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Abstract. Cyber-Physical Systems (CPS) connect mechanics, electrics and electronics as well 

as software. Considering the interactions between these domains is a major challenge in product 

development. Model-Based Systems Engineering (MBSE) enables cross-domain system 

development, based on commonly understood system architectures. However, there is still a gap 

in using MBSE for development, especially in mechanics. Systematic evaluation of design 

decisions based on system architecture models is not done. The strong simulation methods 

predicting physical product behaviour are not well connected to the evolving system architecture. 

We propose a new approach for connecting simulation and design models in a System Modelling 

Language (SysML) system model using the example of a combustion engine’s cooling circuit. 

The electric-mechanical coolant pump is chosen for design. The design processes of the 

hydrodynamic pump wheel and the volume flow controller are modelled as workflows in 

SysML. Here, we integrate design models for the pump wheel and the controller into the 

workflows. Thereby, parameters of the pump wheel and controller are calculated. Design results 

are automatically transferred to CAD. A workflow is created, testing the cooling circuit’s 

behaviour against requirements, combining a Simulink control model and a Simcenter Amesim 

heat transfer model. The approach results in a framework for automated design and test 

processes. 

1.  Introduction 

Cyber-Physical Systems (CPS) connect mechanics, electrics and electronics as well as software 

solutions. Considering the interactions between these different domains is one of the major challenges 

in modern product development. Model-Based Systems Engineering (MBSE) is a well-known approach, 

that enables cross-domain system development by modelling commonly understandable system 

architectures, e.g. for functional and product architectures, including interactions between sub functions 

of systems. Architecture models describe the system elements from requirement over functions to 

products. They may be used to link the artifacts that are created during system design. [1] 

However, there is still a gap in using MBSE methods for product development, especially in the 

mechanical domain. MBSE often is only used up to abstract architecture definition. Design decisions 
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are not evaluated systematically based on the system’s functional architecture, especially in the 

mechanical domain. Instead, mechanical development is nowadays mainly driven by experience. 

Mechanical engineers know about their domain and how to design mechanical products. Strong 

simulation methods are used for product design and testing of component’s physical behavior virtually 

using simulation models [2–6]. CPS are not component but function oriented. The mechanical domain 

has not yet developed a method to test the products with regard to functional requirements. A link 

between functional architecture and physical behavior models is not given. 

Model-based design and test procedures, i.e. executable workflows allow for automated designing 

and testing of elements in the functional architecture at different stages of the design process. Such 

model-based workflows link the physical behavior models to the system’s parameters in the functional 

architecture. By modelling the order of design and test steps in executable workflows, the parameters 

describing the system’s geometrical, physical, material, and logical properties can be calculated 

automatically and the system can be tested at any system state. This may close the gap between 

functional architecture modeling and physical behavior models and lead to functional testing in 

mechanical engineering. In order to reach for such a modeling approach, we state the following research 

hypotheses: 

• Structured, hierarchical workflows can link simulation models efficiently and independent of a 

simulation tool. 

• Workflows efficiently parametrize the (principle) solutions in a solution architecture. 

• Workflows help to redesign and test system solutions when requirements change (engineering 

change requests) 

We derive a new modeling approach, connecting simulation and design models in a SysML system 

model, modelled in Cameo Systems Modeler (CSM) [7]. Based on the hypotheses, we analyze the 

functional architecture of a mechatronic system. To create design and behavior prediction models we 

use external tools and integrate the models within executable workflows using SysML activity diagrams 

and CSM. We propose two kinds of Activity Diagrams for modeling design workflows and test 

workflows, respectively. In order to show efficiency of the modeling technique, we chose the example 

of an engineering change request for a combustion engine’s cooling circuit.  

The article is structured as follows: section 2 presents the state of research regarding architecture and 

workflow modelling. Section 3 describes the system of interest and its functional architecture focusing 

on the solutions and principle solutions relevant for this paper. Section 4 derives a modelling technique 

for design workflows used to find parameter values for principle solutions using SysML Activity 

Diagrams. Section 5 integrates these detailed design workflows into top level design processes. 

Section 6 adds testing workflows, testing the system behavior. Section 7 gives the application case of 

the workflows, an artificial engineering change request. Section 8 gives a discussion on the presented 

work and section 9 concludes. 

