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Abstract—Time-to-market and continuous improvement are
key success indicators to deliver for Industry 4.0 Cyber-Physical
Systems (CPSs). There is thus a growing interest in adapting
DevOps approaches coming from software systems to CPSs.
However, CPSs are made not only of software but also of physical
parts that need to be monitored at runtime. In this paper, we
claim that Model-Driven Engineering can facilitate DevOps for
CPSs by automatically connecting a CPS design model to its
runtime monitoring, in the form of a digital twin.

Index Terms—DevOps, digital twins, evolution of engineering
models, models at runtime, self-adaptation, model-based software
engineering

I. INTRODUCTION

DevOps is a software development approach that bridges the

traditional divide between development (Dev) and operations

(Ops) teams in an organization [1]. The primary goal of

DevOps is to shorten development and deployment cycles be-

tween Dev and Ops based on a more collaborative relationship

and agile collaboration between both factions. To this end,

DevOps introduces automation into all stages of the software

development lifecycle—from integration, testing, and release

to deployment and infrastructure management. As a result,

software development and evolution become more efficient

and reliable.
DevOps practices, while beneficial for traditional software

development, introduce unique challenges when applied to the

engineering of Cyber-Physical Systems (CPSs) [2]. CPSs are

integrations of computation, networking, and physical pro-

cesses, where embedded computers and networks monitor and

control physical processes with feedback loops. The complex,

intertwined nature of these systems, along with their real-

time and safety requirements, poses significant challenges for

DevOps applications.
For us, a digital twin is a software system that leverages

CPS-related models and data to represent, predict, and pre-

scribe CPS behavior for a specific purpose [3]. A digital twin

is used at Ops time and plays the counterpart of a design model

in the modeling environment at Dev time.

In this paper, we claim that Model-Driven Engineering

(MDE) can facilitate DevOps for CPSs. Therefore, we in-

troduce Model-Based DevOps (MBDO) as a novel research

avenue that studies the automatic connections of CPS design

models to CPS runtime monitoring in the form of digital

twins. We contribute (i) a first analysis of major challenges in

MBDO; and (ii) a research roadmap to tackle these challenges

and derive further research opportunities for the study of

MBDO. We motivate and discuss both contributions w.r.t. a

case study demonstrator for sustainable Industry 4.0.

The remainder of the paper is organized as follows. Sect. II

presents MBDO’s potential adoption and its benefits in the

context of the case study demonstrator. Sect. III introduces

foundations and major challenges of MBDO based on which

Sect. IV formulates a corresponding research roadmap. Sect. V

presents related work and Sect. VI concludes the paper.

II. MODEL-BASED DEVOPS FOR

SUSTAINABLE INDUSTRY 4.0 FACTORIES

Industry 4.0 factories leverage advancements from net-

working and digitalization to facilitate flexible and optimized

production processes [4], [5]. Specifically, they enable the

production of customer-oriented solutions from data gathered

during a product’s lifecycle. We expect MBDO to significantly

benefit the evolution of traditional factories towards sustain-
able Industry 4.0 factories [6] because it supports optimizing

the digital twins of factories by reintegrating knowledge from

Ops into Dev models—and thus from the actual production

process into its conceptualization.

To investigate MBDO in the context of sustainable Indus-

try 4.0 factories, we first devise a demonstrator of a simplified

production line. The demonstrator consists of several modules

from fischertechnik construction kits1. We accompany each

module with digital twins so that we can monitor its status,

and study MBDO’s potential for optimizing modules’ design

1https://www.fischertechnik.de/en
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Figure 1: fischertechnik factory setup of our demonstrator. 3-

axis robot, stencil machine, high level racks, oven module, and

turtle bots are marked with arrows.

and behavior models. Hence, we anticipate MBDO to result

not only in optimized production processes but also in valuable

knowledge about the effective application of optimization

techniques for a sustainable Industry 4.0 [7].

Fig. 1 shows the demonstrator and its setup for a manufac-

turing process of frozen yogurt by five production stations.

Each station is accompanied by a digital twin and incorpo-

rates a specialized refinement procedure, i.e., stirring, topping,

and freezing, that enhances the final product. Additionally,

there exist stations for logistics tasks, i.e., warehousing and

sorting. The different production steps require the following

machines shown in Fig. 1:

• 3-axis robots and conveyor belts: Robots transport prod-

ucts between conveyor belts, and equip a grappler to lift

and set products between production stations.

• Stencil machine: Stirring and topping of products.

• High level racks: Sorting and storing of raw materials

and products.

• Oven module: Freezing of products.

• Turtle bots: Transportation of products between stations.

