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Abstract—In the automotive industry, specifications often con-
sist of a large number of textual requirements. These require-
ments are linguistically ambiguous and written in informal
language. Utilizing Structured English for requirements elimi-
nates ambiguity, improves data quality, and supports further
automated processing while maintaining readability. The recent
development of large language models enables a fully automated
translation approach using few-shot learning. To deal with the
limited context size of large language models, an improved algo-
rithm, OptKATE, is presented to find an ideal set of requirements
for few-shot learning. Structured English can be used as a basis
for further formalization. This capability is key in creating an
interface between natural language processing and verification, in
our case, consistency analysis using the Z3 SMT solver. We imple-
mented a grammar for translating Structured English into TCTL
using the MontiCore workbench. Furthermore, since SMT-based
methods currently rely on manual precondition satisfaction and
do not tackle conflicting preconditions automatically, we propose
a scenario generation algorithm that generates potential scenarios
using the specification and checks the requirements against
them. Through this approach, we can better identify and resolve
conflicting preconditions, ultimately improving the consistency
of requirements. Our toolchain is evaluated using an automotive
requirements dataset provided by former Daimler AG.

Index Terms—Classification, Natural Language Processing
(NLP), Neural Networks, Requirements Engineering

I. INTRODUCTION

In automotive engineering, specifications, in part, consist
of textual requirements that are linguistically ambiguous and
written in an informal language. This is especially impactful,
as most product errors are traced back to faulty specifications
[1] and can harm people, the environment or property. It
is important to find such errors as early as possible, but
large specification documents make the manual search for
ambiguous language and inconsistencies difficult.

New specifications are often not written down completely as
a single textual requirement, but rather existing requirements
are reformulated or supplemented with new information. In
addition, not all requirements are written down one after the
other, but this happens in stages and sometimes only after
approval by other stakeholders. This leads to the fact that
several instances are involved in defining and finalizing a
requirement. This procedure makes ensuring the consistency
of requirements a great challenge. To address this problem,
on the one hand, automatic analysis of requirements is pre-
ferred over difficult and error-prone manual analysis. On
the other hand, for automatic analyses of natural language
requirements, ambiguity must be removed. Using Structured
English [2] [3] for requirements removes this ambiguity and
builds the foundation for further verification while maintaining
readability. It has been used successfully in automotive case
studies [4] [5]. The translation process from informal textual
requirements to a pattern language is a non-trivial task, it is
usually supported by software but is performed manually by
the relevant requirements engineer [6]. Recent development of
Large Language Models (LLMs) enables an automated trans-
formation approach. We use a LLM for pattern classification
and translation into Structured English.

II. PRELIMINARIES

A. Specification Patterns

Specification patterns were originally proposed by Dwyer et
al. [7] to model the behavior of systems using logic formula
templates. These templates used Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL) and the user could pack
propositional formulas into the template to instantiate the
semantics of the pattern. Each pattern also has a description
of its purpose in natural language to help the user select the
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correct patterns. The patterns were developed by analyzing
555 requirement specifications from more than 35 different
sources to find the most frequent language structures that
occur. However, the patterns were still hard to use for people
without a background in formal methods and also did not
support real-time constraints.

Konrad and Cheng [3] proposed a real-time extension
of specification patterns and also proposed a grammar that
defined a General Purpose Language (GPL) called Structured
English that allowed for a natural language representation of
requirements, which can be mapped 1:1 to a logic formula.
Thus, the requirements are readable for requirement engineers
who are not trained using formal methods, but are still easy to
express in formal logic. Since LTL and CTL do not support
real-time expressions, real-time extensions of these logics were
used, in this case Timed Computation Tree Logic (TCTL) [8].

Each requirement in Structured English is made up of a
scope and a pattern. The scope is used to specify when the
properties of a requirement have to hold and the pattern ex-
presses the actual properties of the requirement. The properties
are expressed with propositional formulas.

The consistency of requirements is checked in the logical
sense. A set of requirements is consistent if and only if there
are no contradictions. This also includes indirect contradictions
that might only surface when checking multiple requirements
together. To verify consistency, logical formulas representing
requirements are used.

B. Timed Computational Tree Logic

As TCTL is a real-time extension of CTL, that models
properties as a temporal tree structure. Thus, the future has
multiple possible paths, and it is not specified which path will
be realized. The temporal operators in TCTL always occur
as pairs of operators, where the first operator shows whether
the property holds on all the following paths or if only one
path must exist where the property holds. The second operator
expresses whether the property must hold all the time, occur
at some point, or hold until another property holds. The last
three operators are timed in TCTL, thus expressing that some
property must hold all the time within an interval, must occur
within an interval, or must hold until another property holds.
This allows the modeling of very complex real-timed systems.

C. Satisfiability Modulo Theories Library

The Satisfiability Modulo Theories Library (SMT-LIB) [9]
is an approach to provide a common input and output language
for Satisfiability Modulo Theories (SMT) solvers. SMT are
an extension of the Boolean Satisfiability Problem (SAT),
which interprets some symbols with a background theory (for
example arithmetic operators like ”+” have a fixed meaning).
SMT-LIB allows for more complex formulas than in SAT
since it allows for real numbers, integers, and various data
structures such as lists, arrays, bit vectors, and strings. The
SMT-LIB scripts consist of assertions that represent formulas
and declarations that introduce variables and functions. The
variable and function parameters have a type and can also be

declared as constant. SMT solvers are tools that aim to find
a model for a set of SMT-LIB assertions and declarations.
Since the SAT problem is already NP-hard, the same holds
for the SMT problem. We used SMT-LIB version 2, as this is
the default input of the Microsoft Z3 SMT solver [10] that is
used in the proposed toolchain.

