IEI o EI [KPRR21] H. Kausch, M. Pfeiffer, D. Raco, B. Rumpe:

* Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example of SysML Architecture and Behavior Diagrams.
- In: Proceedings of the Software Engineering 2021 Satellite Events, CEUR 2814, Feb. 2021.

www.se-rwth.de/publications/

S. Gotz, L. Linsbauer, 1. Schaefer, A. Wortmann (Hrsg.): Software Engineering 2021 Satellite Events,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2021 1

Model-Based Design of Correct Safety-Critical Systems using
Dataflow Languages on the Example of SysML Architecture
and Behavior Diagrams

Hendrik Kausch! Mathias Pfeiffer! Deni Raco! Bernhard Rumpe!

Abstract: An ADL-agnostic mapping from dataflow languages into a theorem prover is developed. A
stream-based semantics for key modeling concepts based on the mathematical framework FOCUS
and the theorem prover Isabelle is proposed. SysMLv2 Part Definitions, Requirement Definitions and
State Definitions are automatically mapped to equivalent logical structures in Isabelle for verifying
system design against requirements. A Pilot Flying System adapted from NASA and Rockwell Collins
is used as running example.

1 Introduction

The goal of this paper is providing SysML [FMS14] users with a verification infrastructure
by an automated mapping in a theorem prover. There are a number of reasons motivating this
contribution: the increasing importance of model-based development in industry, SysML
being currently a well-accepted systems-engineering language family with large tool support,
the importance of model analysis to facilitate certification in safety-critical domains, as well
as the high reliability provided by theorem provers.

There have been several related contributions on mapping a domain-specific language into a
reasoning infrastructure. For example, [KLS18] presents an automated translation from the
systems engineering modeling language SysML into the input languages of the NuSMYV,
Prism and Spin model checkers. Palladio Component Model for model-driven performance
prediction [BKRO9] offers a language for a component-based architectural modeling, and
a model-transformation that translates these models into event based simulation code,
which then gets executed. In comparison, the approach of our paper focuses on the model
level only, achieving a verified (with respect to system requirements) executable model
(represented by a deterministic state machine), but not discussing further the generation
of object code from this model. Also, MechatronicUML offers a UML profile to model
mechatronic systems using model-based design and providing formal analysis (e.g. by a
translation to the model checker UPPALS [Gel5]). Similar to our proposed approach, it is
based on well-defined semantics. In comparison to our proposed method, model checkers
are known to have in general a higher automation degree. They suffer though from the
state-space-explosion problem, where the verification effort increases exponentially with

4
T
Q,
Te}
|
<
i
G
)
Q,
@
Q,
~
<
—
[e0)
q
—
O
>
~
o
g
O
19p]
T
a4
o)
[£a]
O

I RWTH Aachen University.

@GD Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

2 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

the state space of the system. Hence it affects in general software verification more than
hardware verification. Model checkers usually mitigate this by building equivalence classes
of the state space of the system at the expense of accuracy. Theorem proving techniques
achieve on the other hand a better coverage and suffer less from the state-explosion problem,
where the proof size grows rather linearly with the increasing system size. Furthermore, the
ADL MontiArc [HRR12] has been connected in our previous work with the theorem prover
Isabelle by a code generator [Kr19, Ka20a, Ka20b].

A challenge is represented by the fact that SysML has been subject to fragmentation caused
by intentionally vague syntax and semantics. Statecharts for example, one of the SysML
sub-languages, counted over 20 different variants and respectively different interpretations
at one point [VdB94]. Currently, a new version SysMLv2 [FS20] is in development. It aims
to defragment the modeling landscape by defining an unambiguous meaning for model
elements and by providing concrete textual syntax, which facilitates model processing. If
SysML models shall be used not just as means of communication, but also for analysis and
reasoning about system models, then unambiguous semantics [GB11] is required.

This paper associates a general semantical foundation to dataflow-based languages, enabling
in particular reasoning over SysMLv2 specifications. The creation of a sound generic
specification and verification infrastructure for dataflow-based modeling languages in the
theorem prover Isabelle has been initiated in our previous work [Bii20]. The stream-based
methodology FOCUS [BSO01] is used as mathematical underpinning and is encoded in
Isabelle. The semantics of a (non-deterministic) component is a (set of) stream processing
functions (SPFs), where streams describe the dataflow on communication channels. The
behavior of atomic components is specified by state machines or predicates over the
components input and output streams. The encodings in the theorem prover, consisting
mainly of type definitions, function definitions, and theorem definitions, enable reasoning
over system models.

By generalizing our previous translation from MontiArc to Isabelle, an ADL-agnostic code
generator mapping to the Isabelle stream-based encodings is created as depicted in Fig. 1.
SysMLV2 is used as another example of a modeling language, where SysML specifications
are analogously also semantically understood as FOCUS dataflow networks.

This paper thus extends previous works by the following:

. factorizing the commonalities of ADL-to-Isabelle code generation into a generic
framework, and thus minimizing ADL-specific development costs for future exten-
sions,

. reporting on the results of mapping SysMLv2 Part Definitions, Requirement Defini-
tions and State Definitions into equivalent structures in Isabelle using an avionics
case study as running example.

The remainder of this paper is structured as follows: First, a running example is presented.

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 3

Afterwards, the generic semantical mapping is described. Next, the implementation of the
generic ADL-agnostic framework using an intermediary representation is presented and
results on mapping SysML models to Isabelle are reported. Finally, a conclusion is presented.
Supplementary meta models, formal textual specifications and graphical representations are
provided in an Appendix.

