
Lessons Learned from Applying Model-Driven

Engineering in 5 Domains: The Success Story of the

MontiGem Generator Framework

Constantin Buschhaus, Arkadii Gerasimov, Jörg Christian Kirchhof, Judith
Michael, Lukas Netz, Bernhard Rumpe, Sebastian Stüber

Software Engineering, RWTH Aachen University, Germany

Abstract

We report on our success stories in developing and using Model-Driven En-
gineering (MDE) tools for information systems on real-world projects within
different application domains. It is necessary that we ensure the extensibility
and adaptability of code generators if we want to reuse them for different do-
mains. Up to now, research on reusing software has been mainly conducted
in the software product line community but rarely discussed in the context of
code generators. This paper introduces the generation framework MontiGem
and shows how it has been used and evolved within five different research and
industry projects in the domains of financial management, IoT, energy man-
agement, privacy policy, and wind turbine engineering. We have developed
the code generator within the first project and further refined it with each of
the following projects. This paper describes the projects, shows how MDE
helped us in the software engineering process, and discusses the lessons we
learned. These examples show how MDE techniques can be successfully ap-
plied to the development of information systems in practice, although further
requirements have been met over time.

Keywords: Model-Driven Software Engineering, Code Synthesis,
Domain-Specific Languages, Financial Management, Internet of Things,
Engineering, Wind Turbines, Energy, Privacy Policies

1. Introduction

While Model-Driven Engineering (MDE) [1] is a well-established method
in academia [2, 3, 4], we have a specific interest in applying these methods
to full-size real-world projects. MDE is often applied to develop web-based
applications and information systems for different application domains [5,

Preprint submitted to Science of Computer Programming October 25, 2023

[BGK+24] C. Buschhaus, A. Gerasimov, J. C. Kirchhof,
J. Michael, L. Netz, B. Rumpe, S. Stüber:
Lessons learned from applying model-driven engineering in 5 domains:
The success story of the MontiGem generator framework.
In: Science of Computer Programming, Volume 232, pp. 103033, Jan. 2024.

6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Using models as core artifacts in the
engineering process of complex, software-intensive systems allows us to (1)
handle complexity by raising the level of abstraction, and (2) continuously
evolve the models and the code according to changing requirements. Whereas
some critique on the use of models in software development argues that it
leads to heavy-weight, tedious development processes, research has already
shown that it is well applicable for agile development methods in different
domains [16, 17, 18, 19, 20, 21].

As the development of code generators needed in MDE approaches re-
quires an additional effort, it is advisable to reuse the generators or at least
parts of them for similar projects [22]. The architecture is a characteristic
that such projects often have in common, as these aspects are not generated
but defined in the Run-Time Environment (RTE) of an MDE application.
In practice, this raises the question of to which extent code generators are
reusable. As for other software projects, quality aspects such as extensibility
and adaptability also apply to these software systems.

This article presents the generator framework MontiGem [23], which aims
to generate data-centric web applications. We used the framework within five
projects targeting different domains. Within the Management Cockpit for
Controlling (MaCoCo) project [24], the first version of the generator was
developed to create an application for the financial management of univer-
sity Chairs. Within the Ford project about the tracking of IoT devices, we
reused MontiGem for the first time and, e.g., provided multilingual support
of the Graphical User Interface (GUI) and adapted the appearance of the
frontend for mobile platforms. Within the energy management project, we
use a specific version of MontiGem, which requires only a data model as
input. We connect the generated application to an existing framework and
add several visualization components. In the InviDas project, MontiGem is
used to generate a platform for sovereign decision finding regarding privacy
policies of smart wearables where external partners develop parts of the fron-
tend. In the Agile Data Dev (ADD) project, we create a digital twin cockpit
for parameter management in wind turbine engineering and connect it with
existing tools. We present twenty lessons learned from applying the model-
driven approach while using and further developing the MontiGem generator
in these projects. We discuss the lessons in the context of the state-of-the-art
in MDE and software engineering.

The article is structured as follows: The next section details the back-
ground, such as developing Domain-Specific Languages (DSLs) with the Mon-
tiCore language workbench and MontiGem, the generator for data-centric ap-
plications. The following sections describe the lessons learned in 5 projects
we used MontiGem in, namely for the financial management of university

Chairs in Section 3, for tracking IoT devices in Section 4, for energy man-
agement in Section 5, for privacy policies in Section 6, and for the parameter
management in wind turbine engineering in Section 7. We are discussing
the lessons learned in Section 8 and comparing them with related work in
Section 10. The last section concludes.

2. Background

Our projects use several DSLs, the language workbench MontiCore, and
the generator framework MontiGem as tools for model-driven development.
This section briefly explains the technologies and how they are used.

2.1. Domain-Specific Languages

DSLs are modeling languages devoted to a given application domain [25].
In contrast to a General Purpose Language (GPL), they are used to create
models that fit the specific domain (thus also referred to as DSMLs, Domain
Specific Modeling Languages). The advantage of modeling in a DSL (as
opposed to Java, for example) is the benefit of modeling much closer to
the actual domain, making them easier to understand and communicate the
models, especially to people not familiar with software development [26, 27].
In the context of this paper, we will take a closer look at two DSLs used
to define the target applications: Class Diagrams for Analysis (CD4A)— a
modeling language for class diagrams, and GUI DSL— a language to define
user interfaces.

CD4A is a textual DSL, based on UML [28] to define class diagrams in
a Java-like syntax [29]. Aside from attribute- and class definitions, CD4A
supports all common elements of class diagrams such as associations, inher-
itance, and enumerations. Complete documentation can be found at [30].
Listing 1 shows a small example of a class diagram consisting of one class
Person with the two attributes name and age.