D. Large Language Models

LLMs are deep learning models that are trained on language
data. Training is carried out with the target that the model
learns to predict the most likely next token, based on an input
stream [11] [12]. A token is a chunk of text that represents a
single unit of meaning. However, this training does not teach
the model how to solve specific tasks. Traditionally, these
models are used as a basis for fine-tuning, hence using the
weights of the pre-trained model as a basis and then training
the model on task-specific data [13].

Recent LLMs, such as the GPT-3 model [11], have reached a
point where basic training on language data suffices to execute
different NLP tasks with the model out of the box. This is
possible because of a large increase in the size of the model
and the amount of data the model was trained on. To allow
these models to execute an NLP task, a context is given to the
model. The context can contain a task description that is used
to describe the task and some examples of the task the model
should perform. The test prompt is the entity on which the
model should perform the task and is therefore placed at the
end of the context, leaving out the task solution. The model
then predicts, based on the context, the next most likely token.
If the model was trained on a sufficient amount of data, it will
predict the solution to the task. This procedure is called Few-
Shot-Learning [14].

The model we used in this paper is the GPT-J-6B language
model with 6 billion parameters [15]. The model is freely
available and was trained on the Pile dataset [16], an 825
GB open source language modeling dataset consisting of 22
smaller high-quality datasets combined together. Evaluations
have shown that the performance of GPT-J-6B is comparable
to the GPT-3 version with 6.7 billion parameters [15].

III. METHODOLOGY

We propose an end-to-end toolchain to perform automated
consistency checking of the behavior of an automotive system,
specified by its requirement specification. The methodology
for this toolchain is illustrated in Figure 1 and consists of
three main components. The first component ”Transformation
to Structured English” transforms the natural language specifi-
cation into a Structured English specification. For this step, we
introduce a new formalization method, using large language
models. We used Google Colaboratory (Colab) [17] to carry
out our experiments. The GPT-J-6B [15] model was used since
the original paper ”Language Models are Few-Shot Learners”
[11] suggests that the few-shot learning capabilities of LLMs
increase with the size of the model. The translation technique
leverages the few-shot learning capabilities of large language
models. On top of this, the translation was split into three



Transformation

to Structured 

English

Natural

Language

Specification

Example Data

Structured

English

Specification

Specification 

Pattern

Preconditions

and Constants

TCTL

Specification

Consistency

Checking

Transformation

to TCTL

Inconsistent

Requirements

evaluate

improve

(check)

Fig. 1. Overview of Methodology

steps that consecutively transform a natural language require-
ment into Structured English. Therefore, this transformation
needs some example data (few-shot data) consisting of natural
language requirements and the individual transformation steps.
The second component ”Transformation to TCTL” encodes the
obtained Structured English specification in TCTL formulas
and extracts the requirements preconditions and constants.
Preconditions are the left part of each implication that is a
part of a requirement of the specification. The constants are
extracted by storing which propositions occur on the right and
which on the left side of a binary operator. If a proposition is
only on the right side, it is only assigned and never changes its
value; thus, it is a constant. The TCTL formulas are obtained
by applying the mapping from Structured English to TCTL,
which is derived from the specification pattern [18]. The third
component ”Consistency Checking” checks the consistency of
the logical formulas by generating scenarios from precondi-
tions. Scenarios are sets of formulas that are generated from
the specification. Each scenario represents situations that could
occur according to the specification, also encoded in TCTL
logic. The TCTL specification is then checked against each
scenario. To do so, the current scenario and the TCTL specifi-
cation are transformed into a SMT script that can be checked
for inconsistencies by a solver. Therefore, the consistency
checking procedure finds and returns the inconsistencies. In
an iterative process, the user corrects the inconsistencies in
the original natural language specification or the Structured
English specification and then applies consistency checking
again to check if all inconsistencies are eliminated.

IV. TRANSFORMATION TO STRUCTURED ENGLISH

The transformation of natural language requirements into
Structured English is done by first determining the target
pattern for the requirement using a few-shot classifier and
second by providing a context of transformation examples

formalized in the target pattern for a LLM, in this case, GPT-J-
6B [15]. The language model then performs a transformation
with few-shot learning. The context has to contain example
transformations that support the model to derive the transfor-
mation steps necessary to transform the current natural lan-
guage requirement into Structured English. The classification
is performed because in early experiments we have seen that
restricting the context to the target pattern of the test prompt
significantly improves the transformation quality. The context
selection procedure is based on the finding that a low distance
between the test prompt, in this case, the requirement to be
transformed, and the examples result in a much better few-
shot learning performance [19] compared to a random context
selection. Since requirements with similar semantics should
get mapped to similar Structured English representations, a
context selection based on the distance between the natural
language requirements is used.

