across
various organizations.

Co-simulation improves verification and validation of CESs and
CSGs. Trace information from all co-simulation participants enables
required analysis methods and tools to enhance verification and allow
a statistically rich evaluation. Simulation tools contribute
environment, function, timing, uncertainty, and physical models in a
scope and a level of detail that is appropriate for different scenarios
to the co-simulation. The resulting co-simulation thus better reflects
real-world scenarios, which improves the generalizability of the
validation and verification results.

13.8 Literature
[Carla 2020] CARLA – Open Source Simulator for Autonomous Driving Research:

https://carla.org. accessed on 05/08/2020.

[Expleo 2020] MESSINA – Test Automation and Virtual Validation for Embedded
Systems: https://www.expleo-germany.com/en/produkte/messina/, accessed on
05/08/2020.

https://carla.org
https://www.expleo-germany.com/en/produkte/messina/

282 Tool Support for Co-Simulation-Based Analysis

[INCHRON 2020a] chronSIM – Model-Based Simulation of Embedded Real-Time
Systems: https://www.inchron.com/tool-suite/chronsim, accessed on
05/08/2020.

[INCHRON 2020b] chronVIEW https://www.inchron.com/tool-suite/chronview/,
accessed on 05/08/2020.

[Krammer et al. 2018] M. Krammer, M. Benedikt, T. Blochwitz, K. Alekeish, N.
Amringer, C. Kater, S. Materne, R. Ruvalcaba, K. Schuch, J. Zehetner, M. Damm-
Norwig, V. Schreiber, N. Nagarajan, I. Corral, T. Sparber, S. Klein, J. Andert: The
Distributed Co-Simulation Protocol for the Integration of Real-Time Systems and
Simulation Environments. In: Proceedings of the 50th Computer Simulation
Conference, 2018.

[MathWorks 2020] Simulink – Simulation and Model-Based Design
https://www.mathworks.com/products/simulink.html, accessed on 05/08/2020.

[Modelica Association 2019a] Modelica Association Standard: FMI – Functional Mock-
Up Interface Specification Document 2.0.1, 2019.

[Modelica Association 2019b] Modelica Association Standard: Distributed Co-
Simulation Protocol (DCP). Specification Document 1.0.0, 2019.

[PikeTec 2020] TPT: Control Testing Made Easy
https://piketec.com/tpt/, accessed on 05/08/2020.

[PikeTec 2020b] Automatic Test Case Generation in TPT
https://piketec.com/tpt/testcase-generation/, accessed on 05/08/2020.

[Unreal 2020] UNREAL ENGINE https://www.unrealengine.com, accessed on
05/08/2020.

[Yakindu 2020] YAKINDU Statechart Tools
 https://www.itemis.com/en/yakindu/state-machine/, accessed on 05/08/2020.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

https://www.inchron.com/tool-suite/chronsim
https://www.inchron.com/tool-suite/chronview/
https://www.mathworks.com/products/simulink.html
https://piketec.com/tpt/
https://piketec.com/tpt/testcase-generation/
https://www.unrealengine.com
https://www.itemis.com/en/yakindu/state-machine/
http://creativecommons.org/licenses/by/4.0/

14

Supporting the Creation of
Digital Twins for CESs

One important behavioral aspect of collaborative embedded systems (CESs) is their
trustworthiness, which can be assessed at runtime by evaluating their software and
system components virtually. The key idea behind trust evaluation at runtime is the
assessment of system interactions and consideration of an extended set of actors that
influence the dynamicity of these systems. In this sense, the behavior of collaborative
embedded systems and collaborative system groups (CSGs) is part of a more complex
behavior of digital ecosystems that form around the collaborating systems. One way of
performing runtime virtual evaluation of such complex behavior is through the
implementation of digital twins (DTs). DTs are executable models fed with real-time data
that allow behavior to be observed and analyzed in concrete technical situations. The use
of digital twins enables goals to be evaluated in holistic scenarios at three different levels:
strategic level, tactical level, and operational level, as we present in this chapter.

Emilia Cioroaica, Fraunhofer IESE
Thomas Kuhn, Fraunhofer IESE
Dimitar Dimitrov, Siemens AG

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_14

283

https://doi.org/10.1007/978-3-030-62136-0_14
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_14&domain=pdf

284 Supporting the Creation of Digital Twins for CESs

14.1 Introduction

By considering the actors that interact directly and indirectly with
collaborative embedded systems (CESs), the concept of collaborative
embedded systems and collaborative system groups (CSGs) extends
towards the notion of digital ecosystems. Within an ecosystem, actors
such as organizations, developers, and users have a multitude of goals,
and may act not only in cooperation but also in competition. These
dynamics influence the behavior of CESs within CSGs directly and
indirectly.

In [Cioroaica et al. 2019], we have defined trust-based digital
ecosystems where the trustworthiness of a collaborator is computed
rather than being granted by default. In the assessment of a digital
ecosystem from the trust perspective, a trustor is the user of a service
who can trust a trustee, who is the provider of the service, to satisfy
its needs and expectations linked to a trustum, which is the service
provided. Consider an example at the level of collaborating systems in
the automotive domain: a following vehicle (trustor) uses the
coordination commands (trustum) to adapt the speed of a lead vehicle
in a platoon (trustee). Similarly, a vehicle that intends to join a platoon
(trustor) uses the goal information communicated (communication
service is the trustum) by the platoon leader (trustee) to make its
decision. The architectural model presented in this chapter supports
the creation of digital twins for holistic trust evaluation.

Trust results from reputation computed in multiple verification
scenarios. From a safety perspective, the reputation of the leading
vehicle must be evaluated to ensure trust in the ecosystem that is built
around the platoon. In the model that we introduce in this paper, the
quality of service (QoS) provided by a product has an impact on the
health of the ecosystem. According to [da Silva et al. 2017], the health
of an ecosystem is linked to how well the business develops. For
example, wrong or delayed commands lead to string instability within
a platoon. String instability is characterized by sudden braking and
acceleration, which in turn create an increase in fuel consumption
instead of a reduction (business goal). This impact is analyzed by
providing a structural hierarchy of the relationships between the
quality of service and the business goals of the actors. The
computation of trust in a collaborator starts with the evaluation of the
operational goals of the system. The results are used to evaluate the
strategic goals of the ecosystem that can be achieved by CESs. If we

Collaborative systems
are part of complex

ecosystems

14.2 Building Trust through Digital Twin Evaluation 285

return to the context of forming a vehicle platoon, where a system
function sends context information that is inaccurate or even
intentionally wrong, then the tactical goal of the CESs to form an
effective vehicle platoon will not be achieved. This has an impact on
the strategic goal of reducing fuel consumption, with direct impact for
the participants in a CSG. However, if this type of behavior is
discovered early enough, the vehicle providing the malicious service
will not be granted access to the ecosystem. Therefore, successful
evaluation of strategic goals relies on proper evaluation of the tactical
goals, which in turn relies on the evaluation of operational goals for
every system engaged in a collaboration. The hierarchical nature of
decision-making based on the main differences and distinctions
between three types of decisions—namely strategic decisions, tactical
decisions, and operational decisions—is described in [Hollnagel et al.
2003] and [Molen et al. 1988]. In our reference architecture, we use a
similar hierarchy to structure the goals within an ecosystem by
considering systems, system components, and actors.

14.2 Building Trust through Digital Twin Evaluation

Given the distributed provision of hardware resources and software
components, the formation of collaborative systems through runtime
activation of system functions requires a runtime evaluation of the
hardware–software interaction as well. For this particular situation,
[Seaborn and Dullien 2015] have shown that specific hardware–
software interaction patterns may be faulty and may lead to serious
system failures that manifest into security threats. This would be
disastrous for CESs and implicitly for the health of the ecosystem
formed around the CSG. A runtime assessment and evaluation of the
level of trust in the components of a CES is therefore required.

A novel approach to building trust in a software component
without executing its behavior in real operation is by evaluating its
digital twin at runtime. We have introduced such an approach in
[Cioroaica et al. 2019]. In the early days of autonomous computing
systems, reputation was seen as a good indicator of the level of trust
in a system. The authors of [Kephart et al. 2003] propose storing
information about a system’s reputation in order to address the need
to compute the trustworthiness of potential collaborators. The notion
of a digital twin (DT) was initially introduced by NASA [Shafto et al.
2012] as a realistic digital representation of a flying object used in
laboratory testing activities. Since then, the notion of DT has also been

Fulfilment of strategic
goals of a collaboration
relies on the fulfilment
of tactical goals which,
in turn, relies on the
correct implementation
of operational goals

286 Supporting the Creation of Digital Twins for CESs

adopted in the emerging Industry 4.0 [Rosen et al. 2015] to represent
the status of production devices and to enable the forecast of the
impacts of change. The reference architecture presented in this
chapter enables the creation of digital twins for the whole ecosystem.
The digital twin provides a machine-readable representation of the
goals of the entities that are part of the ecosystem and supports their
trust evaluation through execution of verification scenarios that
reflect their dynamic behavior.

Figure 14-1 depicts an example of a basic classification of system
goal types in the supertype-subtype hierarchy. The goals depicted in
boxes with a dashed line represent default types that can be reused in
any domain. The goals depicted in boxes with a continuous line
represent extensions for a specific domain. This classification is
supported by evidence showing that, besides its declared well-
intended contributions to a collaboration, a system can also have
contributions with malicious intent. These intentions can be exposed
through malicious behavior caused by malicious faults [Avizienis et al.
2004]. The malicious behavior of a system represents the undeclared
competing goals of actors introducing systems and system
components on the market.

The creation of digital twins of the ecosystem and ecosystem
participants is enabled by an architecture that contains a description
of goals and provides support for the reputation computation in
specific verification scenarios. The scenarios describe concrete
technical situations in which decisions need to be taken — for
example, joining or leaving a platoon. The digital twin of an ecosystem
enables information access at runtime and supports a CES in making
the decision of whether or not to join a specific platoon. In Figure 14-
2, we depict the ecosystem perspective on CESs. CESs and CSGs exist
within digital ecosystems. In literature, there are two types of digital
ecosystems: software ecosystems, formed around software products
[Manikas et al. 2013], and smart ecosystems, formed around cyber-
physical systems, such as automotive smart ecosystems [Cioroaica et
al. 2018]. Within an ecosystem, actors can play different roles, such as

Digital twins provide a
machine-readable

representation of goals

Fig. 14-1: Classification of Goal Types

14.2 Building Trust through Digital Twin Evaluation 287

manufacturer, distributer, user, subcontractor, etc. and can have a
multitude of goals of various types — for example, collaboration,
competition, increase in revenue, etc. The system behavior is the asset
that enables goal satisfaction.

Figure 14-3 and Figure 14-4 show the instantiation of the architecture
that enables the creation of digital twins in the automotive and smart
grids domains. Given its context-specific operational capacity, an
embedded system by itself is meant to operate to achieve dedicated
business goals.

Fig. 14-2: Ecosystem Perspective on CES

Fig. 14-3: Example instantiation in the automotive domain

288 Supporting the Creation of Digital Twins for CESs

However, through communication and collaboration with other
embedded systems, enhanced functionality can be achieved.
Depending on the goal and the role an actor has in an ecosystem, other
actors are targeted. The operative part of an ecosystem is formed by
the systems that collaborate with each other at runtime in order to
fulfill enhanced business goals of different organizations or the same
organization. Communication and collaboration are realized through
an exchange of data and functions and can be between embedded
systems located in the same system or embedded systems located in
different systems. In the first case, communication is realized through
dedicated communication buses; in the latter case, the
communication between embedded systems is realized through
Internet communication.

The collaborative goals of systems are influenced by business
goals, which in turn depend on risks, such as economic risks. The
concepts of risks and goals are related to actors that play certain roles
in a collaboration. In Figure 14-5, examples of roles are the user and
the provider. A holistic evaluation of embedded systems that
collaborate in the field must take all these aspects into account. Figure
14-6 presents an instantiation in the automotive domain.

Fig. 14-4: Example instantiation in the smart grid domain

Fig. 14-5: Business perspective on Collaborative Systems

14.2 Building Trust through Digital Twin Evaluation 289

Figure 14-7 depicts the evaluation of trust through computation of
reputation. From the point of view of a collaborator, a system is a
resource with functional behavior and non-functional properties.
Through its behavior or through the service it is providing, the
resource influences the reputation of an Original equipment
Manufacturer (OEM) that introduces the system on the market. A
reputation of a component is a combination of the initial reputation of
an OEM, calculated when the system is first introduced on the market,
and the runtime reputation computed via a series of algorithms. The
computation of runtime reputation is linked to verification scenarios
that describe the context in which the resources are evaluated.
Verification scenarios are linked to functional and non-functional
requirements that reflect the expectations of the user for the system
behavior.

Requirements are provided by the users of services. Based on
requirements, verification scenarios are defined in order to evaluate
the reputation of resources. The resources provided reflect the goals
of the actors during collaboration with other actors. This kind of
verification scenario can, for example, evaluate individual goals of
vehicles wanting to join platoons for compatibility. Only the vehicles
that have compatible routes are granted access to the platoon, and
implicitly to the ecosystem. Other verification scenarios can evaluate
the expectations with regard to the exchange of services. If, for
example, a vehicle requests exchange of information every 100 ms, it
should avoid joining a group of vehicles that exchange information
every 100 ms. If the internal system functions of a vehicle are
activated and checked every 200 ms, joining a platoon that requests
information exchange every 100 ms may cause synchronization
issues.

Fig. 14-6: Instantiation of the business view in the automotive domain

290 Supporting the Creation of Digital Twins for CESs

14.2.1 Demonstration

In this section, we present scenarios from the automotive and smart
grid domains that benefit from the instantiation of digital twins of
their ecosystems based on the reference architecture introduced in
the previous section.

Automotive Smart Ecosystems

At the entry point for a highway, consider a scenario in which a vehicle
(CES) activates a collaboration function (SW component) and
corresponding running specifications which are digital twins. The
collaboration function enables the vehicle to join or form vehicle
platoons (CSG). If the vehicle starts forming a vehicle platoon, it
becomes the leader of that platoon (it has the role type “Platoon
Leader”). The other vehicles with the same goal (collaborative goal)
can be members of the same platoon (assigned the role type
“Member”). Besides having the same collaborative goal, the vehicles
must have fitting individual goals in order to join beneficial
collaborations. For example, only vehicles with the same collaborative
goal of being part of vehicle platoons and moving towards similar
destinations (Reaching Destination Goal as a subtype of Individual
Goal) may be part of the same platoon. When another vehicle
approaches an existing platoon, it requests the digital twin of the
ecosystem containing the platoon and checks whether its goals fit the
goals within the ecosystem. If, for example, the vehicle approaching
the platoon has the goal of reaching a destination that is not
compatible with the route of the platoon, then it will not join this
particular platoon. The collaboration function part of the ecosystem

Fig. 14-7: Computation of trust based on runtime verification scenarios

14.2 Building Trust through Digital Twin Evaluation 291

operates on an ECU (embedded control unit, which is an embedded
system). It reads context information such as speed and distance
communicated by the vehicle in front. According to our architecture,
the process of information reading is an operational goal, which is
enabled by the context information reading service. The collaboration
function sends this information to system functions. The process of
sending the information is a data transfer service. The system
functions are responsible for maintaining the maximum distance
between vehicles in a platoon while maintaining the minimum safe
distance. According to our architecture, the process of managing the
distance is a service associated with the smart agent, via a service
assignment with the role type “Provider.” The service has a contract
of the contract type “Specification.” The maximum distance is the
distance that allows the platoon members to benefit from reduced air
friction and implicit reduction of fuel consumption (strategic goal).

If the information provided by a system function is wrong—if, for
example, the vehicle in front transmits that the distance is 7 m, but the
actual distance is 5 m—then the system function might accelerate.
According to our architecture, the acceleration is an operational goal.
The vehicle can accelerate until it learns from its own sensors that the
minimum safety distance has been violated, and then it will brake
immediately. Acceleration followed by instant braking creates string
instability in the platoon and implicit higher fuel consumption. In the
worst case, this could cause a crash. By using a digital twin of the
digital ecosystem instantiated with our reference architecture, a
violation event will be recognized before it actually happens.
Specifically, the reputation score of the vehicle causing a violation and
its associated actors will become negative (based on the output of the
reputation computation that compares the observations of the
distance properties with the contract). As a result, the vehicle will not
be granted access to this ecosystem.

By capturing the system decomposition, our reference
architecture forms the basis for instantiating a digital twin of the
ecosystem. This allows the identification of failure cases at the system
level, thus supporting the replacement of faulty or malicious
components. A system function that does not perform according to its
specifications can be replaced with an improved version of itself or
another system function provided by another organization that is an
actor in the ecosystem. A digital ecosystem has specific sets of
verification scenarios that compute the reputation of its participants.
If the requirements and expectations of the verification scenarios and

292 Supporting the Creation of Digital Twins for CESs

of a vehicle that wants to join the ecosystem are compatible, the
vehicle is granted access to the ecosystem and it can decide to join it.

Smart Grids
In a smart grid, power can be generated by a large variety of
decentralized energy resources (DERs), such as wind turbines or
photovoltaic plants, each providing a small fraction of the energy. By
integrating a connector box (CES) on a DER, the DER is capable of
joining (tactical goal) a virtual power plant (VPP) (digital ecosystem)
to sell the energy produced (VPP associated with the business goal).
Through the deployment of collaboration functions, connector boxes
can become fully autonomous and form coalitions (CSGs) in order to
provide flexible quantities of energy (strategic goal) when requested
by a distributed system operator (actor assigned by actor assignment
to the CSG with the role type “Customer”). When no flexibility of
energy production is achieved, sanctions are applied in the form of
shutdown of the DER (risk associated with the strategic goal of
providing a flexible quantity of energy). Therefore, when a member of
a coalition cannot fulfill its commitment, a replacement must be found
(tactical goal). In order to find the right replacement, the connector
boxes must communicate accurate information about their state
(operational goal enabled by broadcasting information regarding its
status service). The connector boxes must send their status at least
once every 15 minutes (specification of the property of the “status
broadcast frequency” property type in the contract of the “status
broadcast” service). For example, if one connector box does not
communicate its status or does not communicate its status correctly,
a broadcast for bids cannot start and the flexibility for providing
energy will not be achieved.

When a smart agent inside a connector box wants to take part in a
collaboration, it must compute the level of trust in the ecosystem that
forms around the collaborating systems. This can be achieved by
querying the digital twin of the ecosystem, which provides
information about the goals of different DERs together with their
behavior evaluation in various verification scenarios and their
associated reputations.

14.3 Conclusion

In this chapter, we presented a reference architecture that enables
automatic computation of trust in ecosystems and ecosystem

14.4 Literature 293

components. The reference architecture captures the main concepts
and relationships within an ecosystem and can be used to instantiate
digital twins. The reference architecture was developed to be flexible
and be customizable in various application domains. We showed the
expressiveness and reusability of the architecture by providing
examples of its instantiation in scenarios from both the automotive
and energy domains. Currently, the reference architecture provides
the high-level logical view of ecosystems. In future work, we aim to
extend the reference architecture with additional views such as the
following: a use case view to capture the key usage scenarios; an
interaction view to explicitly model the processes and interactions
within the domain; and a deployment view to capture the
implementation decisions for systems based on the reference
architecture. Additionally, because trust evaluation requires detailed
analysis of goals, ongoing work is directed towards detailing the goal
classification for trust computation.

14.4 Literature
[Avizienis et al. 2004] A. Avizienis, J. C. Laprie, B. Randell, C. Landwehr: Basic Concepts

and Taxonomy of Dependable and Secure Computing. In: IEEE transactions on
dependable and secure computing, Vol.1, 2004, pp. 11–33.

[Cioroaica et al. 2018] E. Cioroaica, T. Kuhn, T. Bauer: Prototyping Automotive Smart
Ecosystems. In: 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE, 2018, pp 255–262.

[Cioroaica et al. 2019] E. Cioroaica, S. Chren, B. Buhnova, T. Kuhn, D. Dimitrov: Towards
Creation of a Reference Architecture for Trust-Based Digital Ecosystems. In:
Proceedings of the 13th European Conference on Software Architecture - Volume
2. ACM, 2019, pp. 273–276.

[Cioroaica et al. 2019] E. Cioroaica, T. Kuhn, B. Buhnova: (Do Not) Trust in Ecosystems,
In: Proceedings of the 41st International Conference on Software Engineering,
2019.

[da Silva et al. 2017] S. da Silva Amorim, F. S. S. Neto, J. D. McGregor, E. S. de Almeida, C.
von Flach G Chavez: How Has the Health of Software Ecosystems Been Evaluated?:
A Systematic Review. In: Proceedings of the 31st Brazilian Symposium on Software
Engineering. ACM, 2017, pp. 14–23.

[Hollnagel et al. 2003] E. Hollnagel, A. N ̊abo, I. V. Lau: A Systemic Model for Driver-in-
Control, 2003.

[Kephart et al. 2003] J.O. Kephart, D.M. Chess: The Vision of Autonomic Computing. In:
Computer 2003, pp 41–50.

[Manikas et al. 2013] K. Manikas, K. M. Hansen: Software Ecosystems – A Systematic
Literature Review. In: Journal of Systems and Software Vol. 5, 2013, pp: 1294–1306.

[Molen et al. 1988] H. H. Van der Molen, A. M. Bötticher: A Hierarchical Risk Model for
Traffic Participants. In: Ergonomics, vol. 31, no. 4, 1988, pp. 537–555.

294 Supporting the Creation of Digital Twins for CESs

[Rosen et al. 2015] R. Rosen, G. von Wichert, G. Lo, K. D. Bettenhausen: About the
Importance of Autonomy and Digital Twins for the Future of Manufacturing. In:
IFAC-PapersOnLine48, Vol.3, 2015, pp. 567–572.

[Seaborn and Dullien, 2015] M. Seaborn, T. Dullien: Exploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges, Black Hat15, 2015.

 [Shafto et al. 2012] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne,
L. Wang: Modeling, Simulation, Information Technology and Processing Roadmap.
In: National Aeronautics and Space Administration, 2012.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

15

Online Experiment-Driven
Learning and Adaptation

This chapter presents an approach for the online optimization of collaborative embedded
systems (CESs) and collaborative system groups (CSGs). Such systems have to adapt and
optimize their behavior at runtime to increase their utilities and respond to runtime
situations. We propose to model such systems as black boxes of their essential input
parameters and outputs, and search efficiently in the space of input parameters for values
that optimize (maximize or minimize) the system’s outputs. Our optimization approach
consists of three phases and combines online (Bayesian) optimization with statistical
guarantees stemming from the use of statistical methods such as factorial ANOVA,
binomial testing, and t-tests in different phases. We have applied our approach in a smart
cars testbed with the goal of optimizing the routing of cars by tuning the configuration
of their parametric router at runtime.

Ilias Gerostathopoulos, Technical University of Munich
Alexander auf der Straße, University of Duisburg-Essen

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_15

295

https://doi.org/10.1007/978-3-030-62136-0_15
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_15&domain=pdf

296 Online Experiment-Driven Learning and Adaptation

15.1 Introduction

Collaborative embedded systems (CESs) and collaborative system
groups (CSGs) are often large systems with complex behavior. The
complexity stems mainly from the interaction of the different
components or subsystems (consider, for example, the case of several
robots collaborating in pushing a door open or passing through a
narrow passage). As a result, the behavior of CESs is difficult to
completely model a priori. At the same time, CESs have to be
continuously adapted and optimized to new runtime contexts (e.g., in
the example of the collaborating robots, consider the case of an extra
obstacle that makes the door harder to open).

In this chapter, we present an approach for online learning and
adaptation that can be applied in CESs and CSGs (but also other
systems) that have (i) complex behavior that is unrealistic to
completely model a priori, (ii) noisy outputs, and (iii) a high cost of
bad adaptation decisions. We assume that the CES to be adapted is
abstracted as a black-box model of the essential input and output
parameters. Input parameters (knobs) can be set at runtime to change
the behavior of the CES. Output parameters are monitored at runtime
to assess whether the CES satisfies its goals. Noisy outputs refer to
outputs whose values exhibit high variance, and thus may need to be
monitored over long time periods. The cost of an adaptation decision
(e.g., setting a new value for one of the knobs) refers to the negative
impact of the adaptation decision on the CES.

Given the above assumptions, we focus on finding the values of the
input parameters of a CES that optimize (maximize or minimize) its
outputs. Our approach performs this optimization online—that is,
while the system is running—and in several phases
[Gerostathopoulos et al. 2018]. In doing so, it explores and exemplifies
(i) how to build system models from observations of noisy system
outputs; (ii) how to (re)use these models to optimize the system at
runtime, even in the face of newly encountered situations; and (iii)
how to incorporate the notion of cost of adaptation decisions in the
above processes. Compared to related approaches, our approach
focuses on providing statistical guarantees (in the form of confidence
intervals and p-values) in different phases of the optimization
process.

The behavior of CESs
and CSGs is difficult to

completely model a
priori

Approach for online
learning and adaptation

of CESs and CSGs
abstracted as black-box

models

Finding values of input
parameters that

optimize the outputs

15.2 A Self-Optimization Approach for CESs 297

15.2 A Self-Optimization Approach for CESs

A self-optimization approach for CESs must be (i) efficient in finding
an optimal or close-to-optimal configuration fast, and (ii) safe in not
incurring high costs of adaptation decisions. To achieve these goals, in
our approach, we use prior knowledge of the system (the K in the
MAPE-K loop for self-adaptive systems [Kephart and Chess 2003]) to
guide the exploration of promising configurations. We also measure
the cost of adaptation decisions in the optimization and stop the
evaluation of bad configurations prematurely to avoid incurring high
costs.

Formally, the self-optimization problem we are considering
consists of finding the minimum of a response or output function
݂:ܺ → ܴ, which takes ݊ input parameters ଵܺ,ܺଶ, … ,ܺ, which range
in domains ݉ܦ(ଵܺ),݉ܦ(ܺଶ), … respectively. X is the (ܺ)݉ܦ,
configuration space and corresponds to the Cartesian product of all
the parameters’ domains ݉ܦ(ଵܺ) × (ଶܺ)݉ܦ × … × A .(ܺ)݉ܦ
configuration ܥ assigns a value to each of the input parameters.

Based on the definitions above, our approach for self-optimization
of CESs relies on performing a series of online experiments. An
experiment changes the value of one or more input parameters and
collects values of the outputs. This allows us to assess the impact of
the change to the input parameter on the outputs. The experiment-
driven approach consists of the following three phases, also depicted
in Figure 15-1 (where the CES is depicted in the upper right corner):
 Phase #1: Generation of system model
 Phase #2: Runtime optimization with cost handling
 Phase #3: Comparison with baseline configuration

These phases run consecutively; in each phase, one or more
experiments are performed. An optimization round consisting of the
three phases may be initiated via a human (e.g., an operator) or via the
system itself, if the system is able to identify runtime situations where
its behavior can be optimized. At the end of the optimization round,
the system has learned an optimal or close-to-optimal configuration
and decides (as part of phase #3) whether or not to use this instead of
its current configuration.

The three phases are described below.
The “Generation of system model” phase deals with building

and maintaining the knowledge needed for self-optimization. Here,
we use factorial analysis of variance (ANOVA) to process incoming
raw data and automatically create a statistically relevant model that
is used in the subsequent phases. This model describes the effect that

Self-optimization by
finding the best
configuration

Using factorial analysis
of variance to build
knowledge models

298 Online Experiment-Driven Learning and Adaptation

changing a single input parameter has on the output, while ignoring
the effect of any other parameters. It also describes the effects that
changing multiple input parameters together have on the output. This
phase is run both prior to deploying the system using a simulator (to
bootstrap the knowledge) and while the system is deployed in
production using runtime monitoring (to gradually collect more
accurate knowledge of the system in the real settings).Concretely, in
the first step, the designer must discretize the domain of each input
parameter in two or more values — this is an offline task. When the
phase starts, in the second step, the system derives all the possible
configurations given the parameter discretization (e.g., for three input
parameters with two values each, it will derive 8 possible
configurations capturing all possible combinations). This corresponds
to a full factorial design in experimental design terminology [Ghosh
and Rao 1996]. In the third step, for each configuration, an online
experiment is performed and output values are collected. Once all
experiments have been performed, between-samples factorial
ANOVA is used to analyze the output datasets corresponding to the
different configurations. The output of this phase is a list of input
parameters ordered by decreasing effects (and corresponding
significance levels) on the output.

The “Runtime optimization with cost handling” phase evaluates
configurations via online experiments in a sequential way to find a
configuration in which the system performs the best — that is, the
output function is maximized or minimized. Instead of pre-designing

 Fig. 15-1: Overview of online experiment-driven learning and adaptation approach

15.2 A Self-Optimization Approach for CESs 299

the experiments to run as in phase #1, we use an optimizer that selects
the next configuration to run based on the result of the previous
experiment. In particular, the optimizer we have used so far employs
Bayesian optimization with Gaussian processes [Shahriari et al. 2016].
The optimizer takes the output of phase #1—that is, a list of input
parameters—as its input. For each parameter in the list, the optimizer
selects a value from the parameter’s domain (its original domain, not
its discretized one used in phase #1) and performs an online
experiment to assess the impact of the corresponding configuration
on the system output. Based on the result of the online experiment,
the optimizer selects another input parameter value, performs
another online experiment, and so on. Before the start of the
optimization process, the design sets the number of online
experiments (iterations of the optimizer) that will be run in phase #2.
The outcome of this phase is the best configuration found by the
optimizer.