The digital twins of the demonstrator modules are compliant

with ISO 23247 [8] in that they contain a digital representation

of the physical production stations and are managed by a

digital twin entity.

We plan to leverage the digital twins of the production

stations to investigate the challenges, principles, and tech-

niques of MBDO (Sect. III) for the optimization of production

processes along the three categories of sustainability [9]:

• Economic: We aim to apply MBDO to simulate recon-

figurations of the production process for optimization

purposes. Specifically, we plan to explore multiple pos-

sible production layouts to find an optimal layout that

maximizes efficiency.

• Environmental: MBDO-based simulations on this level

provide deeper insights into resource consumption and

emissions of factories that can be balanced with product

quality and process efficiency w.r.t. the economic level.

• Social: We anticipate MBDO to increase transparency for

factory stakeholders as it can make (i) information about

factory operation available in a concern-oriented, model-

based fashion; and (ii) design deviations apparent.

III. MODEL-BASED DEVOPS:

FOUNDATIONS AND CHALLENGES

Models can be leveraged throughout all phases of the

software engineering process [10]. When considering the

two dimensions of DevOps, design models target the Dev

dimension and describe, e.g., requirements, architecture com-

ponents, and functional concerns. Code generation from such

models can increase development efficiency, but also agility

due to facilitated refactoring. Operation models support the

Ops dimension by specifying, e.g., component configurations

and deployments. Following Models@run.time [11], operation

models of application runtime can support the reconfiguration

of running systems from model adaptations [12]. Such runtime
models are thus primitive digital twins of running systems [13].

While both Dev and Ops dimensions can benefit from

MDE, in traditional DevOps the corresponding models are

typically separated. Consequently, there is no direct impact

of the monitored system state on its design models. Software

engineers are thus required to implement, test, and redeploy

design adaptations after recognizing errors in the system state.

In this case, there only exists a manual feedback loop from

Ops to Dev dimension. Self-adaptive systems [14] aim to

automate this feedback loop by means of a reasoning engine

and reflection layer that can also be modeled [12], [15].

However, adaptability is then usually limited to very specific

aspects like web server provisioning and has to be designed

upfront. In addition, there is often no direct connection from

the Dev to the Ops dimension, and thus no relationship

between design and operation models, even though model

transformations could aid in deriving operation from design

models [10]. Furthermore, when retrofitting existing systems

like CPSs with MBDO capabilities (Sect. II), the generation

of runtime models from engineering models and state data

represented by, e.g., log files or databases, becomes crucial to

allow model-based monitoring.

With MBDO as a novel research avenue, we aim to

strengthen the link between Dev and Ops models by a

generic framework that (i) considers the heterogeneity of

design and operation models, yet supports the expression of

their connection in a unifying manner; (ii) provides means

to (semi-) automatically generate digital twins of modeled

systems including connections between design and operation

models on the implementation level; and (iii) enables flexible

navigation between the models. In particular, MBDO focuses

on the bidirectional relationship between design and operation

models, and the systematic derivation of Dev-to-Ops-to-Dev

models. Hence, it improves on the current state-of-research

of integrating MDE and DevOps that leverages MDE tech-

nologies for the development of DevOps platforms and thus

forward engineering alone [16].

The adoption of MBDO in the context of our demonstrator

(Sect. II) enables the generation of (i) a factory module’s digi-

tal twin from its design model; and (ii) a factory digital twin as
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Figure 2: Envisioned impact of MBDO on system development

and CPS operation.

a composition of module twins. However, MBDO also allows

reflecting runtime model changes back to the design models

of digital twins, thereby enabling sustainability improvements

as described in Sect. II. Fig. 2 summarizes our vision of

the MBDO research avenue: Digital twins originate from and

impact system development (Dev), capture the system state

(Ops), and allow navigation between both dimensions.

We see three major challenges in approaching MBDO:

a) Challenge 1: Controlled Updates of Runtime Models:
This challenge concerns the self-adaptation of CPSs. Open re-

search questions in this context comprise (i) how can capturing

runtime data be expressed and configured in a generic, model-

based fashion; (ii) how can a traceable connection between

design and operation models be established; and (iii) how can

updates of runtime models for self-adaptation be controlled?

b) Challenge 2: Digital Twins for DevOps Integration:
For MBDO, it is natural to leverage digital twins as integration

mechanisms that relate design and operation models because

digital twins can store, process, and manage runtime data

efficiently [17]. However, it is currently unclear (i) how digital

twins maintain links between data models that can impact

each other; and (ii) how digital twins can be leveraged as

information and control centers to manage connections of

design and operation models.

c) Challenge 3: Automated Dev-to-Ops-to-Dev:
MBDO’s main goal is the derivation of Dev-to-Ops-to-Dev

models that enable flexible navigation between design and

operation models, and thus reify runtime impact on system

design. This challenge requires reasoning about (i) identifying

deviations between system design and system state in a

generic fashion; (ii) equipping digital twins (Challenge 2)

with support for Dev-to-Ops-to-Dev model derivation; and

(iii) leveraging digital twins to assist CPS development.