2.  State of Research 

In MBSE, the modelling language family SysML has become widely used. SysML is a general-purpose 

modeling language family for systems engineering [8]. It extends the Unified Modeling Language 

(UML) 2.5 [9] to represent aspects of both, software and hardware elements. Currently, SysML provides 

modeling languages for behavior, structure, and requirement modeling. The structure modeling 

languages are often used for architecture description. Internal Block Diagrams (IBDs) therein can be 

used to describe the internal structure of a block. 

There are various methods for CPS architecture development in SysML. Their aim is to link 

requirements, functions and product components. Some methods coming from informatics model this 

link focusing on software system elements and software behavior [10–15]. However, they do not provide 

a link between function and product for mechanical system elements. For modeling the functional 

architecture of mechanical systems, the methods have been extended, e.g. in [16,17]. These techniques 

do not integrate the product describing parameters on the detailed levels of function and product 

description. In [18], the authors propose a technique that uses informal sketches which describe the 
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mechanical solution but are not usable for executable design workflows integrating simulations, as they 

do not contain parameters for mathematical calculations. 

The seamless approach provided in [19] allows for product description up to detailed parameter level. 

Modeling languages that support this methodology in MBSE are specified in [20], which also provides 

a SysML profile as a specific language. These languages do not yet integrate simulation workflows for 

product design or testing. 

Activity Diagrams are a commonly used language for modeling sequential behaviors of a system 

[21,22], functional requirements of CPS [23–25], as well as processes and workflows [26]. In [27] the 

process of developing a system model in SysML is described in an Activity Diagram. In [28] the authors 

use SysML Activity Diagrams to execute work processes in context of grid computing in software. To 

the best of our knowledge, Activity Diagrams have not yet been used to describe design and test 

workflows and link the activities to simulation models for mechanical engineering in an executable 

manner. 

Workflows for simulations, however, are used in mechanical engineering to model and predict the 

physical behavior of a product. They combine simulation models to provide reusable and automated test 

procedures. Examples for tools providing such workflows are given in [29,30]. Workflows are then 

executable but not linked to the parameters in functional architecture and often limited to specific tools. 

In total, there are methods to describe the functional architecture of CPSs that include the mechanical 

domain in SysML. However, these do not integrate simulation workflows and use these workflows to 

parametrize and test system architecture. 

3.  System of Interest: Cooling Circuit and Electric Mechanical Coolant Pump 

To illustrate modelling concepts, we use the cooling circuit of a combustion engine from automotive 

engineering as a running example throughout the paper. The system describes the following physical 

behavior: Combustion drives convert the chemical energy held by fuel into mechanical energy. Due to 

the physical effect of combustion to serve this function, a portion of the chemical energy is converted 

into thermal energy, i.e. heat, during a chemical reaction, which causes the pressure in the combustion 

chamber to increase. The increasing pressure acts on the surface of the engine’s piston causing the piston 

to move. The heat is partly removed from the engine by exhaust gas. However, some amount of heat 

causes the engine’s temperature to increase by being transferred to the engine structure. Thus, the 

engines temperature increases. Due to material limitations, the engine stops functioning once a 

maximum temperature is reached. To prevent the engine from overheating, the thermal energy has to be 

removed from the engine. Often, water-cooling circuits take on this task. In our example, we use a water-

cooling circuit with an electric mechanical cooling medium pump. 

The overall function of a water-cooling circuit is to manage the engines heat flows (manage heat 

flows) in order to set a specific temperature of the engine. This function can be achieved by combining 

subfunctions: the heat flows from the two engine components crank case (CC) and cylinder head (CH) 

are considered as inputs for the function. The heat flows are removed from the engine by two volume 

flows (distribute heat) using the physical effect of convection, the surrounding air and an internally 

circulating cooling medium. The air is removed to the environment. The internal cooling medium is 

transferred to a cooler, where the heat is also released to the air using convection (release heat). The 

cooling medium has to keep circulating in order to keep heat transfer active, i.e. a volume flow is 

necessary, which is generated from electrical energy (generate volume flow). For setting a specific 

engine temperature, the amount of removed heat has to be controlled. In our system, this is done by 

controlling the volume flow of the cooling medium. Hence, the function generate volume flow can get 

a control signal, setting the required volume flow, from a controller (control heat flows), which evaluates 

the engine components temperature signals. Figure 1, top, shows the described internal structure of 

manage heat flows in an IBD. 

