
Measuring the Ability to Form a Product Line
from Existing Products
Christian Berger, Holger Rendel, Bernhard Rumpe

RWTH Aachen University
Department of Software Engineering

Aachen, Germany
www.se-rwth.de

Abstract—A product line approach can save valuable resources
by reusing artifacts. Especially for software artifacts, the reuse
of existing components is highly desirable. In recent literature,
the creation of software product lines is mainly proposed from
a top-down point of view regarding features which are visible
by customers. In practice, however, the design for a product
line often arises from one or few existing products that descend
from a very first product starting with copy-paste and evolving
individually. In this contribution, we propose the theoretical basis
to derive a set of metrics for evaluating similar software products
in an objective manner. These metrics are used to evaluate the
set of products’ ability to form a product line.

Index Terms—software product line; software metrics; mea-
surement; software architecture

I. I NTRODUCTION AND MOTIVATION

Recent literature regarding the creation of software product
lines often proposes to use end-user visible characteristics
of several products which are referred to as features [1],
[2]. In most cases, common and variable attributes of a set
of products are identified and a feature model is created
[3], [4]. This is a high-level view and supports a top-down
method for implementing product lines which bases on the
assumption that the code structure can and will be organized
according to the identified features. In practice, however, it
often happens that a product line is only set up after one or
even several similar product variants are implemented. Hence,
it is inevitable to not only look at the desired features but
also at the existing implementation to identify potential for
reuse. Therefore, a bottom-up method is necessary to look
especially at the implementation of these artifacts to identify
commonalities and differences which either support or prevent
the setup of a product line from a set of similar products.

In the following we present an approach which uses the
software architecture and existing software artifacts of a set of
similar products to evaluate their potential to form a product
line. This approach bases on a set of metrics for measuring the
so-calledproduct line-abilityof the considered set of products.

II. RELATED WORK

The authors of [5] and [6] describe the importance of
product line scoping which is a top-down view on a product
line. Reusable assets of existing products can be identified by
a product vs. feature-matrix which can be implemented using
different methodologies like generative programming [3]. The

authors of [7] mention scoping as one aspect in number of
steps when establishing a product line.

Metrics for evaluating product line architectures are dis-
cussed in several publications. The authors of [8] propose
some metrics which are based on provided and required in-
terfaces of components. However, these metrics are useful for
object-oriented architectures only. A very formal specification
of a product line architecture is given in [9] where parts of the
architecture are treated as processes. In [10], some metrics are
proposed to evaluate the quality of a product line which can
only be applied for an existing product line with an already
existing variability model.

The VEIA-project [11] also proposes very detailed metrics
for product line architectures. Based on a function net and
a feature model, these metrics measure the effort to integrate
specific features into the product line. The use of function nets
which define views on a so-called 150%-model of a product
is also discussed in [12].

III. M EASURING THEPRODUCT L INE-ABILITY

In this section the theoretical basis for measuring the ability
of a set of products to form a product line is outlined.
Therefore, a setP containingn similar productsp1 . . . pn

is evaluated. Herein, the termsimilar needs to be precisely
refined by a set of metrics which evaluate the considered
products in an objective manner.

A. Specifying Similar Product Sets

As exemplarily shown in Fig. 1, a setP3 of threesimilar
productsp1, p2, andp3 is shown for evaluatingP3’s product
line-ability. In this figure, three different classes namedC1,
C2, and C3 of relations between two or more products are
analyzed:C1 describes the relation between two products,
C2 describes the reusability relation for commonly available
parts for a specific product, andC3 describes the reusability’s
benefit ratio for shareable parts for a specific product.

For evaluating a given set of similar products, each product
is decomposed intoi = 1 . . . n so called reasonableatomic
piecescpj ,i for a concrete productpj which is self-contained
and reusable. We refer to these ascomponentsas defined in
[2].

To perform a decomposition, all componentscpj ,i must
be identified and formally specified. Thus, we propose an

[BRR10] C. Berger, H. Rendel, B. Rumpe.
Measuring the Ability to Form a Product Line from Existing Products.
In: Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems (VaMoS).
ICB Research Report No. 37, Institute for Computer Science and Business Information Systems, University of Duisburg-Essen, 2010.
www.se-rwth.de/publications

C1

C2

C3

Productp1

p̄1

Productp2

p̄2

Productp3

p̄3

A

B C

D

Fig. 1. Example for evaluating three similar productsp1, p2, and p3.
The circles indicate the set of components for each product;p̄2 denotes the
complementary set of components for productp2 without the setsB, A, and
D. A denotes the set of components which are shared among all products;
thus, all components in this intersection have at least a syntactically identical
signature.B denotes all components which are shared only byp1 andp2; C
andD are calculated in an analog manner.C1, C2, andC3 denote different
classes of relations.

annotated, directed graphGpj
for productpj which reflects

the dependencies between all componentscpj ,i which can for
example be logical or communicative. The graph is defined as
shown in Eq. (1).