IV. RESEARCH ROADMAP

This section presents our roadmap to examine MBDO as a

novel research avenue. Each subsection focuses on a step in

the roadmap and relates to the challenges from Sect. III.

A. Composability of Digital Twins

MBDO focuses on digital twins that reflect connections

between design and operation models (Sect. III). Since CPSs

commonly involve many such models, there likely is a variety

of MBDO-induced digital twins, which poses the question

of their composability and how MBDO’s opportunities for

continuous improvement impact composed digital twins.

In general, we consider a hierarchical approach for the

composition of sub-component digital twins to more complex

digital twins. When using a gateway to provide access to digi-

tal twins, the composition of digital twins incurs a composition

of their gateways—whether for one/multiple or same/different

CPSs. Gateways then ensure digital twin interoperability. Next

to the question how MBDO can be applied to digital twins that

are logically or physically composed, its impact on gateway-

based digital twin compositions also requires investigation.

We attempt to answer these questions and show the feasi-

bility of the MBDO approach on our demonstrator (Sect. II),

which consists of multiple modules with digital twins and thus

comprises a composed digital twin.

B. Definition of a Reference Model of Digital Twins and Data
Models

This step aims to establish a generic foundation to connect

digital twins with data models (Challenge 2 in Sect. III). We

reify this foundation as a reference model that conceptualizes

our common understanding of the core elements of digital

twins and data models, and, specifically, the relationship

between them. The reference model will enable us to leverage

existing insights and methodologies for digital twins and data

models in a combined fashion, making it possible to employ

digital twins as mediators between different models of CPS

runtime data.

C. Enabling the Modeling of Ops Activities

This step addresses Challenge 1 (Sect. III), and focuses

on the design and implementation of model-based means

for the representation of runtime data in the Ops phase. To

this end, we first devise a conceptual framework for runtime

data definition and subsequently a Domain-Specific Language

(DSL) for this purpose. A core feature of this DSL will be

the model-based expression of associations between captured

runtime data and digital twins. In addition, we plan to study

transformations of monitored state data to DSL models.

Starting from the aforementioned conceptual framework, we

investigate the development of a system to query runtime data.

This query system shall enable the extraction of information

about past, present, and future states of CPSs governed by

digital twins and their associated operation models. Conceptu-

ally, the query system establishes the linkage between models

created during the design phase of a CPS, e.g., state machine

431



models, and their runtime representation, e.g., the history of

reached states. It is thus crucial to MBDO.

The differentiation between design and runtime models is

primarily driven by the level of abstraction inherent to the

model-based design of digital twins and the possibility of

encountering unforeseen states during CPS runtime. Conse-

quently, we will also have to consider the safe handling of

self-adaptation of design models during runtime.

D. Enabling the Modeling of Dev Activities

This step is closely related with the previous one and

focuses on investigating the modeling aspects of activities in

the Dev phase. For this purpose, we can draw on a significant

body of knowledge resulting from intense research activities

concerning the engineering of digital twins with MDE princi-

ples and techniques. We plan to capture this knowledge in the

form of a DSL for Dev activities in model-based digital twin

engineering and integrate this DSL with the one for runtime

data. As a result, we can effectively address and explore Dev

activities in MBDO w.r.t. the Ops phase (Sect. IV-C) and

Challenge 2 (Sect. III). An interesting question will be the

effective handling of models that were created from different

perspectives and development teams.

E. Establishing the Dev-to-Ops-to-Dev Modeling Continuum

This step tackles Challenge 3, Part (i) in that it establishes

the foundations for a continuum between Dev and Ops. This

continuum relies on the DSLs for Ops and Dev activities, and

their integration, which we expect to support the automated

synthesis of Dev-to-Ops-to-Dev models (Sect. IV-F).

However, the step also concerns Challenge 2 as our demon-

strator’s digital twins (Sect. II) will also provide control centers

that incorporate Dev-to-Ops-to-Dev information and make it

available to end users.

F. Automatically Synthesizing Dev-to-Ops-to-Dev Models

This step addresses Challenges 3, Part (ii) to automatically

synthesize Dev-to-Ops-to-Dev models. For this purpose, we

draw on existing transformation frameworks to specify and

execute model transformations from engineering and design

models, including information about machine structure, geom-

etry, kinematics, and behavior, to operation models. We apply

these models to our demonstrator (Sect. II) to subsequently im-

prove MBDO’s conceptual frameworks and solution artifacts.