In order to find a solution for the function generate volume flow, we have to continue the functional 

decomposition, Figure 1, bottom. To generate a volume flow, we apply mechanical energy to the fluid 

(apply fluid with mechanical energy). Hence, we have to get mechanical energy. In an electric 
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mechanical coolant pump, the mechanical energy is converted from electrical energy (convert el to mech 

energy). In order to set specific volume flows based on a control signal, the electrical energy is increased 

or decreased before being converted (increase/decrease electrical energy).  

 

  

Figure 1. Functional architecture for manage heat flows and generate volume flow 

The functional architecture of the cooling circuit has been modelled following the ideas of Koller, 

who described a system by elementary functions realized by principle solutions [19]. The described 

modeling follows the language profile SysML4FMArch, proposed in [20]. The functional architecture 

of the system has been developed in [31]. The functional decompositions of generateVolumeFlow and 

distributeHeat are discussed in [20] and [31], respectively. For each elementary function, a principle 

solution has been derived and modelled. Principle solutions realize elementary functions using physical 

effects or logics. Physical effects act between active surfaces from specific materials. The principle 

solution for apply fluid with mechanical energy is a hydrodynamic pump wheel. The physical effect is 

hydrodynamics, which accelerates an input fluid due to mechanical energy. The active surface required 

for this is a pump wheel. This active surface can be described by characteristic parameters, its inner and 

outer diameter, width, inlet and outlet angle and the number of wings in the hydrodynamic pump wheel. 

Based on these geometric parameters, the physical effect hydrodynamics is realized in a quantitative 

manner. The SysML4FMArch representation of the principle solution is shown in Figure 2. Parameters 

are modeled as values in SysML. From external requirements, there is a limitation for the pump wheels 

rotational velocity. The connection between the external requirement and parameter rotational velocity 

is modeled using a SysML-satisfy-connection. 
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Figure 2. IBD for the principle solutions apply fluid with mechanical energy 

Table 1 gives an overview about the further principle solutions, the realizing physical effects, 

geometric elements and relevant parameters with a description. The hydrodynamic pump wheel is driven 

by an electric drive providing rotational speed and torque. The volume flow is transferred to the engine 

and takes up an amount of heat by convection. The heat is released at the cooler by convection, reducing 

the pressure. To set volume flow rate based on heat, a control element is introduced, changing rotational 

speed of the pump.  

Table 1. Selected functions, their physical effects, important parameters and parameter descriptions 
Function Solution/Principle 

Solution 

Physical effect Parameters Parameter 

Description 

distribute heat Solution Convection 

maxVolFlow 

Maximum volume 

flow required to 

satisfy the tempe-

rature requirement 

minVolFlow 

Minimum volume 

flow required to 

satisfy the tempe-

rature requirement 

release heat Principle Solution convection deltaPOpt 

Pressure difference of 

cooling medium 

between input and 

output port 

control heat flows Principle Solution - 

controlParameter 
Control parameter of 

the P control 

controllVolumeFlow 
Set point of volume 

flow in control 

convert electrical to 

mechanical energy 
Principle Solution biot-savart law RPM 

Optimum rotational 

velocity 

manage heat flows Solution - RhoCooling 
Density of the chosen 

cooling medium 



19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097  (2021) 012004

IOP Publishing
doi:10.1088/1757-899X/1097/1/012004

6

 

 

 

 

 

 

The parameters describing the principle solution are given in the architecture. When investigating 

Figure 2, it becomes clear, that the values of the principle solution parameters, e.g. geometric parameters 

inner and outer diameter, have influence on how the physical effect fulfills the function, e.g. what 

quantity the volume flow rate is. The mechanical design process puts a lot of effort in finding the suitable 

parameter value set, in order to get the required behavior. In the following chapter, we describe a way 

of modeling the parameter estimation in the mechanical design process in design workflows and test the 

functional architecture with regard to requirement satisfaction. 

4.  Design workflow for the hydrodynamic pump wheel 

Parametrization of principle solutions means finding a suitable set of values for the geometric, material 

and physical parameters in order to satisfy the requirements. Mechanical engineering has developed 

design procedures for standardized principle solutions in the past decades, which are given in norms, 

standards and design guidelines. Here, critical use cases are considered as input, standard parameters 

are declared, and their values are calculated so that the principle solution satisfies the use case. In order 

to find suitable parameter values for the geometric and physical parameters for the hydrodynamic pump 

wheel, we set up an automatized, executable workflow based on a given design guideline. In the 

following section, the design process of a hydrodynamic pump wheel is explained and a procedure to 

integrate it into the system model in an executable manner is proposed. 