GUI DSL [31] simplifies the development of user interfaces for informa-
tion systems. The GUI DSL defines models that describe how data should
be displayed and manipulated on a screen. Each model defines one informa-
tion system page with predefined GUI components. Listing 2 shows a simple
example of a GUI model, composing a page of a card with the title ’Staff
Overview’ (label in line 3) and with a simple table (Line 5..8) consisting
of attributes that are provided by the Person Object declared in Line 1.
Figure 1 shows the resulting user interface.

1 classdiagram CD {
2 class Person {
3 String name;
4 Date birthday;
5 }
6 }

Listing 1: CD4A Class
Diagram Defining
Person Class

1 webpage Staff(all Person p){
2 card {
3 head {label "Staff

Overview"}
4 body {
5 datatable { rows <p {
6 column "Name", name
7 column "Birthday",

birthday
8 }}}}}

Listing 2: GUI-Model

Figure 1: Resulting GUI
showing Person objects in
a Table

2.2. MontiCore

The MontiCore language workbench [32, 33] is designed to facilitate the
engineering of textual DSLs. It provides mechanisms for analysis, manip-
ulation, and transformation of the models of a developed DSL. MontiCore
generates parsers capable of handling the models of the specific DSLs and
infrastructures for transforming the models into their Abstract Syntax Tree
(AST) representation and symbol tables. A provided template engine gen-
erates resulting code from a source AST and target language templates [32].
To date, MontiCore has implemented a variety of languages [34], including a
collection of UML/P languages [29] (variants of UML that are more suitable
for programming), as well as the OCL, delta [35], tagging languages [36],
SysML, and architectural description languages.

2.3. MontiGem

MontiGem is a generator for data-centric applications. It uses standard
models from UML/P as sources, and GUI models to generate web applica-
tions (c.f. Figure 2). MontiGem parses each model and produces an abstract
syntax tree before transforming it into a target syntax tree. The transformed
ASTs are provided to template engines that transform it into the applica-
tion’s source code in the specified target GPL. The generator only creates
the domain-dependent code. The framework provides a generic code, such
as the run-time environment.

Over time multiple extensions were added to MontiGem. The CD2GUI-
Extension provides an additional transformer that derives GUI-Models from
Class diagrams. The OCL-Extension can process additional OCL-Models
in order to generate additional validators and simple business logic. All
extensions are optional and not mandatory for the generator to operate.

The generator framework MontiGem has been developed for several years
and was used in different academia and real-world projects as well as teach-
ing activities. We use the MontiGem generator framework as an academic
demonstrator and extend it, e.g., to generate process-aware information sys-
tems [37], low-code development platforms for digital twins [38], digital twin

Figure 2: MontiGem generating a web application using a set of models. The framework
was used ’as is’ in Ford (c.f. Section 4), InviDas (c.f. Section 6), and EM (c.f. Section 5).
Extensions were added for MaCoCo (c.f. Section 3) and ADD (c.f. Section 7)

cockpits [13, 39], process-aware digital twin cockpits from event logs [40],
IoT App stores [41], information systems with privacy policies [42], assis-
tive systems [43], and to integrate goal modeling approaches in information
systems [44]. In the following chapters, we look closely at five information
systems and describe our experiences applying the model-driven approach
using our tool. Each project was developed by small teams (2-20 people),
where each team included MDE experts as well as inexperienced developers.
The development started with the MaCoCo project that laid a foundation
for the MontiGem.

3. MaCoCo

MaCoCo [45] is a joint project of the Chair for Controlling and the Chair
for Software Engineering at RWTH Aachen University. The project enables
faculties, chairs, and institutes within the university to manage financial
resources, staff, and projects and keep track of and document activities, e.g.,
taking vacations, logging working hours, and managing contracts. Figure 3
shows an example of a web page displaying accounts managed by a faculty
(testing data is shown).

MaCoCo is a web-based information system currently used by over 200
institutes and faculties of varying sizes with a growing number of users (Ta-
ble 1). The web application is mainly generated with numerous views dis-
playing data structured from a CD4A domain model (Table 2). Currently,
around 75% of the application code is generated.

The MaCoCo project is being developed in an environment where re-
quirements constantly change, and new features must be continuously im-
plemented and released. Like in most other university projects, developers

Total
Faculties 216
Users 1791
Logins per day 200

Table 1: MaCoCo usage statistics

Total
Modeled classes (domain) 85
GUI-Models (web pages) 85
Lines of Code 1 mil

Table 2: MaCoCo code statistics

Figure 3: Screenshot of the Account overview, listing all accounts of the current user.

often change because they are students and graduate at a certain point, with
few people remaining as part of the core team. Most developers are inexpe-
rienced and have various programming habits, i.e., implement the solutions
differently. Bug fixes and most necessary features are expected to be released
on demand, while several less critical changes are delivered every 2-3 months.

The project started as a hand-written web application with frontend and
backend parts, where the backend was a prototype with simple functional-
ity for financial management. The code consisted of several classes, such as
Account, AccountBuilder, and AccountDAO for the creation and ac-
cess of account objects. At this point, a model-driven approach was adopted
for the backend development soon after the prototype was built.

Lesson learned #1: Model-driven approach pays off not only in the long
run but also at the start of a project if basic generation tools and MDE ex-
perts are available.
The pivot toward MDE prevented writing a lot of boilerplate code, such as
domain object, builder, and access object classes by hand, thus decreasing
the development time and keeping the high quality and consistency of the
code. This has become increasingly important in the context of continuously
changing requirements. The almost instant migration to the model-driven
approach was reinforced by an existing generator for creating data structures,
which eventually became one of the core components of the MontiGem frame-

work and is still being used. Although the generator was initially designed
for web applications with a different technology stack, taking relevant parts
and slightly rebuilding it did not take much effort for an MDE expert familiar
with the generator tooling at the starting phase of the project development.