We assume that configurations are rolled out incrementally in the
system. If there is evidence that a configuration incurs high costs, its
application stops and the optimizer moves on to evaluate the next
configuration. So far, we assume that cost is measured in terms of the
ratio of bad events — for example, complaints. Under this assumption,
we use binomial testing to determine (with statistical significance)
whether a configuration is not worth exploring anymore because of
the cost overstepping a given threshold. A binomial test is a statistical
procedure that tests whether, in a single sample representing an
underlying population of two categories, the proportion of
observations in one of the two categories is equal to a specific value.
In our case, a binomial test evaluates the hypothesis that the predicted
proportion of “bad events” issued is above a specific value — our “bad
events” maximum threshold.

 “Comparison with baseline configuration” makes sure that a
new configuration determined in the second phase is rolled out only
when it is statistically significantly better than the existing
configuration (baseline configuration). In order for the new
configuration to replace the baseline configuration, checks must
ensure that (i) it does indeed bring a benefit to the system (at a certain
statistical significance level); and (ii) the benefit is enough to justify
any disruption that may result from applying the new configuration
to the system. The last point recognizes the presence of primacy
effects, which pertain to inefficiencies caused to the users by a new
configuration.

Using Bayesian
optimization to find
optimal configuration

Using statistical testing
to compare the optimal
with the default
configuration

300 Online Experiment-Driven Learning and Adaptation

Concretely, in this phase, the effect of the (optimal) configuration
output by phase #2 is compared to the default configuration of the
system. This default configuration is provided offline by the system
designers. To perform the comparison, the two configurations are
rolled out in the system and values of the system output are collected.
In other words, two online experiments are performed corresponding
to the two configurations. Technically, the effect of the experiments is
compared by means of statistical testing (so far, we have used t-tests)
on the corresponding datasets of system outputs. This allows us to
deduce whether the two configurations have a statistically significant
difference (at a particular significance level alpha) in their effect on
the system output.

15.3 Illustration on CrowdNav

We illustrate our approach on the CrowdNav self-adaptation testbed
[Schmid et al. 2017], whose goal is to optimize the duration of car trips
in a city by adapting the parameters of the routing algorithm used for
the cars’ navigation. CrowdNav is released as an open-source project1.

In CrowdNav, a number of cars are deployed in the German city of
Eichstädt, which has approx. 450 streets and 1200 intersections. Each
car navigates from an initial (randomly allocated) position to a
randomly chosen destination in the city. When a car reaches its
destination, it picks another one at random and navigates to it. This
process is repeated forever.

To navigate from point A to point B, a car has to ask a router for a
route (series of streets). There are two routers in CrowdNav: (i) the
built-in router provided by SUMO (the simulation backend of
CrowdNav) and (ii) a custom-built parametric router developed in our
previous work. A certain number of cars (“regular cars”) use the built-
in router; the rest use the parametric router — we call these “smart
cars.”

The parametric router can be configured at runtime; it provides
the seven configuration parameters depicted in Figure 15-2. Each
parameter is an interval-scaled variable that takes real values within
a range of admissible values, as provided by the designers of the
system. Intuitively, certain configurations of the router’s parameters
yield better overall system performance.

1 https://github.com/Starofall/CrowdNav

Application of the
approach to a traffic

testbed

https://github.com/Starofall/CrowdNav

15.3 Illustration on CrowdNav 301

To measure the overall system performance, CrowdNav relies on the
trip overhead metric. A trip overhead is a ratio-scaled variable whose
values are calculated by dividing the observed duration of a trip by the
theoretical duration of the trip — that is, the hypothetical duration of
the trip if there were no other cars, the smart car travelled at
maximum speed, and the car did not stop at intersections or traffic
lights. Only smart cars report their trip overheads at the end of their
trips (we assume that the rest of the cars act as noise in the simulation,
so their effect can be observed only indirectly). Since some trips will
have a larger overhead than others no matter what the router
configuration is, the dataset of trip overheads exhibits high variance
— it can thus be considered a noisy output.

Together with the trip overhead, at the end of each trip, each smart
car reports a complaint value — that is, a Boolean value indicating
whether the driver is annoyed. The complaint value is generated
based on the trip overhead and a random chance, so that some of the
“bad trips” would generate complaints (but not all). To measure the
cost of a bad configuration in CrowdNav, the metric of the complaint
rate is used: the ratio of issued complaints to the total number of
observed (trip overhead, complaint) tuples.

Trip overhead is a prime
example of noisy output

Driver complaints model
“bad events”

Id Name Range Description

1 route randomization [0-0.3]
Controls the random noise
introduced to avoid giving
the same routes

2 exploration percentage [0-0.3]
Controls the ratio of smart
cars used as explorers2

3 static info weight [1-2.5]

Controls the importance of
static information (i.e., max.
speed, street length) on
routing

4 dynamic info weight [1-2.5]
Controls the importance of
dynamic information (i.e.,
observed traffic) on routing

5 exploration weight [5-20]
Controls the degree of
exploration of the explorers

6 data freshness threshold [100-700]
Threshold for considering
traffic-related data as stale
and disregarding them

7 re-routing frequency [10-70]
Controls how often the
router should be invoked to
re-route a smart car

Fig. 15-2: Configurable (input) parameters in CrowdNav’s parametric router

302 Online Experiment-Driven Learning and Adaptation

Finally, CrowdNav resides in different situations depending on
two context parameters that can be observed, but not controlled: the
number of regular (non-smart) cars and the number of smart cars. In
particular, each context parameter can be in a number of predefined
ranges. For example, the number of smart cars can be in one of the
following ranges or states: 0-100, 100-200, 200-300, …, 700-800,
>800. All the possible situations are defined as the Cartesian product
of the states of all context variables. In each situation, a different
configuration might be optimal. The task of self-optimization in
CrowdNav then becomes one of quickly finding the optimal
configuration for the situation the system resides in and applying it.

In this context, quickly finding a configuration of parameters that
minimizes the trip overhead in a situation, while keeping the number
of complaints in check, entails understanding the effect a
configuration has on both the trip overhead (the output we want to
optimize for) and the complaint rate (the “bad events” metric).

Generalizing from this scenario, the problem to solve is as follows:
“Given a set of input system parameters X, an output system
parameter O with values exhibiting high variance, an environment
situation S, and a cost parameter C, find the values of each parameter
in X that optimize O in S without exceeding C, in the least number of
attempts.”

We have evaluated the applicability of our experiment-driven self-
optimization method on CrowdNav. Compared to performing
optimization with all the input parameters (essentially skipping
phase #1), our approach can reduce the optimization space, and
consequently converge faster, by optimizing only the input
parameters that have a strong effect on the output (trip overhead in
the case of CrowdNav) [Gerostathopoulos et al. 2018].

15.4 Conclusion

In this chapter, we presented an approach for runtime optimization of
CESs. Our approach relies on the concept of online experiments that
consist of applying an adaptation action (changing a configuration) of
a system that is running and observing the effect of the change on the
system output. The approach consists of three stages that, together,
combine optimization with statistical guarantees that come in the
form of confidence intervals and observed effect sizes. We have
applied the approach on a self-adaptation testbed where the routing
of cars in a city is optimized at runtime based on tuning the

Our approach focuses
the optimization on the

important input
parameters

15.5 Literature 303

configuration of the cars’ parametric router. Our approach can be
used in any system that can be abstracted as a black-box model of the
essential input and output parameters.

15.5 Literature
[Gerostathopoulos et al. 2018] I. Gerostathopoulos, C. Prehofer, T. Bures: Adapting a

System with Noisy Outputs with Statistical Guarantees. In: Proceedings of the 13th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2018). ACM, 2018, pp. 58–68.

[Ghosh and Rao 1996] S. Ghosh, C. R. Rao, Eds.: Handbook of Statistics 13: Design and
Analysis of Experiments, 1st edition. Amsterdam: North-Holland, 1996.

[Kephart and Chess 2003] J. Kephart, D. Chess: The Vision of Autonomic Computing In:
Computer, vol. 36, no. 1, 2003, pp. 41–50.

[Schmid et al. 2017] S. Schmid, I. Gerostathopoulos, C. Prehofer, T. Bures: Self-
Adaptation Based on Big Data Analytics: A Model Problem and Tool. In: Proceedings
of the 12th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2017). IEEE, 2017, pp. 102–108.

[Shahriari et al. 2016] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. de Freitas,
Taking the Human Out of the Loop: A Review of Bayesian Optimization. In:
Proceedings of the IEEE, vol. 104, no. 1, Jan. 2016, pp. 148–175.

[Sheskin 2007] J. Sheskin: Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed. Chapman & Hall/CRC, 2007.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Compositional Verification
using Model Checking and

Theorem Proving

Collaborative embedded systems form groups in which individual systems collaborate to
achieve an overall goal. To this end, new systems may join a group and participating
systems can leave the group. Classical techniques for the formal modeling and analysis of
distributed systems, however, are mainly based on a static notion of systems and thus are
often not well suited for the modeling and analysis of collaborative embedded systems. In
this chapter, we propose an alternative approach that allows for the verification of
dynamically evolving systems and we demonstrate it in terms of a running example: a
simple version of an adaptable and flexible factory.

Diego Marmsoler, Technical University of Munich

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_16

305

https://doi.org/10.1007/978-3-030-62136-0_16
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_16&domain=pdf

306 Compositional Verification using Model Checking and Theorem Proving

16.1 Introduction

Today more than ever, our daily life is determined by smart systems
that are embedded into our environment. Modern systems even start
collaborating with one another, making them collaborative embedded
systems (CESs), which form collaborative system groups (CSGs). Due
to the impact of such systems on modern society, verifying them has
become an important task. However, their nature also imposes new
challenges for verification.

Consider, for example, an adaptable and flexible factory as
described in [Schlingloff 2018] and depicted in Figure 16–1. Here,
robots transport items between machines and together they form a
CSG with the common goal of producing a complex item from simpler
items. During the lifetime of the CSG, new individual CESs (robots or
maybe even machines) may join the group while others may leave it.

Fig. 16–1: Smart production chain

Since traditional verification techniques usually focus on static system
structures, they reach their limit when it comes to the verification of
CSGs. Thus, in the following, we describe a novel approach to the
verification of such systems that allows us to consider dynamically
evolving groups of systems using a combination of automatic and
semi-automatic verification techniques.

In this chapter, we first describe the approach in more detail. We
then demonstrate it by applying it to the verification of a simple
adaptable and flexible factory. We conclude with a brief summary,
discussion of limitations, and outlook.

16.2 Approach 307

16.2 Approach

Figure 16-2 depicts an overview of our approach for the
compositional verification of a CSG (represented as a group of
individual CESs in the center). Verification of a set of overall system
properties (represented by the list at the top right of the figure)
proceeds in three steps: (i) We first identify suitable contracts for the
individual CESs (represented by the filled boxes). (ii) We then verify
the individual CESs against their contracts (left part of the figure). (iii)
Finally, we combine the individual contracts with the description of
the architecture to verify overall system properties (right-hand part
of the figure).

The approach is based on a formal system model that is based on
FOCUS [Broy and Stolen 2012] and described in detail in [Marmsoler
and Gleirscher 2016a], [Marmsoler and Gleirscher 2016b], and
[Marmsoler 2019b]. To verify individual CESs against their contracts,
we apply model checking [Clarke et al. 1986]. This allows us to change
implementations of an individual CES and obtain fast feedback on
whether the new implementation still satisfies the contracts of this
CES.

Since we often do not know the exact number of CESs that
participate in a CSG, we need to consider a possibly unlimited number
of CESs. Thus, we apply interactive theorem proving [Nipkow et al.
2002] for the second step. The stability of results at the composition
level justifies the additional effort that comes with interactive
verification techniques compared to fully automatic techniques: as
long as the single CESs satisfy their contracts, results at composition
level remain valid.

To support a user in the development of specifications, the
approach is implemented in terms of an Eclipse EMF-based modeling
tool called FACTum Studio [Marmsoler and Gidey 2018], [Gidey et al.

Fig. 16-2: Hybrid verification approach

308 Compositional Verification using Model Checking and Theorem Proving

2019]. The tool allows a user to develop specifications and proof
sketches using a combination of graphical and textual modeling
techniques. The specification can then be used to generate
corresponding models and verification conditions for both the nuXmv
[Cavada et al. 2014] model checker and the interactive theorem
prover Isabelle/HOL [Nipkow et al. 2002].

To further support the development of interactive proofs, the
approach comes with a framework to support the verification of
dynamic architectures implemented in Isabelle [Marmsoler 2018b],
[Marmsoler 2019c].

16.3 Example

To demonstrate the approach, we apply it to verify a simple property
for our smart production use case.

16.3.1 Specification

We first need to specify the data types
for the messages exchanged between
the systems of our CSG. Figure 16-3
depicts a corresponding specification
in terms of an abstract data type
[Broy et al. 1984]: it specifies a data
type item to represent the items
produced in the system. For our
example, we assume that items
depend on one another in the sense that the production of a certain
item may require another item. To this end, we specify a relationship
≤௧ between items such that ݅1݉݁ݐ ≤௧ means that the 2݉݁ݐ݅
production of an ݅2݉݁ݐ requires an ݅1݉݁ݐ. Note that the specification
makes ݅ݏ݉݁ݐ an enumerable type, which allows us to use a successor
function ܿܿݑݏ to obtain the successor of an item.

As a next step, we have to specify the types of systems involved in
our production chain. Figure 16-4 depicts a possible specification in
terms of an architecture diagram [Marmsoler and Gidey 2019]: we
specify two types of CES — machines and robots. Machines are
parametrized by two items: one that represents the item a machine
can produce, and one that represents the item the machine needs for
the production. Thus, a system ܿܽܯℎ݅݊݁〈݅1݉݁ݐ, represents a 〈2݉݁ݐ݅
machine that requires an ݅1݉݁ݐ to produce an ݅2݉݁ݐ. A robot, on the

Fig. 16-3: Production items

16.3 Example 309

other hand, is parametrized by a single item that represents the item
it is able to carry. For example, a system ܴ〈1݉݁ݐ݅〉ݐܾ is able to carry
only items of type ݅1݉݁ݐ. In addition, the diagram requires that for
every combination of items ݅3ݐ݅ ,2ݐ݅ ,1ݐ, where the production of ݅3ݐ
requires an ݅2ݐ which in turn requires an ݅1ݐ, there is a machine ݉1
that can produce an item ݅ ݅ when receiving an item 2ݐ and a machine 1ݐ

݉2 that requires an item ݅2ݐ to produce an item ݅3ݐ, and a robot that
can carry an item ݅2ݐ. Moreover, the diagram requires that the robot
be connected to the machines via the correct ports, as depicted by the
connections in the diagram.

Note that since we are using parameters here, the diagram actually
specifies a production sequence of arbitrary length depending on the
concrete items provided. Moreover, the specification allows
individual CESs to leave and join the production chain as long as the
architectural property is satisfied. For example, a robot may leave the
CSG if there is another robot that can take over its responsibilities.

After specifying the architecture, we can specify the behavior of
individual types of systems. Figure 16-5 depicts a simplified
specification of a possible machine implementation in terms of a state
machine: a machine waits for a source item before starting the
production and delivering the item. In addition to the implementation,
we must also specify contracts for the system using linear temporal
logic [Manna and Pnueli 1992]. The contract specified for a machine
in Figure 16-5, for example, states that whenever a machine obtains

Fig. 16-4: Architecture diagram for a smart production chain

310 Compositional Verification using Model Checking and Theorem Proving

the required input item, it will eventually produce the desired output
item.

Note that we use the machine’s parameters ݅1݉݁ݐ and ݅2݉݁ݐ in
formulating the contract.

Similarly, we have to specify the implementation of a robot, which
is depicted in Figure 16-6: a robot collects an item, moves around, and
finally drops the item when it reaches the correct position. Again, we
have omitted details about the guards for the transitions for the sake
of readability. And again, we also formulated a possible contract for a
robot at the bottom of the diagram stating that a robot will always
deliver a collected item.

Fig. 16-5: Specification of a machine

Fig. 16-6: Specification of a robot

16.3 Example 311

16.3.2 Verification

Let us assume, for the purpose of our example, that we want to verify
that the CSG can produce the final production item of a chain of
arbitrary length, given that it is provided with the first item required
in the chain. For example, if we are given a chain of items
1݉݁ݐ݅ ≤௧ 2݉݁ݐ݅ ≤௧ … ≤௧ then our group should be able to ,ܰ݉݁ݐ݅
collaboratively produce item ݅ܰ݉݁ݐ when it receives a corresponding
 .1݉݁ݐ݅

As shown in Figure 16-2, verifying a specification of a CSG consists
of two parts: first, we apply model checking to verify that a single
component indeed satisfies its contracts. If we use FACTum Studio to
model our system, we could then simply generate a model and
corresponding verification conditions for the nuXmv model checker
from the specification to automatically perform the verification.

Next, we have to combine the individual contracts to show that the
overall system works correctly. To do so, we first show a smaller
result that states that for every machine-robot-machine combination,
when the first machine receives the correct input item, the second
machine provides the correct output. Note that this involves
combining three different contracts: the two contracts that ensure
that the two machines function correctly, and another contract that
ensures that the robot functions correctly. We can sketch this proof
using an architecture proof modeling language (APML) [Marmsoler
and Blakqori 2019], a notation similar to a sequence chart for
sketching composition proofs. A possible APML proof sketch is shown
in Figure 16-7: it first states the property in linear temporal logic at
the top and then provides a proof sketch in the form of a sequence
diagram. The proof sketch describes how the different contracts need
to be combined to discharge the overall proof obligation.
Note the reference to the corresponding contracts: production,
delivery, production.

Again, if we use FACTum Studio for the specification of the APML
proof sketch, then we can automatically generate a corresponding
proof for the interactive theorem prover Isabelle to check the
soundness of the proof sketch.

312 Compositional Verification using Model Checking and Theorem Proving

The result we just proved shows the correctness of one segment of
our production chain. Now, to show the correctness of the complete
chain, we have to repeat our argument for every segment of the chain.
We can do this using a technique called well-founded induction
[Winskel 1993]. The corresponding sketch is shown in Figure 16-8.
This concludes the proof and therefore the verification of our
production chain.

Fig. 16-7: APML proof for smart production

Fig. 16-8: Well-founded induction over production chain

313

16.4 Conclusion

In this chapter, we described an approach for verifying CSGs based on
a combination of automatic and semi-automatic verification
techniques and we demonstrated our approach in terms of a simple
example. As shown by the example, the approach allows verification
of CSGs that consist of an arbitrary number of individual CESs. Thus,
it complements traditional verification approaches that usually
assume a static structure with a fixed number of systems involved.

In addition to the example described in this chapter, the approach
has been successfully applied to other domains as well, such as train
control systems [Marmsoler and Blakqori 2019], architectural design
patterns [Marmsoler 2018a], and even blockchain [Marmsoler
2019a]. While this showed the general feasibility of the approach, it
also revealed some limitations: one weakness concerns the expressive
power of our contracts. As of now, contracts are limited to a restricted
form of linear temporal logic and many interesting properties cannot
be expressed. Thus, future works should investigate alternative
notions of contracts to increase expressiveness. Another weakness
concerns the generation of Isabelle proofs from APML proof sketches.
Sometimes, the proofs generated do not contain all the necessary
details required by Isabelle to confirm the proof and some manual
additions may be necessary. Thus, future work should also investigate
possibilities to generate more complete proofs to minimize
interactions with the interactive theorem prover. Finally, our system
model assumes the existence of a global time to synchronize different
components. While this assumption is suitable for some scenarios,
there might be other scenarios where it might not hold. Thus, future
work should investigate possibilities to weaken this assumption.

16.5 Literature
[Broy et al. 1984] M. Broy, M. Wirsing, C. Pair: A Systematic Study of Models of Abstract

Data Types. In: Theoretical Computer Science, vol. 33, 1984, pp. 139-174.

[Broy and Stolen 2012] M. Broy, K. Stolen: Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement, Springer Science &
Business Media, 2012.

[Cavada et al. 2014] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, S. Tonetta: The nuXmv Symbolic Model Checker. In: Biere A.,
Bloem R. (eds) Computer Aided Verification. CAV 2014.

[Clarke et al. 1986] E. M. Clarke, E. A. Emerson, A. P. Sistla: Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications. In: ACM
Trans. Program. Lang. Syst., vol. 8, 4 1986, pp. 244–263.

16.5 Literature

314 Compositional Verification using Model Checking and Theorem Proving

[Gidey et al. 2019] H. K. Gidey, A. Collins, D. Marmsoler: Modeling and Verifying Dynamic
Architectures with FACTum Studio. In: Arbab F., Jongmans SS. (eds) Formal Aspects
of Component Software. FACS 2019.

[Manna and Pnueli 1992] Z. Manna, A. Pnueli: The Temporal Logic of Reactive and
Concurrent Systems, Springer New York, 1992.

[Marmsoler and Gleirscher 2016a] D. Marmsoler, M. Gleirscher: Specifying Properties
of Dynamic Architectures Using Configuration Traces. In: International Colloquium
on Theoretical Aspects of Computing, Springer, 2016, pp. 235–254.

[Marmsoler and Gleirscher 2016b] D. Marmsoler, M. Gleirscher: On Activation,
Connection, and Behavior in Dynamic Architectures. In: Scientific Annals of
Computer Science, vol. 26, 2016, pp. 187–248.

[Marmsoler 2018a] D. Marmsoler: Hierarchical Specification and Verification of
Architecture Design Patterns. In: Fundamental Approaches to Software
Engineering - 21th International Conference, FASE 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, 2018.

[Marmsoler and Gidey 2018] D. Marmsoler, H. K. Gidey: FACTUM Studio: A Tool for the
Axiomatic Specification and Verification of Architectural Design Patterns. In:
Formal Aspects of Component Software - FACS 2018 - 15th International
Conference, Proceedings, 2018.

[Marmsoler 2018b] D. Marmsoler: A Framework for Interactive Verification of
Architectural Design Patterns in Isabelle/HOL. In: The 20th International
Conference on Formal Engineering Methods, ICFEM 2018, Proceedings, 2018.

[Marmsoler and Blakqori 2019] D. Marmsoler, G. Blakqori: APML: An Architecture
Proof Modeling Language. In: Formal Methods – The Next 30 Years, Cham, 2019.

[Marmsoler 2019a] D. Marmsoler: Towards Verified Blockchain Architectures: A Case
Study on Interactive Architecture Verification. In: Formal Techniques for
Distributed Objects, Components, and Systems, Cham, 2019.

[Marmsoler 2019b] D. Marmsoler: A Denotational Semantics for Dynamic
Architectures. In: 2019 International Symposium on Theoretical Aspects of
Software Engineering (TASE), 2019.

[Marmsoler 2019c] D. Marmsoler: A Calculus for Dynamic Architectures. In: Science of
Computer Programming, vol. 182, 2019, pp. 1-41.

[Marmsoler and Gidey 2019] D. Marmsoler, H. K. Gidey: Interactive Verification of
Architectural Design Patterns in FACTum. In: Formal Aspects of Computing, vol 31,
2019, pp. 541-610.

[Nipkow et al. 2002] T. Nipkow, L. C. Paulson, M. Wenzel: Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, vol. 2283, Springer Science & Business Media, 2020.

[Schlingloff 2018] B. Schlingloff: Specification and Verification of Collaborative
Transport Robots, in 4th International Workshop on Emerging Ideas and Trends in
the Engineering of Cyber-Physical Systems (EITEC), 2018.

[Winskel 1993] Glynn Winskel: The Formal Semantics of Programming Languages: An
Introduction. MIT Press, Cambridge, MA, USA, 1993.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

17

Artifact-Based Analysis for the
Development of Collaborative

Embedded Systems

One of the major challenges of heterogeneous tool environments is the management of
different artifacts and their relationships. Artifacts can be interdependent in many ways,
but dependencies are not always obvious. Furthermore, different artifact types are highly
heterogeneous, which makes tracing and analyzing their dependencies complicated. As
development projects are subject to constant change, references to other artifacts can
become outdated. Artifact modeling tackles these challenges by making the artifacts and
relationships explicit and providing a means of automated analysis. We present a
methodology for artifact-based analysis that enables analysis of heterogeneous tool
environments for architectural properties, inconsistencies, and optimizations.

Steffen Hillemacher, RWTH Aachen University
Nicolas Jäckel, FEV Europe GmbH
Christopher Kugler, FEV Europe GmbH
Philipp Orth, FEV Europe GmbH
David Schmalzing, RWTH Aachen University
Louis Wachtmeister, RWTH Aachen University

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_17

315

https://doi.org/10.1007/978-3-030-62136-0_17
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_17&domain=pdf

316 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

17.1 Introduction

The development of collaborative embedded systems (CESs) typically
involves the creation and management of numerous interdependent
development artifacts. Requirements documents specify, for example,
all requirements that a system under development must fulfil during
its lifetime, whereas system architectures written in the Systems
Modeling Language (SysML) [SysML 2017] enable system architects
to describe the logical and technical architecture of the system. If the
expected behavior of a system and its system components is also
modeled in SysML, automatically generated test cases [Drave et. al.
2019] can be used to check the system for compliance with these
system requirements. Accordingly, the creation of these development
artifacts extends through all phases of system development and thus
over the entire project duration. Consequently, different developers
create system requirements, architecture, and test artifacts using
diverse tools of the respective application domain. Therefore, all
artifacts must be checked for consistency, especially if further
development artifacts are to be generated automatically in a model-
driven approach. For example, it must be ensured that all components
that are mentioned in the system requirements or for which system
requirements exist are also present in the system architecture, or that
all values checked by a test case match the respective target values
specified in a requirement.

Another challenge that arises during the system development
process for CESs is the use of different tools during different stages of
the development project. As CESs aim to connect different embedded
systems handling multiple tasks in different embedding
environments, heterogeneous tools adapted to the application
domain are also used to create them. Furthermore, practice has
shown that new tools are introduced to the project and obsolete tools
are replaced by new ones to meet the challenges that arise in different
development phases whenever insuperable tool boundaries are
reached. As a result, the project becomes more complex, as new tools
create new dependencies and other relationships, a situation that is
amplified by the fact that the number of artifacts and their
interdependence during development constantly increases. Since
these various development tools are often incompatible with each
other and do not support relationship validation across tool

Consistency of artifacts
during the development

of collaborative
embedded systems

Heterogeneous
development tools

17.2 Foundations 317

interfaces, we use artifact-based analyses to enable automatic
analysis of relationships and architectural consistency.

To tackle this challenge, automating artifact-based analysis
enables the system developers to model the artifacts created during a
project and to automatically analyze their relationships and changes.
Artifact-based modeling and analysis were originally developed for
software projects [Greifenberg et. al. 2017], but with slight
modifications, also offer a decisive advantage in systems projects
[Butting et. al. 2018]. For this purpose, we introduce a project-specific
artifact model that is adapted to the individual project situation and
thus unambiguously models the artifacts that occur in the project and
illustrates their relationships.

We show the application of artifact-based analysis using the
example of DOORS Next Generation (Doors NG) and Enterprise
Architect (EA). To this end, we create an artifact model that models
the structure and the elements of the exports of Doors NG and EA, as
well as their relationships. We then describe the extraction of the
structures and prepare the extracted data for further processing by
analysis. For this purpose, we have developed static extractors that
convert the exports into artifact data (object diagrams). Finally, we
model analyses using Object Constraint Language (OCL) expressions
over the artifact metamodel and show the execution of corresponding
analyses on the extracted data.

17.2 Foundations

In this section, we present the modeling languages and model-
processing tools used in our approach and explain how to use these to
describe artifacts and artifact relationships.

UML/P

The UML/P language family [Rumpe 2016], [Rumpe 2017] is a
language profile of the Unified Modeling Language (UML) [UML 2015].
Due to the large number of languages involved, their fields of
application, and the lack of formalization, UML is not directly suitable
for model-driven development (MDD). However, it could be made
suitable by restricting the modeling languages and language
constructs allowed, as has been done in the UML/P language family. A
textual version of UML/P that can be used in MDD projects was
developed in [Schindler 2012]. The approach for the artifact-based

Artifact-based analysis

Application of artifact-
based analysis

A language profile of
UML

318 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

analysis of MDD projects uses the languages Class Diagram (CD),
Object Diagram (OD), and OCL.

Class Diagrams in UML/P

Class diagrams serve to represent the structure of software systems
and form the central element for modeling software systems with
UML. CDs are primarily used to introduce classes and their
relationships. In addition, they can be used to model enumerations
and interfaces, associated properties such as attributes, modifiers,
and method signatures, as well as various types of relationships and
their cardinalities. CDs can be used in analysis to structure concepts
of the problem domain, in addition to being utilized to represent the
technical, structural view of a software system—that is, as the
description of source code structures [Rumpe 2016]. For this use case
in particular, [Roth 2017] developed an even more restrictive variant
of the UML/P class diagrams: the language Class Diagram for Analysis
(CD4A). In the approach presented here, CD4A is used to model
structures in model-based development projects.

Object Diagrams in UML/P

Object diagrams are suitable for specifying exemplary data of a
software system. They describe a state of the system at a concrete
point in time. ODs may conform to the structure of an associated class
diagram. Checking whether an object diagram corresponds to the
predefined structure of a class diagram is generally not trivial. For this
reason, [Maoz et. al. 2011] describes an approach for an Alloy-based
[Jackson 2011] verification technique. In object diagrams, objects and
the links between objects are modeled. The object state is modeled by
specifying attributes and assigned values. Depending on the intended
use, object diagrams can describe a required situation of the software
system or represent a prohibited or existing situation of the software
system. The current version of the UML/P OD language allows the
definition of hierarchically nested objects in addition to the concepts
described in [Schindler 2012]. This has the advantage that
hierarchical relationships can also be displayed as such in the object
diagrams. In this work, CDs are not used to describe the classes of an
implementation, but when used for descriptions on a conceptual level,
objects of associated object diagrams also represent concepts of the
problem domain instead of objects of a software system. In our
approach, object diagrams are used to describe analysis data — that
is, they reflect the current state of the project at the conceptual level.