The Knn-Augmented in-conText Example selection (KATE)
algorithm [19] performs context selection, using a distance
function µΘ(·). In our case, we used semantic distance func-
tions, because semantically similar natural language require-
ments should be formalized into equivalent Structured English
representations. The distance functions used are presented in
Section VII. We use KATE to select semantically similar
requirements and their patterns as labels as a few-shot context
for the classification. However, this approach does not work
for our Structured English transformation since the KATE
algorithm does not take the limited context size of language
models into account and thus the size of the examples has
to be considered. In other words, some requirements can be
semantically similar to a test prompt, but their length prevents
multiple other, shorter, examples from occurring in the context
that might also be semantically similar to the test prompt. We
decided that in such a situation multiple shorter requirements



should be chosen for the context. To ensure this, the results
of the original algorithm are optimized in terms of length
using the knapsack algorithm, interpreting the length of the
requirements as weight and the distance to the test prompt as
profit (a smaller distance is more profitable). The knapsack
algorithm calculates the optimal selection of examples, such
that the profit is maximal, and hence the overall distance of the
examples in the context is minimal. This selection procedure
we called OptKATE and the algorithm according is given
in Algorithm 1. The selected examples build the context for
transforming the test prompt.

Algorithm 1 OptKATE Algorithm
Require: xtest: Test prompt, Dt: Training set, µΘ(·): Dis-

tance function, yc: Capacity of Language Model
1: function OPTKATE(xtest, Dt, µΘ(·), yc)
2: Ddist ← []
3: for xexample in Dt do
4: d← µΘ(xtest, xexample)
5: add (xexample, d) to Ddist

6: end for
7: yv ← [y for (x, y) in Ddist]
8: yw ← [len(tokenizer(x)) for x in Dt]
9: Dopt ← knapsack(yv, yw, yc)

10: return Dopt

11: end function

The last step in the transformation process is to pass the
context, together with the test prompt, to the language model.
The model will generate a solution for the transformation
task. Mistakes in the translation process are possible; hence,
a manual check and needed error corrections are performed.

V. TRANSFORMATION TO TCTL

Despite the existing tool support for processing Structured
English [5] [18], a new tool was implemented, since the
existing tools do not have functionalities such as extracting
preconditions and constants, which are needed by our proposed
toolchain.

The Language Workbench MontiCore [20] was used to
implement Structured English. MontiCore is a framework that
generates Java code from formal grammars, which provides the
functionality to process the language defined by the grammar.
Since Structured English is defined by a formal grammar [18]
the definition was straightforward.

An excerpt of the grammar used in the MontiCore im-
plementation is shown in Figure 2. The grammar consists
of production rules, where the left side is a non-terminal
and the right side is a mix of terminals and non-terminals.
The starting non-terminal is Specification. Each Specification
consists of arbitrary many properties. Each property consists of
a scope and a pattern, which together resemble a Structured
English pattern. MontiCore generates for each non-terminal
on the left side of a production rule a Java class. MontiCore
also generates a parser component that can parse a Structured
English specification. The parser is used to determine the

scope Specification = (Property)*;

Property = Scope ", " Pattern ".";

interface Scope;

Globally implements Scope = "Globally";

Before implements Scope = "Before " R:Formula;

...

interface Pattern;

Universality implements Pattern =
"it is always the case that " P:Formula (" holds")? (" " 
time:Time)?;

Response implements Pattern =
"if " P:Formula (" has occurred")? ", then in response " 
S:Formula (" eventually holds")? (" " time:Time)?;

...

MG

Fig. 2. MontiCore Grammar: Scope and Pattern

scope and pattern used to formulate the Structured English
requirements. Based on this information, a logic formula
template is selected according to the specification patterns.

token Formula = AtomicFormula+;

fragment token AtomicFormula = ("not ")? (Lit Operand Lit
(Connector)?);

…

token Time = UpperTimeBound | LowerTimeBound | Interval |
TimeIndication;

fragment token UpperTimeBound = "within " TTU;

fragment token LowerTimeBound = "after " TTU;

fragment token Interval = "between " T " and " TTU;

…

MG

Fig. 3. MontiCore Grammar: Formulas and Time Bounds

The logic formula template needs to be instantiated with
the propositional formulas and time constraints used in the
Structured English requirement. To make this information
accessible, each production rule for the Formula and Time
non-terminal is marked as a token in the grammar, as shown in
Figure 3. This tells the parser that once recognized during the
parsing procedure, the formulas and time constraints should
be stored. To do so, classes for the tokens are also generated
and can be accessed through the respective pattern and scope
objects. After extracting the formulas and time constraints
from the recognized scope and pattern, the formula template is
instantiated, and the resulting formula is added to the output.

However, as described in Section III an extraction of pre-
conditions and constants is needed. To do so, a routine was
implemented that stores the preconditions for each pattern and
scope after parsing the specification. For example, if a require-



ment has the scope ”After Q, ...”, the formula Q is stored as a
precondition. These preconditions are then transformed into
TCTL formulas by instantiating a universality pattern with
the propositional formulas in the preconditions. The resulting
formulas are annotated with their original requirement and
then added to the output. Constants are extracted by building
up two sets during the mapping described previously TCTL.
One set stores all the propositions occurring on the left side of
binary operators. The other set stores all propositions occurring
on the right side of binary operators. If a proposition only
occurs in the set that stores the right-hand propositions, it is
interpreted as a constant and assigned a unique value. This is
needed because otherwise the solver could treat propositions
as equivalent, by assigning them the same value (for example,
ratios like ”1:1” and ”1:2” should not be treated as equal). The
constants are added to the output as a list of propositions.