G := (V, E) (1)

V := id

E := V × V × P(S) × A

S := id × {N, R, JTYPEK, . . . }

A := {0; 1}

As shown in Eq. (1), the directed annotated graphG

consists of a set of ordered pairs of edges likee1,2 =
(c1, c2, (id, Z), 0) ∈ E. Each edge describes a formal de-
pendency between the source componentc1 and its target
componentc2 which reflects either a formal method call or
a directed communication between componentc1 and c2. In
the former case, it describes the required signatureS in the
target component for a successful method call, in the latterit
defines a message which is sent fromc1 to c2 containing the
specified data inS. Components without any dependencies are
so-calledisolatedcomponents.

The setA can be used to definerequired and optional
components within a product; a value of1 defines an optional
while 0 defines a required dependency. The former defines a
component which is inherently necessary to fulfill a product’s
so called basis functionality, while the latter adds further
functionality like convenience functions; if unspecified,the
edge is regarded asrequired.

In Fig. 2, a graphical representation of the aforementioned
definition for the graph is shown for a product of six compo-
nents is shown. Here,̄pr1

= K, L, M, Q describes one path of
requiredcomponents, whilēpo1

= K, P, Q describes one path
of optionalones. For calculating the setCr of requiredand the

K

L

P

R

M

Q

(s1, N)
(s1, N)

(s3, Z)
(s4, Z)

(s5, R)

(s6, R), (s7, Z) (s8, R)

Fig. 2. An exemplary components’ graph for six componentsK, L, M , P ,
Q, andR. The solid edges represent required communicative dependencies
while the dotted edges represent optional ones. In this example, K sends the
same message toL andP ; L sends an empty message toM and thus simply
calls it. Moreover,K sends a message toR consisting of two data fields.

setCo of optionalcomponents, recursive backtracking is used
for all incident edges of an initially given set of components.
Therefore, all product’s components are initially added tothe
setCo. Starting at a given required set of componentsCstart

from the considered product which can be for example some
components for an actuator, all edges to adjacent components
are analyzed. If a required edge is found it is added toCr

which itself is analyzed recursively until all dependent required
components are found. This set is finally subtracted fromCo.
For example in Fig. 2 starting atQ, the following sets are
calculated:Cr = K, L, M, Q, R and Co = P . The afore-
mentioned algorithm does not identify isolated components
because they do not contribute any reasonable data and thus,
their relevance should be analyzed precisely.

B. Metrics for Evaluating the Product Line-Ability

For evaluating the product line-ability of a set ofn similar
products, the setsCp1,r . . . Cpn,r and Cp1,o . . . Cpn,o with
∀n : Cpn

≡ Cpn,r ∪ Cpn,o are calculated. Now, these sets
can be evaluated according to Fig. 1. Therefore, different
intersections between all sets are calculated which are used to
evaluate different ratios and relations. For the sake of clarity, it
is assumed that the denominator would not be 0 which means
that two products do not share any components and thus, their
comparison is not meaningful.

Size of Commonality.

SoC=

∣

∣

∣

∣

∣

⋂

i=1...n

Cpi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

⋂

i=1...n

Cpi,r

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

⋂

i=1...n

Cpi,o

∣

∣

∣

∣

∣

. (2)

In Eq. (2), theSize of Commonalityis shown which is
calculated from setA in Fig. 1 containing the number of
identical components. It can be calculated by comparing the
components’ signatures: Two components are syntactical iden-
tical if they have the same signature. IfSoCis 0, no commonly
reusable components could be identified. This comparison is
calledsyntactical signature identitywhich is at leastnecessary
but not sufficient. Therefore,semantic signature identityfor
two components must additionally be ensured which can be for
example be evaluated automatically by using the component’s
test suites in an entangled manner which have to ensure path
coverage at least.

Impact of Commonality.

IoC =
|
⋂

i=1...n Cpi,r|

SoC
. (3)

In Eq. (3), the Impact of Commonalityis shown which
relatesSoCto all commonly shareable components. Obviously,
the greater this ratio the more important are the commonly
shareable components.