Class diagrams for
analysis

Object diagrams for
representing problem

domain concepts

17.3 Artifact-Based Analysis 319

OCL

OCL is a specification language of UML that allows additional
conditions of other UML languages to be modeled. For example, OCL
can be used to specify invariants of class diagrams, conditions in
sequence diagrams, and to specify pre- or post-conditions of methods.
The OCL variant of UML/P (OCL/P) is a Java-based variant of OCL. Our
approach uses the OCL/P variant only. OCL is used only in conjunction
with class diagrams throughout this approach. OCL expressions are
modeled within class diagram artifacts.

17.3 Artifact-Based Analysis

This section provides an overview of the solution concept developed
for performing artifact-based analyses and is largely based on the
work published in [Greifenberg 2019]. Before we present the analyses
in more detail, let us define the terms artifact, artifact model, and
artifact data.

Definition 17-1: Artifact
An artifact is an individually storable and uniquely named unit serving a
specific purpose in the context of a development process.

This definition focuses more on the physical manifestation of the
artifact rather than its role in the development process. It is therefore
less restrictive than the level characterization presented in
[Fernández et. al. 2019]. Furthermore, the definition requires an
artifact to be stored as an individual, referenceable unit. Nonetheless,
an artifact must serve a specific purpose within a development
process, making its creation and maintenance otherwise obsolete. On
the other hand, the definition does not enforce restrictions on the
integration of the artifact into the development process — that is, an
artifact does not necessarily have to be an input or output of a certain
process step. Artifacts may also exist only as intermediate or
temporary contributions of a tool chain. Moreover, the definition
largely ignores the logical content of artifacts. This level of abstraction
enables an effective analysis of the artifact structure taking the
existing heterogeneous relationships into account instead of
analyzing the internal structure of artifacts.

OCL for analysis

Artifact definition

320 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

Fig. 17–2: The role of an artifact model and corresponding artifact data within an

MDD project

An important part of the overall approach is the identification of the
artifacts, tools, systems, etc. present in the development process and
their relationships. Different modeling techniques provide a means to
make these explicit and thus enable model-based analyses. Figure 17-
2 gives an overview of the model-based solution concept. First, the
types of artifacts, tools, and other elements of interest, as well as their
relationships within a development process, must be defined. It is the
task of an architect, who is well-informed about the entire process, to
model these within an artifact model (AM). This model structures the
artifact landscape of the corresponding process or a development
project. The AM defines only the types of elements and relationships
and not the specific instances; therefore, this model can remain
unchanged over the entire life cycle of the process or the project
unless new types of elements or relationships are added or removed.
Moreover, once created, the model can be reused completely or
partially for similar projects.

Definition 17-3: Artifact model
The artifact model defines the relevant artifact types and the associated
relationship types of a development process to be examined.

Specific instances of an AM are called artifact data and reflect the
current project status. Ideally, artifact data can be extracted
automatically and saved in one or more artifacts.

Role of an artifact
model and artifact data

within an MDD project

17.3 Artifact-Based Analysis 321

Definition 17-4: Artifact data
Artifact data contains information about the relevant artifacts and their
relationships that exist at a specific point in time in an engineering
process. Artifact data are instances of a specific artifact model.

Fig. 17–5: Modeling languages used for the artifact model and data

Artifact data are in an ontological instance relationship [Atkinson and
Kuhne 2003] to the AM. Each element and each relationship from the
artifact data correspond to an element or a relationship type of the
AM. The AM thus prescribes the structure of its artifact data. Figure
17-5 shows how this is achieved in terms of modeling techniques.
During the artifact-based analyses, artifact data represent the project
state at a certain point in time. Analysts and analysis tools use the
artifact data to understand the current project state, to check certain
relationships, create reports, and to check for optimization potential
within the project. Ultimately, the goal is to make the software
development process as efficient as possible. This approach is
especially suited for checking the consistency of the architecture of
model-driven software development projects or processes. It is
capable of handling input models, model-driven development (MDD)
tools—which themselves consist of artifacts—and handwritten or
generated artifacts that belong to the end product of the development
process. In such a case, the AM depends on the languages, tools, and
technologies used in the development process or project. Thus, it is
usually tailored specifically to a process or project.

Fig. 17–6: Steps for enabling artifact-based analysis

Relationship of artifact
data to an artifact
model

322 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

In order to perform artifact-based analyses as shown in Figure 17-6,
the first step is to create a project-specific AM. Once created, analyses
based on the artifact data are specified. Finally, after the two previous
steps, the artifact-based analysis can be performed.

Artifact Model Creation
The first step of the methodology is the creation of an AM. The AM
determines the scope for specific analyses based on the
corresponding artifact data. It explicitly defines the relationships
between the artifacts and specifies prerequisites for the analyses.
Additionally, using the CD and OCL languages, model-driven
development tools can be used to analyze the artifact data.
[Greifenberg 2019] presents an AM core and a comprehensive AM for
model-driven development projects. If a new AM has to be created, or
an existing AM has to be adapted, the AM core and parts of existing
project-specific AMs should be reused. A methodology for this can also
be found in [Greifenberg 2019].

The central elements of any AM are the types of artifacts modeled.
All project-specific types of files are eligible to be contained in the AM.
Artifacts can contain each other. Typical examples of artifacts that
contain other artifacts are archives or folders in the file system.
However, database files or models containing artifacts are also
possible. Figure 17-7 shows the relevant part of the reusable AM core
as presented in [Greifenberg 2019].

Fig. 17–7: Reusable artifact model core as presented in [Greifenberg 2019]

Enabling artifact-based
analysis

Creation of an artifact
model

Types of artifacts as
central elements of an

artifact model

17.3 Artifact-Based Analysis 323

In this part of the AM core, the composite pattern [Gamma et. al. 1995]
ensures that archives and folders can contain each other in any order.
Each type of artifact is contained in exactly one artifact container. If all
available artifact types are modeled, there is exactly one type of
artifact not contained by a container — that is, the root directory of
the file system. Furthermore, artifacts can contribute to the creation
of other artifacts (creates relationship) and they can statically refer to
other artifacts (refers to relationship). These artifact relationships are
defined as follows:

Definition 17-8: Artifact reference
If an artifact needs information from another artifact to fulfil its purpose,
then it refers to the other artifact.

Definition 17-9: Artifact contribution
An existing artifact contributes to the creation of the new artifact (to its
production) if its existence and/or its contents have an influence on the
resulting artifact.

Both relationships are defined in the AM as a derived association.
Therefore, it is vital to specify these relationships further in project-
specific AMs, while it is already possible to derive artifact data
analyses from these associations. The specialization of associations is
defined using OCL conditions [Greifenberg 2019], since the CD
language is not suitable for this.

Specification of Artifact Data Analysis
The second step of the methodology is the specification of project-
specific analyses that are based on the AM created in the first step.
These analyses must be repeatable and automated. They can be
implemented either by one person, an analyst or analysis tool
developer, or an analyst can specify the analyses as requirements for
the analysis tool developer, who then implements an appropriate
analysis tool. In this work, analyses are specified using OCL:

1. The CD language—used to model the AM—and OCL are well
suited for use in combination to define analyses.

Composition of artifacts
and artifact containers

Refining an artifact
model in project-specific
extensions

Specifying analysis of
artifact data

324 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

2. OCL has already been used to define project-specific analyses
in [Greifenberg 2019]. Reusing familiar languages and
providing example analyses shortens the learning curve for
analysts.

3. OCL has mathematically sound semantics that enable precise
analyses. Moreover, OCL expressions are suitable as input for a
generator that can automatically convert them into MDD tools,
thus reducing the effort for the developer of the analysis tool.

Artifact-Based Analyses
The third step in Figure 17-6 is the artifact-based analysis, which
executes the previously specified analyses. This step is refined into
five sub-steps. Each step is supported by automated and reusable
tools. Figure 17-10 presents these steps and the corresponding tools.

Fig. 17–10: Steps of artifact-based analysis with tools (rectangles), resulting files (file

symbols), and the execution flow (directed arrows)

The first step in artifact-based analyses is to extract relevant project
data. If stored in different files, the data must be merged. The entire
data set is then checked for compliance with the AM. In the next step,
the data is accumulated based on the specification of the AM, to ensure
the derived properties are present for the last step, the artifact data
analysis. [Greifenberg 2019] presents a tool chain that can be used to
collect, merge, validate, accumulate, and finally, to analyze artifact
data. The tool chain supports all sub-steps of the artifact-based
analysis. The individual steps are each performed by one or more
small tools that, combined, form the tool chain. The tools shown in
Figure 17-10 are arranged according to the order of execution of the
tool chain. The architecture as a tool chain is modular and adaptable.
The primary data format for exchanging information between tools is

Executing artifact-based
analysis

Steps and components
for performing artifact-

based analysis

17.4 Artifact Model for Systems Engineering Projects with Doors NG and Enterprise Architect 325

object diagrams. New tools can be added without having to adjust
other tools. Existing tools can be adjusted or removed from the tool
chain without the need to adjust other tools. Therefore, when using
the tool chain in a new project, project-specific adjustments usually
have to be made. The architecture chosen supports the reuse and
adaptation of individual tools.

17.4 Artifact Model for Systems Engineering Projects
with Doors NG and Enterprise Architect

To demonstrate the practicability of the artifact-based approach, this
section describes an example of artifact-based analysis of systems
engineering projects with textual requirements and logical
architecture components in SysML. Doors NG and Enterprise
Architect are commonly used tools for these purposes. Doors NG
enables engineers to define and maintain requirements in a
collaborative development environment. Enterprise Architect is a
solution for modeling, visualizing, analyzing, and maintaining systems
and their architectures. Standards, such as UML and SysML, are
supported. In our example, we focus on the definition of requirements
in Doors NG and the modeling of systems and their components in
Enterprise Architect. Here, system components are modeled with
Internal Block Diagrams (IBD) and corresponding Block Definition
Diagrams (BDD) from the SysML standard.

17.4.1 Artifact Modeling of Doors NG and Enterprise Architect

The creation of the artifact model for this example includes the
identification of artifact types used in the project as a first step. Since,
in this example, we consider two tools whose files cannot be read
directly via an open standard, suitable exchange formats must first be
identified. The XML-based XMI exchange format, which is supported
by Enterprise Architect as a tool-independent exchange format, is
therefore taken as the exchange format for Enterprise Architect.
Furthermore, a ReqIF export is used for the cloud-based data format
of Doors NG for information exchange, which also enables a cross-tool
exchange of requirements. The challenge here is that the
requirements stored in the development tools are no longer present
as individually stored units, but rather as what are referred to as
artifact containers (cf. Figure 17-7), in which several development
artifacts— which must first be identified and extracted for subsequent

Artifact-based analysis
of Doors NG and
Enterprise Architect

Creation of an artifact
model for Doors NG and
Enterprise Architect

326 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

analysis—have been combined. Once these basic artifact types
(named “EA Export” and “Doors Export” in the artifact model in Figure
17-11) have been identified, the relevant information contained in the
exports must be modeled and related.

Fig. 17-11: Artifact model for exports of Doors NG and Enterprise Architect, as well as

their relationships

In the XMI export created by Enterprise Architect, exactly one model
for the overall system modeled in the EA project is exported. This
model contains any number of diagrams and elements (named
Diagram and EAElement in the artifact model of Figure 17-11).
Furthermore, each diagram has any number of elements, represented
in the class diagram of the artifact model under consideration by the
consistsOf association. Since the example considered is limited to
architectural elements, not all diagram types of SysML are modeled in
the artifact model; only the structural diagrams relevant for the logical
architecture are modeled in the form of the Internal Block Diagram
(IBD) and the Block Definition Diagram (BDD). A decisive advantage
of the artifact models is that not all possible artifacts have to be
modeled; the model can be limited to the artifacts relevant for the
analysis. Similarly, only signal flows and parts—as the internal
representation of ports in EA—are defined for the example under
consideration. In the BDD, only the block is modeled as a relevant
diagram element and all relationships in the BDD are no longer
displayed. The ReqIF export of Doors NG is also represented as an
artifact in the artifact model. Each DoorsExport contains at least one,

Modeling exports of
Doors NG and Enterprise

Architect

17.4 Artifact Model for Systems Engineering Projects with Doors NG and Enterprise Architect 327

but otherwise any number of modules that also contain one or more
DoorsElements. In this context, a mixture of Chapters, Requirements,
and ArchElements serve as specialized DoorsElements.

17.4.2 Static Extractor for Doors NG and Enterprise Architect
Exports

To verify automatically that the current project complies with the
architecture defined, all elements of the artifact model must be loaded
from the two exports. To achieve this, we implemented static
extractors, which parse the exports and load relevant information into
our internal representation. For this purpose, the extractor
transforms relevant data into an object diagram — that is, the artifact
data. This workflow is shown in Figure 17-12. The artifact data
extracted from the tool exports is tool-specific at first and needs
further consolidation. This means that tool-specific artifact data is
merged into a consistent data set (object diagram): the artifact data of
the system. During this step, associations between objects of different
diagrams are constructed (extracted from name references) and
objects of the same type and name are merged automatically.
Relationships between elements of different exports are constructed
during this step. The resulting object diagram gives a view of the
current project architecture and enables analysis.

Fig. 17–12: Tool chain workflow from artifact data extraction to analysis

17.4.3 Analysis of the Extracted Artifact Data

After the extraction and consolidation of artifact data, artifact-based
analyses can be defined on the previously constructed project-specific
artifact model and executed on the merged and consolidated artifact
data. However, analyses are executed only on artifact data that
conforms to the artifact model. Therefore, in a first step, the tool chain

Static extraction of
artifact data

Analysis of extracted
artifact data

328 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

checks whether the artifact data is an instance of the artifact model
and executes further well-formedness constraints. If the merged
artifact data is well-formed and conforms to the artifact model, then
defined analyses are executed on the artifact data. We model analyses
as constraints of OCL over the defined artifact model. This enables us
to define analyses without deeper programming experience and to
execute analyses automatically on the extracted data without having
knowledge of the internal data structure of the analysis tool. To this
end, our tool chain transforms modeled analyses into machine code
and executes this code on the internal representation of the artifact
data.

Fig. 17–13: Example of artifact data invalidating a defined analysis constraint

An example of extracted artifact data invalidating an OCL analysis
constraint is given in Figure 17-13. The constraints define that the
name in the description of a requirement matches the name of a signal
flow the requirement refers to, and that the part allocated to the
requirement must be the target of this signal flow. In the artifact data
extracted, however, the part p1 allocated to the requirement r1 is the
source of the referred signal flow s1. The execution failure of the
analysis is noted in the analysis report and implies required changes
for project well-formedness. Changing the part p1 to be the target of
signal flow s1 instead of its source validates the analysis as shown in
Figure 17-14. The automated test in both sources checks that the
models are consistent in both tools during the whole development
process. The check throws an error if an inconsistency occurs, thus
notifying developers of potential problems.

An example of modeling
analysis using OCL

constraints

17.5 Conclusion 329

Fig. 17–14: Example of artifact data validating a defining analysis constraint

17.5 Conclusion

Model-driven development aims to reduce the complexity in the
development of collaborative embedded systems by reducing the
conceptual gap between problem and solution domain. The use of
models and MDD tools enables at least a partial automation of the
development process. In larger development projects involving
several different domains in particular, the huge number of different
artifacts and their relationships makes managing them difficult. This
can lead to poor maintainability or an inefficient process within the
project. The goal of the approach presented is the development of
concepts, methods, and tools for artifact-based analysis of model-
driven software development projects. Here, the artifact-based
analysis describes a reverse engineering methodology that enables
repeatable and automated analyses of artifact structures. In this
approach, UML/P provides the basis for modeling artifacts and their
relationships, as well as specifying analyses. A combination of the
UML/P class diagrams and OCL is used to create project-specific
artifact models. Additionally, analysis specifications can be defined
using OCL while artifact data that represents the current project state
is defined using object diagrams, which are instances of the artifact
model. This allows the consistency between an AM and its artifact data
to be checked. The models are specified in a human-readable form but
can also be processed automatically by other MDD tools. The example
presented for artifact-based analysis of Enterprise Architect and
Doors NG shows the practicability for checking the consistency of
artifacts across heterogeneous tools. Here, automated analyses enable
system architects to check the conformity of specified components to

Employing artifact-
based analysis to
facilitate model-driven
development

330 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

requirements and enable requirement engineers to trace the impact
of changes on the specified architecture.

17.6 Literature
[Atkinson and Kuhne 2003] C. Atkinson, T. Kuhne: Model-Driven Development: A

Metamodeling Foundation. In: IEEE Software, 2003, pp. 36–41.

[Atzori et. al. 2010] L. Atzori, A. Iera, G. Morabito: The Internet of Things: A Survey. In:
Computer Networks, 2010, pp. 2787 – 2805.

[Brambilla et. al. 2012] M. Brambilla, J. Cabot, M. Wimmer: Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 2012.

[Butting et. al. 2018] A. Butting, T. Greifenberg, B. Rumpe, A. Wortmann: On the Need
for Artifact Models in Model-Driven Systems Engineering Projects. In: Software
Technologies: Applications and Foundations, Springer, 2018, pp. 146-153.

[Cheng et. al. 2015] B. H. C. Cheng, B. Combemale, R. B. France, J. Jézéquel, B. Rumpe: On
the Globalization of Domain-Specific Languages. In: Globalizing Domain-Specific
Languages. LNCS 9400, Springer, 2015, pp 1–6.

[Drave et. al. 2019] I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, E. Kusmenko, M.
Markthaler, P. Orth, K. S. Salman, J. Richenhagen, B. Rumpe, C. Schulze, M. von
Wenckstern, A. Wortmann: SMArDT Modeling for Automotive Software Testing. In:
R. Buyya, J. Bishop, K. Cooper, R. Jonas, A. Poggi, S. Srirama: Software: Practice and
Experience. 49(2), Wiley Online Library, 2019, pp. 301-328.

[Ebert and Favaro 2017] C. Ebert, J. Favaro: Automotive Software. In: IEEE Software,
Vol. 34, 2017, pp. 33-39.

[Fernández et. al. 2019] D.M. Fernández, W. Böhm, A. Vogelsang, J. Mund, M. Broy, M.
Kuhrmann, T. Weyer, 2019. Artefacts in Software Engineering: A Fundamental
Positioning. In: Software & Systems Modeling, 18(5), pp. 2777-2786.

[France and Rumpe 2007] R. France, B. Rumpe: Model-Driven Development of Complex
Software: A Research Roadmap. In: Future of Software Engineering (FOSE ’07),
2007, pp. 37-54

[Gamma et. al. 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

 [Greifenberg 2019] T. Greifenberg: Artefaktbasierte Analyse modellgetriebener
Softwareentwicklungsprojekte. In: Aachener Informatik-Berichte, Software
Engineering, Band 42, Shaker Verlag, 2019 (available in German only).

[Greifenberg et. al. 2017] T. Greifenberg, S. Hillemacher, B. Rumpe: Towards a
Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven Projects. In:
Aachener Informatik-Berichte, Software Engineering, Band 30, Shaker Verlag,
2017.

[Jackson 2011] D. Jackson: Software Abstractions: Logic, Language, and Analysis. MIT
press, 2011.

[Krcmar et. al. 2014] H. Krcmar, R. Reussner, B. Rumpe: Trusted Cloud Computing.
Springer, Switzerland, 2014.

17.6 Literature 331

[Lee 2008] Edward A. Lee: Cyber-Physical Systems: Design Challenges. In 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), 2008, pp. 363–369.

[Maoz et. al. 2011] S. Maoz, J. O. Ringert, B. Rumpe: An Operational Semantics for
Activity Diagrams using SMV. In: Technical Report. AIB-2011-07, RWTH Aachen
University, Aachen, Germany, 2011.

[Müller et. al. 2016] Markus Müller, Klaus Hörmann, Lars Dittmann, Jörg Zimmer:
Automotive SPICE in der Praxis: Interpretationshilfe für Anwender und
Assessoren. 2edition, dpunkt.verlag, 2016 (available in German only).

[OCL 2014] Object Management Group: Object Constraint Language, 2014.
http://www.omg.org/spec/OCL/2.4; accessed on 04/30/2020.

[Roth 2017] Alexander Roth: Adaptable Code Generation of Consistent and
Customizable Data-Centric Applications with MontiDex. In: Aachener Informatik-
Berichte, Software Engineering: Band 31, Shaker Verlag, 2017.

[Rumpe 2016] B. Rumpe: Modeling with UML: Language, Concepts, Methods. Springer
International, 2016.

[Rumpe 2017] B. Rumpe: Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, 2017.

[Schindler 2012] M. Schindler: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. In: Aachener Informatik-Berichte, Software Engineering. Band 11.
Shaker Verlag, 2012 (available in German only).

[SysML 2017] Object Management Group. OMG Systems Modeling Language, 2017.
http://www.omg.org/spec/SysML/1.5/; accessed on 04/30/2020.

[UML 2015] Object Management Group. Unified Modeling Language (UML), 2015.
http://www.omg.org/spec/UML/; accessed on 04/30/2020.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/SysML/1.5/
http://www.omg.org/spec/UML/
http://creativecommons.org/licenses/by/4.0/

Variant and Product Line Co-
Evolution

Individual collaborative embedded systems (CESs) in a collaborative system group (CSG)
are typically provided by different manufacturers. Variability in such systems is pivotal
for deploying a CES in different CSGs and environments. Changing requirements may
entail the evolution of a CES. Such changed requirements can be manifold: individual
variants of a CES are updated to fix bugs, or the manufacturer changes the entire CES
product line to provide new capabilities. Both types of evolution, the variant evolution
and the product line evolution, may be performed in parallel. However, neither type of
evolution should lead to diverging states of CES variants and the CES product line,
otherwise both would be incompatible, it would not be possible to update the CES
variants, and it would not be possible to reuse bug fixes of an individual variant for the
entire product line. To avoid this divergence, we present an approach for co-evolving
variants and product lines, thus ensuring their consistency.

Jörg Christian Kirchhof, RWTH Aachen University
Michael Nieke, TU Braunschweig
Ina Schaefer, TU Braunschweig
David Schmalzing, RWTH Aachen University
Michael Schulze, pure-systems GmbH

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_18

333

https://doi.org/10.1007/978-3-030-62136-0_18
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_18&domain=pdf

334 Variant and Product Line Co-Evolution

18.1 Introduction

Configurability and variability play a pivotal role for collaborative
embedded systems (CESs). Individual configurations enable
customization and flexibility while, optimally, allowing a high degree
of reuse between different variants. Product line engineering is an
approach that enables mass customization for families of similar
(software) systems [Schaefer et al. 2012]. During domain engineering
(DE), commonalities and variabilities of variants of a product line—
that is, its configured product instances—are typically captured in
terms of features [Pohl et al. 2005]. A feature represents increments
to the functionality of products. Variability models, such as feature
models [Kang et al. 1990], organize features and the relationships
between them. Features are mapped to realization artifacts, such as
code, models, or documentation. During application engineering (AE),
a variant is derived by defining a configuration that consists of
selected features [Pohl et al. 2005]. Using this configuration and the
feature-artifact mapping, the resulting artifacts can be composed to
form a variant.

For collaborative embedded systems (CES), supporting and
managing variability is crucial. Typically, a CES is developed once and
deployed for different customers and in different environments. Thus,
a CES must accommodate customer-specific requirements and be
applicable in different environments. Developing these different CES
variants individually does not scale economically. Moreover, separate
variant development is bad practice as the different variants
inevitably diverge from each other, which results in incompatibilities,
bugs/errors, and significantly higher maintenance effort [Pohl et al.
2005].

The optimal situation is that all variants are created, maintained,
and updated during DE using the product line artifacts and the
variability model. In practice, however, customers often require
adaptations or updates for their variant, with the adaptations or
updates being implemented by changing only this particular variant
during AE. For instance, a CES is deployed for one specific customer
and this customer requires changes at short notice or implements
their own changes. This has several advantages: first, the complexity
of implementing such changes is comparably low as the impact on
other variants does not have to be considered; second, the time
required to deploy new changes and thus the costs are low as well.

Product line engineering

Variability for
collaborative embedded

systems

Modifying derived
variants

18.1 Introduction 335

This procedure is particularly interesting for variability of CESs.
Typically, a CES is used in multiple different CSGs by different
companies. Thus, changes to a CES product line require a lot of effort
as the impact on all possible variants and the CSGs that use the CES
must be considered. Consequently, required changes are
implemented directly in a CES variant that is used in a particular CSG.

However, this procedure comes at the cost of lost compatibility
between the product line and the changed variant. If product line
artifacts are updated, it is unclear whether these changes affect the
modified variants and, even worse, it is unclear how to merge the
changes at DE level with changes at AE level. As a result, the product
line and the modified variants diverge. Consequently, respective
variants are not updated if the product line is updated, and other
variants cannot benefit from changes that have been made at variant
level.

To overcome these limitations, we provide an approach that
enables engineers to modify variants at AE level while keeping these
changes and changes at DE level synchronized. The first part of the
approach propagates updates from DE level to modified variants. To
this end, an internal repository is automatically maintained. The
variants originally derived from the DE level are stored in this
repository. If the product line is changed, a three-way-merge
mechanism compares the original variant, the updated variant
derived from the updated product line, and the modified original
variant. As a result, updates from the product line level are merged
into the modified variant. Thus, the variant users benefit from product
line updates but are still able to modify their variant individually.

The second part of the approach propagates changes from AE level
to DE level. First, changes at variant level are identified. In the next
step, the features that are affected by these changes are identified.
This is particularly important to allow these changes to be propagated
to product line level. However, this task is challenging as, typically, the
information about which part of a variant stems from which feature is
not preserved when a variant is derived. Finally, the variant changes
are transferred semi-automatically to the respective product line at
DE level. To this end, regression deltas between original artifacts and
modified artifacts are computed and mapped to the respective feature
at DE level. As a result, product line artifacts are updated with the
most recent changes at the AE level without the need for additional
costs to redevelop the variant changes for the entire product line.

Diverging changes of
product lines and their
variants

Propagating product
line changes to modified
variants

Lifting variant changes
to product line level

336 Variant and Product Line Co-Evolution

18.2 Product Line Engineering

In product line engineering, features are typically captured in
variability models. The most prominent variability model type is a
feature model [Batory 2005], [Kang et al. 1990]. Feature models
capture the abstract functionality of a product line as features and
organize them in a structured tree. Thus, the feature tree has exactly
one root feature and can have multiple child features. Each feature,
except for the root feature, has exactly one parent feature — that is,
the feature tree is an acyclic graph. This tree defines basic
relationships between features — that is, a feature can only be
selected if its parent feature is selected. Additional constraints can be
defined by using feature types or cross-tree constraints in
propositional logic with features as variables. In feature-oriented
programming (FOP), each feature is implemented separately
[Prehofer 1997]. Thus, artifacts, such as code, models, or
documentation, that realize a specific feature are developed. In
addition, artifacts that are necessary to enable the collaboration of
multiple features must be implemented as well.

To realize the variability that artifacts express, there are different
mechanisms and notations that establish a feature-artifact mapping.
With annotative or negative approaches, parts of artifacts are marked
with feature expressions that define the feature combinations in
which they should be used [Schaefer et al. 2012]. If a feature is not
selected, its annotated artifact parts are removed. A prominent
example of the annotative method is C/C++ preprocessor annotations.
With compositional or positive variability, distinct artifacts for each
feature (combination) are implemented that are composed later
[Schaefer et al. 2012]. For instance, plug-in systems can be used with
a distinct plug-in for each feature. Finally, transformational
approaches, such as delta-oriented programming (DOP) [Clarke et al.
2010], are a combination of the positive and negative approaches.
They enable specification of deltas that define changes to artifacts that
add, delete, or modify parts of the respective artifacts.

During AE, variants of a product line are derived [Pohl et al. 2005].
To this end, configurations are defined that consist of selected
features of the feature model. To derive a concrete variant from such
a configuration, a generator uses this configuration, the feature-
artifact mapping, and a concrete variability realization mechanism.
This variability realization mechanism is specific to the notation used
to implement feature artifacts, such as preprocessors, plug-ins, or
DOP, and transforms the product line artifacts to match the selected

Feature models to
represent variability

Variability at
implementation level

Deriving variants during
application engineering

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 337

configuration. For preprocessors, this means removing all annotated
parts that do not match the current feature configuration. For additive
approaches, such as plug-ins, this means composing all artifacts of the
selected features to form a variant. For transformational approaches,
such as DOP, the deltas that are mapped to the selected features are
collected and their change operations are applied.

Similar to other systems, product lines evolve to meet new
requirements or to fix bugs [Schulze et al. 2016]. To this end, feature
artifacts and their mapping are modified at DE level and variants can
be updated by triggering a new generation at AE level. In theory, this
is the optimal way to perform product line evolution. However, in
industrial practice, this is often infeasible or simply not done.
Consequently, variants are modified at AE level to match specific
requirements, to fix bugs, or to be updated. This results in a
divergence of product line and variants which we address with the
approach presented.

18.3 Propagating Updates from Domain Engineering
Level to Application Engineering Level

This section is largely based on [Schulze et al. 2016].