4.1.  Design process of the hydrodynamic pump wheel 

The design process of the hydrodynamic pump wheel aims to find a suitable value set for the parameters 

describing the hydrodynamic pump wheel’s active surfaces, which are modelled in Figure 2. By fixing 

these geometric parameters, the hydrodynamic characteristic function is specified, i.e. the physical 

behaviour of the principle solution. We set up a parametrizable CAD model, which is adaptable based 

on the modelled geometric parameters.Fehler! Verweisquelle konnte nicht gefunden werden.  

 

Figure 3. Geometric parameters of pump wheel 

The aforementioned parameters describing a hydrodynamic pump wheel and a design guideline to 

calculate their values for a specific system are given in literature [32]. The guideline calculates the 

geometry of the pump wheel for a required operating point. The parameter values are calculated based 

on empirical equations and diagrams. The required inputs for the guideline are: 

• Pressure delta, which the pump has to provide between input volume flow and output volume 

flow at optimum working point 

• Rotational speed of the pump at optimum working point 

• Density of the transported cooling medium at optimum working point 

• Required volume flow at optimum working point 

We implement the calculation steps of the guideline in an external software. Multiple tools may be 

chosen. As those guidelines in companies are often implemented in MS Excel, we choose this tool. 
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4.2.  Concept for connecting functional architecture, workflow and simulation model 

The functional architecture described in section 3 provides a structure for principle solutions and their 

describing parameters. The design guidelines calculate the values of principle solution parameters. They 

are not modelled directly in the functional architecture, as they do not serve a functional mean during 

product lifetime, but are only used during design. We model guidelines and other workflows due to their 

sequential character as SysML Activity Diagrams. A connection between the principle solution 

architecture and the Activity Diagram is needed. The parameters are the obvious connection, as they 

occur in both, IBD and Activity Diagram. While the IBD models the parameter structure and 

interdependencies, the Activity Diagram uses specific parameter values and calculates other parameter 

values from them, e.g. outer diameter of the hydrodynamic pump wheel from required volume flow. As 

storing parameter values is not the purpose of a systems modeller, especially for large systems, we create 

a separate parameter database and link IBD and Activity Diagram via this database, Figure 4. The 

structure of the database (2) is given by the principle solution IBD (1). In the IBD, parameters are 

modelled and organized. When a new parameter is added to the principle solution IBD, a database entry 

is created. Therefore, the database contains all product describing parameters from IBD and their system 

specific values. 

 

Figure 4. Concept of connecting Activity Diagram and architecture in CSM and integrating an 

external database and simulation models 

Design workflows described in Activity Diagrams (3) need the current set of specified parameters in 

order to run calculations. Hence, the Activity Diagram needs to be able to load parameters from the 

database. For loading parameters, a standardized activity in the Activity Diagram is defined, named 

getParameter (a). The activity takes the value of a parameter from the external database and provides it 

for further calculations in the Activity Diagram.  

After calculating parameter values in external tools, these parameter values have to be transferred to 

the database again, so that they are usable for further design and test steps. The parameter values are 

then saved in the database and can be loaded and used by further workflows. For saving a parameter 

value in a database, another standardized activity is defined, named setParameter (c). This activity takes 

the value, which has been calculated and stores it in the database at the position of its corresponding 

parameter.  

Calculating values for principle solution parameters needs external calculation models, which are 

usually implemented in domain specific tools. External calculations or simulations are integrated in 

Activity Diagrams using a standardized interface activity calculate (b). The interface activity defines 

standard inputs for the calculation model and delivers them to the model in an external tool (4), starts 

the model and takes the result parameters from it. In the Activity Diagram, the calculate activity provides 

various input ports, to which the values from getParameter activities are delivered, and various output 
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ports, from which further calculations or setParameter activities may take values in order to process the 

results. 

In a prototypical implementation for the given use case, we used MATLAB data files (.mat) instead 

of a full database. The concepts are transferable to other database types. All external interfaces to both, 

database and simulation models where implemented in Matlab functions using CSM’s Matlab interface. 

4.3.  Design workflow for the hydrodynamic pump wheel 

The concept described in 4.2 is applied to the design workflow of the hydrodynamic pump wheel from 

4.1. We model an Activity Diagram, which loads the required parameter inputs from the external 

database, calculates the geometric and physical parameter values and stores the calculation results in the 

database. Since the calculation has impact on geometric and physical behaviour of the principle solution, 

in a last step, further describing models as CAD models and physical characteristic curves are updated 

based on the new parameter value set, Figure 5.  