VI. CONSISTENCY CHECKING

A. SMT-Based Consistency Checking

The consistency checking procedure described in this sec-
tion is based on the method introduced by Predrag et al [21].
This approach takes a TCTL specification and maps it to
first-order logic. The resulting formulas are then encoded in
assertions and declarations in a SMT-LIB script, which can be
checked for satisfiability by a solver. The approach has low
modeling costs and there exist various solvers, such as the
Z3 SMT solver [10], CVC5 [22], or SMTInterpol [23], that
can take a SMT-LIB script and return a model, or in case of
inconsistencies, return an unsatisfiability core containing the
inconsistency. In our case, the Z3 SMT solver was used.

The original paper [24] shows that in the SMT-Based
approach, the solver might not terminate with a quantifier
depth greater than three in the assertions. A migration strategy
was proposed that abstracts specification patterns to weakened
variants with fewer quantifiers that still ensure a correct
consistency checking procedure. In detail, they abstracted
requirements formalized with the universality pattern and an
”After... Until...” scope by replacing the ”Weak Until” operator
in the TCTL formula with an until operator that had a fixed
time constraint. With this abstraction, the quantifier depth
changed from three to two, and termination was ensured.
However, this migration strategy works only for this specific
pattern and scope.

The migration strategy does not work, for example, for a
response pattern with an ”After... Until...” scope since the
response pattern adds an additional quantifier. Thus a total
of four nested quantifiers would be used, and now two of
them would have to be omitted to ensure the termination of
the solver. However, this is not possible without significantly
weakening the semantics of the formula. Thus, when perform-
ing the consistency checking procedure with specifications
containing such patterns, it is not always possible to formally
prove the consistency by finding a model. However, with our
approach, the solver was still able to find inconsistencies in a
specification, which makes the approach valuable for checking
a specification for inconsistencies, but the user has to keep in

mind that not finding inconsistencies does not mean that the
specification is consistent.

The main issue of the original approach is the handling
of implications, as a solver can obtain a trivial satisfiability
by never evaluating preconditions as true. A user can sys-
tematically satisfy preconditions that do not contradict each
other. However, this procedure can be time-consuming, and
therefore an automation strategy is proposed in this paper
using scenarios.

B. PROPAS Adjustments

The PROperty PAttern Specification and Analysis Tool
(PROPAS) can perform the transformation from TCTL into
a SMT-LIB script and was presented in the original paper by
Predrag et al. [24]. However, we have added some required
features to the tool, for example, floating point numbers for
time constraints, since the Daimler dataset [25], [26] contains
such time constraints. Another important adjustment was the
conversion of the interval notation for time constraints, since
in PROPAS only the ” < ” operator was applicable to tempo-
ral operators. However, the notation used by the Structured
English grammar is based on intervals. According to [2],
the interval notation ”op[t1, t2]...”, where op is an arbitrary
temporal operator, can be expressed as ”op = t1(op <=
t2−t1...)”. Thus, the MontiCore implementation was adopted
to find the intervals in the formulas and replace them using
the notation described above. As mentioned already, only the
” < ” operator was implemented for temporal operators;
thus,the operators ” <= ” and ” = ” had to be implemented
by us to support the notation of time constraints.

Lastly, the preconditions and constants had to be treated
separately. The PROPAS tool defines each variable as a func-
tion that takes a real number and returns a real number. This
was done because the variables should take a time variable
that is used to express the time constraints in the SMT-LIB
script. However, a constant does not change over time, and thus
the function declarations for constants were changed so that
they do not take any arguments. Then assertions were added
to the script, where each of these functions was assigned a
unique value, to prevent constants from being assigned equal
values by the solver. The preconditions were transformed into
normal assertions. However, each precondition is marked with
a name that declares from which requirement the precondition
originates.

C. Scenario-Generation

A scenario is a maximal consistent subset of a potentially
inconsistent set of preconditions. Therefore, adding any pre-
condition from the set to a scenario where it is not already
included would result in inconsistency in the scenario. In order
to find all scenarios, one would need to find all inconsistencies
between the preconditions to make sure that no contradicting
preconditions are in the same scenario. A first naive approach
to find all such inconsistencies is illustrated in Figure 4.
The naive search to find the scenarios takes advantage of
the fact that no pattern has nested preconditions. Hence, no



precondition contains another precondition. This fact can be
obtained by analyzing the available patterns of Structured
English [18]. Thus, the only kind of inconsistency that can
be found is a direct contradiction between two preconditions.
Therefore, when the set of preconditions is checked for
inconsistencies, either two preconditions that contradict each
other are returned, or no inconsistency is returned. When
contradicting preconditions are found, these inconsistencies
are unpacked as x1 and x2. Two subsets of the preconditions
are created where one subset omits x1 and the other omits
x2. Then, the contradicting preconditions are saved in an
inconsistency map. Since x1 and x2 can both be part of more
inconsistencies, both subsets have to be checked recursively. In
the worst case, there are as many recursions as preconditions.
There would be 2n computation paths for n preconditions.
Therefore, the search must be optimized.

x1 x2

x2 x1,x3

x3 x6

x4 x5,x7

x5 x4

x6 x3

x7 x4

Preconditions
[x1,x2]

c1
[x2,x3]

\x1 \x2

c2
[x4,x5]

\x2 \x3 \x4 \x5

…c3
[x3,x6]

\x3 \x6

c4
[x4,x7]