18.3.1 The Challenge of Propagating Updates

To illustrate the process and the resulting problems of propagating
updates from DE to AE, we present an abstract overview of variant
derivation in conjunction with the evolutionary process described in
Figure 18-1. The Product Line Assets boxes depicted act as
placeholders for different artifacts and each Variant A box represents
all artifacts belonging to variant A. The creation of a specific customer
variant A starts with the derivation step at T0, which is symbolized in
the figure by Step . This step basically consists of multiple actions

Deriving variants and
performing customer-
specific modifications

Fig. 18-1: Challenges of DE and AE co-evolution

338 Variant and Product Line Co-Evolution

(e.g., selecting features, transforming corresponding artifacts,
generating the variant) to be performed for each artifact type, such as
requirements, source code, models etc. The result is a working copy
for the derived variant that constitutes the base for further
development as the product line is not usually able to deliver the
entire functionality customers want. Hence, changes to particular
artifacts, such as add, remove, and modify, take place on the derived
variant at AE level, leading to a customer-adapted and, usually,
functionality enriched variant (represented as Variant A' in Figure 18-
1).

Beside modifications on variants' working copies, changes also
take place on the entire product line (i.e., DE level) — for example,
through maintenance activities such as bug fixing or functionality
extension in order to satisfy emerging market needs. The changes at
both levels are made simultaneously and in an unsynchronized
manner (marked with in the figure). In general, this is not a problem
and often even desired in industry as it allows variants of different
customers to develop at their own speed. However, a problem arises
if a derived variant requires further functionality or bug fixes from the
product line. This means that the same derivation process of Step
is performed again at T1 (Step), which results in a newly generated
working copy for that variant, and as a side effect, all variant
modifications () on Variant A are lost, since the artifacts are
replaced by the DE level versions.

The loss of essential changes performed at AE level (visualized by
scissors in Figure 18-1) is a major concern for real-world product
lines due to the resulting increased time and cost of recreating the
changes.

18.3.2 Artifact Evolution and Co-Changes

Three basic operations can be part of an evolutionary task, regardless
of the artifacts affected:

 Add: An artifact (e.g., a requirement, code, model, etc.) is
added — for example, to extend functionality.

 Remove: An artifact is removed — for example, because it
became irrelevant.

Product line level
changes and

incompatibilities with
variant modifications

Basic artifact
modifications

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 339

 Modify: An artifact is adapted according to changing
circumstances — for example, due to legal issues.1

These types of changes happen at both DE and AE level
respectively, and it is only if a change was made on an artifact that
exists at both levels that we call it a co-change. Such co-changes can
lead to a conflict if an artifact was modified at both levels at the same
location but in different ways. In order to preserve the co-changes
made at the AE level during update propagation, we have to a) detect,
b) classify, and if possible, c) (automatically) resolve each conflicting
co-change. The matrix in Figure 18-2 visualizes all possible cases and
helps to classify the possible co-changes. As depicted, there are also
some cases that can never occur (e.g., an addition of a new artifact at
DE level being removed at AE level), other cases that can be fully
resolved (e.g., removal of the same artifact at both levels), and cases
that can be (partially) automatically resolved (e.g., a modification of a
DE level artifact that was removed at AE level). However, before we
can classify or even resolve changes, the initial detection of a co-
change is key for the subsequent steps.

1 While this operation can be considered as a combination of the two basic operations
add and remove, its semantics is important for determining conflicts. Hence, we treat
this operation separately.

Fig. 18-2: Co-change operations between DE and AE and their effects

340 Variant and Product Line Co-Evolution

Since an evolution is performed simultaneously at both levels,
detecting where a change happened and what type of change it was is
essential to enable informed decisions in the subsequent steps.
Considering the variants’ derivation process in Figure 18-1, a
comparison of the artifacts of Variant A’ with Variant A at T1 might be
a solution, since a change can easily be detected if an artifact differs
between both versions. However, this simple approach is not
sufficient to detect the level at which the change happened. More
problematically, the most difficult case cannot be uncovered in this
way — that is, a case where the same artifact was changed in a
different way in both versions. This means that with this two-way
comparison, in general, no information about the origin (Variant A',
Variant A at T1, or both versions) or the kind of change can be
retrieved.

The problem of the two-way comparison is that it lacks a common
base to compare both variants with. In the derivation process in
Figure 18-1, the original working copy Variant A at T0 constitutes this
common base from which both variants originate. Given this common
base, we can use a three-way comparison to obtain the changes
between DE and AE. This enables us to compare the evolved variants
of DE and AE level not only with each other, but also with their origin
— that is, the common base at time T0. As a result, we can determine
precisely which change operations were performed on the respective
variant. We can therefore classify the changes according to our matrix
and thus identify possible conflicts.

With a full classification for each conflicting co-change, the
resolution can be reached partially or full automatically, depending
first on the nature of the co-change and second on the resolution
strategy — for example, if one level takes precedence during conflict
resolution. For most of the cases, this allows a fully automatic
resolution. For those cases where conflict resolution needs user
assistance, there are often tools that allow for adequate visualization
and even merging of the conflict. If such tool support is not available,
the user must resolve the conflict by hand, which is in any case the last
resort.

18.3.3 Changes to the Variant Derivation Process

The detection of any possible co-change requires the application of a
three-way comparison of the artifacts of three different versions
(Variant A at T0 and T1, as well as Variant A’) of product line variants.
However, in the scenario in Figure 18-1, not all the three required

Detecting and
classifying co-changes

Resolving changes

Necessity of a common
base for three-way
comparison

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 341

versions are available explicitly. Basically, only Variant A’ is available
and Variant A at T1 can be generated from the product line artifacts in
their current state. Retrieving the common base version of those two
versions is more sophisticated. Generally, two approaches are
conceivable to solve this problem as follows.

In the first approach, the base version is regenerated from the
product line, which requires a snapshot of the product line, including
generators employed at the point in time when the previous base
version was generated (i.e., time T0 in Figure 18-1). Provided that the
product line is published in fixed release versions, these snapshots
can easily be retrieved even if application engineers have no access to
interim versions. However, if there are no such release versions, a
snapshot of the entire product line must be created every time a
variant generation process is triggered on a changed product line.

In the second approach, each variant generated is saved in a,
possibly local, repository to keep it for later use. This approach is
shown in Figure 18-3. Between the DE level and the working copy of
a specific variant at AE level, a new level for the repository is
introduced that is transparent for application engineers. When
application engineers derive a specific variant A for the first time at
T0, it is stored automatically in the internal repository for that variant
(Step). The working copy is initially just cloned from that version
(Step). Over time, the product line and Variant A are changed
independently of each other (Step). Then, at T1, application
engineers want an update of their working copy to synchronize with
the current product line version. During that update propagation, a
new version of Variant A is derived and stored in the internal

Regenerating a common
base from the product
line

Saving generated
variants as a common
base in a repository

Fig. 18-3: Solution for co-evolution and propagating updates from DE to AE

342 Variant and Product Line Co-Evolution

repository (Step), but this version is not shown to application
engineers directly. Instead, a three-way comparison (Step) is
performed between the two versions in the repository (the ancestor
reference as common base and the latest reference) and the working
copy version Variant A’. As discussed above, most merges are done
without user interaction and it is only for conflicts that cannot be
resolved that application engineers must decide which changes
should be applied. The result is an updated working copy with merged
changes of the DE and AE level (Step). This update process can be
repeated each time the product line is changed.

18.3.4 Applicability and Limitations

Basically, our proposed classification scheme is general enough to be
applicable with different scenarios and different artifacts in product
line development. This is because our definition of both change
operations and change conflicts is artifact-independent and we
address the integration in the common product line development
process. However, due to its general nature, our method requires
some manual effort to be adapted for concrete product lines. Most
importantly, the concrete artifacts that are subject to change
operations must be defined and an instantiation of their granularity
levels must be provided. The latter is of specific importance, because
the granularity plays a pivotal role in deciding whether a conflict
exists or not. Moreover, granularity levels are different for specific
artifacts. For instance, for source code, it may be sufficient to
distinguish between statement, block, and file level. In contrast, if we
consider artifacts in a hierarchical structure, such as requirement
specifications, different levels of granularity such as line, section, or
subsection may be required to detect conflicts with a suitable
accuracy. Finally, developers must specify how the conflict detection
and resolution is integrated in the (most likely already existing)
development process, for instance, which tools should be used for
conflict detection. However, the aforementioned instantiation has to
be done only once (when setting up or integrating with an existing
product line engineering process) and can subsequently be used for
the entire evolution process.

Finally, it is worth mentioning that, with our proposed
classification, we focus mainly on syntactical changes. As a result, our
classification does not ensure semantic correctness. However, we
argue that syntactical correctness is the stepping-stone for consistent

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 343

co-evolution in product lines and thus for ensuring integrity of both
DE and AE level.

18.3.5 Implementation

In our prototypical implementation, we have integrated the process
described into pure::variants2, the leading industrial variant
management tool, which supports the development of product lines.
This tool can manage different types of realization artifacts, either by
means of generic modeling in the tool or by means of integration into
external tools using specific connectors. The derivation process for
variants is handled by an extensible set of transformations that are
specific to the artifact type or external tool. These transformations are
the connection point for our implementation. Since the chosen
approach is generic, the prototypical implementation supports all
types of artifacts as long as a three-way comparison is available for
the specific artifact type. For example, for source code, the internal
local repository is realized by simply creating folders for the ancestor
as well as latest references, as can be seen in Figure 18-4 from the box
in the upper left corner.

The three-way comparison and the merge are then executed using
the three directories directly, while specifying the ancestor directory
as the common base of the two others once. Thus, when an application
engineer wants to update their working copy, they start a new
derivation of the current variant, which leads to the generation of a
new latest version, followed by triggering the compare and merge
operation. If there are no conflicts that have to be resolved manually,
the application engineer will get the merged result. If there are
conflicts, the application engineer must resolve them by deciding
which version—working copy or latest—they prefer to be in the
merged result. At the end, the application engineer gets a merged
version semi-automatically.

The prototypical implementation was presented to different
customers and received a positive response, with many of those
customers facing the challenges mentioned with regard to variant and

2 www.pure-systems.com

http://www.pure-systems.com

344 Variant and Product Line Co-Evolution

product line co-evolution. Thus, our method addresses a highly
relevant topic in the industrial domain.

18.4 Propagating Changes from Application
Engineering Level to Domain Engineering Level

18.4.1 The Challenge of Lifting Changes

Propagating updates from the AE level to the DE level produces a few
challenges. Introducing changes from the AE level to the DE level may
result in conflicts, as development may go ahead at the DE level as
well. Detecting changes and applying them to DE level artifacts is
made more complicated here, as, in feature-oriented programming,
there is often a mapping between features and implementation
artifacts. Depending on the variability specification mechanism used,
reconstructing the feature mapping from AE level artifacts is often not
straightforward. In constructive mechanisms - for example, when
constructing a 150% model - references to features may still exist in
AE level artifacts. Yet, with transformational approaches, feature
references are usually removed during the generation of AE level
artifacts. However, reconstructing this mapping on the AE level is
crucial for assigning changes to the correct features.

Challenges in
propagating changes

from the AE level

Fig. 18-4: Updating a variant in pure::variants preserving local changes

18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level 345

Our goal is to lower the barrier for adopting changes to variants in
product line engineering by supporting the propagation of changes
from a variant's working copy to the product line. To adequately
propagate changes to the DE level, we have to a) detect changes, b)
make the feature information available at AE level, c) assign changes
to features or the codebase, and d) resolve each conflicting co-change.
We propose a process that detects changes in the working copy of a
variant then maps them to the appropriate features and transfers
them semi-automatically to the product line.

18.4.2 A Process for Lifting Changes

Similar to updating the working copy of variants with changes from
the product line, detecting co-changes requires a three-way
comparison of the artifacts in questions when lifting changes to the
product line. Here, two possible approaches are conceivable. In the
first approach, changes in the working copy of the variant (Variant A’,
see Figure 18-1) are detected by comparing it to its base version
(Variant A at T0). The changes detected are then translated and
applied to the base version of the product line (Product Line Assets at
T0), resulting in a new product line version. These two versions are
then compared with the updated product line (Product Line Assets at

T1) in a three-way comparison to detect and resolve conflicting co-
changes. In the second approach, co-changes are instead detected and
resolved on the AE level artifacts and only then translated and applied
to the product line. This approach follows the process of updating the
working copy of a variant (see Section 18.3.3) with changes from the
product line, as co-changes are identified and resolved through a
three-way differencing and merge on the three different variant
versions.

We follow the second approach, as this approach builds upon the
previously proposed process for updating a variant. The proposed
process for this approach is presented in Figure 18-5. It consists of
four steps: first, we update the working copy of a variant with changes

Prerequisites for
propagating changes

Approaches to
propagating changes

Process description for
propagating changes
from the AE level

Fig. 18-5: Activities for propagating changes from the AE level to DE level

346 Variant and Product Line Co-Evolution

in the product line through a three-way merge on the artifacts of the
three different variant versions. In addition to resolving conflicting
co-changes, we also calculate regression deltas between the new
variant versions (Variant A derived from the Product Line Assets at T1
and the working copy of Variant A resulting from the merge). These
regression deltas represent the changes detected that will be applied
to the DE level artifacts. However, changes must first be assigned to
their corresponding feature (Seed feature information), and for this we
require access to domain knowledge at AE level. To this end, in the
second step, we annotate AE level assets with feature information.
These annotations are the input in the third step to assign each change
to a corresponding feature. Finally, in the fourth step, we translate and
apply changes to DE level artifacts. In the following, we focus on the
second and third steps, which we present in more detail.

18.4.3 Deducing Feature Information

Conflicting co-changes must also be resolved if changes from the AE
level are to be propagated to the DE level. Changes must also be
assigned to a feature to be made available to other variants of the
product line. However, developers at the AE level implement changes
concerning the variant's configuration, and information about
individual features is usually not available. Changes at AE level can
change the implementation of existing features or the codebase (e.g.,
bug fixing) or add new features (implementation of new
functionalities). Before we can assign changes to features, the changes
must first be detected, and domain knowledge must be made available
at AE level.

Underlying Model

Artifacts, their content, and their relationships can be represented
abstractly as a graph ܩ = Here, the set of vertices V represents .(ܧ,ܸ)
artifacts or elements of artifacts in the desired granularity, and the set
of typed edges ܧ = ܸ × ܸ × ܶ represents their relationships, where T
is the set of kinds of relationships identified. One possible realization
of this data structure is object diagrams, which adequate
transformations can extract directly from a development project and
which we can employ to identify the impact of individual changes
[Butting et al. 2018]. We use this data structure as an internal
representation of model artifacts to abstract from concrete syntax
changes.

Conflicts when updating
DE level artifacts

General model
description

18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level 347

Besides the internal representation of model artifacts, we annotate
elements (vertices) with features, which we store as a mapping ܽ:ܸ ∪
→ ܧ where F is the set of features. In our representation, the ,ܨ
common codebase is mapped to the root feature, which is thereby
represented as well. After the second phase (Seed feature
information), each model element and each relationship of the base
variant is annotated with exactly one feature. When assigning changes
to features, we calculate recommendation values for each change and
feature pair; that is, we calculate a mapping ݎ ∶ ܥ × ܨ → [0, 1] that
assigns to each pair (c, f) the probability that change c belongs to
feature f. Here, ܿ ∈ ݂ ݀݊ܽ,ܥ ∈ .where C is the set of changes ,ܨ
Furthermore, we then calculate ݎ(݁, ݂), ,(݂,݁)ௗௗݎ ,(݂,݁)ௗݎ ݀݊ܽ
which state whether the removal, the addition, or the modification of
a model element e may belong to a feature f.

Seeding Feature Information

Since changes in AE level artifacts are applied to model elements of
implementation artifacts, information about which model elements
belong to which feature is essential to allow informed decisions when
assigning changes to features. While feature-oriented programming
usually includes a feature mapping that assigns implementation
artifacts or even model elements to features, this mapping is usually
not available at AE level. The availability of the feature mapping at AE
level depends on the variability mechanism and the variant
generation process. If feature information is part of implementation
artifacts at AE level, then even assigning changes to features may be
trivial, as application engineers can implement changes in the scope
of the corresponding feature directly.

In most cases, feature information is not part of the resulting
implementation artifacts. One example of this is transformational
approaches, which transform some core model based on the selected
features without traces of these transformations at AE level. As
feature information is not available at AE level, we can instead
reconstruct this information through the variant generation process.
This can either be done directly during the initial variant generation
or be recomputed from the product line. With the former, the feature
information would have to be computed and derived for all variants,
even if changes in a variant are never propagated to the product line.
The latter would require the version of the product line, including
generators employed at the point in time when the variant was
generated. In either case, the goal is to annotate each model element

Description of
annotations and
recommendation values

Prerequisites for seeding
feature information

Required domain
knowledge

348 Variant and Product Line Co-Evolution

of the desired granularity of the unmodified variant at AE level with
the corresponding feature.

In addition to the feature annotation derived from the product line,
we require application engineers to annotate which major changes at
AE level (e.g., the introduction of new artifacts) represent new
features. Since these features are not (yet) known in the product line,
it is otherwise not possible to distinguish between new features and
changes to an existing feature. In contrast to variability mining, it is
not possible to compare several variants to identify new features,
since changes usually affect a single working copy of a variant.
Instead, by partially annotating changes with a new feature, the full
variant may be explored through further analysis. The resulting
feature annotation of elements is used in the following to assign
changes to specific features.

Assigning Changes to Features

With a complete annotation of the original model elements with
features, and incomplete information about new features, we can
annotate the remaining changes with features through further
analysis. Generally, this can only be achieved partially automatically
through a recommendation engine. In some cases, annotating changes
with features may be computed fully automatically depending on the
quality of analyses employed, the unambiguity of the resulting
annotations, and on conflicts in other variants when propagating
changes to DE level artifacts.

As before, we focus on the three operations add, remove, and
modify. Furthermore, we incorporate domain knowledge into our
analysis; that is, we consider the parent-child relationship and
the requires relationship of features. Using well-formedness rules
together with domain knowledge enables us to limit the set of features
that can contain a particular change. The concrete implementation,
however, depends on the modeling language and variability
specification mechanism used. The notes here provide the basis for
implementing appropriate analyses for the respective circumstances.

A model element can only be removed in the feature that
introduced it (the annotated feature) or in any of its dependent
features. We call a feature f1 dependent on a feature f2 if f1 is in a child-
hierarchy of f2 or if f1 requires f2. Dependent features can be removed
only if the variability specification mechanisms support removing
elements that have been introduced in another feature (e.g.,
transformational variability specification mechanisms). If model
element e is removed at AE level, then ܽ(݁) = ݂ (model element e is

Introducing new
artifacts at AE level

Prerequisites for
assigning changes to

features

Noteworthy feature
relationships for the

recommendation

Removal of model
elements

18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level 349

annotated with feature f) implies ݎ(݉݁ݎ ݁,݂) = 1 (whether the
removal of e may occur in feature f) and in the latter case, this also
implies ݎ(݉݁ݎ ݁, ଵ݂) = 1, where f1 is dependent on feature f.

Similar to the removal of elements, a model element can only be
modified in the feature that introduced it or in any of its dependent
features. Therefore, if model element e is modified at AE level, then
ܽ(݁) = ݂ (model element e is annotated with feature f) implies
(݂,݁ ݀݉)ௗݎ = 1 and in the latter case, this also implies
,݁ ݉݁ݎ)ௗݎ ଵ݂) = 1, where f1 is dependent on feature f.

Any domain-specific or general-purpose language supports
relationships between model elements, where relationships between
two elements can be expressed by the relation ܴ ⊆ ܧ × where ,ܧ
(݁ଵ, ݁ଶ) ∈ ܴ states that model element e1 relates to model element e2
in some way. Common relationships are containment relationships
and references to other elements. Examples of the former are classes
in Java that contain fields and method declarations. An example of the
latter are transitions between two states in an automaton that
reference their source and target state. Model elements must be
introduced in the same feature that introduces a relationship on that
feature, or in any of that feature’s parent features - that is, if there is a
relationship (݁ଵ, ݁ଶ) between model element ݁ଵ and ݁ଶ, and
ܽ((݁ଵ,݁ଶ)) = ݂ (the relation is annotated with feature f), then
ௗௗ(ܽ݀݀ ݁ଵ,݂)ݎ = ௗௗ(ܽ݀݀ ݁ଶ,݂)ݎ ,1 = ,ௗௗ(ܽ݀݀ ݁ଵݎ ,1 ଵ݂) = 1, and
,ௗௗ(ܽ݀݀ ݁ଶݎ ଵ݂) = 1 for all features f1 in the parent-hierarchy of
feature f.

We compute the overall recommendation ݎ for each change with
(݂,݁)ݎ = ,݁)ݎ ݂) + ,݁)ௗௗݎ ݂) + ௗ(݁,݂) by merging theݎ
recommendations of ݎ ௗݎ ௗௗ, andݎ , . The highest recommended
feature f for each model element e is returned by the recommendation
engine.

18.4.4 Applicability and Limitations

The proposed update process and the proposed recommendation
mechanism are general enough to be applicable for different
variability specification mechanisms and can be realized for different
modeling languages. This is because we generally regard models as
constructs consisting of model elements and relationships between
these elements. Implementation of the recommendation mechanism
and of the update process for different modeling languages, however,
requires additional implementation effort, as for each modeling
language, we have to identify possible relationships between artifacts

Modification of model
elements

Addition of model
elements

Calculating overall
recommendation value

350 Variant and Product Line Co-Evolution

and extract these to transfer them into the recommendation engine.
Furthermore, the proposed recommendation mechanism considers
all modeling elements and changes to be equally important. If this is
not desired, then weights must be defined for these elements.
Moreover, domain engineers still have to manually merge changes
into the product line artifacts, as recommendations provide only a
general idea as to which features particular changes can be applied to.
Here, the domain engineers' decisions can be used to limit the
decision space further and update recommendations. Updating
product line artifacts with changes from the AE level may and will
cause conflicts in existing variants. Developers must integrate the
process for propagating changes into the product line's development
process and define how conflicts across variants will be resolved.
Finally, the accuracy of the recommendations depends on the
granularity of the overlying model, the maturity of the analysis, and
the differencing algorithms employed. Here, we consider only
syntactic changes, but algorithms that analyze semantic changes could
also be used to enhance recommendations.

18.5 Conclusion

Variability and configurability play a pivotal role for CESs and CSGs.
Product line engineering is an approach for structured reuse and
management of CES and CSG variability. To meet new requirements,
product lines evolve, and their variants can be updated accordingly.
However, in industrial practice, individual variants are modified,
which yields the threat of incompatibility. In this article, we proposed
an approach to keep product lines and their variants synchronized.
With this approach, the benefits of performing evolution at both
product line level and variant level are combined. With a high degree
of automation, engineers can perform evolution at variant level
without the drawback of a high manual effort to synchronize the
product line with the modified variant. Consequently, our
contributions make product line engineering more applicable for
industrial practice.

18.6 Literature
[Batory 2005] D. Batory: Feature Models, Grammars, and Propositional Formulas. In:

International Conference on Software Product Lines, Springer, Berlin, Heidelberg,
September 2005, pp. 7-20.

18.6 Literature 351

[Butting et al. 2018] A. Butting, S. Hillemacher, B. Rumpe, D. Schmalzing, A. Wortmann:
Shepherding Model Evolution in Model-Driven Development. In: Modellierung
(Workshops), 2018, pp. 67-77.

[Clarke et al. 2010] D. Clarke, M. Helvensteijn, I. Schaefer: Abstract Delta Modeling. In:
Proceedings of the Ninth International Conference on Generative Programming and
Component Engineering, ACM, 2010, pp. 13-22.

[Kang et al. 1990] K.C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson: Feature-
Oriented Domain Analysis (FODA) Feasibility Study (No. CMU/SEI-90-TR-21).
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst., 1990.

[Pohl et al. 2005] K. Pohl, G. Böckle, F. van der Linden: Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer 2005, ISBN 978-
3-540-24372-4.

[Prehofer 1997] C. Prehofer: Feature-Oriented Programming: A Fresh Look at Objects.
In: ECOOP'97 - Object-Oriented Programming, 11th European Conference,
Springer, 1997, pp. 419-443.

[Schaefer et al. 2012] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G.
Botterweck, A. Pathak, S. Trujillo, K. Villela: Software Diversity: State of the Art and
Perspectives. In: International Journal on Software Tools for Technology Transfer,
Volume 14, Number 5, Springer, 2012, pp. 477-495.

[Schulze et al. 2016] S. Schulze, M. Schulze, U. Ryssel, C. Seidl: Aligning Coevolving
Artifacts Between Software Product Lines and Products. In: Proceedings of the
Tenth International Workshop on Variability Modelling of Software-Intensive
Systems, ACM, 2016, pp. 9-16.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Advanced Systems Engineering

Contribution of the SPES Methodology and Open
Research Questions

Advanced systems engineering (ASE) is a new paradigm for agile, efficient, evolutionary,
and quality-aware development of complex cyber-physical systems using modern digital
technologies and tools. ASE is essentially enabled by smart digital modeling tools for
specifying, modeling, testing, simulating, and analyzing the system under development
embedded in a coherent and consistent methodology.

The German Federal Ministry of Education and Research (BMBF) projects SPES2020,
SPES_XT, and CrESt offer such a methodology and framework for model-based systems
engineering (MBSE). The framework provides a comprehensive methodology for MBSE
that is independent of tools and modeling languages. The framework also offers a
comprehensive set of concrete modeling techniques and activities that build on a formal,
mathematical foundation. The SPES framework is based on four principles that are of
paramount importance: (1) Functional as well as non-functional requirements fully
modeled and understood at system level. (2) Consistent consideration of interfaces at
each system level. (3) Decomposition of systems into subsystems and their interfaces. (4)
Models for a variety of cross-sectional topics (e.g., variability, safety, dynamics).

Manfred Broy, Technical University of Munich
Wolfgang Böhm, Technical University of Munich
Bernhard Rumpe, RWTH Aachen University

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_19

353

https://doi.org/10.1007/978-3-030-62136-0_19
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_19&domain=pdf

354 Advanced Systems Engineering

19.1 Introduction

Many systems and technical products developed today and in the
future are or will be cyber-physical systems. These systems exhibit
physical as well as smart, complex, and high-performance
functionality, are typically not "stand alone," being instead connected
to users and to other systems via digital networks such as the Internet,
and their services mutually use and complement each other. It is
recognizable that to a certain extent, subsystems, which are created
by heuristic procedures, are built into the systems, — for example, by
"learning procedures."

Typical for those cyber-physical systems is that they embody
software intensively, which enables powerful and connected
functionalities that go dramatically beyond what was possible in the
past for rather isolated mechatronic systems. The high proportion of
software leads to an extensive design space in which the most diverse
requirements can be identified. Therefore, the identification of a
requirements concept is of particular importance. This also creates
extensive potential for innovation, both in terms of purely logical
functionality but also very much in human-centered human-machine
interaction and automation up to full autonomy.

Cyber-physical systems are characterized by the fact that they
usually have mechatronic components, especially sensors and
actuators to enable the interaction between physical and software
components as well as an interaction of the systems with their
environment. These new forms of software enable functionalities
through the use of advanced software technology, including artificial
intelligence methods, and enable human-centered user interfaces for
these systems.

It is particularly noteworthy that today's systems contain an
extensive proportion of software for good reasons, as this enables
functionalities that were completely out of scope even a few years ago.
Due to the strong networking, it is obvious to connect systems with
completely different tasks and functionalities — in order to use
functionality from other systems, but also to make functionality
available for other systems and thus increase the degree of
automation and optimization.

Cyber-physical systems

Software as a driving
factor

19.2 Advanced Systems Engineering 355

19.2 Advanced Systems Engineering

The systems of the future are characterized by the following features:

 Extensive software components and functionality, which is
mainly determined by the software components

 High degree of networking with other systems for the mutual use
of data services

 Strong integration of software with mechanical and electrical
components

 Comprehensive, dedicated user interfaces
 High degree of automation up to autonomy
 Continuous further development — including during operation
 Complex integration with business software

These features are also reflected in the required development
approaches and determine the characteristics of the advanced
systems engineering (ASE) approach. Accordingly, ASE is
characterized by the following features:

 Strong demand for modeling techniques to ensure the correctness
of complex functionality and comprehensive tool support

 Frontloading – shifting efforts towards early phases in
development

 Strong integration of the development processes of the
engineering disciplines involved (mainly software engineering,
mechanical engineering, electrical engineering) and the tools
used; conventional processes such as sequential, discipline-
specific development no longer meet the new requirements

 Strictly systems-centric approach for the holistic integration of
the required multidisciplinary design approaches

 Consistency of development across the family of models, with
clear semantic foundations, precisely defined relationships
between the models, and development steps systematically
develop further models from the elaborated model up to the
generation of code and test cases based on well-understood
semantic coherence.

 Equal support of a top-down and bottom-up approach via the
consistency of the transitions between the models.

 Close interlinking of the data-driven and model-driven approach
through harmonization of the component and interface concept.

 Intensive use of software tools for all phases of development,
consistent artifact orientation, virtual development by creating
suitable digital artifacts, automation of the development process

System characteristics

Characteristics of the
ASE approach

356 Advanced Systems Engineering

through simulation, generation and automated deduction and
quality verification

 Merging of development and operation (continuous development
and delivery, DevOps, agility)

 Use of development models for further evolution and during
operation (from system model to digital twin)

 New types of cost structures, higher development costs in relation
to lower production costs due to the often dramatically higher
variability

 Intensive integration of new forms of software and the resulting
possibility of adding new and modified functionality even during
operation of the systems leads to new types of business models

It is evident that these points interact with, complement, and reinforce
each other.