2 Example of a Cyber-physical Avionics System

A possible design of a Pilot Flying System (PFS) adapted from a case study of NASA
and Rockwell Collins [CM14] is presented. This is a simple example, yet representative
for a class of avionic protocols (Fig. 2 shows also a graphical overview). The PFS system
consists of 4 components. The two components on the left and right side are redundant flight
guidance system (FGS) and later referred to as side component. Each of them communicates
through a bus with the other side component. Additionally, a pilot might interact with the
system by using a transfer switch which sends a signal to the side components. There are a
couple of system requirements (SysReqs) to the whole system, for example that at least one
Side component is active at all times or that in the beginning one component is active and
the other is inactive.

The systems components can start by being underspecified and shall be step-wise refined in
a correct manner (i.e. without losing the ability to fulfill such wanted SysReqs). The side
and bus components form a feedback cycle and this increases the complexity significantly
compared to sequential or parallel compositions. The complexity is further amplified by
having a highly-underspecified context in form of disturbances for each component, which
uncontrollably dictate whether a component is able to function correctly. Thus, the PFS
systems components might separately fail to act for an arbitrary time or be completely faulty.

While the disturbance context cannot be controlled, the system developer can make
assumptions about it and thus, e.g. by means of the prominent assumptions and guarantees
specification style [MC81, AL94, AL95, BSO1]. Properties of components are hereby
described as a guaranteed behavior if its context behaves according to the assumptions.

Refinements of the system components can take the form of implementation-close state-based
specification styles (Fig. 3) towards the final phases of the development cycle. While being
relatively low-level and not necessarily deterministic yet, this style does guarantee that the
specification is consistent (guarantees the existence of an implementation, [Kr19, Ka20a]).
The interface of the side component has three input channels and one output channel. Its
inputs channels are the one receiving signals from the bus component, the transfer switch
forwarding signals from the pilot and the environmental disturbances. Its produced output
is then send via another bus to the other side component. Internally, it is defined by a
state-machine with input and output [Ru96]. Transitions and their labels have been omitted
for simplicity.

4 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

3 Verification Tool-Chain

This paper gives a stream-based semantics to a class of dataflow modeling languages
by identifying their commonalities and then mapping these into an Isabelle encoding of
FOCUS [BSO01]. The Appendix A offers a more detailed introduction.

3.1 The Tool-Chain

In Fig. 1 the new design of the updated ADL-agnostic Tool-Chain is depicted. System
models and desired properties/requirements are transformed to Isabelle code. This generated
code is divided in different theory files for each component and system. These theory files
contain generated model specific Isabelle datatypes, functions and theorems with generated
proofs over datatypes and functions. The underlying implementations of core constructs of
FOCUS in Isabelle (core in Fig. 1) are on the other hand imported by the model specific
generated Isabelle files. Thus, the structure and semantics of the input modeling language is
based on the FOCUS/Isabelle encoding.

! R
| | MontiArc |1 ‘5’-' ,,,,,,,,,,, .
i Transformer DL t ‘ S [o Proof |
B—v‘ -agnostic | | | Al-based | I
Model | Transformer —3>Theory I Tools _N; Counter i
i SysML } | ! example |
1| Transformer } E i N /
\\\ } }% }
,,,,,,,,,,, ‘ ! |
[—
| |Core | |
\

Fig. 1: Overview of our architecture description language (ADL)-agnostic verification framework

Our framework is updated in this work to be flexible in regards to the ADL being used. This
is achieved by using an ADL-agnostic intermediary representation. For this, the ADL is first
transformed into this intermediary representation. From there, a generator transforms the
intermediary representation into Isabelle theories. These generated model specific theories
integrate then with the core FOCUS/Isabelle implementation. After their generation, the
Isabelle theories are processed by Al-based automated tools. These include an integration
of the proof-finder Sledgehammer [PB10], enhanced with a Machine Learning filtering
mechanism for prioritizing proofs, as well as scripts of heuristic common proof-finding
activities which simulate human Isabelle users. Reasoning activities are intended to optimize
certification costs and efficiency and consist usually in finding proofs, counterexamples as
error detection (e.g. for refinement relations), as well as simulation execution.

Finally, architecture specifications of systems can become quickly overwhelming and
difficult to handle with increasing size. The illustration of textual specifications by means of

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 5

graphical representation of the hierarchical structure is a helpful step towards practicability.
For this, an Integrated Verification Environment (IVE) was extended as a graphic interface
to support operating the Tool-Chain and its verification process. An example of a modular
system development accompanied by compositional verification is demonstrated in a short
video [Ka20c].

4 ADL-agnostic Verification Framework

Until now, only MontiArc [HRR12] models were transformable to FOCUS/Isabelle by our
tool-chain. This paper extends the tool-chain by generalizing ADL unspecific parts of the
Isabelle code generation and reports on ongoing work of adding SysML as another possible
user input language.

Based on Sect. 3.1 and well-known methodological requirements mentioned in Appendix A,
this chapter starts by introducing the intermediary representation’s meta model. These are
the constructs and rules for building the intermediary representation of a specific system.
This will determine the expressiveness of our framework, as it defines the maximum amount
of information that can be formalized and thus verified.

4.1 ADL-agnostic Meta Model

The main concept of the intermediary representation’s meta model is a stream processing
specification (SPS) (set of SPFs). Every component that shows a certain behavior, be it
explicitly defined (e.g. by a state machine) or implicitly inherited via composition, can be
modeled as such a set of SPFs. Fig. 4 shows SPSes and directly related concepts in the
form of a class diagram (CD). CDs model classes (concepts) as named boxes with optional
properties. Relations between those concepts are depicted as connections.

Each SPS defines an input and output datatype. These datatypes in turn define the channels
over which the SPS communicates. Each channel transports one strongly typed stream of
messages. These streams are also referred to as communication histories.

SPSes are divided into two categories: Definitions and Instances. A Definition describes
behavior and interface while an Instance is one of potentially many occurrences or usages of
a Definition. A Definition can have Parameters which can be set differently in each Instance,
as explained in List. 13. A Definition can also be a Refinement of other Definitions.