The required values deltaPOpt, RhoCooling, RPM and maxVolFlow are defined by further principle 

solutions, which interact with the hydrodynamic pump wheel according to the functional architecture, 

Figure 1. The listed parameters are hence modelled in their respective principle solutions, Table 1:  

• deltaPOpt, the pressure delta is defined by the principle solution release heat 

• RhoCooling is the desnsity of the chosen cooling medium for manage heat flows 

• RPM is the optimal rotational velocity for the principle solution of convert electrical to 

mechanical energy 

• maxVolFlow, the required volume flow for the optimal working point is defined by the 

necessary volume flow of distributeHeat 

 

Figure 5. Design workflow for the hydrodynamic pump wheel in SysML 

The calculation model implementing the design guideline is integrated in the activity 

calculateHydrodynamicDimensions. It estimates the previously described values of the hydrodynamic 
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pump wheel geometric element. Additionally, two physical parameters are calculated, which result from 

the geometric parameter set: specificRPM and maxRPM are performance indicators describing the 

principle solution hydrodynamic pump wheel and its limitations and are used for estimating the 

characteristic curve of the principle solution. The estimated values are saved using individual 

setParameter-activities.  

After parametrizing the principle solution, describing models have to be updated, so that they contain 

the new parameter set. In the case of the hydrodynamic pump wheel, describing models are the CAD 

model of the hydrodynamic wheel’s active surfaces and the characteristic curve describing the behavior 

between pressure, volume flow and rotational velocity. The CAD model is prepared in a parametrized 

way: The parameters outer and inner diameter, outlet and inlet angle, and width are set as parameters in 

the CAD software Catia and exported to a parameter table. Changing the value in this parameter table 

automatically changes the value in the CAD model. The activity updateCADHydrodynamicWheel takes 

the calculated values and writes them into the aforementioned table. The activity 

updateHydrodynCharacteristicCurve recalculates the characteristic curve in MATLAB and stores it.  

We have modelled an Activity Diagram which parametrizes the principle solution based on given 

requirements using design guidelines. As this describes the step to design the principle solution, we call 

this kind of Activity Diagram a designer. Designer Activity Diagrams are permitted to change geometric 

values of their principle solution in the database based on defined calculation models. They ensure that 

design decisions are made based on calculation models and document the calculations. As they are 

executable, design becomes automated. 

5.  Top level design workflow for the cooling circuit 

In section 4, the principle solution of the hydrodynamic pump wheel is parametrized using a designer 

Activity Diagram. As described in 4.3, this designer requires input from other principle solutions. For 

example, the physical behaviour and parameter values from distribute heat define the required volume 

flow, as distribute heat describes the heat transfer functionally. Hence, the design of the principle 

solution hydrodynamic pump wheel cannot be done independently of the surrounding solutions. Further 

designers for other principle solutions are required. The designers have to be executed in an order, so 

that values can be estimated based on already calculated values from other principle solutions. 

Exemplary, we set up a second designer for distribute heat.  

In distribute heat, the incoming heat from the engine is transferred to surrounding air and cooling 

medium and thereby removed from the system. Depending on the quantity of volume flow of the cooling 

medium, a different amount of heat is removed, resulting in different engine temperatures. We assume 

the geometric parameter values in distribute heat and the engine components as fixed. To estimate the 

required volume flow of the solution distribute heat we set up a physical model, describing the heat 

transfer behaviour in a physical simulation in Simcenter Amesim, Figure 6, a. The engine consists of 

two parts, the cylinder head and the crank case. Both may have different temperatures and are modelled 

as thermal capacities interacting with each other. The heat exchange with air is modelled. Heat 

introduced by engine and removed from cooling medium are thermal sources and sinks, introducing and 

removing an amount of heat from the capacities. As the engine components and the active surfaces are 

fixed, the heat transfer from engine and to air are fully described. The engine components temperatures 

are external requirements. The model can be used to estimate the required heat released to cooling 

medium in order to set the engine temperature. The heat released to cooling medium is varied until the 

temperatures fit the external requirements. Then from the required heat, the required volume flow is 

estimated. This is done for both, minimum and maximum required temperature, resulting in minimum 

and maximum required volume flow. The described calculation is implemented in the activity 

calculateMinMaxVolumeFlow. This activity takes the fixed values from engine geometry and distribute 

heat and the required temperatures and gives minimum and maximum volume flows from it. The 

maximum volume flow can then be used in the designer of hydrodynamic pump wheel. The full Activity 

Diagram for distribute heat is modelled in Figure 6 b).  
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Figure 6. a) Heat transfer model b) workflow for calculating minimal and maximal necessary 

volume flow using the model from a) 

As the designer applyFluidWithMechanicalEnergy, i.e. the hydrodynamic pump wheel from section 

4.3 is only usable, when the value for maxVolFlow is set, an order for executing designers is necessary. 