19.3 MBSE as an Essential Basis

The approach pursued by MBSE is clearly distinguished from the
document-centered, manual approach that is still widely used today.
Objectives, functions, components, interfaces, or quality properties
that a system fulfils or provides are described by explicit model
elements based on well-defined and well-understood concepts of the
domain. A number of modeling concepts are used in model-based
development. The concepts are selected in such a way that they
capture the essential system properties clearly and precisely. A
separate theory can be specified for each of these modeling concepts.
The same applies to the description of the relationship between the
different modeling concepts used. This has the advantage that users
trained in the approach (similar to programming languages) are
familiar with the concepts and know which models they have to apply
to certain questions. Engineers thus also know the basic problems
they have to deal with in order to create the models in a goal-oriented
way and use them in system analysis or synthesis. Model-based
development is much more than just drawing or setting up models; it
also includes the comprehensive use of an elaborated modeling
approach.

Pre-built model types, based on a scientific foundation, guarantee
properties such as compositionality, which clearly defines the
integration of subsystems described by models (such as
communication via an interface) and reuse. The models must be
coordinated in terms of content and engineers must understand

Formal system model

19.3 MBSE as an Essential Basis 357

exactly how the different modeling approaches interact. One
important point is the semantic coherence across model boundaries
and the boundaries of modeling languages, which ensures that a
comprehensive model of the system is created. A system description
is then no longer this vaguely informal structure of documents, but
rather an interwoven network of standardized models that form a
common whole. An instance of the system model, which in this form
is then consistently stored in a central model repository ("single point
of truth"), is managed. Stakeholders have different views of this
central system model that are tailored precisely to their respective
roles in the product life cycle (for example, function developer,
architect, service). This avoids undetected inconsistencies and, in
particular, simplifies the ability to change the models, thus reducing a
significant cost driver.

The transition from textual descriptions in natural language to
models also has the advantage of reducing ambiguities, making
consistency and completeness verifiable, and improving
communication between stakeholders. The more formal the model
used, the less ambiguity there is in the description. More importantly,
formal models enable automatic analyses—for example, to check the
interaction of the individual components—and they also allow the use
of generators to generate parts of other models and artifacts (such as
code or test cases) from elaborated system models.

This shows that model-based development constitutes one,
perhaps the key to advanced systems engineering with a high level of
tool support.

Another important point here is the possibility of tool-supported
development of systems. Here, the software is of particular interest in
two respects: on the one hand, the development of systems in their
inevitable complexity will be supported in a way that is indispensable
to advance such systems in general; on the other hand, supported
development requires comprehensive, systematic modeling and thus
a virtual registration of the systems. This means that these models can
be used as digital twins for the operation of the systems and thus
ensure even more extended functionalities. The software optimizes
itself during development, so to speak.

Three aspects of MBSE must be considered separately, but
nevertheless skillfully coordinated with each other:

Methodology: A system model, which in turn consists of a
multitude of model types, is itself a complex artifact that cannot be
created effectively and efficiently without an underlying science-
based methodology. Therefore, an MBSE methodology includes the

Tool-supported
development

Aspects of MBSE

358 Advanced Systems Engineering

definition of the relevant model types and their relationships.
Furthermore, it defines views of the system model, which structure
the complex overall model into several, less complex models that are
adapted to the given development situation. Examples of views
include functional and logical or technical architecture views. An
MBSE methodology also describes possibilities for analysis and
generation of the specific models. The degree of formalization of the
models defined in the system model determines the degree of
automation of analyses and model generation. A high degree of
automation, which of course must also be supported by the tools used,
allows in turn an iterative and agile development process, such as in
pure software development.

Modeling language: The modeling language defines the syntax and
semantics used to describe the models of the methodology in concrete
terms — for example, which textual or graphical notations are
allowed (syntax). The semantics of a modeling language defines the
meaning of these notations. The problem here is that many of the
common modeling languages (such as SysML) have at best a loosely
defined semantics. This causes problems similar to those of natural
language descriptions.

Tools: The methodology and language must be supported by
appropriate tools in order to make efficient use of the possibilities
offered by models. It is also crucial that the tool chains used are
compatible with each other and that the tools used support the chosen
methodology and the modeling language both syntactically and
semantically and with a high degree of automation.

19.4 The Integrated Approach of SPES and SPES_XT

In the BMBF project SPES2020 [Pohl et al. 2012] and its successors
SPES_XT [Pohl et al. 2016] and CrESt, a methodology and framework
for MBSE were developed that allow efficient model-based
development of embedded systems. The SPES framework provides a
comprehensive methodology for MBSE that is independent of tools
and modeling languages. The framework also offers a comprehensive
set of concrete modeling techniques and activities that build on a
formal, mathematical foundation. The SPES framework is based on
four principles of paramount importance:

 Functional as well as non-functional requirements fully modeled
at system level using appropriate abstractions (views)

 Consistent consideration of interfaces at each level

Principles of the SPES
modeling framework

19.4 The Integrated Approach of SPES and SPES_XT 359

 Decomposition of the interface behavior and the description of
systems via subsystems and components at different levels of
granularity

 Definition of models based on the above principles for a variety of
cross-sectional topics (variability, safety, etc.) and analysis
options

A system model in the SPES approach is a conceptual ("generic")
model for the description of systems and their properties, consisting
of:

 Models for the operational context that influences or is influenced
by the system at runtime

 Models of the interface that clearly delimit the system from its
operational context

 A behavior of the system that can be observed at the interface
 Models of the internal structure of the system implemented by

state machines or by interrelated and communicating subsystems
(architecture) to which the SPES framework can be recursively
applied

The core of the methodology is the universal interface concept, which
defines interfaces for all elements, each consisting of the interface
syntax and a description of the behavior observable at the element
boundary. Requirements, functions, and logical or technical
components are thus described via the interface and are connected to
each other via their interfaces. The interface concept provides the
basic decomposition and modularity.

Views [IEEE42010 2011] in the SPES framework are the
requirements view, functional view, logical view, and technical view.
They decompose the system into the logical or technical components
involved. Crosscutting topics supplement the models of the views
accordingly. For example, this allows aspects of the functional safety
of systems to be described and analyzed. The SPES framework is open
to the addition of new views, such as a geometric view.

In order to make the complexity of the system and the associated
development process manageable, relevant architectural components
are considered as independent (sub)systems according to the
principle of "divide and rule." For these systems, models and views
are created according to the SPES approach. This creates predefined
views for the system and its subsystems with matching levels of
granularity. The modeling of the system at the different levels of
granularity determines the subject of the discourse (scope) and is an

System model in SPES

Universal interface
concept

Views and crosscutting
topics

Levels of granularity

360 Advanced Systems Engineering

important tool in model-based development to reduce system
complexity and to make the development process manageable.

The SPES MBSE methodology follows a strict system-centric
approach that specifies a system at several levels of granularity. At the
highest level of granularity, there are always the models that
represent the system under consideration as a whole. At (varying
numbers of) further levels of granularity, increasingly fine
subsystems are successively considered, and further details are
modeled. Although "top-down" is the basic principle, iterative, agile,
and evolutionary processes are also supported. The mathematical
model FOCUS, on which the SPES framework is based, ensures the
consistency of the models of systems and subsystems. Levels of
granularity help to (1) control the complexity of the system under
consideration, (2) perform checks on the system at different levels of
complexity, (3) distribute development tasks—for example, to
suppliers—and (4) reuse individual models several times. Since the
principle of granularity levels is based only on the interface concept,
the mechanism allows the integration of the different engineering
disciplines (mechanical engineering, electrical engineering, software
engineering). As long as the interface concept is realized, the methods,
processes, or tools used to develop the subsystems at the lower levels
of granularity are irrelevant.

Besides abstraction and granularity, consistency is an important
feature of the models in the SPES framework. We distinguish between
horizontal consistency and vertical consistency. Two models are
horizontally consistent if they belong to different views of the same
system (i.e., are within one level of granularity) and do not represent
contradictory properties of the system under consideration. Two
models are vertically consistent if they belong to one view at different
levels of granularity and do not represent contradictory properties of
the system under consideration with regard to the specific view.

The SPES framework does not specify the order in which the
different models should be created for the views. Thus, the SPES
method can be used to implement top-down as well as bottom-up
approaches and iterative or incremental development and even
evolution. As mentioned above, the mechanism of granularity levels
allows the integration of different approaches and development tools,
as typically required for mechatronic systems. Since the formal basis
of the SPES methodology also supports under-specification, it is
possible to extend and successively refine the models iteratively step
by step. This means in particular that the model-based approach does
not contradict but rather supplements the basic principles of agile

Mathematical
foundation

Consistency of the
models

Agile and iterative
development

19.5 Methodological Extensions: From SPES to ASE 361

development. Techniques such as "continuous integration" can also
be used in a purposeful manner. It should be emphasized that this
form of an agile approach is not just code-centric but also model-
centric.

In the CrESt project, the SPES framework was extended to support
collaboration and dynamics (formation of system networks at
runtime) in systems. The existing viewpoint structure was essentially
retained, but the models contained within the structure were
extended by additional model types and information.

19.5 Methodological Extensions: From SPES to ASE

Advanced systems engineering (ASE) is definitely a new paradigm for
agile, efficient, evolutionary, and quality-aware development of
complex cyber-physical systems using modern digital technologies
and tools. As said earlier, ASE is essentially enabled by smart digital
modeling tools for specifying, modeling, testing, simulating, and
analyzing the system under development embedded in a coherent and
consistent methodology.

Model-based systems engineering is thus a core element of ASE
and the SPES methodology, as a fully model-based approach,
therefore provides an excellent basis for ASE. In particular, the SPES
methodology includes:

 Consistent models that cover the entire product development
process

 A variety of modeling techniques to ensure and analyze the
correctness of complex functionality

 Modularity and decomposition, which allow reuse of model
elements at all levels

 Consistent architecture views and executable model elements,
which allow functional prototypes and automated analyses in
early phases of the development process (frontloading)

 Strict system-centric approach to support the necessary
multidisciplinary design approaches

 Integration of the development processes of the engineering
disciplines involved (computer science, mechanical engineering,
electrical engineering) and the tools used there via the concept of
granularity levels

 Extensive models especially for software engineering and strong
integration of software with mechanical and electrical
components

Extension towards
networks of systems

SPES contribution to ASE

362 Advanced Systems Engineering

 Extension of the SPES framework towards aspects such as
dynamic networking and collaboration of systems at runtime in
the CrESt project; for this purpose, a number of additional
crosscutting topics were defined, and the models of the existing
viewpoints were supplemented accordingly

New methodological and crosscutting issues would be, for example:

 Extension of the predominantly discrete models to analog models;
integration of control engineering approaches — keyword
“interdisciplinary modeling”

 Integration of novel methods for the generation of subsystems
and their behavior through big data and machine learning

 Integration of security models for safety and security into model-
driven development with a focus on certification

 Consideration of digital twins as part of the overall system to be
developed

 Quality assurance at runtime
 System qualification and certification
 Dedicated user interfaces

Up to now, the development of the SPES framework has focused
exclusively on the product development process. At the same time,
SPES offers the possibility to add new viewpoints to the already
existing viewpoints or to extend the existing viewpoints via additional
crosscutting topics and integrate them into the framework. A further
development towards ASE should therefore take into account
extensions towards the entire product life cycle, including models and
extensions for market and business models as well as system
operation and service models.

The models, methodology, and techniques developed in the SPES,
SPES_XT, and CrESt projects were deliberately written independently
of a specific modeling language in order to ensure the greatest
possible range of application. In industrial practice, especially in small
and medium-sized enterprises, it has been shown that almost all
MBSE implementation projects rely on SysML as a modeling language,
despite all the open questions and shortcomings associated with it.
The reason for this is the spread of SysML in companies as well as the
support of SysML in many MBSE tools available in practice. Due to the
spread and acceptance of SysML, it must be explicitly supported as a
modeling language both syntactically and semantically with the SPES
methodology. A research project based on the SPES framework is
planned that will break down the current barriers to the industrial
introduction of MBSE and thus pave the way for a broad industrial

Further development
towards ASE

SysML as a modeling
language

19.6 Conclusion 363

adoption of the SPES methodology based on common language syntax
and pragmatic tools.

Parts of future systems will be determined by the use of techniques
such as machine learning (ML) or, more generally, artificial
intelligence (AI). Integrating AI components into embedded systems
leverages the considerable potential of current and future AI
technologies in embedded systems. Their use enables future
embedded systems to suitably process the constantly growing volume
of information resulting from digitalization and to adapt to changing
conditions and to the knowledge gained from the data at runtime. In
order to be able to develop such systems efficiently, the explicit
modeling methods available must be extended by implicitly learned
modeling techniques. In principle, the approach presented here is
already suitable for systems that have AI components. The universal
interface concept of the SPES framework provides a sustainable basis
for this. However, it has to be considered that the behavior of such
systems is subject to a certain variability during runtime — for
example, if the component continues to learn during runtime.

One central challenge for the integration of AI methods into
embedded systems is therefore the guarantee (verifiability) of the
essential functionality and quality properties of the systems — and
this despite the fact that system components cannot be completely
specified and are often non-deterministic or even dynamically
adapting due to adaptations of the systems at runtime that could not
be foreseen at development time.

19.6 Conclusion

ASE requires a clean scientific foundation and a consistent integration
of software development and system development methods when
designing software-intensive cyber-physical systems. Central to
advanced systems engineering is the use of digital techniques in both
the product and the development process and the exploitation of the
synergies between them. The preliminary work in the area of model-
based development of software-intensive systems offers an ideal
entry point. Nothing less than a paradigm shift from the engineering
of mechanical machines to the integrated engineering of networked,
information-centric mechanical systems must be mastered.

Artificial intelligence

Quality properties

364 Advanced Systems Engineering

19.7 Literature
[Broy 2010] M. Broy: A Logical Basis for Component-Oriented Software and Systems

Engineering. In: The Computer Journal, Vol. 53, No. 10, 2010, pp. 1758-1782.

[Broy and Rumpe 2007] M. Broy, B. Rumpe: Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. In: Informatik-Spektrum.
Springer Verlag, Band 30, Heft 1, 2007 (available in German only).

[Broy and Stølen 2001] M. Broy, K. Stølen: Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement, Springer, 2001.

[Broy et al. 2007] M. Broy, M. L. Crane, J. Dingel, A. Hartmann, B. Rumpe, B. Selic: UML 2
Semantics Symposium: Formal Semantics for UML. In: Models in Software
Engineering. Workshops and Symposia at Models 2006. Genoa, LNCS 4364,
Springer, 2007.

[Broy et al. 2020] M. Broy, W. Böhm, M. Junker, A. Vogelsang, S. Voss: Praxisnahe
Einführung von MBSE – Vorgehen und Lessons Learnt, White Paper, fortiss GmbH,
2020 (available in German only).

[IEEE42010 2011] ISO/IEC/IEEE 42010:2011: Systems and Software Engineering —
Architecture Description. International Organization for Standardization, 2011.

[Pohl et al. 2012] K. Pohl, H. Hönninger, R. Achatz, M. Broy: Model-Based Engineering of
Embedded Systems, Springer, 2012.

[Pohl et al. 2016] K. Pohl, M. Broy, M. Daembkes, H. Hönninger: Advanced Model-Based
Engineering of Embedded Systems, Extensions of the SPES 2020 Methodology,
Springer, 2016.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	

	

Appendices

	

	

A – Author Index

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0

367

https://doi.org/10.1007/978-3-030-62136-0

368 Authors

	

A

Akili, Samira
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany

Albers, Dr. Karsten
INCHRON AG
Neumühle 24-26
91056 Erlangen, Germany

Aluko Obe, Patricia
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

B

Bandyszak, Torsten
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

Böhm, Birthe
Siemens AG
Corporate Technology
Günther-Scharowsky-Str. 1
91058 Erlangen, Germany

Böhm, Dr. Wolfgang
Technical University of Munich (TUM)
Department of Informatics
Boltzmannstr. 3
85748 Garching, Germany

Bolte, Dr. Benjamin
itemis AG
Am Brambusch 15
44536 Lünen, Germany

Brings, Jennifer
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

Broy, Prof. Dr. Dr. h.c. Manfred
Technical University of Munich (TUM)
Department of Informatics
Boltzmannstr. 3
85748 Garching, Germany

Butting, Arvid
RWTH Aachen University
Software Engineering
Ahornstr. 55
52074 Aachen, Germany

C

Caesar, Birte
Helmut Schmidt University Hamburg
Institute of Automation Technology
Holstenhofweg 85
22043 Hamburg, Germany

Cârlan, Carmen
fortiss GmbH
Software & Systems Engineering
Guerickestr. 25
80805 Munich, Germany

Cioroaica, Emilia
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

Authors 369

	

D

Daun, Dr. Marian
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

Dimitrov, Dimitar
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

F

Fay, Prof. Dr.-Ing. Alexander
Helmut Schmidt University Hamburg
Institute of Automation Technology
Holstenhofweg 85
22043 Hamburg, Germany

Feeken, Linda
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany

G

Gandor, Malin
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany

Gerostathopoulos, Dr. Ilias
Technical University of Munich (TUM)
Boltzmannstr. 3
85748 Garching, Germany

Granrath, Christian
RWTH Aachen University
Junior professorship for mechatronic
systems for combustion engines
Forckenbeckstr. 4
52074 Aachen, Germany

H

Hayward, Alexander
Helmut Schmidt University Hamburg
Institute of Automation Technology
Holstenhofweg 85
22043 Hamburg, Germany

Hildebrandt, Constantin
Helmut Schmidt University Hamburg
Institute of Automation Technology
Holstenhofweg 85
22043 Hamburg, Germany

Hillemacher, Steffen
RWTH Aachen University
Software Engineering
Ahornstr. 55
52074 Aachen, Germany

J

Jäckel, Dr. Nicolas
FEV Europe GmbH
Ingolstädter Str. 49
80807 Munich, Germany

Jöckel, Lisa
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

370 Authors

	

K

Käser, Lorenz
PikeTec GmbH
Waldenserstr. 2-4
10551 Berlin, Germany

Kirchhof, Jörg Christian
RWTH Aachen University
Software Engineering
Ahornstr. 55
52074 Aachen, Germany

Kläs, Michael
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

Klein, Dr. Cornel
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Klein, Dr. Wolfram
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Koo, Chee Hung
Robert Bosch GmbH
Corporate Sector Research and Advance
Engineering
Robert-Bosch-Campus 1
71272 Renningen, Germany

Krajinski, Lisa
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

Kranz, Sieglinde
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Kugler, Christopher
FEV Europe GmbH
Neuenhofstr. 181
52078 Aachen, Germany

Kuhn, Dr. Thomas
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

L

Laxman, Nishanth
Technical University of Kaiserslautern
Department of Computer Science
Gottlieb-Daimler-Str. 47
67653 Kaiserslautern, Germany

M

Malik, Dr. Vincent
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Authors 371

	

Marmsoler, Dr. Diego
Technical University of Munich (TUM)
Department of Informatics
Boltzmannstr. 3
85748 Garching, Germany

Meyer, Max-Arno
RWTH Aachen University
Junior professorship for mechatronic
systems for combustion engines
Forckenbeckstr. 4
52074 Aachen, Germany

Mirzaei, Elham
InSystems Automation GmbH
Wagner-Régeny-Str. 16
12489 Berlin, Germany

Möhrle, Felix
Technical University of Kaiserslautern
Department of Computer Science
Gottlieb-Daimler-Str. 47
67663 Kaiserslautern, Germany

N

Neumann, Martin
InSystems Automation GmbH
Wagner-Régeny-Str. 16
12489 Berlin, Germany

Nieke, Michael
Technische Universität Braunschweig
Institute of Software Engineering and
Automotive Informatics
Mühlenpfordtstr. 23
38106 Braunschweig, Germany

Nickles, Jochen
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

O

Orth, Dr. Philipp
FEV Europe GmbH
Neuenhofstr. 181
52078 Aachen, Germany

P

Petrovska, Ana
Technical University Munich (TUM)
Department of Informatics
Boltzmannstr. 3
85748 Garching, Germany

Pohl, Prof. Dr. Klaus
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

Pudlitz, Florian
Technische Universität Berlin
Ernst-Reuter-Platz 7
10587 Berlin, Germany

R

Regnat, Nikolaus
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Rösel, Simon
Model Engineering Solutions GmbH
Waldenserstr. 2-4
10551 Berlin, Germany

372 Authors

	

Rosen, Roland
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Rothbauer, Stefan
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Rumpe, Prof. Dr. Bernhard
RWTH Aachen University
Software Engineering
Ahornstr. 55
52074 Aachen, Germany

S

Safdari, Samira
Expleo Germany GmbH
Wilhelm-Wagenfeld-Str. 1-3
80807 Munich, Germany

Sauer, Dr. Markus
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Schaefer, Prof. Dr. Ina
Technische Universität Braunschweig
Institute of Software Engineering and
Automotive Informatics
Mühlenpfordtstr. 23
38106 Braunschweig, Germany

Schlie, Alexander
Technische Universität Braunschweig
Institute of Software Engineering and
Automotive Informatics
Mühlenpfordtstr. 23
38106 Braunschweig, Germany

Schlingloff, Prof. Dr. Holger
Fraunhofer Institute for Open
Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

Schmalzing, David
RWTH Aachen University
Software Engineering
Ahornstr. 55
52074 Aachen, Germany

Schneider, Dr.-Ing. Daniel
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

Schröck, Dr.-Ing. Sebastian
Robert Bosch GmbH
Corporate Sector Research and Advance
Engineering
Robert-Bosch-Campus 1
71272 Renningen, Germany

Schulze, Dr. Michael
pure-systems GmbH
Otto-von-Guericke-Str. 28
39104 Magdeburg, Germany

Sohr, Dr. Annelie
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Stierand, Dr. Ingo
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany

Authors 373

	

Straße, Dr. Alexander auf der
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

T

Terfloth, Axel
itemis AG
Am Brambusch 15
44536 Lünen, Germany

Toborg, Steffen
PikeTec GmbH
Waldenserstr. 2-4
10551 Berlin, Germany

Törsleff, Sebastian
Helmut Schmidt University Hamburg
Institute of Automation Technology
Holstenhofweg 85
22043 Hamburg, Germany

U

Unverdorben, Stephan
Siemens AG
Corporate Technology
Günther-Scharowsky-Str. 1
91058 Erlangen, Germany

V

Velasco Moncada, David Santiago
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

Vogelsang, Prof. Dr. Andreas
Technische Universität Berlin
Ernst-Reuter-Platz 7
10587 Berlin, Germany

Vollmar, Jan
Siemens AG
Corporate Technology
Günther-Scharowsky-Str. 1
91058 Erlangen, Germany

Voss, Dr. Sebastian
fortiss GmbH
Software & Systems Engineering
Guerickestr. 25
80805 Munich, Germany

W

Wachtmeister, Louis
RWTH Aachen University
Software Engineering
Ahornstr. 55
52074 Aachen, Germany

Wehrstedt, Dr. Jan Christoph
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Weyer, Dr. Thorsten
University of Duisburg-Essen
paluno – The Ruhr Institute for Software
Technology
Gerlingstr. 16
45127 Essen, Germany

374 Authors

	

Wirtz, Boris
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany

Wißdorf, Anna
PikeTec GmbH
Waldenserstr. 2-4
10551 Berlin, Germany

Wolf, Stefanie
Siemens AG
Corporate Technology
Günther-Scharowsky-Str. 1
91058 Erlangen, Germany

Wortmann, Dr. Andreas
RWTH Aachen University
Software Engineering
Ahornstr. 55
52074 Aachen, Germany

Z

Zeller, Dr. Marc
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany

Zernickel, Jan-Stefan
InSystems Automation GmbH
Wagner-Régeny-Str. 16
12489 Berlin, Germany

B – Partner

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0

375

https://doi.org/10.1007/978-3-030-62136-0

376 Partner

Bertrandt GmbH

The Bertrandt Group has been providing development solutions for the international
automotive and aviation industry for over 35 years. A total of around 11,000
employees at 44 locations stand for in-depth know-how, future-oriented project
solutions and a high degree of customer orientation.

In the dynamic environment of the automotive and aviation industry, the
complexity of individual mobility solutions is constantly increasing. The trends
towards environmentally friendly mobility, networking, safety and comfort today
require comprehensive technical know-how in product development. As a co-designer
of sustainable mobility, Bertrandt is constantly adapting its range of services to the
needs of its customers and to changing market conditions. For the international
automotive industry, the range of services covers the entire value-added chain of
product creation: from the initial idea, through the development and validation of
components, modules and systems, to complete vehicles with related services such as
quality, supplier and project management or training.

In the field of electronics development, Bertrandt's activities range from the classic
areas (infotainment, comfort, chassis, on-board networks, etc.) to the current and new
challenges surrounding electrified driving and vehicle networking (Car2X) in the areas
of driver assistance systems, automated driving, online services/apps,
infrastructure/IT. At the Ingolstadt site, among others, holistic solutions for the
automotive industry are developed with a focus on bodywork, interior,
electrics/electronics with its own electronics center, powertrain, FE
simulation/calculation and testing/trial. In the field of driver assistance systems, the
entire development process is covered here, from requirements analysis to software
development and overall system testing in various projects.

 www.bertrandt.com

Expleo Germany GmbH

The Expleo Group is a leading international engineering partner with over 12,500
employees in 20 countries worldwide. In Germany, Expleo Germany GmbH with
around 1,100 employees offers engineering and product solutions for the automotive,
aerospace, industry and transportation sectors - together with its subsidiaries SILVER
ATENA and Automotive Solutions Germany (ASG). At 15 locations Expleo develops,
tests and supplies software, electronics, special mechanical solutions and customer-
specific lighting systems - from the technological idea to series production. In the
automotive sector Expleo designs highly automated, networked and electrified
mobility and offers demand-based products, components and tools. Expleo bundles
expertise and their own IP in specialized Competence Centers.

 www.expleo-germany.com

http://www.bertrandt.com
http://www.expleo-germany.com

Partner 377

FEV Europe GmbH

FEV is a leading independent international service provider of vehicle and powertrain
development for hardware and software. The range of competencies includes the
development and testing of innovative solutions up to series production and all related
consulting services. The range of services for vehicle development includes the design
of body and chassis, including the fine tuning of overall vehicle attributes such as
driving behavior and NVH. FEV also develops innovative lighting systems and solutions
for autonomous driving and connectivity. The electrification activities of powertrains
cover powerful battery systems, e-machines and inverters. Additionally, FEV develops
highly efficient gasoline and diesel engines, transmissions, EDUs as well as fuel cell
systems and facilitates their integration into vehicles suitable for homologation.
Alternative fuels are a further area of development.

The service portfolio is completed by tailor-made test benches and measurement
technology, as well as software solutions that allow efficient transfer of the essential
development steps of the above-mentioned developments, from the road to the test
bench or simulation.