A Definition is either a state based behavior specification Automaton, a history based
behavior specification (abbreviated from now on as Specification), or a Composition.

State based behavior specifications enable imperative behavior modeling. Our meta model
implements I/O automata [Ru96] adapted to input and output Channels. An I/O automaton

6 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

in general is defined as a five tuple (S, 1, O, A, Init) of state space S, input and output
channel sets I respectively O, transition relation A, and set of initial configurations Init.
Fig. 5 overviews the intermediary representation’s meta model for Automatons. Modeling
infinitely large state spaces is achieved using Variables. The input and output Channels of
the respective Datatypes are omitted as they were already introduced with Fig. 4.

A transition relation A is a subset of (X I x S x 0*). The notation I** denotes stream tuples
enhanced with channel labels from the set of labels I (also known as stream bundles [Ru96]).

The transition relation’s intermediary representation looks as follows: A starting State and
input determine a next State and Outputs. Our implementation enables infinitely large
transition relations via classes of transitions. A Transition is a collection of transitions
according to their preconditions, their target State, and their Output. The preconditions
(guard) determine whether the transition is ,,active* and allowed to proceed (fire). Guards
can check state variables and inputs using predicates. Those predicates contain Isabelle
compatible Boolean expressions and are stored as strings for flexibility.

States (or their VariableValues) and Outputs can similarly use such predicates to define
potentially infinitely large sets of alternative variable and output valuations. We use
a technique based on predicate set builder notation, from now on referred to as set
comprehension. Both direct valuation and set comprehension use the same intermediary
representation. The two modes are distinguished by an additional isComprehension flag. If
comprehension is on, value describes a selector for a set of values instead of a single one.
Programmatically speaking, from all possible values (of fitting type), one that matches the
selector is selected ,,at random* and then assigned to a variable or output. See Fig. 6 for
a class based overview. Please find an example of set comprehension in Sect. 4.4.1 and
Fig. 12.

The initial configurations Init generally are a subset of (S X 09), i.e., a relation between
initial state S and output bundle O*. Their implementation is fundamentally identical to the
Transitions.

History based Specifications enable declarative behavior modeling. They specify desired
behavior via relations between input and output streams, stored as String-based Isabelle
predicates. These predicated select the desired behaviors from the set of all behaviors, i.e., the
set of all implementable functions. This means they effectively employ assumption-guarantee
behavior modeling.

Finally, non-atomic components’ behavior implicitly results from the flow based composition
of their parts. These parts are called Instances. They represent occurrences of a Definition
and cannot exist outside of a Composition. An Instance might assign ParameterValues to its
Definition’s Parameters. Fig. 7 gives an overview. Instances are important as they allow
re-use of existing descriptions in new locations. This greatly reduces verification complexity
and cost. A Definition acts as a central library for all Instances thereof. The Definition stores
its architectural and behavioral description, as well as any additional properties and obtained

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 7

verification results of those descriptions. The Instances can then access this information
without having to reproduce it. We achieve this library re-use functionality by connecting
each Instance to the Definition. The Instance merely wraps the Definitions input and output
Datatype to adapt it to each usage location. This connects the appropriate Channels via
internal mappings.

4.2 Verification of SysML Models

We use SysML to exemplarily show the usage of a different (from MontiArc) modeling
language as input for our Isabelle verification infrastructure. The official SysMLv2 specifi-
cation is, as of writing this paper, not released yet and does not include a concrete semantics
definition. We thus took a subset of available language components and gave them a dataflow
semantics. This subset was selected to allow us to describe state based behavior, history
based behavior, and composition, as well as parameters for and refinement relations between
all three.

We now detail this language subset and its syntax as we understand it from current
development versions of the SysMLv2.

4.2.1 State Definitions

A State Definition can be used in a Part Definition to describe the behavior. The example
in Listing 1 defines the Bus subsystem introduced in Sect. 2. At first, a Part Definition
(PD) defines its name and parameters. The PD also indicates potential refinement relation
via the specializes keyword (abbrev. ":>"). The PD’s interface is defined using the port
keyword, followed by a unique name and a type. The type of ports is defined separately in
so called port definitions. It suffices to say that port definitions define a name and individual
communication lines. Each communication line has a direction (in or out) and a type (e.g.,
Boolean). We restrict port definitions to one communication line called val for simplicity.

The PD does not directly specify behavior but rather delegates it to an State Definition
(SD). To do so, an occurrence of a state based description is declared using state and then
given a name. The type of description is selected by preceding it with a colon. All relevant
communication lines of the ports, as well as parameter are passed through to the SD in a
comma separated list.

Listing 2 shows the partial BusAutomaton that is being referred to in the PD. The SD is based
on the state based behavior of the bus subsystem introduced in Sect. 2. Variables, states,
and transitions are be defined in the body of the SD, as is shown in List. 3. The variable
defined there will be used to store previous messages. Transitions specify the behavior. A
transition uses current state and guard to determine whether it is active. If it fires, the action
is executed, sending values to ports and variables. Lastly, the automaton switches into the

8 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

next state. The example transition in Listing 4 reacts according to an external disturbance
dist. If the automaton is in state Single (line 2) and no disturbance occurs (line 3), the
message is transmitted and the /ast variable stores the transmitted message (line 4).

4.2.2 Requirement Definitions

The example in Listing 5 shows a Requirement Definition (RD) for the Side component
introduced in Sect. 2. Similar to SDs, a PD definition starts by defining the parameters and
interface of the component. The RD specifies which PD is to be restricted via the subject
keyword, followed by colon-separated handle and type. The subjects behavior is restricted
using predicates over input and output history.

The possibility to formulate expressions is of key concern. We used the existing MontiCore
(framework for developing domain specific languages (DSLs)) expression library [HR17]
here. The predicate uses the previously linked Side component via its handle side. The
predicate models an implication using implies and a conjunction using & &.