Product-related Reusability.

PrRi =
SoC
|Cpi

|
. (4)

The ratio in Eq. (4) describes the reusability ofSoC for
a specific productpi: The greater this ratio the better is its
reusability. This ratio is denoted byC2 in Fig. 1.

Impact of Product-related Reusability.

IPrRi =

∣

∣

∣

⋂

j=1...n Cpj ,r

∣

∣

∣

|Cpi,r|
. (5)

The ratio in Eq. (5) describes the impact of reusability of all
commonly available components related to a specific product
pi which is also denoted byC2 in Fig. 1. Here, the smaller1−
IPrRi for productpi the greater is the impact of all commonly
shared components for this product.

Reusability Benefit.

RBi,j =
SoC

∣

∣Cpi
∩ Cpj

∣

∣

. (6)

In Eq. (6), the pairwisely calculatedReusability Benefitis
shown which is denoted byC3 in Fig. 1. For example, this ratio
for p1 andp2 is calculated by |A|

|A|+|B| . The greatest quotient
among all products describes the pair which shares the least
commonly available components and vice versa.

Relationship Ratio.

RRi,j =

∣

∣Cpi
∩ Cpj

∣

∣

∣

∣Cpi
∪ Cpj

∣

∣

. (7)

In Eq. (7), the relationship between two products is calcu-
lated which is shown asC1 in Fig. 1. Therefore,A together
with the number of components which are shareable between
these two products only is related to the joined set of all
remaining components of both products; the greaterRRi,j

between two productspi and pj the more similar are both
products.

Individualization Ratio.

IRi =

∣

∣

∣
Cpi

\
(

⋃

k=1...n,k 6=i Cpk

)∣

∣

∣

|Cpi
|

. (8)

In Eq. (8), the product-relatedIndividualization Ratiois cal-
culated which describes the product’s individualization related

to the amount of components which are shared with at least
one other product. The smaller this ratio the greater is this
product’s similarity with other products. In Fig. 1, this ratio

is depicted byIR2 =
|Cp2

\(Cp1
∪Cp3)|

|Cp2|
for productp2.

IV. A PPLICABILITY OF THE METRICS

In the following, we apply the aforementioned metrics on
a simplified example from the automotive domain for three
different implementations of a door ECU. The first product as
shown in Fig. 3 has only a lock/unlock functionality which
locks the doors automatically at a specific vehicle’s velocity.
In Fig. 4, the product has no auto-lock function but power
windows and a panic button to immediate closing in case
of danger. Finally, in Fig. 5, a component exists to control
window functions while opening or closing the hood of a
convertible; this system also has an auto-lock function. All
depicted signals have the same type.

Function Alarm Activator

Function Lock Uniter

alarmsetsignal

Function Auto Lock

autolocksignal

Function Lock Plausibility

plauslocksignal

plauslocksignal

BSW_IN

statuslamp openclosesignal

BSW_OUT

autolockenabled vehiclespeed lockrequest

Fig. 3. Productp1 “door ECU with auto-lock”.

Function Alarm Activator

Function Lock Uniter

alarmsetsignal

Function Lock Plausibility

plauslocksignal

plauslocksignal

BSW_IN

statuslamp openclosesignal

Function Panic Reaction

paniclocksignal Function Window Uniter

panicclosesignal

opencloseFLsignal opencloseFRsignal

BSW_OUT

lockrequestpanicrequest

FLrequest FRrequest

Fig. 4. Productp2 “door ECU with power windows and a panic button”.

Function Alarm Activator

Function Lock Uniter

alarmsetsignal

Function Auto Lock

autolocksignal

Function Lock Plausibility

plauslocksignal

plauslocksignal

BSW_IN

statuslamp openclosesignal

Function Window Uniter

opencloseFLsignal opencloseFRsignal

Function Hood Control

openclosesignal

BSW_OUT

autolockenabled vehiclespeed lockrequest

FLrequest FRrequest

hoodrequest

Fig. 5. Productp3 “door ECU for convertibles”.

To apply our metrics, we first have to determine the sets
of products and their intersections. For the sake of clarity, the
components are referred to by their abbreviation i.e. FLU for
Function Lock Uniter. Therequiredandoptionalcomponents
of the aforementioned products are shown in Tab. I.