\x4 \x7

… …

Fig. 4. Naive Inconsistency Search

The problem of finding the maximum consistent subsets
was investigated by Robert Malouf [27]. It was shown that
the problem of finding these subsets can be reduced to the
hitting subset problem, which is NP-Complete. In the work of
Malouf, it is already mentioned that the search for maximal
consistent subsets can be optimized by heuristics if suitable
information is available. This is a promising approach since
the preconditions have a predictable form, and thus certain
information about the likelihood of inconsistencies found with
a precondition can be obtained. When an inconsistency is
found between two preconditions x1 and x2 then two subsets
C1 and C2 are generated, where each subset includes one
of the inconsistencies (x1 is in C1 and x2 is in C2). The
decision to be made is which of the inconsistent preconditions
is more likely to be part of another inconsistency since, apart
from the inconsistent preconditions, the subsets are identical.
An inconsistency between two preconditions can only occur
if there are some shared propositions in the preconditions.
Furthermore, if there are many propositions of x1 in the subset
C1 the likelihood of another inconsistency including x1 is
high. The number of potential inconsistencies that include x1

is limited by the number of occurrences of the propositions
of x1 in the subset C1 (without x1 itself). The same holds
for x2 and C2. Thus, the heuristic to estimate how many
inconsistencies are found with the combination of inconsistent
preconditions and the subset to which it is added is the
number of occurrences of the propositions of xi in Ci for

i ∈ {1, 2}. The algorithm to calculate this number is shown
in the algorithm 2.

Algorithm 2 Inconsistency Heuristic
Require: C: Current branch, x: Inconsistent precondition

1: function H(C, x)
2: Cx̃ ← remove x from C
3: propx ← get propositions(x)
4: propC ← get propositions(Cx̃)
5: n← 0
6: for px in propx do
7: n← n+

∑
y∈propC

[px == y]
8: end for
9: return n

10: end function

This heuristic can now be used as a profit estimate of the
computation branches. The informed search is implemented
using the A*-search algorithm [28], but instead of a cost
function, the profit function h is used to estimate how many
inconsistencies can be found with the inconsistent precondition
and the subset that includes it. Thus, when contradicting
preconditions are found, the A*-search algorithm decides in
which subset to be searched for further contradictions, so that
the most inconsistencies between the inconsistent precondi-
tions are found. The algorithm guarantees that if a solution
exists, it will always be found. Since at least the subset
containing zero preconditions will be consistent, a solution
will always be found. Another important property is that the
solution is guaranteed to be optimal, thus no computation
path yielding a higher profit can be found if the heuristic is
admissible, i.e., the cost of a path to the goal is never over-
estimated. Thus, in the profit case, the heuristic should never
underestimate the profit of the computation path to the goal.
Since the heuristic estimates the maximum possible number of
inconsistencies found with the inconsistent preconditions and
the subset, it is admissible, and thus the A*-search will return
an optimal solution with respect to the number of possible
inconsistencies. The A*-search algorithm also needs a function
g that returns the profit from the root node to the current node.
This is simply the depth of the tree at the current node since,
at every node in the path, an inconsistency is found. Thus,
the profit from the root to the current node is the number
of inconsistencies found on the computation path and can be
expressed by the depth of the current node. The algorithm to
calculate the depth is shown in Algorithm 3.

Algorithm 3 Path Inconsistencies
Require: Dpre: Set of all preconditions, C: Current branch

1: function G(Dpre, C)
2: depth← len(Dpre)− len(C)
3: return depth
4: end function

For the A*-search algorithm, the heuristic value and the
current profit value need to be added and calculated for every



node. The algorithm is shown in Algorithm 4.

Algorithm 4 Branch Evaluation Score
Require: Dpre: All preconditions, C: Current branch, x:

Inconsistent precondition
1: function F(Dpre, C, x)
2: gval ← G(Dpre, C)
3: hval ← H(C, x)
4: return gval + hval

5: end function

Now, the naive search algorithm can be adjusted to perform
the A*-search. First, a branch map is needed that saves the
current f-values for every computation path. The determination
of inconsistencies and the construction of the subsets C1 and
C2 is taken from the naive algorithm and works identically.
The first adjustment is that the f-value is calculated for every
subset and inconsistent precondition found. Then the subset
and the corresponding f-value are stored in the branch map.
The next subset is computed by finding the current branch
with the lowest f-value. This branch is then expanded by
recursing the algorithm with the current best branch. The
A*-search algorithm used to find inconsistencies between the
preconditions is shown in Algorithm 5.

Algorithm 5 Informed Scenario Generation
Require: Dpre: Set of all preconditions, ∆check(·): Returns

two contradicting preconditions, f(·): The f-value func-
tion, Next(·): Returns branch with highest f value

1: MI ← {}
2: B ← {}
3: function GETINCONSISTENCIES(Dpre,∆check(·), f(·))
4: Tcontra ← ∆check(Dpre)
5: if Tcontra is empty then
6: return MI

7: else
8: (x1, x2)← Tcontra

9: C1 ← remove x1 from Dpre

10: C2 ← remove x2 from Dpre

11: add x2 to MI [x1]
12: add x1 to MI [x2]
13: B[C1]← f(Dpre, C1, x1)
14: B[C2]← f(Dpre, C2, x2)
15: Cnext ← Next(B)
16: return GetInconsistencies(Cnext,∆check(·), f(·))
17: end if
18: end function

To build the scenario from the produced inconsistency map
algorithm 6 can be used. This scenario-building algorithm
simply iterates over all preconditions and adds them to a list.
Before adding the precondition, the Z3 SMT solver checks
whether the current precondition contradicts any preconditions
already in the list. If not, it is added, but if there is an
inconsistency, a new list is created. The new list is a copy
of the current list, but each precondition that contradicts the

current precondition is omitted. Then the current precondition
is added. Thus, there are now two lists of preconditions that
have no inconsistencies and are maximal concerning their
preconditions. This procedure is iterated until all preconditions
are added to all possible lists.