Lesson learned #2: Features affecting the whole system can be introduced
via generator extension but might require additional DSLs for advanced cases.
The system realization continued for several years; all parts, including the
generator, have continuously been refined. The generator provided signif-
icant support in the essential part of the application - data structure and
surrounding boilerplate code, which was and still is derived from class dia-
grams. With time other aspects solidified as connected to, but not a part of,
the data structure. When the concept of rights and roles was introduced, it
was generally incorporated into the data structure generator, but only in a
basic form of checking whether the current user has rights for an object of a
class. Validation of the user input and subsequent checks in the backend and
database had become a separately handled issue. OCL models were defined
and served as the source for the generation of validation logic both in the
frontend and backend of the application. The elements that can be gener-
ated are limited by the information contained within the input models, and
additional features might require further models in new DSLs.

Lesson learned #3: When a project is expected to be developed further,
early integration of a generator is critical.
Eventually, the frontend code grew to a point where maintainability became
problematic. Due to the high dynamic in the development team, the code
deviated from one web page implementation to another. Most of the work
with TypeScript, HTML, and CSS was done by inexperienced students, and
although the product was functional, diverse patterns could be seen in the
code. As a result, assigning a different task to someone focused on a specific
area came with the additional effort of understanding the code and possibly
rewriting it. Had we recognized the issue earlier, such confusion and constant
re-learning could have been avoided, as we learned after introducing a new
DSL and a generator for the frontend development. The DSL hid patterns
via abstract concepts and allowed developers to focus on the logical parts of
the application frontend, such as navigation, loading data, formatting data,
etc. In retrospect, we should have integrated the DSL in the earlier stage as
we did with the backend but failed to recognize the necessity.

Lesson learned #4: Retrofitting a DSL and a generator is difficult but pays
off in the long run [46].

The migration to a new DSL came with a great effort, as the amount of
retrofitted code was considerable. Despite having numerous examples of
the code to be generated, it was difficult to recognize patterns due to the
diversity in the code. We have spent around two additional person months
building the new solution to be functional, where the work was done mainly
by students with some experience in the project. At the time, less than
half of the current views and the data structure classes were present. After
integrating a new DSL, the code has become consistent and easy to maintain.
Additionally, developers without frontend expertise could now create simple,
functional pages, thus allowing a more flexible distribution of programming
tasks. Over the years, the generator was further refined, and creating new
views is currently the least of our concerns; instead, we focus more on business
logic and optimizations.

Lesson learned #5: A separation of generic and use-case-specific genera-
tor code is necessary to derive a general-purpose generator framework from
the current use case.
After three years of developing the MaCoCo project, the generator included
many features valid for the automated creation of information systems. We
decided to extract the generator and infrastructure needed to build a ba-
sic web application into a separate project, which has become the MontiGem
generator framework. We faced two major tasks; one was recognizing, remov-
ing, and reworking the parts of the generator which assumed the context of
the MaCoCo project, namely components working specifically with financial
or staff management. Despite avoiding such dependency in the generator,
some code, such as creating visualization charts displaying financial informa-
tion or rights and roles concepts, was generated for every page since it was
generally used everywhere in the application. Another issue was to separate
standard functionality, i.e., run-time environments, such as client-server com-
munication infrastructure and GUI components, from domain-specific code
into a library. Separating the run-time environment took around two person
months, and the work was performed by experienced developers. In retro-
spect, the code could have been developed in its own sub-project without
issues, as we experienced using the extracted framework in later projects.

4. Ford - Tracking IoT devices

In collaboration with Ford Research and Innovation Center Aachen, we
have developed an IoT application that enables craftsmen to track their valu-
able tools. Based on MontiGem, we provided craftsmen with web interfaces
for desktops, in-vehicle tablets, and smartphones that enabled them to track

which tools were in which vehicles or where tools were last seen. For this
purpose, each tool was equipped with a heat and water-resistant Bluetooth
Beacon, and the vehicles with a tracking module. This tracking module
transmitted information about the tools in a vehicle to the MontiGem ap-
plication. The MontiGem application displayed live information about the
tools’ locations in a tile view with photos of the tools and on an interactive
map view. Figure 4 shows a worker viewing the application on a desktop.
Compared to the previous project, we faced new requirements, such as en-
abling support for different languages (e.g., German and English), showing
maps, and providing mobile application views.

Figure 4: A craftsman at the office working with the web app generated by MontiGem.
Image Source: https://www.youtube.com/watch/ODuvZ6AahzI

The application was tested over a period of around 11 months at three
craft enterprises of different sizes and from different sectors in North Rhine-
Westphalia. Based on the feedback from the craftsmen and the findings from
the log data of the application, the application was continuously iteratively
developed.

Lesson learned #6: Models like class diagrams can be valuable communi-
cation tools for developing applications in cross-disciplinary teams.
The development of the tool tracking application has required expertise from
a wide range of domains. These include marketing experts, electrical engi-
neers, mechanical engineers, craftsmen, and designers. To create a shared
understanding of how the application should behave in which situations, it

https://www.youtube.com/watch/ODuvZ6AahzI

was necessary to make the application understandable to a wide range of
experts. People without programming experience can easily be put off by
general-purpose programming languages or database-specific DSLs like SQL.
Class diagrams allowed us to discuss the application’s data structures across
disciplines. For easier accessibility, we used the models mostly in graphical
syntax. We explained concepts like inheritance (A is a B) or associations (A
knows a B) in a basic way.

Lesson learned #7: If a project has non-standard user experience require-
ments, consider creating native apps instead of web apps.
As part of our MontiGem application, we have delivered mobile versions for
smartphones and a tablet permanently mounted in the vehicle, among other
things. For the tablet version, in particular, delivering a significantly modi-
fied user interface was essential. Since the tablet was permanently installed
in the car, we had to ensure that the display did not distract the driver while
driving, as a tablet-sized version of our desktop version would have done.
Therefore, among other things, we measured the vehicle’s acceleration to re-
duce the amount of information displayed while driving. However, since our
user group was not necessarily in regions with good mobile connectivity, the
server could not reliably guarantee control of the device. In addition, the
web application felt partially non-responsive and less natural than a native
app. For these reasons, we retired the web version of our application in later
versions in favor of a native Android app.