4.2.3 Composition

The example in Listing 6 shows the PFS component introduced in Sect. 2. After defining
the interface and the disturbance context (described partially in line 2-5) as described in
Sect. 4.2.1, the parts are then defined (line 7-11) in the body. The parts are connected to
each other and to the compositions interface via communication channels. These channels
are created using the connect keyword, followed by a source port, the keyword 7o, and a
target port.

4.3 Transformation from SysML to Intermediary Representation

Based on well-known concepts for system modeling such as modularity, underspecification,
composition, and refinement (Appendix A), we crafted an intermediary representation
as abstraction between language specific notation and verification framework. Then, we
selected a subset of the SysMLv2 language family that allows us to model all intermediary
concepts. Now, we show a mapping of SysMLv2 models to our intermediary representation.
This effectively gives SysMLv2 (or a subset thereof) a precise mathematical semantics
(please refer to Appendix E for intermediary diagrams).

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 9

4.3.1 State Definitions

The accompanying PD is used to create the input and output Datatype. Each port results in
a Channel with appropriate name and Isabelle trype. The Parameters are similarly derived. If
specialize’d components are specified, a Refinement (see Fig. 4) relation is created linking
the refined (the PD with the keyword) and the original. An example for the Bus SD from
Sect. 4.2 is shown in Fig. 8.

The SD is then mapped to an Automaton. The StateSpace is derived from States defined
via state keywords, and Variables defined via value keywords. An example based on the
state space from Sect. 4.2 is shown in Fig. 9. The Transitions are essentially one-to-one
mappings of the abstract syntax of transitions in SysML. Only the guard and values are
transformed to valid Isabelle expressions. An example based on the transition from Sect. 4.2
is shown in Fig. 10.

4.3.2 Requirement Definitions

RDs are mapped to Specifications. Each predicate is transformed into a valid Isabelle
predicate and then stored in a list of strings.

4.3.3 Compositions

The parts of a compositions are mapped to Instances. The "wiring"denoted by connect is
transformed into Channels and a mapping of those Channels. We then calculate input and
output Datatype for each Instance as the set of Channels that are connected to the Instance
in question. Finally, we construct the internal mappings (Sect. 4.1) from Instance datatype
to Definition datatype. Fig. 11 shows a partial object diagram (OD) based on the PFS model
from Sect. 4.2.

4.4 Mapping the Intermediary Representation to FOCUS/Isabelle and Evaluation

As next, we develop a mapping from the intermediary representation to our existing
FOCUS/Isabelle implementation [Kr19, Ka20a]. This mapping enables tool-supported
automated verification and reasoning. Please see Appendix F for details on the generated
Isabelle specifications of the running example. We then evaluate our results by successfully
verifying a System Requirement of the PFS.

10 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

4.4.1 Automata

We first encode the Automaton in Isabelle straight forwardly and then convert to an SPS in
Isabelle internally. For this, we use a translation to a set of functions according to [Ru96]. This
reduces the complexity of encoding, i.e., the gap between meta model and Isabelle concepts,
increasing the encoding’s confidence. This also allows us to implement the translation in a
verifiable environment (Isabelle), further improving confidence in its correctness.

The transition function is the aggregation of all distinct transitions. We use the term transition
loosely here, denoting not just a single transition in the theoretical sense but rather the
modeled entity Transition. This entity could, as explained in Sect. 4.1, define multiple or
even infinitely many transitions. Each transition is printed to a separate precondition (guard)
and matching result. This separation enables better counter example finding (via simulation
execution).

The guard predicate in Listing 7 is generated from the first transition of the Bus automaton
in Sect. 4.2.1. The guard determines the activeness of the transition using a Boolean, a state,
and a Boolean tuple. The state s is checked to be Single and dist to be False at the same
time via conjunction (A).

An exemplary result of a transition based on the Bus from Sect. 4.2.1 is listed in List. 8.
Non-determinism or underspecification is encoded as a set of alternatives. The right hand
side of the equality specifies a singleton set of tuples, consisting of a target state Single with
variable value i, i.e., storing the current input. The output is set to be equal to the input i.

The actual transition shown in Listing 9 then joins guard and result. If the guard holds, the
result is produced. Otherwise an empty set is returned, denoting an inactive transition, i.e.,
preconditions were not met.

The use of a guard expression and set comprehension for both outputs and state variables
enables the modeling and encoding of potentially infinitely many transitions. As an example,
please consider the set comprehension for Outputs in Fig. 12. The (simplified) result is
shown in List. 10, encoded as a set constructed using set comprehension.

Furthermore, in case the transition function is known to be finite, we print a second version
of the transition function using finite lists instead of potentially infinitely large sets. This
enables us to randomly select a transition, making the automaton executable. The execution
can be handled by Isabelle directly or externally via an integrated code export mechanism.
The execution of automata enables counter-example finding, reducing the costly verification
process by finding mistakes early. Line based error reporting allows developers to continually
and purposefully refine their model.

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 11

4.4.2 Specifications

The printing of Specifications is straight forward. The set of predicates acts as restrictions
on the set of all possible SPSes. The predicates reason about the entire input and output
history, i.e., Streams.

The example in Listing 11 shows a shortened predicate pred for the Side RD introduced
in Sect. 4.2.2. Parts of input stream types are omitted for readability. The function takes
parameters and all input and output streams as input and returns a Boolean.

The actual behavior, i.e., the SPS or set of SPFs is then defined by employing predicate
based set building (see Sect. 4.4.1). All possible SPF spf are filtered by all predicates. This
makes Specifications potentially not consistent, i.e., it is possible to model contradicting
predicates that leave an empty set of possible implementations.

A simplified version of the Side SPS based on the above predicate pred is shown List. 12.
The input of (omitted) Boolean parameter initial results in a set of function from bundles of
streams over the channel set I to bundles of streams over O. Using a set of functions allows
non-determinism or underspecification.