The FEV Group is growing continuously and currently employs 6700 highly
qualified specialists in customer-oriented development centers at more than 40
locations on five continents.

 www.fev.com

fortiss GmbH

The Munich research and transfer institute for software-intensive systems, fortiss
GmbH, was founded in 2009 as an affiliated institute of the TU Munich together with
the Fraunhofer Gesellschaft and the LfA Förderbank Bayern. The Department of
Software and Systems Engineering (Head of Department PD Dr. Schätz) is involved in
the project. The department develops cross-domain integrated software and system
architectures and related development methods and tools. The department offers
comprehensive competence in modern methods and tools for the professional
development of software-intensive systems, starting with the elicitation of
requirements up to verification and integration. In particular, the goal is to prepare and
apply basic methods - such as formal model checking or automatic design space
exploration - for engineering applications on an industrial scale. The main focus is on
automotive, avionics, rail and energy systems, among others.

 www.fortiss.org

http://www.fev.com
http://www.fortiss.org

378 Partner

Fraunhofer Institute for Open Communication Systems FOKUS

The Fraunhofer Society for the Advancement of Applied Research is the biggest
organization for applied research and development services in Europe, and FOKUS is
the largest Fraunhofer institute in the field of Information and Communications
Technology. Its main topic is digital networking and its effects on society, economy and
technology. Since 1988 it has been supporting commercial enterprises and public
administration in the design and implementation of digital change. To this end,
Fraunhofer FOKUS offers research services ranging from requirements analysis,
consulting, feasibility studies, technology development to prototypes and pilots in its
business units. The system quality center of FOKUS is specialized in quality engineering
for the internet of things. Via its chief scientist, Prof. Schlingloff, it has strong academic
foundations and close connections to Humboldt Universität. It offers services in model-
based development and testing of software-based systems, tool development and tool
integration, test design and automation, and support of product qualification and
certification. The group provides methods, processes and tools for the development
and quality assurance of software-intense systems and services.

 www.fokus.fraunhofer.de

Fraunhofer Institute for Experimental Software Engineering (IESE)

The Fraunhofer Institute for Experimental Software Engineering (IESE) was founded
in 1996 and is one of 60 institutes of the internationally operating Fraunhofer-
Gesellschaft. IESE currently employs more than 200 people, whose goal is to
sustainably transfer scientific results into industrial applications through applied
research. One focus of Fraunhofer IESE's work is on methods for developing highly
reliable and safety-critical software-intensive embedded systems. IESE's budget
volume is well over 12 million euros, and is largely derived from industrial contract
research and collaborative and research projects involving industry. Over the past
years, Fraunhofer IESE has been involved in a large number of research projects in
various fields, such as functional safety, Big Data, or processes, and in many cases has
taken leading roles in the project. At the same time, there have been and still are
numerous industrial projects thematically related to CrESt, covering a large number of
application domains (automotive, agricultural engineering, medical technology,
defense technology, aerospace, mining, railway engineering). IESE has already been
significantly involved in the research projects SPES 2020 and SPES_XT, in particular
with contributions to modular model-based safety cases as well as the combination of
heterogeneous safety analyses.

 www.iese.fraunhofer.de

http://www.fokus.fraunhofer.de
http://www.iese.fraunhofer.de

Partner 379

Helmut Schmidt University Hamburg

Under the guidance of Prof. Dr.-Ing. Alexander Fay, research at the Institute of
Automation Technology at Helmut Schmidt University Hamburg has been focused on
modelling languages, methods, and tools for the efficient engineering of complex
automation systems, e.g. in manufacturing, process industry, transportation, buildings,
and energy distribution. A key element of our research is the creation and use of
information models throughout the lifecycle of these systems. These information
models are developed and applied for the design, implementation, testing, operation,
and modernization of existing systems. A hot topic is how to increase flexibility in such
complex systems with the help of modularity and system collaboration, which entails
the need to deal with incomplete and inconsistent information models. The institute
collaborates with major automation suppliers as well as operators of automated
facilities to implement research results and to tackle new research problems of
practical importance.

 www.hsu-hh.de

Humboldt-Universität zu Berlin

Humboldt-Universität zu Berlin was the first German university to introduce the unity
of research and teaching, to uphold the ideal of research without restrictions and to
provide a comprehensive education for its students. Today, Humboldt-Universität is in
all rankings among the top German universities. It was chosen “University of
Excellence” in June 2012, with a renewed labelling within the Berlin University Alliance
in 2019. The computer science department of Humboldt-Universität was founded in
1989. It encompasses 21 research groups, structured into the three clusters "Data and
Knowledge Engineering", "Algorithms and Structures", and "Model-driven systems
engineering". The research group "Specification, Verification and Test Theory" is
headed by Prof. Schlingloff. The group has been working for 15 years on formal
methods of software development, mainly in the field of safety-critical embedded
systems. It has close connections to Fraunhofer FOKUS, where Prof. Schlingloff is chief
scientist. Current research topics include quality assurance of embedded control
software, model-based development and model checking, logical specification and
verification of requirements, automated software testing, and online monitoring of
safety-critical systems with formal methods.

 www.hu-berlin.de

http://www.hsu-hh.de
http://www.hu-berlin.de

380 Partner

INCHRON AG

INCHRON AG is a specialist in the development methodology of embedded systems
with hard real-time requirements. Our mission is to support our customers with our
knowledge, experience, advanced tools, and broad industry expertise in the
development of embedded systems of any kind and complexity.

With our sophisticated methodology, which undergoes continuous refinement, we
shape the future of embedded systems development. The INCHRON Tool-Suite is an
essential part of our methodology and provides state-of-the-art tools for analysis,
simulation, optimization, and detailed prediction of the dynamic behavior of
embedded software. Its successful practical use and integration into development
processes of varying operational domains serve to prove the outstanding capabilities
of this unique tool. Areas of expertise include:

 Detailed analysis of the performance and runtime behavior of embedded
systems of any complexity using simulation and worst-case analysis.

 Automated optimization of the dynamic behavior of stand-alone or
distributed systems.

 Design and early analysis of new/changed system architectures through
frontloading.

 Efficient porting of single-core software to multi-core processors.
 Adaptation of existing software to alternative networking technologies, such

as FlexRay or Ethernet.
 End-to-end timing analysis of event chains, from sensor to actuator, via ECUs

or Domain Controllers and in-vehicle networks.
 Detailed documentation of real-time requirements and their degree of

conformance.
 Determination and elimination of the causes of runtime errors such as

interrupt and task displacement, life/deadlocks of tasks, or stack overflows.
 Detailed analysis of complex scheduling scenarios.
 Trace analysis and trace visualization (Lauterbach, iSYSTEM, and other

proprietary formats).
 Support for industry-specific standards such as AUTOSAR, ARINC-653, AFDX.
 Functional safety (ISO 26262).
 Increased level of test coverage through statistical analysis of compliance

with real-time requirements, combined with stress tests and robustness
analyses.

Autonomous driving is a key focus application for INCHRON. Our customers are
already using our approach and tools with great success in the design, optimization,
and testing of modern driver assistance systems (ADAS), the preliminary stage to
autonomous driving. The use of the solutions INCHRON provides will prove
indispensable in the future in coping with the exceptional complexity of such advanced
automotive platforms.

 www.inchron.com

http://www.inchron.com

Partner 381

InSystems Automation GmbH

InSystems Automation develops innovative automation technology and special
machines for production, material flow and quality control. The range of services
covers all tasks from the creation of specifications, electrical project planning,
installation and programming to commissioning, maintenance and service.

Customers include large and medium-sized manufacturing companies from the
cosmetics, pharmaceutical, printing and automotive industries. Compared to
competitors, InSystems distinguishes itself primarily by the holistic approach:
Construction, mechanical engineering, conveyor technology and software are
completely created in-house at InSystems. The company was founded in 1999 by the
two managing directors Henry Stubert and Torsten Gast and has grown steadily since
then. In the meantime, the company has more than 50 employees and is located in the
scientific location Berlin-Adlershof. Further subsidiaries are the independent
InSystems Vertriebsgesellschaft mbH in Fürth and InSystems Automation, Inc. in
Washington, North Carolina USA. Since 2012, InSystems has specialized in the
production of autonomously navigating transport robots developed under the brand
name proANT. These robots are manufactured for loads from 30 to 1,000 kg depending
on the customer's requirements and are implemented as a fleet into an existing
production control system. The vehicles navigate automatically using laser scanners
and react independently to changes in their working environment. The vehicles are
designed for personal safety and can work with workers without the need for
additional safety precautions such as safety fences or separation of traffic routes. If an
obstacle appears in the safety field, the vehicle reduces its speed, navigates around the
obstacle or stops.

Using a stored environment map, each vehicle independently calculates the
optimum route to the destination. The vehicles can be integrated into the production
process individually or as a fleet. The vehicles communicate with each other via an
encrypted WLAN and avoid each other at an early stage. This prevents traffic jams or
mutual obstruction. In addition, the battery condition of the vehicles is regularly
checked by a fleet manager, who sends them to the charging station when the charge
level is low. In the Showroom Industrie 4.0 (Wagner-Régeny-Str. 16, 12489 Berlin)
visitors can get a live impression of the driving behaviour of the transport robots, how
they cleverly avoid people and obstacles, automatic load transfers and the supply of a
manual workstation.

 www.asti-insystems.de

http://www.asti-insystems.de

382 Partner

itemis AG

itemis AG is a specialist for model-based software and systems engineering and
integrated, modular tool chains. Itemis AG is a leader in developing domain-specific
modelling environments on the open source platform Eclipse. With 200 employees,
itemis works in Germany and with branches in France, Switzerland and Tunesia for
well-known customers and accompanies them with regard to the methodical and tool-
technical implementation of model-based development processes. One focus is the
application of model-based development processes in the area of embedded systems.

The main areas of knowledge are domain-specific modelling methods, behavioural
modelling & simulation based on different concepts like state machines, component-
based modelling and interface definition languages, code generation, model analysis,
artefact traceability for tracking requirements, requirements management, support for
industry-specific standards such as AUTOSAR, ReqIF, ISO26262

itemis develops the technical infrastructure for building modelling tools based on
various technologies like Eclipse EMF, Xtext, GEF and Xtend, or Jetbrains MPS with
extensions like mbeddr. In this role itemis AG provides basic technologies for the
implementation of textual and graphical modelling languages. In CrESt, itemis AG
focussed on the tool-technical aspects of the research project. In EC1 and EC2, the focus
is on the modelling of system architectures. In the MQ3, various cross-cutting aspects
of the required tool platform like artefact management and co-simulation were
considered.

 www.itemis.com

Model Engineering Solutions GmbH

Model Engineering Solutions GmbH (MES) is the competence center for model-based
software. Divided into the three areas (1) MES Quality Tools, (2) MES Test Center and
(3) MES Academy, MES offers its customers optimal support for integrated quality
assurance. The MES Quality Tools are the software tools for this. The MES Model
Examiner® (MXAM) is the first choice for testing modeling guidelines. The MES Test
Manager® efficiently implements requirements-based testing in model-based
development. The MES Quality Commander® (MQC) is the quality monitoring tool for
evaluating the quality and product capability of software and provides decision-
relevant key figures during the development of a product. The MES Test Center
includes test services from requirements management to the derivation of test
specifications, automated test evaluation and quality monitoring. The MES Academy
offers training courses and seminars and supports customers with company-specific
consulting and service projects in the introduction and improvement of model-based
development processes, such as the fulfillment of standards like ISO 26262. MES
customers include well-known OEMs and suppliers to the automotive industry and

http://www.itemis.com

Partner 383

customers from the automation technology sector worldwide. MES is a TargetLink®
Strategic Partner of dSPACE GmbH and a product partner of MathWorks and ETAS.

 www.model-engineers.com

OFFIS e.V.

The OFFIS - Institute for Information Technology was founded in 1991 and is an An-
Institute of the University of Oldenburg through a cooperation agreement. Its members
are the state of Lower Saxony, the University of Oldenburg as well as professors of the
Department of Computer Science and computer science related fields. OFFIS is an
application-oriented research and development institute, as a "Center of Excellence"
for selected topics in computer science and its application areas. OFFIS focuses its
research and development activities on IT systems in the application areas of
transportation, health, energy and production. The turnover amounts to over 12
million Euro.

The CrESt project involves the R&D area of transportation, which currently
comprises about 60 scientific employees. OFFIS has a total of about 260 employees.
The Transportation division focuses its research on methods, tools and technologies in
the application field of transportation systems for the development of IT-based
reliable, cooperative and supporting systems and their ability to interact and
collaborate with people intuitively and efficiently. The Transport R&D area comprises
several research groups and combines a broad spectrum of competencies in the fields
of cognitive psychology, systems and software engineering, electrical engineering and
planning theory. Research focuses on methods, processes and tools for establishing the
safety of traffic systems as well as methods for the design and analysis of E/E
architectures.

OFFIS is or was involved in relevant BMBF projects and European projects within
the framework of H2020, Ecsel and ITEA, among others SPES 2020, SPES_XT, ARAMIS
I+II, CRYSTAL, DANSE, MBAT, COMBEST, ArtistDesign, AMALTHEA4public, ASSUME,
SAFE, PANORAMA, CyberFactory#1, VVMethoden, Set Level 4to5, KI-Delta Learning,
and KI-Wissen. OFFIS is a member of ASAM and contributes concepts of Traffic
Sequence Charts (TSC) to the standardization of OpenScenario and OpenDrive.
Through SafeTRANS OFFIS is also a member of EICOSE, the ARTEMIS Innovation
Cluster on Transportation. OFFIS is member (Chamber B) of ARTEMISIA.

Within CrESt, OFFIS participates in the topics "Architectures for Adaptive Systems"
and "Open Context". One focus is the deepening of understanding open and dynamic
context, and architecture design for adaptive systems. OFFIS contributes to the project
with the following competences: (1) model-based design methods for safety-critical
embedded systems with supporting analysis techniques especially for the aspects real-
time and safety (safety analyses), (2) modelling and analysis of adaptive systems and
SoS, (3) validation of human-machine cooperation, and (4) risk analyses as well as

http://www.model-engineers.com

384 Partner

architectural principles and safety architectures under consideration of the aspect
safety. OFFIS also participates in the modelling and simulation of human-machine
interaction in context-sensitive system networks.

 www.offis.de

PikeTec GmbH

PikeTec GmbH specializes in the testing and verification of embedded software. With
its methods and tools, it significantly simplifies the creation of test cases for embedded
systems. Since 2007, PikeTec has therefore been developing and marketing the TPT
(Time Partition Testing) test tool. With TPT, tests can be modeled and automatically
generated intuitively and flexibly, from simple module tests in MATLAB and Simulink
or TargetLink to complex system tests for the vehicle. Tests created with TPT can be
reused throughout the development process. TPT is applicable and qualified in the
context of the functional safety standards ISO 26262, IEC 61508, EN50128 and DO-
178C. The company also accompanies future-oriented software development projects
for technical control systems in the form of consulting and engineering services.
PikeTec's customers include renowned manufacturers such as VW, Daimler, Bosch and
Renault.

 www.piketec.com

pure-systems GmbH

pure-systems is the leading provider of highly innovative software technologies
and solutions for Variant Management and Product Line Engineering (PLE). The
company helps their customers increase engineering efficiency through systematic
reuse of software engineering assets and reduce product time to market by managing
complexity of features & dependencies across systems and variants.

pure::variants, as a Standard Enterprise Solution for PLE, provides deep analytic
insights into variants, and can deal with both structural and parametric variability,
integrating and supporting diverse authoring tools and engineering assets, like
requirements, test cases, architecture & model-based development, source code,
documentation, Excel feature lists, among others. As a platform solution, pure::variants
provides enterprise scalability and public open APIs, while supporting standards like
OSLC, VEL (Variability Exchange Language), Eclipse, EMF, AUTOSAR, and etc.

Today, the variant management solutions from pure-systems are deployed and
used successfully with Enterprise Customers in the segments of Automotive, Avionics
& Aerospace, Defense & Security, Industry Automation & Production, Rail &
Transportation and Semiconductor. The training and consulting services by pure-
systems are offered world-wide with the objective of lasting improvement to system

http://www.offis.de
http://www.piketec.com

Partner 385

development processes. Typical projects cover issues of requirements, configuration
and variant management as well as software architecture and software design.

As product lines and variant management is a relatively new field, continuous
research and development is an important part of pure-systems' strategy. Hence, since
2006 pure-systems has also been actively involved in national and European research
funding projects (SAFE, ESPA, feasiPLE, DIVa, VARIES, SPES XT, ReVAMP², INLIVE,
CrESt) and has supported a number of research projects by providing resources
(CESAR, AMPLE, ATESST2, MOBILSOFT, VIVASYS, CRYSTAL).

 www.pure-systems.com

Robert Bosch GmbH

The Bosch Group is a leading global supplier of technology and services. It employs
roughly 400,000 associates worldwide (as of December 31, 2019). The company
generated sales of 77.7 billion euros in 2019. Its operations are divided into four
business sectors: Mobility Solutions, Industrial Technology, Consumer Goods, and
Energy and Building Technology. As a leading IoT provider, Bosch offers innovative
solutions for smart homes, Industry 4.0, and connected mobility. Bosch is pursuing a
vision of mobility that is sustainable, safe, and exciting. It uses its expertise in sensor
technology, software, and services, as well as its own IoT cloud, to offer its customers
connected, cross domain solutions from a single source. The Bosch Group’s strategic
objective is to facilitate connected living with products and solutions that either
contain artificial intelligence (AI) or have been developed or manufactured with its
help. Bosch improves quality of life worldwide with products and services that are
innovative and spark enthusiasm. In short, Bosch creates technology that is “Invented
for life.” The Bosch Group comprises Robert Bosch GmbH and its roughly 440
subsidiary and regional companies in 60 countries. Including sales and service
partners, Bosch’s global manufacturing, engineering, and sales network covers nearly
every country in the world. The basis for the company’s future growth is its innovative
strength. Bosch employs some 72,600 associates in research and development at 126
locations across the globe, as well as roughly 30,000 software engineers.

 www.bosch.com

RWTH Aachen University

The RWTH Aachen University (RWTH), established in 1870, is divided into nine
faculties. Currently around 45,000 students are enrolled in over 150 academic
programs. The number of foreign students (8556) substantiates the university´s
international orientation. Every year, more than 6,000 graduates and 800 doctoral

http://www.pure-systems.com
http://www.bosch.com

386 Partner

graduates leave the university. 539 professors as well as 5,894 academic and 2,750
non-academic colleagues work at RWTH University.

The research focus of the Chair of Software Engineering at RWTH Aachen
University is the definition and improvement of methods for efficient software
development. Current fields of research include model-based or generative software
development and cyberphysical systems (CPS). The MontiCore language framework
developed at the chair allows the agile and compositional development of modeling
languages, as well as their use for analysis, synthesis, and generative software
development. Based on MontiCore, further languages and tools for the model-driven
development of software from the different domains were developed. MontiArc, a
modeling language for hierarchical architectures such as CPS, is particularly
noteworthy in this context. It also allows the behavior of individual components to be
specified via embedded languages (e.g. statecharts). In the field of automotive software
engineering, the chair has a long history of research projects and industrial
cooperations with large OEMs. The content of these projects covers the whole range of
topics from requirements elicitation as well as function, version and variant modeling
to software and hardware architecture as well as its use to support analysis and
synthesis activities. A prominent use case is the autonomously driving vehicle Caroline,
with which Prof. Rumpe successfully participated in the DARPA Urban Challenge.

The Junior Professorship for Mechatronic Systems for Combustion Engines
focusses on the interaction of electronical and mechanical powertrain components
with innovative control algorithms. Prof. Dr.-Ing. Jakob Andert heads this
interdisciplinary and dynamic field of research, which puts a strong emphasis on
software-intensive embedded systems that enable cleaner and more efficient vehicle
drive systems. Access to the infrastructure of the Center for Mobile Drives enables the
efficient use of synergies and direct interaction with researchers working on various
topics related to mobile powertrain technology. Research focuses on electrification and
hybridization, electric motors and converters for traction drives, in-cycle combustion
control and possibilities of connected and autonomous mobility for the powertrain.
Hardware-in-the-loop and real-time co-simulations play a key role in the development
of testing and validation methods for the future vehicles, including powertrains as well
as ADAS/AD systems of interacting and cooperating vehicles.

 www.rwth-aachen.de

Siemens AG

Siemens AG is a global powerhouse focusing on the areas of electrification, automation
and digitalization. One of the world’s largest producers of energy-efficient, resource-
saving technologies, Siemens is a leading supplier of systems for power generation and
transmission as well as medical diagnosis. In infrastructure and industry solutions the
company plays a pioneering role. In more than 200 countries/regions the company has

http://www.rwth-aachen.de

Partner 387

roughly (fiscal year 2019) 385,000 employees of which 39,600 are in digital jobs. For
more than 170 years, Siemens stands for technological excellence, innovation, quality,
reliability and internationality.

With 2,550 employees worldwide – of which 1,700 are doing research and 300
being engaged in Cybersecurity alone – Corporate Technology (CT) meanwhile since
1905 plays a key role in R&D at Siemens. In research centers located in many different
countries, CT works closely with the R&D teams in the Siemens´ Divisions. The CT
organization provides expertise regarding strategically important areas to ensure the
company’s technological future, and to acquire patent rights that safeguard the
company’s business operations. Against the background of megatrends such as climate
change, urbanization, globalization, digitalization and demographic change, CT focuses
on innovations that have the potential to change the rules of the game over the long
term in business areas that are of interest to Siemens.

CT covers a wide range of technology fields including software and systems
innovation, simulation and digital twin, and internet of things, which actively
contributed to CrESt.

 www.siemens.com

Technical University of Kaiserslautern

The work carried out at the chair Software Engineering: Dependability (SEDA) of the
Technical University of Kaiserslautern (TUK) is focused mainly on techniques for the
development and safety assurance of dependable embedded systems. Current research
projects address the improvement and automation of model-based techniques in this
field as well as dynamic risk assessment and safety assurance under uncertainty.

The chair was involved in the BMBF-funded projects ARAMiS and ARAMiS II as well
as the EU-funded EMC² project of the ARTEMIS network. The work is carried out to a
large extent in cooperation with partners from the industry. The solutions and tools
developed are successfully applied in various domains (e.g. avionics, automotive,
commercial vehicles, rail transport). The transfer of the knowledge gained into
specialized lectures and theses results in a sustainable strengthening of education.

The SEDA chair was previously involved in the research projects SPES 2020 and
SPES_XT. The work performed and results obtained in these projects provided an
excellent basis for the work within CrESt. The main contribution is a new concept for
the development of dependable collaborative embedded systems that addresses the
challenges arising from a highly dynamic and uncertain environment and open context.

 www.uni-kl.de

http://www.siemens.com
http://www.uni-kl.de

388 Partner

Technical University of Munich

The Technical University of Munich (TUM) is one of Europe’s top universities. It is
committed to excellence in research and teaching, interdisciplinary education and the
active promotion of promising young scientists. The university also forges strong links
with companies and scientific institutions across the world. TUM was one of the first
universities in Germany to be named a University of Excellence. Moreover, TUM
regularly ranks among the best European universities in international rankings. In
CrESt the chair Software & Systems Engineering (Prof. Broy / Prof. Pretschner) was
engaged.

Research and teaching of the Software & Systems Engineering Research Group
address central topics of software and systems development. These include basics,
methods, processes, models, description techniques and tools. Research focuses on the
development of safety-critical embedded systems, mobile and context-adaptive
software systems, and development methods for powerful industrially applicable
software systems. This is supported by numerous research relevant tools. Research in
the field of theorem provers aims at the fundamentals of software engineering. The
results and work of our chair have been proven in numerous industrial cooperations.
They are successfully applied in telecommunications, avionics, automotive
engineering, banking and business information systems. The research group is
involved in a wide range of fundamental and application-oriented research projects. In
addition, we also provide targeted consulting services to companies, develop
prototypes and demonstrators.

 www.tum.de

Technische Universität Berlin – Daimler Center for Automotive
Information Technology Innovations (DCAITI)

The Daimler Center for Automotive Information Technology Innovations (DCAITI) at
the Technische Universität Berlin specializes in future scenarios for automotive
electronics. The institute was founded in 2006 as a joint initiative of Daimler AG and
the Technische Universität Berlin. On the university campus in the historic Telefunken
high-rise building on Ernst-Reuter-Platz, various groups of computer specialists and
electrical engineers work together in pre-competitive research projects to develop
new hardware and software systems for the vehicles of tomorrow. By collaborating
with engineering groups from Daimler AG and faculty teams from the Technical
University of Berlin as well as selected Fraunhofer Institutes, DCAITI aims to
investigate IT-driven product and process innovations for the automotive sector. While
some projects design new driver assistance and warning systems, others are
concerned with improving the software development process for in-vehicle systems.
Several of these projects are part of larger national and pan-European research

http://www.tum.de

Partner 389

initiatives. The DCAITI staff participates in the academic life at the Technische
Universität Berlin through teaching assignments and student support. The center
encourages students to participate in its projects and gain first-hand experience in
automotive electronics in the center's own garage.

 www.tu-berlin.de

Technische Universität Braunschweig

The TU Braunschweig is one of the TU9 universities and is located with many other
research institutes in Europe's strongest research region. In total, the TU
Braunschweig has about 18,000 students and about 3500 employees. The Institute for
Software Engineering and Automotive Information Technology (ISF) at TU
Braunschweig has been headed by Prof. Dr.-Ing. Ina Schaefer since its foundation in
July 2012. The goal of the research work at ISF is the development of methods and
techniques to increase software quality and to improve efficiency in software
development. Application areas for the research results are information systems and
embedded systems, especially in the automotive sector. In particular, new concepts
and methods are developed in order to design software systems in a way that they can
be maintained efficiently and easily extended with new functionalities despite their
high complexity. A special research focus is the modeling, implementation and analysis
of variant-rich and long-lived software systems. Within the framework of the DFG
priority program "Design for Future", ISF is engaged in the development of scalable
modeling and analysis concepts for durable, variant-rich automation systems. Within
the DFG research group "Controlling Concurrent Change" at the TU Braunschweig, the
ISF researches validation methods for evolving embedded systems. In the
Electromobility Showcase funded by the BMBS, the ISF is involved in the development
of a configurable learning platform for electromobility. Since February 2015, the ISF
has contributed to the development of implementation and analysis concepts for
evolving variant and context-sensitive embedded systems in the automotive sector
within the H2020-ICT project "HyVar". In the CrESt project, the TU Braunschweig will
mainly contribute to the topic of modeling and analysis of variability. In addition, TU
Braunschweig will apply these concepts to the extraction of flexible system
architectures and to the modeling of variability of collaborative systems in a dynamic
context.

 www.tu-braunschweig.de

http://www.tu-berlin.de
http://www.tu-braunschweig.de

390 Partner

University of Duisburg-Essen, paluno – The Ruhr Institute for Software
Technology

The University of Duisburg-Essen (UDE) is one of the youngest and largest universities
in Germany. Since its foundation in 2003, the UDE has developed into a globally
recognized research university with a broad spectrum of subjects ranging from
humanities, social sciences and education to economics, engineering, natural sciences
and medicine. In the latest Times Higher Education Ranking, the UDE holds down 16th
place among the 200 best universities worldwide younger than 50 years old. The UDE
research institute paluno (The Ruhr Institute for Software Technology) is an
association of ten chairs with a total of more than 100 employees. paluno focuses on
application-oriented research on software development methods and software
technologies for mobile systems, cloud services, big data applications, cyber-physical
systems, and self-adaptive systems. The research activities are conducted in close
cooperation with partners from industry and research. Key application areas are
logistics, mobility, automotive, energy, and production. The researchers of paluno’s
Software Systems Engineering group (Prof. Pohl) have been and still are significantly
involved in numerous research projects. These include, for example, the Big Data Value
eCosystem (BDVe), DataPorts (A Data Platform for the Connection of Cognitive Ports),
ENACT (Development, Operation, and Quality Assurance of Trustworthy Smart IoT
Systems), FogProtect (Protecting Sensitive Data in the Computing Continuum),
RestAssured (Secure Data Processing in the Cloud), and TransformingTransport (Big
Data Value in Mobility and Logistics) in the Horizon 2020 Programme of the European
Union as well as the joint projects SPES_XT, SPES 2020 (Software Platform Embedded
Systems 2020), and SPEDIT (Software Platform Embedded Systems Dissemination and
Transfer) of the Federal Ministry of Education and Research (BMBF).

 www.uni-due.de

http://www.uni-due.de

C – List of Publications

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0

391

https://doi.org/10.1007/978-3-030-62136-0

392 List of Publications

A
[Aigner and Grigoleit 2018] C. Aigner, F. Grigoleit: Maintaining configuration knowledge bases: Classification

and detection of faults. In: 4th International Workshop on Emerging Ideas and Trends in the Engineering
of Cyber-Physical Systems (EITEC), Porto, Portugal, 2018, pp. 33-40.

[Akili 2019] S. Akili: On the Need for Distributed Complex Event Processing with Multiple Sinks. In: 13th ACM
International Conference on Distributed and Event-Based Systems (DEBS), Darmstadt, Germany, 2019.

[Akili and Lorenz 2019] S. Akili, F. Lorenz: Towards runtime verification of collaborative embedded systems.
In: SICS Software-Intensive Cyber-Physical Systems, 2019, pp. 225-236.

[Akili and Völlinger 2019] S. Akili, K. Völlinger: Case study on certifying distributed algorithms: reducing
intrusiveness. In: International Conference on Fundamentals of Software Engineering, Springer, Cham,
2019.

[Al-Hajjaji et al. 2018] M. Al-Hajjaji, M. Schulze, U. Ryssel: Similarity Analysis of Product-Line Variants. In:
Proceedings of the 22nd International Systems and Software Product Line Conference - Volume 1
(SPLC), ACM, New York, NY, USA, 2018, pp. 226-235.

[Al-Hajjaji et al. 2019] M. Al-Hajjaji, M. Schulze, U. Ryssel: Validating Partial Configurations of Product Lines.
In: Proceedings of 13th International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS), ACM, New York, NY, USA, 2019, pp. 1-6.

[Amorim et al. 2019] T. Amorim, A. Vogelsang, F. Pudlitz, P. Gersing, J. Philipps: Strategies and Best Practices
for Model-based Systems Engineering Adoption in Embedded Systems Industry. In: 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal, QC,
Canada, 2019, pp. 203-212.

[Arai and Schlingloff 2017] R. Arai, H. Schlingloff: Model-based Performance Prediction by Statistical Model
Checking: An Industrial Case Study of Autonomous Transport Robots. In: Proceedings of the 25th
International Workshop on Concurrency, Specification and Programming, Warsaw, Poland, 2017.

B
[Bandyszak and Brings 2018] T. Bandyszak, J. Brings: Herausforderungen bei der modellbasierten

Entwicklung kollaborierender cyber-physischer Systeme für das RE. In: Requirements Engineering
Conference (REConf) 2018, HOOD Group, München, 2018.

[Bandyszak et al. 2018] T. Bandyszak, M. Daun, B. Tenbergen, T. Weyer: Model-based Documentation of
Context Uncertainty for Cyber-Physical Systems. In: 14th IEEE International Conference on Automation
Science and Engineering (CASE), Munich, Germany, 2018.

[Bandyszak et al. 2018] T. Bandyszak, P. Kuhs, J. Kleinblotekamp, M. Daun: On the Use of Orthogonal Context
Uncertainty Models in the Engineering of Collaborative Embedded Systems. In: Workshop zur
Modellierung in der Entwicklung von kollaborativen eingebetteten Systemen (MEKES), 2018.

[Bandyszak et al. 2020] T. Bandyszak, M. Daun, B. Tenbergen, P. Kuhs, S. Wolf, T. Weyer: Orthogonal
Uncertainty Modeling in the Engineering of Cyber-Physical Systems. In: IEEE Transactions on
Automation Science and Engineering, Vol. 17, No. 3, 2020, pp. 1250-1265.