Lesson learned #8: Highly application-specific parts should rely on hand-
written code alone instead of mixing models and handwritten code.
We could generate large parts of the desired GUI directly from GUI models
for many of our websites. For some sites, the UX designers involved in the
project created GUI templates that differed significantly from MontiGem’s
standard elements. These templates could be implemented by integrating
handwritten HTML code into the GUI models. However, in the case of
strongly deviating specifications, the GUI models were similarly challenging
to understand as the resulting HTML code due to the mass of handwrit-
ten code. In particular, due to the lack of DSL tool support (e.g., syntax
highlighting), we recommend not using a DSL at all in these cases.

Lesson learned #9: The benefits of model-driven software engineering are
sometimes underestimated by outsiders.
In the early phases of the project, when we had to coordinate fundamental
decisions about development methodology and frameworks to be used with
Ford, the proposal to develop the application in a model-driven way was

met with some skepticism. In particular, mentioning code generators led to
unintended associations for people unfamiliar with MDE. Concern was ex-
pressed that the website might not meet the visual specifications and look
like a WordPress blog. Furthermore, it was feared that there would be no
possibility to continue using the website as soon as our support would be
discontinued at the end of the project. With the first versions of our appli-
cation, we could dispel such concerns and impress with a high development
speed. For the future, we recommend keeping demonstrators of the genera-
tor’s results to be used.

Lesson learned #10: Provide in-app editors to involve non-experts.
To involve experts unfamiliar with the respective modeling languages and
code generators, offering editors that can be operated directly within the
generated web application is helpful. In our specific case, for example, the
web application was offered in several languages to be understandable for
German-speaking craftsmen and for English-speaking managers of Ford. Us-
ing MontiGem’s code generator, we systematically generated the necessary
code to edit website translations directly within the web application.

5. Energy Management - Visualizing Building Information

In the Energy Management project, the data from various building sen-
sors is visualized on a web page. During the project’s setup, each room in
the customer’s office building was equipped with temperature sensors. In the
next phase, a two-step process is executed. First, the collected data is used
to analyze the energy use of the building. Second, the heating elements are
individually controlled to minimize energy use.

The customer had already built the infrastructure to collect and store
measurements using the FIWARE framework. Our job was to create an
application to visualize the temperature measurements for which we used
the MontiGem framework.

A component displaying an SVG image is used to display the floor plan.
An SVG element with a unique ID represents each room. The image is then
modified at run-time when the data for the room is received. The current
temperature is mapped to the text and color of the rooms on the image.
Figure 5 shows an example of the floor plan with temperature measurements.

Besides the current temperature, meta- and historical information is also
relevant. Meta information contains the sensor type or size of the room.
Historical information shows previous measurements. The GUI-DSL already
provided suitable components, as seen in Figure 6. New challenges for the

Figure 5: Floor plan with real-time temperature measurements

framework included integrating complex graphics for a floor plan with live
updates and stripping out vast portions of the generated server infrastructure.

Figure 6: Meta information of sensors

Lesson learned #11: Generated components should be modular and re-
placeable to enable integration with custom user-defined components.
To tightly integrate the website into the customers existing tooling, the au-
thentication service developed by the customer was used. This way, the user
could continue using their existing account and password. MontiGem had
tightly integrated its authentication infrastructure into frontend and back-
end, which was difficult to replace. The modularity also makes it easier to
reuse components in other projects. This is especially important as hand-
written logic often extends a complex generated component.

Lesson learned #12: Code generators should be configurable so that no
large unused modules are produced.
The project was heavily focused on the frontend, while the backend only
had to proxy requests to the customer infrastructure. Hence, much of the
generated backend functionality was never used. For example, only read
was operational from the default create, read, update, and delete commands.
MontiGem application was not required to alter the data; hence Create/Up-
date/Delete was not used. Unused code slowed the compile time, made the
code harder to analyze, and introduced additional security concerns since
extra communication endpoints were generated. We learned that the code
generator should be configurable to generate only needed functionality.

6. InviDas Platform - Privacy Policies of Wearable Devices

InviDas1 (Interactive visual Data rooms for sovereign decision finding re-
garding data protection) is a project about visualizing privacy policies of
smart wearables and making them comparable with each other. The project
is funded by the German government (BMBF) and is realized by a research
association including software engineers, human-computer interaction scien-
tists, and smart wearable manufacturers. This project started when Mon-
tiGem was already used by multiple other projects; thus MontiGem improve-
ments were more related to bug fixes and less to implementing new features.
The bugs were minor, e.g., automatic redirection of anonymous users to a
login page, even though there was no need to be logged in to access the spe-
cific part of the website. These bugs did only concern MontiGem’s runtime
environment and not the generator itself.

The main result of the InviDas project is a website platform on which
smart wearable users can inform themselves about the privacy policies of
different manufacturers. The application GUI excerpt is shown on Figure 7.
The privacy policies are not displayed in the legal text but as data points
of different data processing categories. These categories were identified by
analyzing different privacy policies from smart wearable manufacturers. Ul-
timately, manufacturers should be able to enter their privacy policy into the
platform.

A unique project-specific requirement that had not been addressed by the
MontiGem before was the integration of privacy policies. Since privacy poli-
cies (legal texts in general) vary, much effort was put into finding a standard
abstracted model to specify a privacy policy instance. Seven major smart
wearable vendors’ privacy policies were analyzed with the GDPR [47] to cre-
ate the underlying model. This model is called the privacy policy model and
is the primary development artifact of the InviDas platform. It is a textual
Class Diagram (CD) used to describe the backend data structure. From this
CD, MontiGem generates the whole backend apart from custom data transfer
object creations.