4.4.3 Compositions

Compositions merely set or pass-trough parameters to the Instances and then apply the
general composition operator ([Kr19,Ka20a]) X) to join the parts. Composition is both
associative and commutative, meaning that the order of composition does not change the
resulting SPS.

The PFS composition is shown in List. 13. As it does not have parameters, the empty type
unit is used for its parameters. Parameter values (True and False) are set according to the
modeled parts in SysML as defined in List. 6.

4.4.4 Refinement and Evaluation

Refinement relations are printed into theorems. The theorems state that the behavior (as a
set of functions) of a refined component is a subset of the behavior of the original. For the
Refinement between UnreliableBus and Bus as introduced in Sect. 4.2.1, is shown in Listing
14.

Contrary to the architecture and behavior encodings, the refinement Isabelle theories are
subject to further optimization. The MontiBelle framework uses proof and counterexample
finding tools such as Sledgehammer [PB10], PSL [NK17], Quickcheck [CH11,Bul2], and
Nitpick [BN10] in later stages of the verification pipeline. These tools are supported by a

12 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

library of proof templates, applied automatically during transformation. Counterexamples
can be shown to the user while proofs are injected and saved in the appropriate theory.

Finally, we evaluated our tool-chain by verifying a System Requirement of the PFS. It was
shown that, at the beginning, the left pilot side is active and the right one is inactive. This
property holds for the Isabelle specification of the overall PES. The behavior of the Isabelle
representation of the PES is derived as follows. State Definitions in SysML are transformed
into Isabelle automata. These automata are transformed by a semantical mapping [Ru96]
into stream processing functions. The stream processing functions of all atomic components
are then composed using the encoded composition operator of FOCUS in Isabelle [Bii20]
to form the specification representing the behavior of the PFS. It is then shown that the
property is fulfilled by the systems’ specification. The core encodings of composition over
functions [Bii20] enabled a highly automatic, easy-to-find proof (see theorem ,,SysReq* in
Appendix F).

5 Conclusion

In this paper we presented a general concept for verifying properties of systems developed
using dataflow languages. First, we highlighted concepts such as modularity, underspecifica-
tion, composition, and refinement as important for a coherent systems engineering method.
We then developed an intermediary representation based on these concepts with FOCUS as
foundation in mind. We used this representation to factor out the ADL-agnostic part from
an the existing ADL-specific code generator. This allowed us to isolate our framework from
specific ADLs.

Finally, we reported about trying out the generic infrastructure by enabling the use of yet
another modeling language, SysMLv2, as user input language, by transforming SysML
models to our intermediary representation’s meta model and then mapping these into
equivalent Isabelle constructs. Deriving the correctness of a System Requirement of the
Pilot Flying System, as shown in the supplementary artifacts consisting in specifications
and theorems, provides high confidence on the correctness of the model transformations.
Furthermore, we believe that a wider-spread accepted semantics for (at least a subset of)
SysML would be highly desirable for verification and reasoning in general.

In the future, it is planned to extend the support for additional modeling languages, as well
as revising our current understanding of the already supported structures. We think that our
intermediary representation proved to be sufficiently generic during this work. We expect
it to be well extendable for future modeling languages, and it should reduce development
costs for ADL-specific code generators. However, the intermediary representation’s meta
model is still subject to constant improvements.

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example

of SysML Architecture and Behavior Diagrams 13

Bibliography

[AL94]

[AL95]

[BKR09]

[BN10]

[BRO7]

[BSO1]

[Bul2]

[Bii20]

[CHI1]

[CM14]

[FMS14]

[FS20]

[GB11]

[Gel5]

[HR17]

Abadi, Martin; Lamport, Leslie: Open systems in TLA. In (Anderson, James; Peleg, David;
Borowsky, Elizabeth, eds): Proceedings of the thirteenth annual ACM symposium on
Principles of distributed computing - PODC *94. ACM Press, New York, New York, USA,
pp- 81-90, 1994.

Abadi, Martin; Lamport, Leslie: Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 17(3):507-535, 1995.

Becker, Steffen; Koziolek, Heiko; Reussner, Ralf: The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 8§2:3-22, 01 2009.

Blanchette, Jasmin Christian; Nipkow, Tobias: Nitpick: A Counterexample Generator for
Higher-Order Logic Based on a Relational Model Finder. In (Kaufmann, Matt; Paulson,
Lawrence C., eds): Interactive Theorem Proving. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 131-146, 2010.

Broy, Manfred; Rumpe, Bernhard: Modulare hierarchische Modellierung als Grundlage
der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3-18, 2007.

Broy, Manfred; Stglen, Ketil: Specification and development of interactive systems: Focus
on streams, interfaces, and Refinement. Springer, New York, 2001.

Bulwahn, Lukas: The New Quickcheck for Isabelle. In: Certified Programs and Proofs,
volume 7679 of Lecture Notes in Computer Science, pp. 92-108. Springer Berlin Heidelberg,
2012.

Biirger, Jens Christoph; Kausch, Hendrik; Raco, Deni; Ringert, Jan Oliver; Rumpe,
Bernhard; Stiiber, Sebastian; Wiartalla, Marc: Towards an Isabelle Theory for distributed,
interactive systems - the untimed case. Technical Report AIB-2020-02, RWTH Aachen,
January 2020.

Claessen, Koen; Hughes, John: QuickCheck: a lightweight tool for random testing of
Haskell programs. Acm sigplan notices, 46(4):53-64, 2011.

Cofer, Darren; Miller, Steven: DO-333 Certification Case Studies. In (Badger, Julia M.;
Rozier, Kristin Yvonne, eds): NASA Formal Methods. Springer International Publishing,
Cham, pp. 1-15, 2014.