Algorithm 6 Building Scenarios
Require: Dp: Set of preconditions, MI : Inconsistency map

1: function GETSCENARIOS(Dp,MI )
2: Res← [[]]
3: for xpre in Dp do
4: for Dcurr in Res do
5: if xpre not in

⋃
x∈Dcurr

MI [x] then
6: add xpre to Dcurr

7: else
8: Dnew ← copy of Dcurr

9: for xcontra in MI [xpre] do
10: if xcontra in Dnew then
11: remove xcontra from Dnew

12: end if
13: add xpre to Dnew

14: add Dnew to Res
15: end for
16: end if
17: end for
18: end for
19: return Res
20: end function

In the experiments, the search algorithm 5 always ter-
minated within seconds even for the translated Daimler
dataset [26]. However, since the heuristic is only an estimate
of the inconsistencies to be found, inconsistent precondi-
tions may occur in the same scenario. Without checking
the preconditions themselves for inconsistencies, this may
lead to missed inconsistencies in the requirement set. This
rarely occurred in our tests, but once it occurs, one of the
inconsistencies has to be removed. Another adjustment was
made to the formulas using the AF (φ) operator. Following
the current state, the operator indicates that φ will eventually
hold in all computation paths. However, since this can be
arbitrarily far away, the solver may not terminate and push the
occurrence of φ arbitrarily far away. Thus, the operator was
abstracted to AF=0(φ) to force the occurrence of φ. Since the
unsatisfiability resulting from such an abstraction implies the
unsatisfiability of the version without abstraction, it does not
affect the correctness of the consistency checking procedure.
In the case of the timed response pattern, preconditions,
and postconditions get the same time constraint to enforce
postconditions immediately after preconditions are fulfilled.

VII. EVALUATION

A. Dataset

To implement and evaluate the methods proposed in this
document, an industrial automotive dataset made by Daim-
ler [25] was used. The dataset consists of 117 industrial



requirements and design decisions. The requirements are for-
mulated for two automotive systems: First, the Adaptive Light
System (ALS) and second, the Advanced Driver Assistance
System (ADAS).

The ALS requirements specify a range of standard system
functions, such as the vehicle’s direction indicators flash
in response to the steering column lever or the function
of the hazard warning switch. It also includes a function
for daytime running light and an adaptive high beam to
regulate headlights depending on the high beam switch and
the detection of oncoming vehicles. The ADAS, the dataset
incorporates requirements related to the primary components
of a speed limiter and adaptive cruise control, which maintains
the distance to the vehicle in front using the maximum speed
chosen by the driver or by traffic sign detection. In addition,
it provides distance warning and an emergency brake assistant
that reacts to stationary and moving obstacles.

The specification consists mainly of behavioral (functional)
requirements, but headers and some descriptive requirements
are also part of it. Behavior requirements describe the relation-
ships of actions. For example, they describe what exact event
occurs after a specific action was performed, describe which
events should never occur, or describe which properties should
always hold. Many requirements have additional constraints
regarding the scope in which the requirement should be met
or the time of events.

B. Manual Transformation

The Daimler dataset [25] was translated into Structured
English manually according to the specification patterns. The
dataset was filtered as described in the following steps. The
original dataset contains headers and purely descriptive state-
ments. For example, ”The exterior lighting system contains the
following user functions”, or ”Note: The reduction of power
serves the protection of the illuminant”. These requirements
do not influence any behavior of the system but are only
informative. Thus, they can be omitted from the data. The
translated Daimler dataset [26] contains only requirements
that contain information about the system. However, there are
still many requirements that are not behavioral requirements,
for example, ”The gas pedal is mounted in the footwell
area of the driver.” is neither descriptional nor a header but
still does not carry information about the system behavior.
Such requirements can also cause inconsistencies but are not
expressable in Structured English, therefore, such requirements
are also omitted. Note that such limitations can be bypassed
by extending Structured English or using other languages.
Some requirements consisted of multiple sentences, where
some sentences were expressible in Structured English while
others were not. In this case, the requirements were split
into expressable sentences and inexpressible sentences. After
these steps, about 75% of the remaining requirements could
be expressed in Structured English.

The distribution of the resulting Structured English require-
ments is shown in Table I. Note that some natural language
requirements were transformed into more than one Structured

TABLE I
PATTERN DISTRIBUTION

Pattern Globally Before After Between After
Until

Universality 15 0 1 0 7
Response 63 1 5 0 7

English requirement. Another observation was that about 79%
of the transformations used the Globally scope, which also
aligns with the results from a case study using Bosch re-
quirements [4] in which about 80% of the Structured English
requirements used this scope. On top of this, only two patterns
were enough to express every transformed requirement.

C. Automated Transformation
Due to the classification accuracy score of 90%, we assumed

that it is reasonable to restrict the data for the transformation
to one pattern for the evaluation of the transformation. This
way we assume a perfect classification to gain insights into
the actual quality of the transformation. Therefore, a subset
of the translated Daimler dataset [26] was selected. Namely,
each of the 38 natural language requirements was manually
formalized into exactly one Structured English requirement
using the response pattern. The transformation can now be
performed by selecting one of the 38 requirements as a test
prompt that should be transformed into Structured English and
using the remaining 37 transformations as the training dataset.
Then, the context is selected with the OptKATE algorithm,
and the model transforms the test prompt with the provided
context. We split the translation into three steps, which are
exemplarily depicted in Figure 5. The first step is to create

With subvoltage the ambient light is not available.