Lesson learned #13: Model-driven approach accelerates early phases of
the development when domain experts and developers have to communicate
frequently.
Describing unstructured data, e.g., legal text, using structures like class di-
agrams is difficult. Such a task requires a thorough analysis of the domain
and additional knowledge about it, which leads to frequent communication

1https://invidas.gi.de/

https://invidas.gi.de/

Figure 7: InviDas platform excerpt of the graphical user interface. This excerpt shows a
translation of what is stated in the German privacy policy of Garmin Ltd. about the data
collection and processing of users’ sleeping time.

between stakeholders and changes in the system. Generators like MontiGem
are a great way to implement changes to the data model quickly. This hap-
pens more often in projects like InviDas during the initial phases because of
the complexity of the unstructured data and the additional knowledge about
a domain that one builds up over time.

Lesson learned #14: A code generator has to support hand-written code
extensions.
Similar to the lesson 8, the project required a specific custom graphical user
interface design; thus, a hand-written implementation was used. Other parts
of the frontend, e.g., the communication to the server, still benefit from
the generator since the hand-written GUI can use the generated code and
vice versa. MontiGem enables this by using the top mechanism, which is
described in [48].

Lesson learned #15: If different representations of models are used, they
have to be synchronized.
To decrease the entry barrier into modeling, a graphical modeling tool for
CDs was used to create the first iteration of the privacy policy model. The
textual CD was created simultaneously, but inconsistencies occurred because
these models did not automatically update each other. The GUI was designed
based on the graphical CD, while the platform was developed with MontiGem
based on the textual CD. Because only the textual model was kept up to
date, it had gone unnoticed that the design slowly branched off of the data
model, and inconsistencies in requirements from the GUI design to the data
structure originated. This impeded their integration with each other and
slowed down the development of the platform. Literature suggests solutions
to this problem by automating the synchronization of the different model
representations (model views) [49]. Still, we have yet to address this further
in future work.

Lesson learned #16: Code generators enable building prototypes quickly,
which helps to identify problems in different parts of a developed system.
Simple rendered HTML form and table-based depictions of dummy data as
instances of CDs are helpful to let website designers get a feeling of how the
data structure looks like. Furthermore, it helps to understand the domain
model better because a simple prototype provides insights into such details
as correct or incorrect inputs. The domain experts can use it to validate the
requirement fulfillment.

7. Agile Data Dev - Data Management for Wind-Turbine Engi-
neering

The goal of the Agile Data Dev (ADD) project is a faster time-to-market
and higher efficiency in the development of wind turbines. To achieve
this goal, MontiGem was used to create a central point of information
exchange [39]. Development artifacts like CAD files, parameter values, and
simulation results are stored in the MontiGem database. Compared to the
approach of storage on individual engineers’ computers, MontiGem enables
a faster exchange of current results between engineers. Furthermore, it is
easier to archive relevant artifacts of the development process to comply
with legal requirements. However, we faced a new challenge of making the
storage replaceable. In this project, we also tried to simplify the process of
building an application by automatically creating GUI models.

Lesson learned #17: Data storage and retrieval should be easily integrate-
able into existing tooling.

Usually, there is already existing data and tooling, which has to be migrated
to the new solution. This can significantly burden the development of the
new tool, especially when consistency constraints on the data have to be
enforced. In the ADD project, most existing tooling was written in Python
since the design programs (e.g., CAD software) provide good Python inte-
gration. A Python library was developed to connect this tooling to the new
MontiGem Server. This Python library replaces local reads and writes with
API calls to the MontiGem server.

Figure 8: Generated user interface, representing Pump objects in an overview. [39]

Lesson learned #18: End users find visual representations for class dia-
grams more user-friendly than textual representations.
In the ADD project, the data schema was not fixed. Instead, it was modified
by the industry customer according to their needs. Handling the textual
CD4A DSL proved unintuitive and cumbersome for the customer as the size
of the data schema grew to more than 120 classes and more than 200 associa-
tions or inheritance relations. Visualization tools proved to be very useful in
this situation. This be realized, e.g., by allowing editing in the textual rep-
resentation of models for consistency reasons and visualizing the models in a
graphical way for end users. Visualizations helped organize the presentation,
e.g., by positioning classes, defining views hiding irrelevant information, or
grouping elements.

Lesson learned #19: Generated Graphical Interfaces are great for proto-
typing.
Within the ADD, a large set of classes was processed. To rapidly reach an
interactive web application, the model-to-model transformer CD2GUI was

developed. It derives GUI models for MontiGem from CD4A models, pro-
viding a set of interactive pages for each class as shown on Figure 8. A
running application, complete with user interfaces for data entry, allowed
stakeholders to evaluate requirements and data structures according to their
needs at a very early stage of the project. These prototypes saved time and
resources and were a great foundation to discuss further development.

Lesson learned #20: Real-life projects are a driving force for the develop-
ment of tools in MDE.
While CD2GUI was great for prototyping, it was not usable for specific cus-
tomer requirements, and neither was GUI DSL. Figure 9 demonstrates visual
components requested to be integrated into the application. According to the
customer’s requirements, the display of simulation runs should have been a
graph and not a table. Furthermore, the requirements from the customer
about how the graph should be displayed were very specific. For example,
graphs should be displayed side by side in an easy-to-compare way. Hence,
the generated prototype was extended or replaced by more customer-centric
components, the same as in lessons 8 and 14. However, it became clear that
GUI DSL is not powerful enough to be used in different domains. Thus we
have updated the language to enable easier integration of custom compo-
nents.