This order describes the design activities necessary for the top-level solution manage heat flows. The 

top-level solution designer models the order in which principle solution designers are executed. The 

single designers are considered as one activity each in the overall designer for the full solution 

manageHeatFlows, Figure 7. This executable workflow can be used to redesign every principle solution 

one after another based on the formalized design process. 

 

Figure 7. Overall design process of the solution manageHeatFlows, including the previously 

presented designers: Designer PSdistributeHeat from Figure 6 b) and Designer 

PSapplyFluidWithMechEnergy from Figure 5 

6.  Solutions Testing 

The described design process uses explicit design cases to calculate principle solution parameters, e.g. 

the geometric values of the hydrodynamic pump wheel have been calculated for maximum volume flow. 

Cylinder head 
Crank case 

Incoming engine heat 

Heat released to 
cooling medium 

Heat released to air 

a) 

b) 
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Besides, not all requirements or use cases attached to the system are considered. Testing, if all 

requirements are satisfied for all use cases of the system, has to be done in a separate way. This is 

essential to deliver a fully working product and in case of requirement changes, in order to answer the 

question if a redesign is necessary. 

Our system has three requirements to satisfy: temperature value ranges, the two engine components 

have to keep, and a maximum rotational speed for the hydrodynamic pump wheel. Testing the system 

behaviour has to regard the overall requirement fulfilment. We use two different simulation models to 

test the requirements. A Simulink model calculates the rotational speed of the hydrodynamic pump 

wheel and the volume flow created due to this rotational speed based on the hydrodynamic characteristic 

curve of the hydrodynamic pump wheel and the parameter values from control heat flows and convert 

electrical to mechanical energy (Table 1). The Simcenter Amesim model from Figure 6 a) is used to 

calculate the engine component temperatures, which set due to the calculated volume flow. 

The previously named designers are used to set solution parameters, e.g. geometric parameters. 

However, they do not test further requirements and system interactions. To integrate the described tests 

into our system modeling approach, we introduce another workflow model. Tests are also modelled as 

Activity Diagrams; however, their purpose is different. A test does not manipulate values of system 

parameters, but uses the values to calculate physical states by executing physical models, e.g. the engine 

temperatures using the heat transfer model. The resulting physical states are then compared to values 

given as requirements. Test Activity Diagrams load solution parameters using getParameter activities 

as defined for designers before. They execute external simulations and calculations using calculation 

activities. The calculated parameter values are stored and compared to the requirements, which are 

linked by a satisfy-connection between the parameter and a design constrained.  

The described testing procedure including both simulation models is modelled as a test Activity 

Diagram. The tests load values from all principle solutions which are contained in manageHeatFlows. 

The test then triggers the two simulation models: At first the Simulink model is started 

(testRPMAndVolFlow), which calculates the rotational speed due to the control parameter values and 

the volume flow rate resulting from rotational speed. The volume flow rate is then transferred to the 

Amesim model describing heat flows and temperatures in the engine components 

(calculateTemperature). Results of rotational speed and temperatures are compared to the requirements. 

The workflow including both models is shown in Figure 8. 

7.  Use case: Changing the engine power 

The described workflow modelling allows for straightforward system testing and redesign when dealing 

with changed requirements. In an artificial scenario from automotive engineering, we show the usage of 

the functional architecture modelled in SysML4FMArch using the executable Activity Diagrams linked 

to principle solutions. The cooling circuit has been developed for a 135kW engine. The temperature 

requirements are set for temperature of cylinder head between 120°C and 150 °C and for crank case 

between 100°C and 130°C. The maximum speed of the pump is set to 2500 rpm. The system setup 

satisfies these requirements. 