Globally, if subvoltage is present, then in response the 

ambient light is not available.

Globally, if subvoltage is present, then in response the 

ambient-light is not available.

Globally, if subvoltage equals present, then in response 

not ambient-light equals available.

Step1: If-Then structure and Scope

Step 2: Propositions (Concatenation with „-“)

Step 3: Operators (equals, greater than...)

Structured English

Pattern 
Scope

Natural Language Requirement

Fig. 5. Cascading Translation Example

the sentence structure of the target pattern. The second step
is to introduce the propositions for the propositional formulas.
The last step is to introduce the correct operators.

For the distance function, we tried different semantic encod-
ings of the natural language requirements and then calculated
the cosine similarity. The encodings used were Universal Sen-
tence Encoder (USE) [29] and the SBERT Encoder [30], since



both have shown good performance in the Semantic Textual
Similarity benchmarks. We also used a Bag of Words Encod-
ing [31], which sums up the one hot encodings of the words of
a requirement sentence. This encoding was used since one of
the main tasks during the transformation of the requirements
is to introduce correct propositions. We assumed that selecting
examples that use vocabulary similar to that of the test prompt
might result in better transformation performance. The vector
length of the Bag of Words Encodings is therefore equal to
the vocabulary size used in the specification. We used two
different few-shot translation approaches. The first approach
(All-In-One) was to give all three transformation steps in the
context and then let the model perform all three steps on the
test prompt. The second approach (True-Cascading) was to
let the model generate each transformation step at once, only
giving the examples for the current transformation step and
the test prompt (in the respective step) as context.

For transformation evaluation, we used the BLEU score
[32], as well as the SE score [33], which is a manual metric
defined as follows:
Class 1: The translation is both syntactically and semantically
correct and fulfills the required formulation rule. No changes
are required.
Class 2: The translation is semantically correct but contains
one or two syntactical inaccuracies to fully implement the
desired rule.
Class 3: Syntactically correct but fails to fully cover the se-
mantics of the source requirement (e.g. by missing a quantifier
or a marginal constraint).
Class 4: The translation contains one or two syntactical inac-
curacies to fully implement the desired rule and the semantics
are not fully covered, i.e. a combination of 2 and 3.
Class 5: The translation has grave syntactical errors or does
not implement the desired rule. An identity mapping would
result in this label as well (unless the input already implements
the desired rule).
Class 6: The translation is semantically wrong.

We transformed the dataset with different combinations of
the properties described above to find the best combination
of distance function and context format. The best scores were
achieved using the All-In-One format with the Bag of Words
Encoding Distance (BLEU: 0.47 and SE: 3.26) and the True-
Cascading format with the USE Distance (BLEU: 0.54 and SE:
3.32). To put the results in the context of a semiautomated
transformation approach, the average assignment number of
the SE classes of the requirements was calculated with the
All-In-One format and the Bag of Words Encoding Distance.
Class 1 was interpreted as a transformation that can be used
without the need for any further adjustment. Class 2 to Class
4 were interpreted as classes where semantically or syntactical
adjustments must be made. Class 5 and Class 6 however
denote that the transformation has to be done completely
manually. The average number of class assignments for the
38 response pattern requirement transformations is shown in
Table II. Thus, regarding the All-In-One format with the
Bag of Words Encoding Distance, on average 27.2% of the

TABLE II
AVERAGE SE-CLASS ASSIGNMENTS

Classes Assignments (All-In-One) Assignments (Cascading)
Class 1 10.33 11.66
Class 2 4.00 1.66
Class 3 6.33 10.66
Class 4 6.66 2.00
Class 5 4.00 0.66
Class 6 6.66 11.33

transformations could be used without adjustments, around
44.7% needed some adjustments, and around 28.1% needed
a manual transformation. For the Cascading format with USE
Distance 30. 7% of the requirements could be used without
adjustments, around 37.7% needed adjustment, and 31.6% of
the requirements had to be transformed manually.

In general, it was observed that the distance function, in
combination with the input format, can change the quality
of transformation. Quality increased dramatically compared
to the random baseline with a BLEU score that tripled with
respect to 0.16 for the random baseline compared to 0.55 and
0.53 for the best transformations of the response pattern data.
The average SE score also indicates that the transformation
went from almost unusable, indicated by the SE score of 5.78
for the random baseline, to transformation results that can be
used in a semiautomated transformation process, where some
transformations need correction, but also common transfor-
mations are flawlessly by the model. However, one has to try
some promising combinations such as the All-In-One format
with Bag of Words Encoding Distance, or the USE Distance
with the cascading format, since the evaluation has not shown
a method that was superior to the other.