Figure 9: Different Application Specific Visualisations [39]

8. Discussion

The lessons we learned show the aspects of applying the model-driven
approach with the highest impact on the projects. They can be grouped
into three categories (Table 3): The lessons learned about communication
with the customers and users of generated applications, code generator de-
velopment, and generator integration. As shown in the table, the knowledge
gained did not only help with the later projects but was also applied retro-
spectively. Some lessons, such as the lessons 6 and 16 about using models
as communication tools and fast prototyping for identifying problems early,
were recognized in later projects as they were significant for these projects
in particular.

The rest of the section discusses the three lesson categories, describes
their relevance for particular projects, shows the evolution of the MontiGem,
and summarizes the global takeaways.

8.1. User Communication: Involvement of non-experts, prototyping

We used the models for communication with the users in almost every
project (lesson 6). Synchronizing the project state between the stakehold-
ers using the same artifacts allowed us to specify the project requirements
precisely. For us, the developers, the benefit became apparent as soon as we
had to communicate with the customers directly in the Ford project. The
models as a communication tool were irrelevant to the Energy Management
project, as we directly showed the results in the GUI. In every case where
the models were used for communication, the customers preferred a graphical
representation (lesson 18). It was essential in the ADD project, which had
hundreds of classes in the class diagram and required a visualization for a
comprehensible overview.

Skepticism against the model-driven approach was observed in the
projects that involved customers with programming experience (lesson 9).
The biggest concern about applying the approach was most visible in the
Ford and the MaCoCo projects, our two biggest and earliest projects. Only
minor questions were asked in the later projects, where we could show
results from other projects.

Specific requirements in the Ford project led us to add a generator ex-
tension for multi-language support, including an in-app editor for adding
translations (lesson 10). Given the resources, such tool extensions can be
added for convenience. Our other projects focused on data management
that did not require additional tooling.

Quick prototyping (lesson 13) becomes possible as the generator frame-
work gets refined. In the early projects, hand-written software prototypes

Lesson

M
aC

oC
o

F
or
d

E
M

In
v
iD

as

A
D
D

User Communication: Involvement of non-experts, prototyping
6 Use models as communication tools A L A A
9 MDE is easily underestimated by outsiders A L A
10 Provide in-app editors to involve non-experts L
13 Accelerated prototyping due to MDE A L A
16 Frequent prototyping helps identify problems early A A A L A
18 Use visual model representation for end users A A A L
19 Generated graphical interfaces are great for prototyping L

Generator development: Implementing a generator
1 Amortisation of generative approaches L A A A A
2 Develop new DSLs to generate more functionality L
5 Separating domain-specific and general code L
11 Generate modular and replaceable components L A A
12 Minimize the amount of unused generated artefacts A L A A
14 Support hand-written extensions of generated code A A L A A

Generator integration: Applying MDE to a project
3 Benefits of early generator integration L A A A
4 Benefits of retrofitting a generator L A A A A
7 Generating native apps instead of web apps L
8 Avoid mixing models and hand-written code A L
15 Synchronize separate representations of models L
17 Easy integration of data storage and retrieval A L
20 Real-life projects push the development of tools in MDE A A A A L

Table 3: Listing of the lessons learned presented in this work. ’L’ annotates the project
this lesson was learned in, and ’A’ annotates other projects this lesson also applies to.

were needed to develop the generator. Eventually, the generator develop-
ment did not need these prototypes anymore because it was shaped into a
framework that generated them. In the ADD project, the CD2GUI exten-
sion further accelerated prototyping (lesson 19) by enabling the drafting of
the user interface from the class diagram. Due to the acceleration, more
prototypes could be created, and it was easier to recognize problems early
(lesson 16). Prototyping with the generator helped us in every project and
is continuously used in the MaCoCo project.

8.2. Generator development: Implementing a generator

We have learned that implementing a project with a generator in parallel
to creating or further refining this generator does not introduce a significant
overhead if MDE tooling is available and the developers are familiar with
it (lesson 1). In all of our projects, MDE experts were involved, and the
development went unhindered from the beginning. The exception was the
start of the Ford project when the generator framework had to be separated
from the MaCoCo project, as the need for a project-independent tool became
clear (lesson 5). It only had to be done once, but had we done it earlier, the
effort would have been lower.

In our biggest project, MaCoCo, the functionality became so complex
that the existing models could not describe everything. For example, the
ever-present validations of the data structure required introducing a new
DSL (lesson 2). Such cases did not occur later; updating the tooling was
sufficient for the smaller projects. An alternative that we often use is ex-
tending generated code with hand-written code (lesson 14). As with any
other project, all of our projects have specific requirements that cannot be
fulfilled by the MDE tooling alone.

In the brownfield projects (Energy Management, InviDas, ADD), our
generated code had to fit the existing infrastructure. The code was not
replaceable, so the framework required an update that made it more reusable
in the future (lesson 11). Parts being replaced also implied that much of the
generated code was no longer needed but was still generated. As this led to
slower compilation times, the generator had to be adjusted again (lesson 12).
This also becomes an issue when smaller projects use powerful generators.
For example, the Ford project did not use all of the functionalities generated
by our framework; it also suffered from slow building times.

8.3. Generator integration: Applying MDE to a project

Applying the MDE approach from the project start is overall beneficial
in our experience (lesson 3). An exception was the transition point when the
tooling was not yet refined and was still project-dependent, as was the case

at the beginning of the Ford project. Aside from using the generator from
the beginning, retrofitting also pays off but comes at an initial cost (lesson
4). Every project had new patterns that we had to integrate into the tooling.
The upgraded generator effectively replaced the hand-written code, and the
upgrades were used in other projects.

We have learned several lessons concerning specific contexts and require-
ments while working on different projects. The generated solution may be
unusable for specific project scenarios, such as building native mobile appli-
cations in the Ford project (lesson 7). The experience in the InviDas project
showed that the models used for both development and communication must
be synchronized (lesson 15). ADD and Energy Management projects had ex-
isting data storage to be used instead of the generated ones. The generator
had to handle the existing architecture and produce the code that fits these
parts (lesson 17). These lessons were not directly applied in every project
but provided useful insights for future work.