Friedenthal, Sanford; Moore, Alan; Steiner, Rick: A practical guide to SysML: the systems
modeling language. Morgan Kaufmann, 2014.

Friedenthal, Sanford; Seidewitz, Ed: A Preview of the Next Generation System Modeling
Language (SysML v2). 09 2020. https://www.ppi-int.com/ppisyen95/.

Graves, Henson; Bijan, Yvonne: Using formal methods with SysML in aerospace design
and engineering. Annals of Mathematics and Artificial Intelligence, 63(1):53-102, 2011.

Gerking, Christopher; Dziwok, Stefan; Heinzemann, Christian; Schifer, Wilhelm: Domain-
Specific Model Checking for Cyber-Physical Systems. MoDeV VA, Models, 09 2015.

Holldobler, Katrin; Rumpe, Bernhard: MontiCore 5 Language Workbench Edition 2017.
Aachener Informatik-Berichte, Software Engineering, Band 32. Shaker Verlag, December
2017.

https://www.ppi-int.com/ppisyen95/

14 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

[HRR12] Haber, Arne; Ringert, Jan Oliver; Rumpe, Bernhard: MontiArc - Architectural modeling of

[Ka20a]

[Ka20b]

[Ka20c]

[KLS18]

[Kr19]

[MCS81]

[NK17]

[PB10]

[Ru96]

[VdB94]

interactive distributed and cyber-physical systems, volume 2012,3 of Technical report /
Department of Computer Science, RWTH Aachen. RWTH and Technische Informations-
bibliothek u. Universititsbibliothek and Niedersidchische Staats- und Universititsbibliothek,
Aachen and Hannover and Géttingen, 2012.

Kausch, Hendrik; Pfeiffer, Mathias; Raco, Deni; Rumpe, Bernhard: An Approach for
Logic-based Knowledge Representation and Automated Reasoning over Underspecification
and Refinement in Safety-Critical Cyber-Physical Systems. In: SE-WS 2020: Software
Engineering workshops 2020 : combined proceedings of the workshops at Software
Engineering 2020, co-located with the German Software Engineering Conference 2020
(SE 2020) : Innsbruck, Osterreich, March 05, 2020. volume 2581 of CEUR workshop
proceedings, 17. Workshop Automotive Software Engineering, Innsbruck (Austria), 24
Feb 2020 - 25 Feb 2020, [RWTH Aachen], [Aachen, Germany], Feb 2020.

Kausch, Hendrik; Pfeiffer, Mathias; Raco, Deni; Rumpe, Bernhard: MontiBelle-Toolbox
for a Model-Based Development and Verification of Distributed Critical Systems for
Compliance with Functional Safety. In: AIAA Scitech 2020 Forum. p. 0671, 2020.

Kausch, Hendrik; Pfeiffer, Mathias; Raco, Deni; Rumpe, Bernhard: , Verified Design of
Safety-Critical Cyber-Physical Avionics Systems with the MontiBelle Framework, 2020.
https://youtu.be/cl403KXZrrc.

Kolbl, Martin; Leue, Stefan; Singh, Hargurbir: From SysML to Model Checkers via Model
Transformation. SPIN, pp. 255-274, 06 2018.

Kriebel, Stefan; Raco, Deni; Rumpe, Bernhard; Stiiber, Sebastian: Model-Based Engineer-
ing for Avionics: Will Specification and Formal Verification e.g. Based on Broy’s Streams
Become Feasible? In: [Software Engineering (SE) und Software Management (SWM), SE
SWM, 2019-02-18 - 2019-02-22, Stuttgart, Germany]. BMW Group, Chair of Software
Engineering at RWTH Aachen, pp. 87-94, Feb 2019.

Misra, Jayadev; Chandy, K. Mani: Proofs of networks of processes. IEEE transactions on
software engineering, (4):417-426, 1981.

Nagashima, Yutaka; Kumar, Ramana: A proof strategy language and proof script generation
for Isabelle/HOL. In: International Conference on Automated Deduction. Springer, pp.
528-545,2017.

Paulson, Lawrence C.; Blanchette, Jasmin Christian, eds. Three Years of Experience with
Sledgehammer, a Practical Link between Automatic and Interactive Theorem Provers,
2010.

Rumpe, Bernhard: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
PhD thesis, Zugl.: Miinchen, Techn. Univ, Zugl. Miinchen, 1996.

Von der Beeck, Michael: A comparison of statecharts variants. In: Formal techniques in
real-time and fault-tolerant systems. Springer, pp. 128-148, 1994.

https://youtu.be/cl403KXZrrc

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 15

Appendix

A Dataflow-based Specification with the FOCUS Framework

We recall some well-known methodological concepts. A system modeling methodology
should be able to support:

. Modularity

. Underspecification and non-determinism
. Composition

. Refinement

. Abstraction from concrete implementation
. Encapsulation

. Possibility to specify real-time properties
. Reasoning

Modularity implies separation of concerns. Supporting different abstraction levels by
underspecification is important for reducing the complexity of development. Composition is
key for a top-down development. One wants to decompose the system, refine the components
separately from higher-level requirements, to lower-level ones, until an implementation, and
then compose back. For this, it is important that composition is compatible with refinement.
Encapsulation in a hierarchical decomposition ensures information hiding. Furthermore,
the capability of modeling time, particularly in safety-critical applications (e.g. airbags), is
crucial and can be considered as a functional requirement. Finally, one wants to be able to
reason about system models.

FOCUS is a mathematical methodology for capturing these aspects. It provides higher-level
history-oriented specifications (equations connecting complete input and output stream
histories), as well as implementation-close state-oriented specifications by automata (Fig. 3).
Underspecification is possible by either defining sets of stream processing functions by
predicates over streams, or by using non-deterministic state machines with input and
output. The key property of FOCUS is that refinement is fully compositional [BR0O7].
The key concept of FOCUS is the stream representing an observation of a channel
history. Components communicate by message passing through unidirectional channels.
The semantics of a component is a set of stream processing functions (also called stream
processing specification or SPS). The behavior of atomic components can be specified
by state machines, a style close to implementation or by using a high-level history-based
specification approach [BSO1].