D. Consistency Checking

For the evaluation of the consistency checking procedure,
a total of six subsets were randomly generated from the
translated Daimler dataset [26], each consisting of 10 require-
ments. The consistency checking procedure was used on each
subset, and then some inconsistencies were additionally added
to the subsets, and the procedure was performed again. The
added inconsistencies were either direct inconsistencies using
the universality pattern, postcondition inconsistencies using
the response pattern, or temporal inconsistencies using the
universal or the response pattern. Direct inconsistencies are
quite easy to find and do not rely on the scenario builder.
To find the postcondition inconsistencies it is necessary that
the scenario building works, thus that the preconditions of
the requirements including the inconsistent postconditions are
fulfilled. To check this, some requirements with inconsistent
postconditions and preconditions were introduced. These re-
quirements should not be returned by the consistency checker,
since the preconditions cannot be fulfilled at the same time.
Temporal inconsistencies were introduced to evaluate whether
the transformation from TCTL time constraints to SMT as-
sertions works properly. The evaluation results are shown in
Table III.



TABLE III
CONSISTENCY CHECKING EVALUATION

Consistency Checking
Sets Scenarios Inconsistencies Added Found
Set 1 4 0 1 1
Set 2 3 0 1 1
Set 3 1 0 1 2
Set 4 6 1 1 2
Set 5 0 1 1 1
Set 6 1 1 3 4

In almost all cases precisely, the inconsistent requirements
were found. However, in Set 3 an incorrect inconsistency was
detected. The inconsistency reported is a single requirement:

”After speed-limit equals temporarily-deactivated
until not speed-limit equals temporarily-deactivated,
if gas-pedal-level less than 90%, then in response
speed-limit equals activated-again.”

The requirement expresses that between deactivation and the
next activation of the speed limit, if the gas pedal is below
a level of 90%, the speed limit is activated again. The re-
quirement is consistent in itself. The problem results from the
precondition of the requirement that models the speed limit’s
deactivation and its mapping to TCTL with the universality
pattern. Hence, the precondition expresses that the speed limit
is deactivated all the time. The other precondition in the
requirement is that the level of the gas pedal is below 90%.
Since this is consistent with the deactivation of the speed
limit, both preconditions are added to a scenario. Then the
postcondition, which expresses the speed limit’s activation,
holds and is inconsistent with its precondition that the speed
limit is deactivated. This results in an inconsistency reported
by the consistency checker. Therefore, a solution would be to
time the preconditions, thus only modeling their occurrence
instead of modeling that they hold all the time. But to
do this, a time point for occurrence has to be determined
for all preconditions that should hold at the same time,
without introducing inconsistencies between preconditions and
requirements by accident. This task is not trivial, and due to the
rare occurrence of such cases, an adjustment of the procedure
is not proposed. Thus, the user must keep this case in mind.
A solution to this problem is open to further research. It is
recommended to check for correctness of each reported incon-
sistency. The results also show that none of the requirements
with inconsistent pre- and postconditions were reported by the
consistency checker, which shows that the scenario generator
is working. Thus, the procedure found all inconsistencies in
the subsets within seconds, due to an approximated scenario
generation procedure and a structured satisfaction of consistent
preconditions, generating test sets that reflect all possible
scenarios according to the specification.

VIII. DISCUSSION AND OUTLOOK

In this paper, a complete toolchain for checking the con-
sistency of natural language requirements was presented. By
first transforming the informal language requirements into

Structured English with a LLM, further formal processing
of the requirements is made possible. Then, converting the
requirements first into TCTL and afterward into SMT-LIB
specifications prepares an easy integration of the SMT solver.
The SMT solver checks translated requirements for incon-
sistencies and presents the results. With this toolchain, the
requirement engineer can automatically check refined or new
written requirements without doing the time-prone process
of classification and formalization into Structured English
patterns by himself.

LLMs are explicitly used only for the translation step
from natural language into Structured English. These results
can be read and evaluated by the requirements engineer.
This evaluation is necessary because, unlike the subsequent
transformation steps of the toolchain, complete correctness
cannot be guaranteed when using LLM. But we think that the
translation that has already taken place, in addition to making
this step generally easier, will also help Structured English to
be learned more quickly.

The toolchain was implemented as a prototype and eval-
uated on the Daimler dataset [25], [26] using the GPT-J-
6B [15]. Application on more automotive datasets are planned
to evaluate the overall suitability of Structured English. The
extent to which knowledge of the hierarchy of requirements
within specifications can further improve translation results is
another research question, as we currently only rely on the
requirements themselves. Comparison of results depending on
the chosen LLM would benefit possible applications in an
industrial context. Therefore, a comparison of the translation
results is planned on larger models such as GPT-NeoX-
20B [34].

In the automotive industry, specifications often consist of
a large number of textual requirements. These requirements
are linguistically ambiguous and written in informal language.
Utilizing Structured English for requirements eliminates am-
biguity, improves data quality, and supports further automated
processing while maintaining readability. The recent devel-
opment of large language models enables a fully automated
translation approach using few-shot learning. To deal with
the limited context size of large language models, an im-
proved algorithm, OptKATE, is presented to find an ideal
requirement set for few-shot learning. Structured English can
be used as a basis for further formalization. This capability
is key in creating an interface between natural language
processing and verification, in our case, consistency analysis
using the Z3 SMT solver. We implemented a grammar for
translating Structured English into TCTL using the MontiCore
workbench. Furthermore, since SMT-based methods currently
rely on manual precondition satisfaction and do not tackle
conflicting preconditions automatically, we propose a scenario
generation algorithm that generates potential scenarios using
the specification and checks the requirements against them.
Through this approach, we can better identify and resolve con-
flicting preconditions, ultimately improving the consistency of
requirements. Our toolchain is evaluated using an automotive
requirements dataset provided by former Daimler AG.
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