[Bandyszak et al. 2020b] T. Bandyszak, T. Weyer, M. Daun: Uncertainty Theories for Real-Time Systems. In:
Yuchu Tian, David Charles Levy (eds.): Handbook of Real-Time Computing, Springer, in press, 2022.

[Becker 2020] J.S. Becker: Partial Consistency for Requirement Engineering with Traffic Sequence Charts. In:
Software Engineering (Workshops), 2020.

List of Publications 393

[Bhat et al. 2018] M. Bhat, K. Shumaiev, K. Koch, U. Hohenstein, A. Biesdorf, F. Matthes: An expert
recommendation system for design decision making - Who should be involved in making a design
decision? In: IEEE International Conference on Software Architecture (ICSA), Seattle, WA, USA, 2018.

[Böhm et al. 2018] B. Böhm, M. Zeller, J. Vollmar, S. Weiß, K. Höfig, V. Malik, S. Unverdorben, C. Hildebrandt:
Challenges in the engineering of adaptable and flexible industrial factories. In: Workshop zur
Modellierung in der Entwicklung von kollaborativen eingebetteten Systemen (MEKES), 2018.

[Böhm et al. 2020] B. Böhm, J. Vollmar, S. Unverdorben, A. Calà, S. Wolf: Holistic Model-Based Design of
System Architectures for Industrial Plants. In: VDI-Kongress AUTOMATION – Leitkongress der Mess-
und Automatisierungstechnik, Baden-Baden, Germany, 2020.

[Böhm et al. 2020b] W. Böhm, D. Mendez Fernandez, et al.: Dealing with Non-Functional Requirements in
Model-Driven Development: A Survey. IEEE Transactions on Software Engineering, submitted, 2020.

[Brings 2017] J. Brings: Verifying Cyber-Physical System Behavior in the Context of Cyber-Physical System-
Networks. In: 25th IEEE International Requirements Engineering Conference (RE), Lisbon, Portugal,
2017, pp. 556-561.

[Brings and Daun 2019] J. Brings, M. Daun: Towards goal modeling and analysis for networks of collaborative
cyber-physical systems. In: ER-Forum at 38th International Conference on Conceptual Modeling (ER),
2019, pp. 70-83.

[Brings and Daun 2020] J. Brings, M. Daun: Towards automated safety analysis for architectures of
dynamically forming networks of cyber-physical systems. In: 2020 IEEE/ACM 42nd International
Conference on Software Engineering Workshops (ICSEW), 2020.

[Brings et al. 2018] J. Brings, M. Daun, C. Hildebrandt, S. Törsleff: An Ontological Context Modeling
Framework for Coping with the Dynamic Contexts of Cyber-physical Systems. In: 6th International
Conference on Model-Driven Engineering and Software Development, 2018, pp. 396-403.

[Brings et al. 2018b] J. Brings, M. Daun, M. Kempe, T. Weyer: On Different Search Methods for Systematic
Literature Reviews and Maps: Experiences from a Literature Search on Validation and Verification of
Emergent Behavior. In: 22nd International Conference on Evaluation and Assessment in Software
Engineering (EASE), 2018, pp. 35-45.

[Brings et al. 2018c] J. Brings, M. Daun, S. Brinckmann, K. Keller, T. Weyer: Approaches, success factors, and
barriers for technology transfer in software engineering – Results of a systematic literature review. In:
Software Evolution and Process, vol. 30(11), 2018.

[Brings et al. 2019] J. Brings, M. Daun, M. Kempe, T. Weyer: Validierung und Verifikation von emergentem
Verhalten im Software Engineering – Ergebnisse eines Vergleichs unterschiedlicher Suchmethoden. In:
Fachtagung Software Engineering, GI, 2019, pp. 135-136.

[Brings et al. 2019b] J. Brings, M. Daun, T. Bandyszak, V. Stricker, T. Weyer, E. Mirzaei, M. Neumann, J.S.
Zernickel: Model-based documentation of dynamicity constraints for collaborative cyber-physcial
system architectures: Findings from an industrial case study. Systems Architecture, Vol. 97, 2019, pp.
153-167.

[Brings et al. 2020] J. Brings, M. Daun, K. Keller, P. Aluko Obe, T. Weyer: A systematic map on verification and
validation of emergent behavior in software engineering research. In: Future Generation Computer
Systems, Vol. 112, 2020, pp. 1010-1037.

[Brings et al. 2020b] J. Brings, M. Daun, T. Weyer, K. Pohl: Goal-based configuration analysis for networks of
collaborative cyber-physical systems. In: 35th ACM/SIGAPP Symposium on Applied Computing, 2020,
pp. 1387-1396.

[Brings et al. 2020c] J. Brings, M. Daun, T. Weyer, P. Pohl: Analyzing Goal Variability in Cyber-Physical System
Networks. In: ACM/SIGAPP Applied Computing Reviews, Vol. 21, 2020.

394 List of Publications

[Bures et al. 2017] T. Bures, D. Weyns, B. Schmerl, J. Fitzgerald, F. Alrimawi, B. Craggs, T. Gabor, I.
Gerostathopoulos, D. Liu, F. Murr, B. Nuseibeh, J. Ollesch, J. Ore, L. Pasquale, M. Zasadzinski: Engineering
for Smart Cyber-Physical Systems: Report from SEsCPS 2017. In: ACM SIGSOFT Software Engineering
Notes, 2017, pp. 19-24.

[Bures et al. 2019] T. Bures, D. Weyns, B.R. Schmerl, J.S. Fitzgerald, A. Aniculaesei, C. Berger, J. Cambeiro, J.
Carlson, S.A. Chowdhury, M. Daun, N. Li, M. Markthaler, C. Menghi, B. Penzenstadler, A.D. Pettit, R.G. Pettit
IV, L. Sabatucci, C. Tranoris, H. Vangheluwe, S. Voss, E. Zavala: Software Engineering for Smart Cyber-
Physical Systems (SEsCPS 2018) - Workshop Report. ACM SIGSOFT Software Engineering Notes 44(4),
2019, pp. 11-13.

[Bures et al. 2020] T. Bures, I. Gerostathopoulos, P. Hnetynka, F. Plasil, F. Krijt, J. Vinarek, J. Kofron: A
Language and Framework for Dynamic Component Ensembles in Smart Systems. In: International
Journal on Software Tools for Technology Transfer, Springer, 2020, p. 497-509.

[Butting et al. 2017] A. Butting, R. Heim, O. Kautz, J. Ringert, B. Rumpe, A. Wortmann: A Classification of
Dynamic Reconfiguration in Component and Connector Architecture Description Languages. In:
Proceedings of MODELS 2017 Satellite Event. Workshop ModComp, Austin, Texas, CEUR Workshop
Proceedings, 2017.

[Butting et al. 2018] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann: Controlled and Extensible
Variability of Concrete and Abstract Syntax with Independent Language Features. In: Proceedings of the
12th International Workshop on Variability Modelling of Software-Intensive Systems (VAMOS), Madrid,
Spain, 2018, pp. 75-82.

[Butting et al. 2018b] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann: Modeling Language
Variability with Reusable Language Components. In: Proceedings of the 22nd International Conference
on Systems and Software Product Line - Volume 1 (SPLC), Gothenburg, Sweden, 2018, pp. 65-75.

[Butting et al. 2018c] A. Butting, S. Hillemacher, B. Rumpe, D. Schmalzing, A. Wortmann: Shepherding Model
Evolution in Model-Driven Development. In: Workshop zur Modellierung in der Entwicklung von
kollaborativen eingebetteten Systemen (MEKES), 2018.

[Butting et al. 2018d] A. Butting, S. Konar, B. Rumpe, A. Wortmann: Teaching Model-based Systems
Engineering for Industry 4.0: Student Challenges and Expectations. In: Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings (EduSymp@MODELS'18), Copenhagen, Denmark, 2018, pp. 74-81.

[Butting et al. 2019] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann: Systematic Composition of
Independent Language Features. In: Journal of Systems and Software, 152, 2019, pp. 50-69.

C
[Caesar et al. 2018] B. Caesar, W. Klein, C. Hildebrandt, S. Törsleff, A. Fay, J.C. Wehrstedt: New Opportunities

using Variability Management in the Manufacturing Domain during Runtime. In: Schäfer, Karagiannis
(Hrsg.): Fachtagung Modellierung 2018, Braunschweig, Germany, 2018.

[Caesar et al. 2019] B. Caesar, F. Grigoleit, S. Unverdorben: (Self-)adaptiveness for manufacturing systems:
challenges and approaches. In: SICS Software-Intensive Cyber-Physical Systems, Volume 34, Issue 4,
Springer, 2019, pp. 191-200.

[Caesar et al. 2019b] B. Caesar, M. Nieke, A. Köcher, C. Hildebrandt, C. Seidl, A. Fay, I. Schaefer: Context-
sensitive reconfiguration of collaborative manufacturing systems. In: 9th IFAC Conference on
Manufacturing Modelling, Management and Control (MIM) 2019, Berlin, Germany, 2019.

[Cârlan 2017] C. Cârlan: Living Safety Arguments for Open Systems. In: 28th International Symposium on
Software Reliability Engineering Workshops (ISSREW), Toulouse, France, 2017, pp. 120-123.

List of Publications 395

[Cârlan et al. 2019] C. Cârlan, V. Nigam, A. Tsalidis, S. Voss: ExplicitCase: Tool-support for Creating and
Maintaining Assurance Arguments Integrated with System Models. In: Proceedings of 9th IEEE
International Workshop on Software Certification (WoSoCer), 2019.

[Cioroaica 2019] E. Cioroaica: (Do Not) Trust in Ecosystems. In: 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), Montreal, QC, Canada, 2019, pp. 9-12.

 [Cioroaica et al. 2018] E. Cioroaica, T. Kuhn, T. Bauer: Prototyping Automotive Smart Ecosystems. In: 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-
W), Luxembourg City, 2018, pp. 255-262.

[Cioroaica et. al 2019] E. Cioroaica, S, Chren, B. Buhnova, T. Kuhn, D. Dimitrov: Towards creation of a
reference architecture for trust-based digital ecosystems. In: Proceedings of the 13th European
Conference on Software Architecture-Volume 2, 2019, pp. 273-276.

[Cioroaica et al. 2019b] E. Cioroaica, F. Pudlitz, I. Gerostathopoulos, T. Kuhn: Simulation Methods and Tools
for Collaborative Embedded Systems. In: SICS Software-Intensive Cyber-Physical Systems, Vol. 34,
Springer, 2019, pp. 213-223.

[Cioroaica et al. 2020] E. Cioroaica, B. Buhnova, T. Kuhn, D. Schneider: Building Trust in the Untrustable. In:
42nd International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS),
2020 [In Press.]

[Cioroaica et al. 2020b] E. Cioroaica, S. Chren, B. Buhnova, T. Kuhn, D. Dimitrov: Reference Architecture for
Trust-Based Digital Ecosystems. In: International Conference on Software Architecture Companion
(ICSA-C), 2020, pp. 266-273.

D
[Dalibor et al. 2019] M. Dalibor, N. Jansen, J. Michael, B. Rumpe, A. Wortmann: Towards Sustainable Systems

Engineering-Integrating Tools via Component and Connector Architectures. In: Antriebstechnisches
Kolloquium 2019: Tagungsband zur Konferenz, 2019, pp. 121-133.

[Damm et al. 2018] W. Damm, S. Kemper, E. Möhlmann, T. Peikenkamp, A. Rakow: Traffic sequence charts -
a visual language for capturing traffic scenarios. In: Embedded Real Time Software and Systems (ERTS),
2018.

[Daun 2018] M. Daun: Using Dedicated Review Models to Support the Validation of Highly Collaborative
Systems. Eingeladener Vortrag, Lorentz-Center Workshop zu Dynamics of Multi Agent Systems, Leiden
Netherlands, 2018.

[Daun 2019] M. Daun, J. Brings, P. Aluko Obe, S. Weiß, B. Böhm, S. Unverdorben: Using View-Based
Architecture Descriptions to Aid in Automated Runtime Planning for a Smart Factory. In: IEEE
International Conference on Software Architecture Companion (ICSA-C), Hamburg, Germany, 2019, pp.
202-209.

[Daun and Tenbergen 2020] M. Daun, B. Tenbergen: Teaching Requirements Engineering with Industry Case
Examples. In: Tagungsband des 17. Workshops "Software Engineering im Unterricht der Hochschulen",
2020, pp. 49-50.

[Daun et al. 2017] M. Daun, J. Brings, T. Weyer: On the Impact of the Model-Based Representation of
Inconsistencies to Manual Reviews - Results from a Controlled Experiment. In: Proceedings of 36th
International Conference on Conceptual Modeling (ER), Valencia, Spain, 2017, pp. 466-473.

[Daun et al. 2018] M. Daun, J. Brings, T. Weyer: A Semi-Automated Approach to Foster the Validation of
Collaborative Networks of Cyber-Physical Systems. In: 4th International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS), Gothenburg, Sweden, 2018, pp. 6-12.

396 List of Publications

[Daun et al. 2019] M. Daun, B. Tenbergen, J. Brings, P. Aluko Obe: Sichtenbasierte Kontextmodellierung für
die Entwicklung kollaborativer cyber-physischer Systeme. In: Fachtagung Software Engineering, GI,
2019, pp. 123-124.

[Daun et al. 2019b] M. Daun, J. Brings, K. Keller, S. Brinckmann, T. Weyer: Erfolgreicher Technologietransfer
im Software Engineering – Transferansätze, Erfolgsfaktoren und Fallstricke. In: Fachtagung Software
Engineering, GI, 2019, pp. 135-136.

[Daun et al. 2019c] M. Daun, J. Brings, L. Krajinski, T. Weyer: On the benefits of using dedicated models in
validation processes for behavioral specifications. In: International Conference on Software and System
Processes (ICSSP), 2019, pp. 44-53.

[Daun et al. 2019d] M. Daun, T. Weyer, K. Pohl: Improving manual reviews in function-centered engineering
of embedded systems using a dedicated review model. In: Software and Systems Modeling, vol. 18(6)
Springer, 2019, pp. 3421-3459.

[Daun et al. 2019e] M. Daun, V. Stenkova, L. Krajinski, J. Brings, T. Bandyszak, T. Weyer: Goal Modeling for
Collaborative Groups of Cyber-Physical Systems with GRL. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, Limassol, Cyprus, 2019, pp. 1600-1609.

[Daun et al. 2020] M. Daun, J. Brings, P. Aluko Obe, K. Pohl, S. Moser, H. Schumacher, M. Rieß.: An Online
Course for Teaching Model-based Engineering. In: Tagungsband des 17. Workshops "Software
Engineering im Unterricht der Hochschulen", 2020, pp. 66-67.

[Daun et al. 2020b] M. Daun, J. Brings, T. Weyer: Do Instance-level Review Diagrams Support Validation
Processes of Cyber-Physical System Specifications Results from a Controlled Experiment. In:
International Conference on Software and Systems Process (ICSSP), Seoul, Republic of Korea. ACM, New
York, NY, USA, 2020.

[Daun et al. 2020c] M. Daun, T. Weyer, K. Pohl: Ein Review-Modell zur Unterstützung in der
funktionszentrierten Entwicklung eingebetteter Systeme. In: Proceedings of the Tagung Software
Engineering, GI, 2020, p. 39-40.

G
[Gerostathopoulos et al. 2018] I. Gerostathopoulos, C. Prehofer, T. Bures: Adapting a System with Noisy

Outputs with Statistical Guarantees. In: 13th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2018, pp. 58-68.

[Gerostathopoulos et al. 2018b] I. Gerostathopoulos, C. Prehofer, L. Bulej, T. Bures, V. Horky, P. Tuma: Cost-
Aware Stage-Based Experimentation: Challenges and Emerging Results. In: EEE International
Conference on Software Architecture Companion (ICSA-C), Seattle, WA, USA, 2018, pp. 72-75.

[Gerostathopoulos et al. 2018c] I. Gerostathopoulos, C. Prehofer, J. Thomas, B. Bischl: Online Experiment-
Driven Adaptation. Submitted to IEEE Software, 2018.

[Gerostathopoulos et al. 2018d] I. Gerostathopoulos, C. Prehofer, A. Uysal, T. Bures: A Tool for Online
Experiment-Driven Adaptation. In: 3rd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), Trento, Italy, 2018, pp. 100-105.

[Gerostathopoulos et al. 2019] I. Gerostathopoulos, M. Konersmann, S. Krusche, D. I. Mattos: Continuous
Data-driven Software Engineering – Towards a Research Agenda. SIGSOFT Software Engineering Notes
44, 3, 2019, pp. 60–64.

[Gerostathopoulos et al. 2019b] I. Gerostathopoulos, S. Kugele, C. Segler. T. Bures, A. Knoll: Automated
Learnability Evaluation for Smart Automotive Software Functions. In: 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2019.

List of Publications 397

[Greifenberg 2019] T. Greifenberg: Artefaktbasierte Analyse modellgetriebener
Softwareentwicklungsprojekte. In: Aachener Informatik-Berichte, Software Engineering, Band 42,
Shaker Verlag, 2019.

H
[Habtom et al. 2019] K. Habtom, A. Collins, D. Marmsoler: Modeling and Verifying Dynamic Architectures

with FACTum Studio. In: International Conference on Formal Aspects of Component Software, 2019, pp.
243-251.

[Hayward et al. 2020] A. Hayward, M. Daun, W. Böhm, A. Petrvoska, L. Krajinski, A. Fay: Modellierung von
Funktionen in der modellbasierten Entwicklung von Systemverbünden kollaborierender cyber-
physischer Systeme. In: Entwurf komplexer Automatisierungssysteme (EKA), 2020.

[Hildebrandt et al. 2018] C. Hildebrandt, S. Törsleff, B. Caesar, A. Fay: Ontology Building for cyber-physical-
systems: From Requirements to heavyweight Ontologies. In: 14th IEEE International Conference on
Automation Science and Engineering (CASE), Munich, Germany, 2018.

[Hildebrandt et al. 2018b] C. Hildebrandt, S. Törsleff, T. Bandyszak, B. Caesar, A. Ludewig, A. Fay: Ontology
Engineering for Collaborative Embedded Systems – Requirements and Initial Approach. In: Workshop
zur Modellierung in der Entwicklung von kollaborativen eingebetteten Systemen (MEKES), 2018.

[Hildebrandt et al. 2018c] C. Hildebrandt, W. Klein, J.C. Wehrstedt, A. Fay: Ontology-based Simulation of
Manufacturing Systems in Open and Dynamic Contexts. In: VDI-Kongress AUTOMATION – Leitkongress
der Mess- und Automatisierungstechnik, Baden-Baden, Germany, 2018.

[Hildebrandt et al. 2019] C. Hildebrandt, T. Bandyszak, A. Petrovska, N. Laxman, E. Cioroaica, S. Törsleff:
EURECA: epistemic uncertainty classification scheme for runtime information exchange in collaborative
system groups, In: SICS Software-Intensive Cyber-Physical Systems, Vol. 34, Springer, 2019, pp. 177–
190.

[Hinterreiter et al. 2019] D. Hinterreiter, M. Nieke, L. Linsbauer, C. Seidl, H. Prähofer, P. Grünbacher:
Harmonized temporal feature modeling to uniformly perform, track, analyze, and replay software
product line evolution. In: Proceedings of the 18th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE). ACM, New York, NY, USA, 2019, pp. 115–
128.

[Hipp et al. 2020] U. Hipp, T. Zeh, W. Klein, A. Joanni, S. Rothbauer, M. Zeller: Simulation-based robust
scheduling for smart factories considering improved test strategies. RAMS 2020, 2020.

[Hnetynka et al. 2018] P. Hnetynka, P. Kubat, R. Al-Ali, I. Gerostathopoulos, D. Khalyeyev: Guaranteed Latency
Applications in Edge-Cloud Environment. In: 2nd Context-aware, Autonomous and Smart Architectures
International Workshop (CASA), 2018.

[Hoang et al. 2019] X.-L. Hoang, B. Caesar, A. Fay: Adaptation of Manufacturing Machines by the Use of
Multiple-Domain-Matrices and Variability Models. In: 9th IFAC Conference on Manufacturing Modelling,
Management and Control (MIM) 2019, Berlin, Germany, 2019.

[Höfig et al. 2019] K. Höfig, C. Klein, S. Rothbauer, M. Zeller, M. Vorderer, C. H. Koo: A Meta-model for Process
Failure Mode and Effects Analysis (PFMEA). In: 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2019, pp. 1199-1202.

J
[Jöckel and Kläs 2019] L. Jöckel, M. Kläs: Increasing Trust in Data-Driven Model Validation – A Framework

for Probabilistic Augmentation of Images and Meta-Data Generation using Application Scope

398 List of Publications

Characteristics. In: 38th International Conference on Computer Safety, Reliability and Security,
SafeComp 2019, Turku, Finland, 2019, pp. 155-164.

[Jöckel et al. 2019] L. Jöckel, M. Kläs, S. Martínez-Fernández: Safe Traffic Sign Recognition through Data
Augmentation for Autonomous Vehicles Software. In: 19th IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria, 2019, pp. 540-541.

K
[Kaiser et al. 2018] B. Kaiser, D. Schneider, R. Adler, D. Domis, F. Möhrle, A. Berres, M. Zeller, K. Höfig, M.

Rothfelder: Advances in Component Fault Trees, Safety and Reliability – Safe Societies in a Changing
World. In: Proceedings of 28th European Safety and Reliability Conference (ESREL), Trondheim,
Norway, Taylor & Francis (CRC Press), 2018, pp. 815-823.

[Keller et al. 2018] K. Keller, A. Neubauer, J. Brings, M. Daun: Tool-Support to Foster Model-based
Requirements Engineering for Cyber-Phsyical Systems. In: Workshop zur Modellierung in der
Entwicklung von kollaborativen eingebetteten Systemen (MEKES), 2018, pp. 47-56.

[Keller et al. 2018b] K. Keller, J. Brings, M. Daun, T. Weyer: A Comparative Analysis of ITU-MSC-Based
Requirements Specification Approaches Used in the Automotive Industry. In: Proceedings of 10th
International Conference on System Analysis and Modeling (SAM), Copenhagen, Denmark, 2018, pp.
183-201.

[Kläs 2018] M. Kläs: Towards Identifying and Managing Sources of Uncertainty in AI and Machine Learning
Models-An Overview. arXiv preprint arXiv:1811.11669, 2018.

[Kläs and Sembach 2019] M. Kläs, L. Sembach: Uncertainty Wrappers for Data-driven Models – Increase the
Transparency of AI/ML-based Models through Enrichment with Dependable Situation-aware
Uncertainty Estimates, 2nd Int. Workshop on Artificial Intelligence Safety Engineering (WAISE 2019),
Turku, Finland, 2019.

[Kläs and Vollmer 2018] M. Kläs, A.M. Vollmer: Uncertainty in Machine Learning Applications – A Practice-
Driven Classification of Uncertainty. In: First International Workshop on Artificial Intelligence Safety
Engineering (WAISE 2018), Västerås, Sweden, 2018.

[Koo et al. 2018] C. H. Koo, M. Vorderer, S. Junker, S. Schröck, A. Verl: Challenges and requirements for the
safety compliant operation of reconfigurable manufacturing systems. In: Proceedings CIRP Conference
on Manufacturing System, Vol. 72, 2018, pp. 1100-1105.

[Koo et al. 2019] C. H. Koo, M. Vorderer, S. Schröck, J. Richter, A. Verl: Assistierte Risikobeurteilung für
wandlungsfähige Plug and Produce Montagesysteme. In: VDI-Kongress AUTOMATION – Leitkongress
der Mess- und Automatisierungstechnik, Baden-Baden, Germany, 2019.

[Koo et al. 2019b] C. H. Koo, S. Rothbauer, M. Vorderer, K. Höfig, M. Zeller: SQUADfps: Integrated model-based
machine safety and product quality for flexible production systems. In: 6th International Symposium on
Model-Based Safety and Assessment (IMBSA), Thessaloniki, Greece, 2019, pp. 222-236.

[Koo et al. 2020] C. H. Koo, N. Laxman, F. Möhrle: Runtime safety analysis for reconfigurable production
systems. In: 30th European Safety and Reliability Conference (ESREL), Venice, Italy, 2020.

[Koo et al. 2020b] C. H. Koo, S. Schröck, M. Vorderer, J. Richter, A. Verl: Assistierte Risikobeurteilung für
wandlungsfähige Montagesysteme. In: ATP-Edition, Fachmagazin für Automatisierungstechnische
Praxis 05/2020, 2020, pp. 68-75.

[Koo et al. 2020c] C. H. Koo, S. Schröck, M. Vorderer, J. Richter, A. Verl: A model-based and software-assisted
safety assessment concept for reconfigurable PnP-systems. In: 53rd CIRP Conference on Manufacturing
System, Chicago, USA, 2020.

List of Publications 399

[Kurpiewski and Marmsoler 2019] D. Kurpiewski, D. Marmsoler: Strategic Logics for Collaborative
Embedded Systems: Specification and Verification of Collaborative Embedded Systems using Strategic
Logics. In: SICS Software-Intensive Cyber-Physical Systems, Vol. 34, Springer, 2019, pp. 201-212.

L
[Lackner and Schlingloff 2017] H. Lackner, H. Schlingloff: Advances in Testing Software Product Lines. In:

Advances in Computers, Vol. 107, Elsevier, 2017, pp. 157-217.

[Laxman et al. 2020] N. Laxman, C. H. Koo, P. Liggesmeyer: U-Map: A reference map for safe handling of
runtime uncertainties. In: 7th International Symposium on Model-Based Safety and Assessment
(IMBSA), Lisbon, Portugal, accepted, 2020.

[Lorenz and Schlingloff 2018] F. Lorenz, H. Schlingloff: Online-Monitoring Autonomous Transport Robots
with an R-valued Temporal Logic. In: 14th IEEE International Conference on Automation Science and
Engineering (CASE), Special Session on Engineering Methods and Tools for the Development of
Collaboration-intensive Cyber Physical Systems, Munich, Germany, 2018, pp. 1093-1098.

[Ludewig et al. 2018] A. Ludewig, M. Daun, A. Petrovska, W. Böhm, A. Fay: Requirements for Modeling
Dynamic Function Networks for Collaborative Embedded Systems. In: Workshop zur Modellierung in
der Entwicklung von kollaborativen eingebetteten Systemen (MEKES), 2018.

M
[Marmsoler 2017] D. Marmsoler: Dynamic Architectures. Archive of Formal Proofs, 2017.

[Marmsoler 2017b] D. Marmsoler: On the Semantics of Temporal Specifications of Component-Behavior for
Dynamic Architectures. In: 11th International Symposium on Theoretical Aspects of Software
Engineering, Sophia Antipolis, 2017, pp. 1-6.

[Marmsoler 2018] D. Marmsoler: A Framework for Interactive Verification of Architectural Design Patterns
in Isabelle/HOL. In: Proceedings of 20th International Conference on Formal Engineering Methods
(ICFEM), Gold Coast, QLD, Australia, 2018, pp. 12-16.

[Marmsoler 2018b] D. Marmsoler: Hierarchical Specification and Verification of Architecture Design
Patterns. In: 21st International Conference on Fundamental Approaches to Software Engineering
(FASE), 2018, pp. 149-168.

[Marmsoler 2019] D. Marmsoler: “A Denotational Semantics for Dynamic Architectures”. In: Theoretical
Aspects of Software Engineering. 2019.

[Marmsoler 2019b] D. Marmsoler: A Calculus for Dynamic Architectures. In: Science of Computer
Programming, 2019.

[Marmsoler 2019c] D. Marmsoler: Axiomatic Specification and Verification of Architectural Design Patterns
using Interactive Theorem Proving. Dissertation. 2019.

[Marmsoler 2019d] D. Marmsoler: Composition in Dynamic Architectures based on Fixed Points in Lattices.
In: International Colloquium on Theoretical Aspects of Computing, 2019.

[Marmsoler 2019e] D. Marmsoler: Verifying Dynamic Architectures using Model Checking and Interactive
Theorem Proving. In: Proceedings Software Engineering und Software Management, Lecture Notes in
Informatics (LNI), Gesellschaft für Informatik, Bonn, Germany, 2019.

[Marmsoler and Blakqori 2019] D. Marmsoler, G. Blakqori: APML: An Architecture Proof Modeling Language.
In: 23rd International Symposium on Formal Methods, 2019.

400 List of Publications

[Marmsoler and Degenhardt 2017] D. Marmsoler, S. Degenhardt: Patterns of Dynamic Architectures using
Model Checking. In: Proceedings International Workshop on Formal Engineering approaches to
Software Components and Architectures, 2017.

[Marmsoler and Gidey 2018] D. Marmsoler, H. K. Gidey: FACTUM Studio: A Tool for the Axiomatic
Specification and Verification of Architectural Design Patterns. In: 15th International Conference on
Formal Aspects of Component Software (FACS), Pohang, South Korea, 2018, pp. 279-287.

[Marmsoler and Gidey 2019] D. Marmsoler, H.K. Gidey: Interactive Verification of Architectural Design
Patterns in FACTum. In: Formal Aspects of Computing. 2019.

[Marmsoler and Habtom 2019] D. Marmsoler, H.K. Gidey: Interactive Verification of Architectural Design
Patterns in FACTum. In: Formal Aspects of Computing, 2019.

[Marmsoler and Petrovska 2019] D. Marmsoler, A. Petrovska: Detecting Architectural Erosion using Runtime
Verification. In: 12th Interaction and Concurrency Experience (ICE), 2019.