Therefore, it is important to automatically identify deviations

between the demonstrator’s design and current state, allowing

for design model updates that reflect the system state accu-

rately. Ultimately, this would enable prompt adjustments and

improvements in response to changing production conditions.

G. Exploration of Further Research Opportunities for MBDO

Finally, we explore further opportunities to study MBDO

and derive future research questions (Challenge 3, Part (iii)).

For example, we anticipate the provisioning of a framework

for linters that are dedicated to quality-of-service properties

of CPSs under MBDO control. These linters could assist

developers at Dev time with estimations about Ops time

properties. Hence, they would particularly help developers to

better understand a system’s behavior prior to its deployment

and also make it possible to evaluate different deployment

strategies already at Dev time.

V. RELATED WORK

We present work related to MBDO w.r.t. model-driven engi-

neering for Industry 4.0 (Sect. V-A), digital twins (Sect. V-B),

and DevOps (Sect. V-C).

A. Model-Driven Engineering for Industry 4.0

Bellavista et al. [18] present a conceptual architecture for a

digital twin of Industry 4.0 factories. The twin is represented as

a containerized service with several interfaces, each of which

providing specific functionalities to physical machines or other

digital services. The digital twin service relies on a model that

covers its state, design, and behavior. The presented architec-

ture employs several software design patterns to describe (i)

the relations of the twin service’s components; (ii) the relations

between the service and its external environment; and (iii) the

twin’s adaptability to various contexts. While this approach

proposes a concept for digital twin implementation, other than

MBDO it neither considers the impact of runtime data on the

twin’s design model nor the derivation of operation models

from runtime data.

B. Model-Driven Engineering for Digital Twins

There exist some MDE approaches which support the en-

gineering of digital twins with generative methods. However,

none of these aim to cover the whole lifecycle of original

systems, and the relationships between Dev and Ops time

using models.

[19] uses MDE for creating digital twin architectures based

on architecture description languages. [20] proposes a frame-

work for MDE and maintenance of digital twin infrastructures

based on AutomationML2 models. [21] introduces a modeling

language and code generation framework for the monitoring of

mobile CPS. [13] proposes an approach to generate interfaces

between a CPS and its digital twin. Focusing on digital

twin visualization functionalities, [22] describes how to derive

digital twin cockpits from models and [17] introduces an

approach to derive process-aware digital twin cockpits from

event logs.

C. Model-Driven Engineering for DevOps

Adapting models to the context, particularly during runtime,

is one of the challenges of digital twins [23]. However, they

are either dedicated to pure software architecture models,

rather than CPSs, or do not recognize the Dev-to-Ops-to-Dev

continuum. Szvetits and Zdun [24] conducted a comparison of

existing work for the construction of runtime models. mRU-

BIS [25] provides runtime self-healing and self-optimization

capabilities for software architectures but is not dedicated to

digital twins. Muñoz et al. [26] proposed a method to align

2https://www.automationml.org
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the traces produced by original systems with those produced

by their digital twins, enabling the runtime to evaluate twins’

consistency with the real world. Hughes et al. [27] devised

an approach that leverages DevOps to build digital twins

and incorporate feedback for model improvement. However,

runtime models can only be improved through the construction

of a new model that reflects Ops feedback. There is no

construction of multiple models in Dev and Ops phases with

a continuous evaluation of their deviation at runtime. Raţiu

et al. [28] introduce the notion of reactive links to connect

properties of multi-domain engineering models and propagate

property changes between models as they occur based on

a set of predefined actions. We consider reactive links a

potential foundation for expressing links between design and

operation models. However, we expect MBDO to require the

specification of more complex and coarse-grained actions for

change propagation and the corresponding triggers.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented Model-Based DevOps — a novel

research avenue that connects the design models of cyber-

physical systems with their runtime monitoring in the form

of digital twins. We expect MBDO to benefit the sustain-

ability of factories as it enables to (i) increase production

process efficiency from simulated reconfigurations; (ii) assess

and optimize resource consumptions and factory emissions

w.r.t. product quality and process efficiency; and (iii) increase

transparency for stakeholders in a concern-oriented fashion.

Starting from a case study demonstrator for sustainable In-

dustry 4.0 (Sect. II), we identified foundations and major

challenges for MBDO’s investigation (Sect. III), and derived

a corresponding research roadmap (Sect. IV).

In future work, we approach this roadmap for a principled

and rigorous investigation of MBDO, its theoretical framework

and practical implications for CPS design and operation.
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