In a first change, the cooling circuit is tested for a higher engine class. The new engine has a power 

of 185 kW. Due to higher power, the heat production of the engine increases, which implies the need to 

retest whether the cooling system still fulfils all requirements. The test workflow from section 6 fails, 

showing, that the temperature of both engine components is now much to high (270°C for crank case 

and 347°C for cylinder head). Executing the Activity Diagram that designs the cooling circuit function 

manage heat flows yields two possibilities to change the system: Manipulating only the rotational speed 

in order to create a higher volume flow rate or to change geometric values of the hydrodynamic pump 

wheel. It is assumed, that changing a control parameter value to increase rotational speed is less effort 

than changing the geometry.  
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Figure 8. Test workflow to verify the engine components temperatures and the rotational speed of 

the pump wheel 

Using the design Activity Diagram for control heat flows gives the new parameter value. Re-

executing the functional tests reveals, that the temperature requirements are now satisfied. Rotational 

speed has increased to 2011 rpm. 

In a second change, the engine power is raised to 250 kW. Controller redesign increases rotational 

speed once again, so temperatures are satisfied again. This time, rotational speed of the pump wheel 

becomes too high (2700 rpm). Therefore, the full redesign process is repeated. The pump wheel 

geometry is redesigned and the control parameter is adapted. The final repetition of the tests shows, that 

both, temperatures and rpm are now in range of the requirements (120°C crank case, 136 °C cylinder 

head and 1500 rpm). To achieve this, the pump wheel width has been increased by 5 mm. Modelling the 

design process in reusable design workflows and development of tests for all system requirements allows 

for automatic redesign and the information whether system requirements are fulfilled at any time. 

8.  Discussion 

Integrating simulation models into architecture development using executable workflows provides the 

possibility to reproducible design the system and test it regarding requirement satisfaction. We have 

shown, that it is possible to model mechanical design processes in executable Activity Diagrams. 

Especially guidelines for single principle solutions, e.g. the pump wheel, can be modelled that way. 

Such guidelines are often given in mechanical engineering (i.e. norms and standards). Our approach 

makes such norms reusable in an easy way. Designers handle external requirement values and other 

boundary conditions as well as requirements coming from other internal system solutions. Design 

changes can be seamlessly proceeded and corresponding CAD- and other describing models can be 

updated automatically.  
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Executable models of test workflows enable agile development and allow to use strong simulations 

for virtual testing. Following the thoughts of continuous integration in software engineering, it is 

possible to run all test workflows overnight in order to prove system validity regarding requirements.  

However, tool integration of such procedures is not optimal. Currently the get and set functions have 

to be written manually for every parameter. Storing parameter values in a mat-file does not scale, if the 

number of parameters exceeds a certain number and does not allow for role definitions. However, there 

are various data management techniques, which could be integrated in our approach to provide efficient, 

safe and distributed data handling.  

A bigger disadvantage of the graphical Activity Diagrams is, that they get crowded from get and set 

functions, when many parameters are given for a model. Here a textual alternative for connecting get- 

and set-elements with models would be a solution.  

9.  Summary and Outlook 

In the present study, we proposed an approach for modeling mechanical design and test processes in 

executable workflows using SysML Activity Diagrams and external tools. We developed two kinds of 

Activity Diagram standards for dimensioning (designers) and testing (testers), respectively. Designers 

load values of solution parameters, run simulations and calculations based on these values, and calculate 

values of other solutions’ parameters. The parameter values are stored and describing models as CAD 

are updated automatically. Tests run simulation models based on the current values of solution 

parameters and calculate the values of physical states that way. Afterwards, the values of physical states 

are compared against the requirements to prove requirement satisfactions.  

The concepts were explained by the design of an electric mechanical coolant pump from automotive 

industry. In the use case, the power of the combustion engine was adapted, and the cooling system was 

able to automatically adapt to the new requirements. The use case reveals the benefits of automated 

redesign and testing as a reaction to requirement changes. 

Future work aims to standardize and classify design and test workflows. Simulation models have 

varying detail level. Higher detail levels usually require more parameters to be specified. This also has 

influence on the workflow detail level. Classification is here a step to have suitable libraries for both 

simulation models and design and test workflows using the models. Engineers can then use the best 

suitable workflow for their current system status.  

Another step for automatization is ontology development. Developing an ontology for principle 

solutions, models and workflows allows for a stronger automatization and closes the gap between 

physical modelling and architecture. Hereby, strong design and model catalogues can be created, making 

agile development in mechanical engineering easier. 
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