TABLE I
REQUIRED AND OPTIONAL COMPONENTS

product required optional

p1 FLP, FLU FAL, FAA
p2 FLP, FLU FAA, FPR, FWU
p3 FLP, FLU FAL, FAA, FWU, FHC

Now we are able to map these components to the corre-
sponding sets as depicted by Fig. 1 and shown in Eq. (9).

p̄1 = ∅ (9)

p̄2 = {FPR, FLUp2
, FWUp2

}

p̄3 = {FWUp3
, FHC}

A = {FLP, FAA}

B = ∅

C =
{

FAL, FLUp1,3

}

D = ∅

The application of different metrics yields the results sum-
marized in Tab. II.

TABLE II
RESULTS OF METRICS FOR EXAMPLE PRODUCTS

all p1 p2 p3 p1,2 p1,3 p2,3

number of
components 4 5 6
SoC 2
IoC 0.5
PrR 0.5 0.4 0.33
IPrR 0.33 0.33 0.33
RB 1 0.5 1
RR 0.29 0.67 0.22
IR 0 0.6 0.33

The results show that potential for reusability exists in
general bySize of Commonality. Impact of Commonalityhas
a value of 0.5 which means that the half of the common
components are required. The productp1 has to contribute
to the product line because it has the highestProduct-related
Reusability. The Impact of Product-related Reusabilityis the
same for all products and thus, no additional recommendation
for a specific product to support the aforementioned ratio
can be deduced. IfPrR and IPrR for a specific product are
small the product should not be part of the considered product
line. The Reusability Benefitof p1 and p3 is the smallest
because they share more than only the components ofA.
Besides, these products have also the highestRelationship
Ratio which means they share the most common components
if pairwisely compared and thus, they are suitable for a product
line. The ratioIR indicates thatp2 has the highest amount of

components which are independent from others. Hence, the
product line should be created starting with the productsp1

andp3; the productp2 should be analyzed to identify potential
for refactoring to improve its specific ratio of reusability.

V. CONCLUSION

This paper outlined a collection of metrics for measuring
the ability for a product line of a given set of products.
First, the mathematical basis was discussed to summarize
the necessary information without relying on a particular
model which can be code excerpts, UML sequence charts,
or AUTOSAR functional components for example. Using the
mathematical model, several metrics are presented and their
importance and benefit for a product line are considered. In
a simplified example, these metrics are exemplarily used to
show their application.

Currently, these metrics are applied at an industrial project
from the automotive domain that should be transformed into a
product line. Here, the goals are to evaluated the proposed
metrics, identify necessary and sufficient commonalities as
well as correlations, and to estimate a set of values which
recommends the creating of a product line. Another goal is
to have a closer look on the models which describe software
artifacts and their transformation into a suitable representation
which we use as basis for the metrics.

REFERENCES

[1] P. Clements and L. Northrop,Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[2] K. Pohl, G. Böckle, and F. Linden,Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

[3] K. Czarnecki and U. W. Eisenecker,Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute - Carnegie Mellon
University, Tech. Rep., 1990.

[5] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000.

[6] I. John and M. Eisenbarth, “A decade of scoping - a survey,” in
Proceedings of the 13th International Software Product Line Conference,
2009.

[7] P. C. Clements, L. G. Jones, J. D. McGregor, and L. M. Northrop,
“Getting there from here: a roadmap for software product line adoption,”
Commun. ACM, vol. 49, no. 12, pp. 33–36, 2006.

[8] E. Dincel, N. Medvidovic, and A. v. d. Hoek, “Measuring product line
architectures,” inPFE ’01: Revised Papers from the 4th International
Workshop on Software Product-Family Engineering. London, UK:
Springer-Verlag, 2002, pp. 346–352.

[9] A. Gruler, M. Leucker, and K. Scheidemann, “Calculatingand mod-
eling common parts of software product lines,”Software Product Line
Conference, International, vol. 0, pp. 203–212, 2008.

[10] T. Zhang, L. Deng, J. Wu, Q. Zhou, and C. Ma, “Some metricsfor
accessing quality of product line architecture,”Computer Science and
Software Engineering, International Conference on, vol. 2, pp. 500–503,
2008.

[11] S. Mann and G. Rock, “Dealing with variability in architecture descrip-
tions to support automotive product lines: Specification and analysis
methods,” inProceedings embedded world Conference 2009. Nürnberg,
Deutschland: WEKA Fachmedien, Mar. 3-5, 2009.

[12] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, L. Rothhardt, and
B. Rumpe, “Modelling automotive function nets with views for features,
variants, and modes,” inProceedings of ERTS ’08, 2008.