Some of our DSLs allow the embedding of hand-written code in the
models. In the MaCoCo and the Ford project, this was abused to build
requirement-specific solutions, which made the models incomprehensible (les-
son 8). Such hand-written code integration was minimized in our later
projects.

Reusing the various components in different development scenarios, such
as research, education, and industry, and implementing them for other use
cases not only increased the set of supported features but also improved the
stability, usability, and performance of both the generator and the generated
application (lesson 20). The projects, developers, and user feedback were the
main driving force behind the framework’s evolution.

8.4. Evolution of the MontiGem framework

The development of MontiGem started with the MaCoCo project (Sec-
tion 3), where we focused on generator development and integration. Some
changes always supplemented each transition to a new project; however, it
had the most significant impact the first time when a framework was sepa-
rated from the initial project. Figure 10 highlights the development of the
MontiGem architecture over time. On the left, the rather monolithic archi-
tecture of MaCoCo is shown. The project includes one of the generators and
both RTEs for the frontend and backend. Further, an extended RTE was
needed in the Ford project (Section 4), removing corresponding sources from
the project and introducing them as modular components. In current imple-
mentations, generators (Figure 10, right) DSL and RTEs are developed in
their projects, making the framework highly modular. Separating modules
into different projects introduced the possibility of providing features from

one use case to other projects. For example, within the Ford project, GUI
DSL and GUI generator were extended to support user interfaces with multi-
ple languages, allowing MaCoCo to generate multi-language user interfaces.
A disadvantage of this approach is the implementation overhead since we
had to avoid introducing breaking changes from one project to another. Ad-
hering to best practices while implementing and maintaining a solid CI/CD
environment reduced the required effort for the development team.

Figure 10: Modularization of the MontiGem framework over time

The tooling was further improved when we introduced the architecture to
different industrial cases. We identified inefficient code elements and boosted
performance for projects. Optimization for loading large data sets imple-
mented for ADD was also helpful in the MaCoCo project.

Although we have made many improvements to make this approach more
generic and flexible to meet the needs of new use cases, we are still tied
to the architecture the generators were built to work with. While there are
frameworks that address challenges such as cloud-based scalability or creating
a native app for mobile applications, we cannot move to these approaches
without significant effort and potentially losing the benefits described above.

The model-driven framework has shown to be a powerful and flexible tool
to generate applications over a wide variety of use cases. Still, compared to
other solutions, MontiGem provides little tooling as all input models are tex-
tual and are developed in the same IDE as the rest of the code is implemented
in.

8.5. Global takeaways

Applying the MDE approach facilitates stakeholder interaction
through rapid prototyping, model-driven development, and com-
munication. Building software using textual models and providing a graph-
ical implementation keeps the system in sync with user requirements. To
further increase customer engagement, one can invest in developing tools
that help build prototypes more rapidly and frequently, such as additional
model-to-model transformers.

The code generator should be project-agnostic, support manual
extensions, and enable the exclusion of large specialized modules.
These properties are required if the tool is to develop multiple applications
in different domains. This also means that a clear understanding of the do-
mains a generator framework will be applied to is crucial for its development,
especially at the start when the generator basis is formed. A generator needs
to be focused on fulfilling specific tasks.

Applying the MDE approach in different projects drives further
refinement and development of the tooling. The process is iterative
and is influenced by various factors, such as the application domain, project
requirements, and whether a project has an existing code base. When fac-
ing new challenges, one has to consider the generator’s current state and
extend the tooling if necessary or use a different solution. For example, the
project can use hand-written code to satisfy specific requirements. However,
it is essential to apply the solution methodically. For example, we embedded
hand-written code into the models, but because of that, we faced a differ-
ent issue. Applying the MDE approach in real-world projects reveals the
shortcomings of the tooling and helps to find a methodical solution.

9. Roadmap

Considering the lessons, we present an agenda for how to evolve the gen-
erator framework.

Combine lessons learned in a revised tool. We learned 20 lessons while de-
veloping the MontiGem framework over several projects. As a result, we are
working on a new generator framework version. It will consider our lessons,
tap into more recent frameworks, and use a new technology stack. The next
version of the framework will feature higher modularity (lesson 11) and re-
duce unused generated code (lesson 12). The generator is developed with
a clear separation of domain-dependent and generic components (lesson 5)
while permitting hand-written and model-driven extensions for both (lesson
14).

Provide improved tooling. Visual representations of the models used can be
helpful for the end user (lesson 18); therefore, a corresponding transformer
is developed, extending the framework with additional views for the user.
To support the developer in prototyping an app, an additional transformer
is added that provides default user interfaces for any data structure given
(lessons 13, 16, 19).

Speed up prototyping by involving Large Language Models. Application devel-
opment benefits from early prototyping (lesson 13, 16). We currently evaluate
the usage of Large Language Models (LLMs) to create specific models for a
given DSL. LLMs such as GPT-4 have been established to be powerful tools
for processing natural language. Several evaluations have been done on the
capabilities of an LLM to produce models for a given DSL (c.f. [50, 51]). An
LLM-based toolchain could be included in the development process, provid-
ing initial models based on a domain expert’s informal specifications. Using
LLMs could reduce the modeling expertise needed by the developer and thus
speed up the development process. As of now, only the creation of CD4A
models is targeted.

Provide extensions for further DSLs. The benefits of MDE are well estab-
lished; therefore, we strive to extend the number of DSLs and the variety of
models supported by the framework. Currently, structural languages such
as class diagrams and GUI models are supported. In the future, process-
describing languages such as BPMN (cf. [37, 40]) or sequence diagrams, as
well as simple logic defined in OCL, could be supported.