16 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

B Overview Graphics for the Pilot Flying System

Y ________ system/context
- \ border \
Disturbance1 7 i . \
I g Bus ¥ I
Disturbance2 ¢ % } ’
\ ' \
\ : : : \
Transfer switch | Left Flight Right Flight | |
I~—>Guidance Guidance \
| Side Side |
| g }
Disturbance3 v ; \
\
| =]
Disturbance4 7 ————0 Bus — }
| [

Fig. 2: Overview of the Pilot-Flying-System (PFS) [CM14]

fromBus -
> -

transferSwitch

Fig. 3: State-based specification of the left Side component of the Flight Guidance System (transition
labels omitted for simplicity)

C Meta Model of Intermediary Representation - A class based overview

input
Reﬁnementl ISPSI olu"tDpUUt IDatatype }%IChannelI
*
refined I________________-‘.
original IDeﬁnition}%lParameterI Ilnstancel
*

IAutomatonI ISpeciﬁcationI IComposition I’—

Fig. 4: Core components of the ADL-agnostic intermediary representation’s meta model. Main concept
is an SPS. Each SPS defines an input and output datatype. SPSes are divided into two categories:
Definitions and Instances. A Definition is either a Automaton, a Specification, or a Composition.
Refinements relate refined SPSes to the original.

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 17

VariableValue
value: String

Configuration

State

Automaton
name: String

Transitionl

StateSpace

Variable

name: String

Fig. 5: An Automaton consists of an initial Con figuration, a StateSpace, and Transitions. The
Datatypes from Fig. 4 are omitted for brevity.

AN
cD
target; State
name: String
Transition q/
start: String *
guard: String VariableValue 1> Variable
value: String name: String
isComprehension: Boolean
* Output 1> Channel
value: String name: String
isComprehension: Boolean

Fig. 6: A Transition has a start, a guard, a target State, and Outputs. Both the State’s
VariableValues and Outputs define an isComprehension flag to handle infinitely large tran-
sitions.

AN
cD
Parameter 1 ParameterValue
name: String value: String
* *
/L{ Definition |el| Instance }J\
A *

Fig. 7: ACompositionis a De finition and consists of Instances. An Instance sets the Parameters
of a De finition via ParameterValues.

D SysML Specifications for the PFS

1 part def Bus(initial:Boolean) :> UnreliableBus {
2 // Define the interface

3 port dist: InBool;

4 port i: InPair;

5 port o: ~InPair;

6

18 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

7 // Pass through

8 state behavior: BusAutomaton(

9 dist::val, i::val, o::val, initial);
10 }

List. 1: Part Definition of the Bus. First few lines define name, refinements, interface, and parameters.
Bus takes a Boolean parameter named initial. For the sake of this example, we assume the Bus refines
a not further detailed non-deterministic UnreliableBus, which randomly loses and alters messages.
initial parameter can be later used (not shown here) to define the starting output of the Bus. Ports
dist (disturbance) and i are typed to InBool and InPair respectively. Both contain exactly one input
communication line named val. Types are Boolean and Pair (an implementation of a 2-tuple). Output
port o makes use of the already defined InPair port definition by simply inverting its direction via the
tilde symbol. Last few lines define the named occurrence behavior of the BusAutomaton and pass the
communication lines and parameter.

1 state def BusAutomaton(

2 in dist: Boolean,

3 in i: Pair<Boolean, Boolean>,
4 out o: Pair<Boolean, Boolean>
5 initial: Boolean)

6 |

7

8

}...

List. 2: State Definition of the Bus. Keywords state def denote an SD. Communication channels are
defined using directional keywords in and out. Variables do not have a direction. Each communication
channel and variable define a name and colon-separated type. Pair type allows for type parameters
between angle brackets to specify the type of each element in the tuple.

1 value last: Pair<Boolean, Boolean>;
2 state Single;

List. 3: Variable definition using the keyword value and name last of type Pair{Boolean, Boolean),
followed by the declaration of the only state named Single.

1 transition

2 first Single

3 if dist == false

4 do action {send i to o; send i to last;}
5 then Single;

List. 4: Transition definition in SysML SD. Transition reacts according to an external disturbance dist.
If automaton is in state Single and no disturbance occurs, the message is transmitted and stored in last.

requirement {
// Link to definition
subject side: Side;

/1 Uses MontiCore expressions
require constraint {
side::initial implies

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 19

8 (side::ospf::nth(0):: getFirst()
9 && ...);

10 }

11

12}

List. 5: Requirement Definition inside the Part Definition of the Side Component. Each predicate
starts with require constraint. Parameter initial and output history on port ospf is accessed using
double colon (::) notation, similar to Java’s or C#’s dot notation. A function nth was defined to allow
access to a specific time slice, 0 here being the first one. Since ospf transports Pair, we access the first
element of the tuple via a getter function getFirst.

part def PES {
/! Define the interface
port distl: InBool;
port dist2: InBool;

1

2

3

4

5

6

7 /! Define the subcomponents
8 part lside: Side(true);
9 part Irbus: Bus(true);
10 part rside: Side(false);
11 part rlbus: Bus(false);
12
13
14
15
16
17

// Define the communication channels
connect distl to lside::dist;
connect dist2 to Irbus::dist;

}...

List. 6: Part Definition of the composed Pilot Flying System. Each part specifies a handle (e.g., Iside,
abbreviation for left side) and its type. The type (e.g., Side) also takes parameter values in round
brackets. Parameter values can be literals (e.g., true), parameters of the composition being passed
through, or expressions of unlimited complexity based on the previous two options. When defining
communication channels, ports of the subparts are referenced using double colon notation introduced
in Sect. 4.2.2.