[Marmsoler and Petrovska 2020] D. Marmsoler, A. Petrovska: Detecting Architectural Erosion using Runtime
Verification. In: Journal of Logical and Algebraic Methods in Programming (JLAMP), submitted, 2020.

[Marmsoler et al. 2017] D. Marmsoler, D.V. Hung, D. Kapur (Eds.): Towards a Calculus for Dynamic
Architectures. In: 14th International Colloquium on Theoretical Aspects of Computing (ICTAC), Hanoi,
Vietnam, 2017, pp. 79-99.

[Mauro et al. 2017] J. Mauro, M. Nieke, C. Seidl, I. Chieh Yu: Anomaly Detection and Explanation in Context-
Aware Software Product Lines. In: Proceedings of the 21st International Systems and Software Product
Line Conference - Volume B (SPLC), New York, USA, 2018, pp. 18-21.

[Mauro et al. 2018] J. Mauro, M. Nieke, C. Seidl, I. Chieh Yu: Context-Aware Reconfiguration in Evolving
Software Product Lines. In: Science of Computer Programming. Volume 163, 2018.

[Mendez Fernandez et al. 2019] D. Mendez Fernandez, W. Böhm, A. Vogelsang, J. Mund, M. Broy, M.
Kuhrmann, T. Weyer: Artefacts in software engineering: a fundamental positioning. In: Software &
Systems Modeling, 2019.

[Meyer 2019] M. Meyer: 3D Multi-Vehicle Co-Simulation Framework for Testing of Cooperative Automated
Driving Functions. In: FEV Simulation and Calibration Symposium 2019, Stuttgart, 2019.

[Meyer et al. 2020] M. Meyer, C. Granrath, J. Andert, G. Feyerl, J. Richenhagen, J. Kaths: Closed-loop Platoon
Simulation with Cooperative Intelligent Transportation Systems based on Vehicle-to-X Communication.
Simulation Modelling Practice and Theory, Elsevier, accepted, 2020.

[Meyer et al. 2020b] M. Meyer, C. Granrath, L. Wachtmeister, N. Jäckel: Methoden für die Entwicklung
kollaborativer eingebetteter Systeme in automatisierten Fahrzeugen. In: ATZelektronik, vol. 12,
Springer, accepted, 2020.

[Ming and Schlingloff 2017] C. Ming, H. Schlingloff: Monitoring with Parametrized Extended Life Sequence
Charts. In: Fundamenta Informaticae, Vol. 153(3), IOS Press, 2017, pp. 173-198.

[Möhrle et al. 2017] F. Möhrle, M. Zeller, K. Höfig, M. Rothfelder, P. Liggesmeyer: Towards Automated Design
Space Exploration for Safety-Critical Systems Using Type-Annotated Component Fault Trees. In: 5th
International Symposium on Model-Based Safety and Assessment (IMBSA), Trento, Italy, 2017.

N
[Nieke et al. 2018] M. Nieke, C. Seidl, T. Thüm: Back to the Future: Avoiding Paradoxes in Feature-Model

Evolution. In: Proceedings of the 22nd International Systems and Software Product Line Conference -
Volume B (SPLC), ACM, New York, NY, USA, 2018, pp. 48-51.

List of Publications 401

[Nieke et al. 2018b] M. Nieke, J. Mauro, C. Seidl, T. Thüm, I. Chieh Yu: Anomaly Analyses for Feature-Model
Evolution. In: Proceedings of the 17th International Conference on Generative Programming: Concepts
and Experiences (GPCE), 2018, pp. 188-201.

[Nieke et al. 2019] M. Nieke, A. Hoff, C. Seidl: Automated metamodel augmentation for seamless model
evolution tracking and planning. In Proceedings of the 18th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE). ACM, New York, NY, USA, 2019, pp. 68–80.

P
[Petrovska 2019] A. Petrovska: Semi-distributed architecture for smart self-adaptive cyber-physical

systems. In: 14th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, part of 11st International Conference on Software Engineering (ICSE), 2019.

[Petrovska and Grigoleit 2018] A. Petrovska, F. Grigoleit: Towards Context Modeling for Dynamic
Collaborative Embedded Systems in Open Context. In: 10th International Workshop on Modelling and
Reasoning in Context (MRC) at International Joint Conference of Artificial Intelligence, Stockholm,
Schweden, 2018.

[Petrovska and Pretschner 2019] A. Petrovska, A. Pretschner: Learning Approach for Smart Self-Adaptive
Systems. In: 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO),
Umea, Sweden, 2019, pp. 234-236.

[Petrovska et al. 2019] A. Petrovska, S. Quijano, I. Gerostathopoulos, A. Pretschner: Knowledge Aggregation
with Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems. In: 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2019, pp. 39-
50.

[Pudlitz et al. 2019] F. Pudlitz, A. Vogelsang, F. A. Brokhausen: A Lightweight Multilevel Markup Language
for Connecting Software Requirements and Simulations. In: Knauss E., Goedicke M. (eds) Requirements
Engineering: Foundation for Software Quality. REFSQ 2019. Lecture Notes in Computer Science, Vol.
11412, Springer, Cham, 2019.

R
[Reich 2018] V. Reich: Development and Evaluation of Decision Strategies for Manufacturing in Industrie 4.0

using Plant Simulation, Masterarbeit, TU München, 2018.

[Rösel 2019] S. Rösel: Guidelines are a Modeler's best friends – ein Einstieg in die statische Modellanalyse.
In: Automation Software Engineering Kongress, Sindelfingen, 2019.

[Rösel 2019b] S. Rösel: ISO 26262 in 10 Schritten sicherheitsrelevante Embedded Software erstellen. In:
Embedded Software Engineering Kongress, Sindelfingen 2019.

[Rosen 2019] R. Rosen: Digital Twin & Symbiotic Mechatronics Approaches for System Development. Models
2019 (invited speaker).

[Rosiak et al. 2019] K. Rosiak, O. Urbaniak, A. Schlie, C. Seidl, I. Schaefer: Analyzing Variability in 25 Years of
Industrial Legacy Software: An Experience Report. In: Proceedings of the 23rd International Systems
and Software Product Line Conference - Volume B (SPLC), ACM, New York, NY, USA, 2019, pp. 65-72.

[Rumpe et al. 2019] B. Rumpe, I. Schaefer, H. Schlingloff, A. Vogelsang: Special issue on engineering
collaborative embedded systems, In: SICS Software-Intensive Cyber-Physical Systems, Vol. 34, Springer,
2019, pp. 173–175.

402 List of Publications

S
[Schenk et al. 2019] T. Schenk, A.Botero Halblaub, J. C. Wehrstedt: Co-Simulation scenarios in industrial

production plants. Industrial User Presentations. In: 13th International Modelica Conference,
Regensburg, 2019.

[Schlie et al. 2017] A. Schlie, D. Wille, L. Cleophas, I. Schaefer: Clustering Variation Points in
MATLAB/Simulink Models Using Reverse Signal Propagation Analysis. Proceedings of the International
Conference on Software Reuse (ICSR), Springer, Salvador, Brazil, 2017.

[Schlie et al. 2018] A. Schlie, S. Schulze, I. Schaefer: Comparing Multiple MATLAB/Simulink Models Using
Static Connectivity Matrix Analysis. In: Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), Madrid, Spain, 2018, pp. 160-171.

[Schlie et al. 2019] A. Schlie, C. Seidl, I. Schaefer: Reengineering Variants of MATLAB/Simulink Software
Systems. In: Security and Quality in Cyber-Physical Systems Engineering. Springer International
Publishing, 2019, pp. 267-301.

[Schlie et al. 2019b] A. Schlie, K. Rosiak, O. Urbaniak, I. Schaefer, B. Vogel-Heuser: Analyzing Variability in
Automation Software with the Variability Analysis Toolkit. In: Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume B (SPLC), ACM, New York, NY, USA, 2019, pp.
191-198.

[Schlingloff 2018] H. Schlingloff: Specification and Verification of Collaborative Transport Robots. In: 4th
International Workshop on Emerging Ideas and Trends in the Engineering of Cyber-Physical Systems
(EITEC), Porto, Portugal, 2018, pp. 3-8.

[Schlingloff 2019] H. Schlingloff: PhD, the University, and Everything. In: 30th International Symposium on
Software Reliability Engineering (ISSRE), Berlin, Germany, 2019.

[Schlingloff 2019b] H. Schlingloff: Strategy Synthesis. Invited paper at CS&P 2019: 28th International
Workshop on Concurrency, Specification, and Programming, Olstyn, Poland, 2019.

[Schlingloff 2019c] H. Schlingloff: Teaching Model Checking via Games and Puzzles. In: Proceedings of 1st
International Workshop "Formal Methods - Fun for Everybody" (FMFun), Co-located with iFM 2019,
Bergen, Norway, 2019.

[Schmidt 2019] K. Schmidt: Modellierung und Test: Software für Industrie-Transportroboter. Embedded
Testing, Munich, Germany, 2019.

[Schulze 2019] C. Schulze: Agile Software-Produktlinienentwicklung im Kontext heterogener
Projektlandschaften. In: Aachener Informatik-Berichte, Software Engineering, Band 40, Shaker Verlag,
2019.

[Schuster et al. 2017] S. Schuster, C. Seidl, I. Schaefer: Towards a development process for maturing Delta-
oriented software product lines. In Proceedings of the 8th ACM SIGPLAN International Workshop on
Feature-Oriented Software Development (FOSD), 2017, p. 41-50.

[Seitz et al. 2018] A. Seitz, D. Henze, D. Miehle, B. Bruegge, J. Nickles, M. Sauer: Fog Computing as Enabler for
Blockchain-Based IIoT App Marketplaces – A Case Study. In: 5th International Conference on Internet of
Things: Systems, Management and Security (IoTSMS), Valencia, Spain, 2018, pp. 182-188.

[Seitz et al. 2018b] A. Seitz, D. Henze, J. Nickles, M. Sauer, B. Bruegge: Augmenting the Industrial Internet of
Things with Emojis. In: Third International Conference on Fog and Mobile Edge Computing (FMEC),
Barcelona, 2018, pp. 240-245.

[Smirnov et al. 2018] D. Smirnov, T. Schenk, J. C. Wehrstedt, Hierarchical Simulation of Production Systems,
In: 14th IEEE International Conference on Automation Science and Engineering (CASE), Munich,
Germany, 2018.

List of Publications 403

[Stenkova et al. 2019] V. Stenkova, J. Brings, M. Daun, T. Weyer: Generic negative scenarios for the
specification of collaborative cyber-physical systems. In: Proceedings of 38th International Conference
on Conceptual Modeling (ER), 2019, pp. 412-419.

[Stenkova et al. 2020] V. Stenkova, M. Daun, J. Brings, T. Weyer: Generische Negativszenarien in der
Entwicklung kollaborativer cyber-physischer Systeme. In: Fachgruppentreffen "Requirements
Engineering" der Gesellschaft für Informatik, GI, accepted, 2020.

T
[Tenbergen et al. 2018] B. Tenbergen, M. Daun, P. Aluko Obe, J. Brings: View-Centric Context Modeling to

Foster the Engineering of Cyber-Physical System Networks. In: IEEE International Conference on
Software Architecture (ICSA), Seattle, WA, USA, 2018.

[Törsleff et al. 2018] S. Törsleff, C. Hildebrandt, M. Daun, J. Brings, A. Fay: Modeling the Dynamic and Open
Context of Collaborative Embedded Systems: Requirements and Initial Approach. In: Emerging Ideas and
Trends in the Engineering of Cyber-Physical Systems (EITEC), 2018, pp. 25-32.

[Törsleff et al. 2018b] S. Törsleff, C. Hildebrandt, M. Daun, J. Brings, A. Fay: Developing Ontologies for the
Collaboration of Cyber-Physical Systems: Requirements and Solution Approach. In: 4th International
Workshop on Emerging Ideas and Trends in the Engineering of Cyber-Physical Systems (EITEC), Porto,
Portugal, 2018.

[Törsleff et al. 2019] S. Törsleff, C. Hildebrandt, A. Fay: Development of Ontologies for Reasoning and
Communication in Multi-Agent Systems. In: 11th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, 2019.

U
[Unverdorben et al. 2018] S. Unverdorben, B. Böhm, A. Lüder: Reference Architectures for Future Production

Systems in the Field of discrete manufacturing. In: 14th IEEE International Conference on Automation
Science and Engineering (CASE), Munich, Germany, 2018, pp. 869-874.

[Unverdorben et al. 2019] S. Unverdorben, B. Böhm, A. Lüder: Concept for Deriving System Architectures
from Reference Architectures. In: 2019 IEEE International Conference on Industrial Engineering &
Engineering Management (IEEM), Macau, 2019.

[Unverdorben et al. 2019b] S. Unverdorben, B. Böhm, A. Lüder: Industrie 4.0 – Architekturansätze und
zugehörige Konzepte für konventionelle Produktionsanlagen / Industrie 4.0 – Architectural approaches
and related concepts for conventional production systems. In: VDI-Kongress AUTOMATION –
Leitkongress der Mess- und Automatisierungstechnik, Baden-Baden, Germany, 2019.

V
[Velasco Moncada et al.] S. Velasco Moncada, J. Reich, M. Tchangou: Interactive information zoom on

Component Fault Trees. In: Schaefer, I., Karagiannis, D., Vogelsang, A., Méndez, D. & Seidl, C. (Hrsg.),
Modellierung 2018. Gesellschaft für Informatik e.V., Bonn, 2018, pp. 311-314.

[Velasco Moncada 2020] D. S. Velasco Moncada: Hazard-driven realization views for Component Fault Trees.
In: Software and Systems Modeling, Springer, 2020.

404 List of Publications

W
[Wager and Prehofer 2018] A. Wager, C. Prehofer: Translating Multi-Device Task Models to State Machines.

In: 6th International Conference on Model-Driven Engineering and Software Development, SciTePress
2018, pp. 201-208.

[Wehrstedt et al. 2019] J. C. Wehrstedt, B. Groos, W. Klein, V. Malik, S. Rothbauer, M. Zeller, S. Weiß, B. Böhm,
J. Brings, M. Daun, B. Caesar, A. Fay, C. H. Koo, M. Vorderer: A Seamless Description Approach for
Engineering – Methods Illustrated for Industrie 4.0 Scenarios. In: VDI-Kongress AUTOMATION –
Leitkongress der Mess- und Automatisierungstechnik, Baden-Baden, Germany, 2019.

[Wehrstedt et al. 2020] J. C. Wehrstedt, A. Sohr, T. Schenk, R. Rosen, Y. Zhou: A Framework for Operator Assist
Apps of Automated Systems. In: IFAC World Congress, Berlin, 2020.

[Weiß et al. 2018] S. Weiß, B. Böhm, S. Unverdorben, J. Vollmar: Auswirkungen zukünftiger
Zusammenarbeitsszenarien auf industrielle Produktionsanlagen. In: VDI-Kongress AUTOMATION –
Leitkongress der Mess- und Automatisierungstechnik, Baden-Baden, Germany, 2018.

[Weiß et al. 2019] S. Weiß, B. Caesar, B. Böhm, J. Vollmar, A. Fay: Modellierung von Fähigkeiten industrieller
Anlagen für die auftragsgesteuerte Produktion. In: VDI-Kongress AUTOMATION – Leitkongress der
Mess- und Automatisierungstechnik, Baden-Baden, Germany, 2019.

[Weyer 2018] T. Weyer: Requirements Engineering im Zeitalter von Digitalisierung und Autonomen
Systemen. In: Requirements Engineering Conference (REConf) 2018, HOOD Group, München, 2018

[Wolf et al. 2020] S. Wolf, B. Caesar, A. Fay, B. Böhm: Erstellung eines Domänenmodells zur Beschreibung
von Fähigkeiten fertigungstechnischer Anlagen für die auftragsgesteuerte Produktion. In: VDI-Kongress
AUTOMATION – Leitkongress der Mess- und Automatisierungstechnik, Baden-Baden, Germany, 2020.

Z
[Zarras et al. 2018] A. Zarras, I. Gerostathopoulos, D. Mendez Fernandez: Can Today’s Machine Learning Pass

Image-based Turing Tests? In: 40th International Conference on Software Engineering (ICSE), 2018, pp.
129-148.

[Zarras et al. 2018b] A. Zarras, I. Gerostathopoulos, D. Mendez Fernandez: Shooting Ourselves on the Foot:
Can Today's Machine Learning Pass Image-Based Turing Tests? ACM Internet Measurement Conference
2018 (IMC 2018), submitted, 2018.

[Zernickel and Schmiljun 2018] J. S. Zernickel, A. Schmiljun: Die Fabrik der Zukunft, Fachartikel in „Deutsche
Verkehrszeitung“, 2018.

[Zernickel and Stubert 2017] J. Zernickel, H. Stubert: Podiumsdiskussion zum Thema „Industrie 4.0“ mit
Vertretern aus Wirtschaft, Wissenschaft und Politik, Berlin, 2017.

[Zhou et al. 2019] Y. Zhou, M. Allmaras, A. Massalimova, T. Schenk, A. Sohr, J.C. Wehrstedt: Assist System
Framework for Production Prioritization - Flexible Architecture to integrate Simulation in Run-Time
Environment, In: VDI-Kongress AUTOMATION – Leitkongress der Mess- und Automatisierungstechnik,
Baden-Baden, Germany, 2019.

	Preface
	Table of Contents
	1 CrESt Use Cases
	1.1 Introduction
	1.2 Vehicle Platooning
	1.3 Adaptable and Flexible Factory
	1.4 Autonomous Transport Robots

	2 Engineering of Collaborative Embedded Systems
	2.1 Introduction
	2.2 Background
	2.3 Collaborating Embedded Systems
	2.3.1 Collaborative and Collaborating Systems
	2.3.2 Goals of System Networks
	2.3.3 Coordination in System Networks
	2.3.4 Dynamics in System Networks
	2.3.5 Functions

	2.4 Problem Dimensions of Collaborative Embedded Systems
	2.4.1 Challenges Related to Collaboration
	2.4.2 Challenges Related to Dynamics

	2.5 Application in the Domains “Cooperative Vehicle Automation” and “Industry 4.0”
	2.5.1 Challenges in the Application Domain “Cooperative Vehicle Automation”
	Collaboration
	Dynamics

	2.5.2 Challenges in the Application Domain “Industry 4.0”
	Collaboration
	Dynamics

	2.6 Concepts and Methods for the Development of Collaborative Embedded Systems
	2.6.1 Enhancements Regarding SPES2020 and SPES_XT
	2.6.2 Collaboration
	Goals
	Functions and Behavior
	Architecture and Structure
	Communication

	2.6.3 Dynamics
	Goals
	Functions and Behavior
	Architecture and Structure
	Context
	Uncertainty

	2.7 Conclusion
	2.8 Literature
	2.9 Appendix

	3 Architectures for Flexible Collaborative Systems
	3.1 Introduction
	3.2 Designing Reference Architectures
	3.2.1 Method for Designing Reference Architectures
	3.2.2 Application Example: Reference Architecture for Adaptable and Flexible Factories

	3.3 Reference Architecture for Operator Assistance Systems
	3.3.1 Simulation-Based Operator Assistance
	3.3.2 Design Decisions
	3.3.3 Technical Reference Architecture
	3.3.4 Workflow of Services and Data Flow
	3.3.5 Application Example for an Adaptable and Flexible Factory

	3.4 Checkable Safety Cases for Architecture Design
	3.4.1 Checkable Safety Case Models – A Definition
	3.4.2 Checkable Safety Case Patterns
	3.4.3 An Example of Checkable Safety Case Patterns

	3.5 Conclusion
	3.6 Literature

	4 Function Modeling for Collaborative Embedded Systems
	4.1 Introduction
	4.2 Methodological Approach
	4.3 Background
	4.4 Metamodel for Functions of CESs and CSGs
	4.4.1 Systems, CESs, and CSGs
	4.4.2 Functions
	4.4.3 Goal Contribution and Fulfillment
	4.4.4 Roles
	4.4.5 Context and Adaptivity

	4.5 Evaluation of the Metamodel
	4.5.1 Abstraction
	4.5.2 Relationships between Functions
	4.5.3 Openness and Dynamicity
	4.5.4 Goal Contributions
	4.5.5 Relationships Between Functions and Systems
	4.5.6 Input/Output Compatibility
	4.5.7 Runtime Restructuring

	4.6 Application of the Metamodel
	4.6.1 Example from the Adaptable and Flexible Factory
	4.6.2 Modeling of Goals for Transport Robots

	4.7 Related Work
	4.8 Conclusion
	4.9 Literature

	5 Architectures for Dynamically Coupled Systems
	5.1 Introduction
	5.2 Specification Modeling of the Behavior of Collaborative System Groups
	5.3 Modeling CES Functional Architectures
	5.3.1 Scenario
	5.3.2 Modelling
	5.3.3 Analysis

	5.4 Extraction of Dynamic Architectures
	5.4.1 Methods
	5.4.2 Software Product Line Engineering
	5.4.3 Product-Driven Software Product Line Engineering
	5.4.4 Family Mining — A Method for Extracting Reference Architectures from Model Variants
	5.4.5 Summary

	5.5 Functional Safety Analysis (Online)
	5.5.1 Functional Testing
	5.5.2 Communication Errors

	5.6 Conclusion
	5.7 Literature

	6 Modeling and Analyzing Context-Sensitive Changes during Runtime
	6.1 Introduction and Motivation
	6.2 Solution Concept
	6.3 Ontology and Modeling
	6.3.1 Ontology Building
	6.3.2 Capability Modeling
	6.3.3 Variability Modeling for Context-Sensitive Reconfiguration
	6.3.4 Scenario-Based Modeling

	6.4 Model Integration and Execution
	6.4.1 Model Generation for Simulation Models
	Model Generation via Knowledge Graph
	Application to a Real Production System

	6.4.2 Capability Matching

	6.5 Conclusion
	6.6 Literature

	7 Handling Uncertainty inCollaborative EmbeddedSystems Engineering
	7.1 Uncertainty in Collaborative Embedded Systems
	7.1.1 Conceptual Ontology for Handling Uncertainty
	7.1.2 Different Kinds of Uncertainty

	7.2 Modeling Uncertainty
	7.2.1 Orthogonal Uncertainty Modeling
	Modeling Concepts and Notation
	Example

	7.2.2 Modeling Uncertainty in Traffic Scenarios
	Modeling Traffic Scenarios for CSGs
	Behavioral Uncertainty Modeling
	Risk Assessment

	7.3 Analyzing Uncertainty
	7.3.1 Identifying Epistemic Uncertainties
	Uncertainty Sources at the Type Level
	Uncertainty Sources at the Instance Level
	EURECA

	7.3.2 Assessing Data-Driven Uncertainties
	Three Types of Uncertainty Sources
	Managing Uncertainty during Operation
	Uncertainty Wrapper – Architecture and Application
	Uncertainty Wrappers – Limitations and Advantages

	7.4 Conclusion
	7.5 Literature

	8 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime
	8.1 Introduction and Motivation
	8.2 Overview of the Proposed Safety Certification Concept
	8.3 Assuring Runtime Safety Based on Modular Safety Cases
	8.3.1 Modeling CESs and their Context
	Modeling the Context
	Content Ontology
	Modeling Context in the Adaptable Factory

	8.3.2 Runtime Uncertainty Handling
	Concept Overview
	Development of a U-Map for the Adaptable Factory

	8.3.3 Runtime Monitoring of CESs and their Context
	Meta-model SQUADfps
	Case Study Example

	8.3.4 Integrated Model-Based Risk Assessment
	8.3.5 Dynamic Safety Certification

	8.4 Design and Runtime Contracts
	8.4.1 Design-Time Approach for Collaborative Systems
	Creating the CSG Specification
	Safety-Relevant Activities

	8.4.2 Contracts Concept
	8.4.3 Runtime Evaluation of Safety Contracts
	Simulative Approach for Validation of Safety Contracts
	Case Study: Vehicle Platoon Example

	8.5 Conclusion
	8.6 Literature

	9 Goal-Based Strategy Exploration
	9.1 Introduction
	9.2 Goal Modeling for Collaborative System Groups
	9.3 Goal-Based Strategy Development
	9.4 Goal Operationalization (KPI Development)
	9.5 Modeling Methodology for Adaptive Systems with MATLAB/Simulink
	9.6 Collaboration Framework for Goal-Based Strategies
	9.6.1 Fleet Management in Collaborative Resource Networks
	9.6.2 Collaboration Framework
	9.6.3 Collaboration Design in Decentralized Fleet Management

	9.7 Conclusion
	9.8 Literature

	10 Creating Trust in Collaborative Embedded Systems
	10.1 Introduction
	10.2 Building Trust during Design Time
	Testing framework for CSGs
	Model
	View
	Controller

	10.3 Building Trust during Runtime
	10.4 Monitoring Collaborative Embedded Systems
	Runtime Monitoring
	Runtime Monitoring of Collaborative System Groups
	Distributedness:
	Embeddedness:
	Runtime Monitoring of Interaction Protocols
	Monitoring Functional Correctness
	Agreement:
	Existence:
	Maximum:
	Monitoring Correct Timing Behavior
	U
	Ut

	10.5 Conclusion
	10.6 Literature

	11 Language Engineering for Heterogeneous Collaborative Embedded Systems
	11.1 Introduction
	11.2 MontiCore
	11.3 Language Components
	11.4 Language Component Composition
	11.5 Language Product Lines
	11.6 Conclusion
	11.7 Literature

	12 Development and Evaluation of Collaborative Embedded Systems using Simulation
	12.1 Introduction
	12.1.1 Motivation
	12.1.2 Benefits of Using Simulation

	12.2 Challenges in Simulating Collaborative Embedded Systems
	12.2.1 Design Time Challenges
	12.2.2 Runtime Challenges

	12.3 Simulation Methods
	12.4 Application
	12.5 Conclusion
	12.6 Literature

	13 Tool Support for CoSimulation-Based Analysis
	13.1 Introduction
	13.2 Interaction of Different Simulations
	13.3 General Tool Architecture
	13.4 Implementing Interoperability for Co-Simulation
	13.5 Distributed Co-Simulation
	13.6 Analysis of Simulation Results
	13.7 Conclusion
	13.8 Literature

	14 Supporting the Creation of Digital Twins for CESs
	14.1 Introduction
	14.2.1 Demonstration
	Automotive Smart Ecosystems
	Smart Grids

	14.2 Building Trust through Digital Twin Evaluation
	14.3 Conclusion
	14.4 Literature

	15 Online Experiment-Driven Learning and Adaptation
	15.1 Introduction
	15.2 A Self-Optimization Approach for CESs
	15.3 Illustration on CrowdNav
	15.4 Conclusion
	15.5 Literature

	16 Compositional Verification using Model Checking and Theorem Proving
	16.1 Introduction
	16.2 Approach
	16.3 Example
	16.3.1 Specification
	16.3.2 Verification

	16.4 Conclusion
	16.5 Literature

	17 Artifact-Based Analysis for the Development of Collaborative Embedded Systems
	17.1 Introduction
	17.2 Foundations
	UML/P
	Class Diagrams in UML/P
	Object Diagrams in UML/P
	OCL

	17.3 Artifact-Based Analysis
	Artifact Model Creation
	Specification of Artifact Data Analysis
	Artifact-Based Analyses

	17.4 Artifact Model for Systems Engineering Projects with Doors NG and Enterprise Architect
	17.4.1 Artifact Modeling of Doors NG and Enterprise Architect
	17.4.2 Static Extractor for Doors NG and Enterprise Architect Exports
	17.4.3 Analysis of the Extracted Artifact Data

	17.5 Conclusion
	17.6 Literature

	18 Variant and Product Line CoEvolution
	18.1 Introduction
	18.2 Product Line Engineering
	18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level
	18.3.1 The Challenge of Propagating Updates
	18.3.2 Artifact Evolution and Co-Changes
	18.3.3 Changes to the Variant Derivation Process
	18.3.4 Applicability and Limitations
	18.3.5 Implementation

	18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level
	18.4.1 The Challenge of Lifting Changes
	18.4.2 A Process for Lifting Changes
	18.4.3 Deducing Feature Information
	Underlying Model
	Seeding Feature Information
	Assigning Changes to Features

	18.4.4 Applicability and Limitations

	18.5 Conclusion
	18.6 Literature

	19 Advanced Systems Engineering
	19.1 Introduction
	19.2 Advanced Systems Engineering
	19.3 MBSE as an Essential Basis
	19.4 The Integrated Approach of SPES and SPES_XT
	19.5 Methodological Extensions: From SPES to ASE
	19.6 Conclusion
	19.7 Literature

	Appendices
	A – Author Index
	B – Partner
	Bertrandt GmbH
	Expleo Germany GmbH
	FEV Europe GmbH
	fortiss GmbH
	Fraunhofer Institute for Open Communication Systems FOKUS
	Fraunhofer Institute for Experimental Software Engineering (IESE)
	Helmut Schmidt University Hamburg
	Humboldt-Universität zu Berlin
	INCHRON AG
	InSystems Automation GmbH
	itemis AG
	Model Engineering Solutions GmbH
	OFFIS e.V.
	PikeTec GmbH
	pure-systems GmbH
	Robert Bosch GmbH
	RWTH Aachen University
	Siemens AG
	Technical University of Kaiserslautern
	Technical University of Munich
	Technische Universität Berlin – Daimler Center for Automotive Information Technology Innovations (DCAITI)
	Technische Universität Braunschweig
	University of Duisburg-Essen, paluno – The Ruhr Institute for Software Technology

	C – List of Publications