20 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

E Object Diagrams (ODs) - intermediary representations of the PFS

Bus:Automaton [—>| input:Datatype —> :Channel

original
name="dist"
:Parameter type="bool"

name="initial"
type="bool"

refined
:Refinement IncompleteBus:Specification

Fig. 8: Object Diagram (OD) of a concrete Automaton adhering to the CD in Fig. 4. The example
shows a partial representation of Datatypes, Parameters, and Re finements from the SD in

Sect. 4.2.1.

:StateSpace H :Variable :State

name="last" name="Single"
¢*
Fig. 9: Example StateSpace of a single State ,,Single* and Variable called ,last“. The OD is based

on CD in Fig. 5 and SD in Sect. 4.2.1.

:Transition [:Output F=> :Channel
value = "v < o" name="0"
isComprehension=true

Fig. 12: Example of an Output of a Transition with set comprehension enabled. A StateSpace with
one natural number variable v and an equally typed output o is assumed. A Transition that can output
any natural number larger than v’s current value on port o is then modeled. Intermediary representation
of such an OQutput is depicted in Fig. 12. isComprehension flag is activated. value then specifies a
set of values for o via the constraint ”v < 0”. Such a technique allows modeling of infinitely many
transitions.

Model-Based Design of Correct Safety-Critical Systems using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams 21

:Transition

start="Single"
guard="dist=False"

L :State N :VariableValue BN :Variable

name="Single" value="i" name="last"

:Output EN :Channel

value="i" name="o"
isCompr.=false

Fig. 10: Example Transition based on the CD from Fig. 6 and SD from Sect. 4.2.1. The start and
target state are ,,Single“. The guard makes sure no disturbance dist occurred. The Variable ,last” is
set to ,,i*, as is the Channel ,,0°.

Redundancy:Composition

\H{ Iside:Instance H Side:Definition

v v

:ParameterValue —> :Parameter

value = "True" name = "initial"

Fig. 11: Partial composition OD. Shows only the first Instance of PFS (ref. Sect. 4.2) and omits
datatype mappings.

F Generated Isabelle Functions and Theorems

1 (* parameters = state = input = bool *)
2 fun guard::"bool = State = (boolxbool) = bool" where
3 "guard initial (s last) (dist, i) = (s=Single A dist=False)"

List. 7: Guard in Isabelle. Comments are enclosed in (*...*). fun keyword starts a function declaration,
followed by an optional name (guard) and colon-separated signature declaration. Keyword where
starts the left hand side of the function definition. The name guard is repeated, followed by positionally
matched handles for all parameters. The right hand side starts after the equals sign.

1 (* parameters = state = input = (state X output) set *)
2 fun result::"... = (Statex...) set" where
3 "result initial (s last) (dist, i) = { ((Single i), i) }"

List. 8: Result of a transition in Isabelle. The input types are equal to the guard in List. 7. The output
type is a set of tuples instead. Each of those tuples holds a target State and values for each output port.

22 Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe

1 fun trans::"bool = State = bool = (Statex...) set" where
2 "trans initial (s last) (dist, i) = if (guard initial (s last) (dist, 1))
3 then (result initial (s last) (dist, i)) else {}"

List. 9: The transition aggregates guard and result. The if...then ...else... directive is used for case
distinction.

1 fun result::"... = (Statexnat) set" where
2 "result _ (Single v) _ = { ((Single v), 0) | 0. v<o }"

List. 10: Set-based builder notation (set comprehension) for potentially infinitely large Transitions
in Isabelle. Redundant inputs (parameters, inputs from ports) are omitted (_). We use a placeholder
output o and quantify it (after the |) using a dot to separate to-be-quantified variables (o) and the
predicate (v < o).

1 (* parameters = input = output = bool ¥)
2 fun pred::"bool = (...x(boolxbool stream) = (boolxbool stream) = bool" where
3 "pred initial (dist, ts, ospf) pf = initial — (fst (snth O ospf)) A ..."

List. 11: Predicates in history-based specifications in Isabelle. Predicate uses implication (arrow to
the right). Whenever initial is set to true, the right hand side follows. Right hand side states that first
(fst) element of the tuple at the initial time slice O (snth is the Isabelle function for accessing the nth
element of a stream) in the ospf stream is true.

1 fun sps::"... = (I2 50?) set" where
2 "sps initial = {spf | spf. Vinput.
3 pred initial (getlnputs input) (getOutputs (spf input)) A...}"

List. 12: Set of SPFs in Isabelle. Q denotes the stream bundles as mentioned. Input streams are
quantified inside a bundle input and then extracted using appropriate getter functions (getInputs).
Outputs are created by applying the spf to the input bundle and retrieving the outputs (getOutputs)
from the resulting bundle.

1 (* parameters = (SPS:Input — Output) *)
2 fun sps::"unit = (IQ —>OQ) set" where
3 "sps _ = Iside.sps True(X)lrbus.sps True(X) rside.sps False X rlbus.sps False"

List. 13: Composing the components into the overall Pilot Flying System in Isabelle. The Instances’
SPSes are accessed via dot notation, i.e. Iside.sps for the sps of Iside.

1 theorem refinement: "Bus.sps initial C UnreliableBus.sps initial"

List. 14: Refinement in Isabelle. The theorem states that the behavior of a refined component is a
subset of the behavior of the original.

1 theorem SysReq:

2 assumes "f € PFS.sps"

3 shows "lside_initially_active f A —-rside_initially_active f"
4 <proof>

List. 15: Verifying the system specification against a system requirement in Isabelle. The first
assumption (assumes) extracts a single behavior f from the SPS. The statement (shows) then states
that exactly one side has to be active initially.