Use revised generator framework in industry and real-world projects. Prac-
tical applications drive the advancement of the generator framework (lesson
20). Therefore, further projects will likely use the new version of the frame-
work, pushing development and yielding new lessons to be learned.

10. Related work

While developing several DSLs and generators for several years, we have
gathered experiences about common issues, advantages of MDE, and aspects
of the web application domain.

The lessons we learned about the benefits of the MDE for user commu-
nication are also found in the experiences of other researchers. Verbruggen
and Snoeck [52], in their overview of model-driven engineering in practice,
highlight its strengths, such as code generation, prototyping, and usage of
models for communication with clients and the team. On the other hand, the
integration of the model-driven approach often has issues and overheads. The

steep learning curve and debugging on the model level are qualities of MDE
the researchers list as problematic. While we have also experienced the pos-
itive aspects, the negative points have not been a challenge in our projects,
although similar works confirm such research statement [53, 54, 55]. Learn-
ing to write models does not take much time, even for untrained students,
as long as examples and documentation are provided. Considering the num-
ber of examples, an inexperienced worker can almost always find a blueprint
for their solution. Debugging on the model level is a nice-to-have feature,
but in our experience is not necessary if mapping to the generated code is
straightforward.

Regarding the integration of the generator tooling, several works report
similar to our experience. In their multiple studies of applying the model-
driven approach in practice, Hutchinson, Rouncefield, and Whittle [56, 57,
58] give an insight into common problems and benefits. One of their findings
is that building the first project with the MDE is less cost-efficient. We
confirm the statement in this work and add that having the right tools and
modeling experts, although not wholly specialized in the project, mitigates
the problem of building the very first MDE application. Another related
point is if MDE is integrated into a project, it is best to do it at its start.
We have seen how retrofitting a generator compares to initially building
a generator in the MaCoCo project, which aligns with the studies. Our
findings mismatch the recommendation of the studies to keep the domain
narrow, such as a specific business application, rather than financial systems
in general. Our research discovered that the same model-driven framework
can be applied to different domains. Nadas et al. [59] bring up the difficulty
of fitting sentences written in a natural language into the models. Their
work dealt with privacy policies, the same as in our InviDas project, where
we observed the issue without being able to address it other than manually.

The lessons we learned about developing our generator framework can
be observed in related works. Brambilla and Fraternali [60] report on the
WebML and WebRatio technologies very similar to our framework. We see
the same lessons from the planning phases of developing DSLs and genera-
tors. They mention that one should foresee an eventual tooling extension,
which can be reused later for a different domain. Implementing specific use
cases should not be modeled but implemented by hand and integrated into a
system. Similar lessons are recorded by Davies et al. [61], which they learned
in 10 years of development using model-driven technology. They mention
managing changes that come with the evolution of models, using a different
DSL for different aspects of a generated system, data migration, etc. Our
work concentrates on more specific cases, but the ideas align with the paper.
In the research of bringing MDE into small companies, Cuadrado et al. [62]

include in their report the importance of having available tools when starting
a project, which was the case for all of our projects. They also discovered
that the companies moved away from using code generators since the require-
ments changed since nobody had the knowledge necessary for further tooling
development. We have seen a similar shift in the Ford project, where a native
Android application was developed from scratch. Extending the generator
could have solved the problem, but neither we nor other MDE experts were
further involved in the development.

Regardless of the domain, our experiences using MDE align with indus-
trial cases and other practical applications [1, 63, 64, 65, 66]. Models are an
excellent tool for communication between project stakeholders, especially if
a graphical representation of the models is available. In the hands of experts,
the tooling enables the quick development of prototypes. With the project’s
growth using a model-driven approach adding new features results in gener-
ator extension, integration of new DSLs, or implementing the functionality
by hand.

11. Conclusion

This paper presents five real-world information systems we developed and
continue developing using the model-driven approach. We summarize the
most impactful lessons from the experience of our MDE experts team in de-
veloping and using a generator framework MontiGem. The tooling emerged
from our first and biggest project MaCoCo, and continues to evolve as it is
used in current and upcoming research projects. Initially, we greatly ben-
efited from code generation, which had taken over the task of writing boil-
erplate code. We also experienced drawbacks, such as spending extra time
retrofitting generators and modularizing the tool, partly due to our negligence
in the planning phases. Later projects showed positive results by enabling
fast prototyping and provided valuable insights into the shortcomings of our
tool that enabled further improvements to the reusability of the MontiGem.
The results not only impact the quality of the tool but also already running
projects using the tool.

The lessons we learned and the context we give provides MDE practition-
ers with an idea of how to develop information systems and tools. In our
projects, we confirm the most significant advantages, such as using models
as a communication tool and fast, automatic code generation, and expe-
rience such hurdles as trying to retrofit a model-driven approach or to fit
application-specific parts into a DSL. We also show our unique experiences,
such as having no trouble introducing a code generator into a project under
certain conditions and deriving a generator framework. Along with other

success stories, we contribute to the knowledge of bringing MDE to the in-
dustry. According to our observations applying the model-driven approach
has great potential but requires a high level of expertise in the field.

We plan on improving and extending the generator framework further
by increasing the number of supported DSLs while reducing the number of
mandatory models needed to generate a web application. Additionally, we
aim to increase the portion of generated code and add further functionali-
ties to the generated system, such as automated testing and improving the
generated artifacts, such as optimizing the generated client-server communi-
cation.

References

[1] T. Stahl, M. Völter, K. Czarnecki, Model-Driven Software Development:
Technology, Engineering, Management, Wiley, 2006.

[2] G. L. Casalaro, G. Cattivera, F. Ciccozzi, I. Malavolta, A. Wortmann,
P. Pelliccione, Model-driven engineering for mobile robotic systems: a
systematic mapping study, Software and Systems Modeling 21 (1) (2022)
19–49. doi:10.1007/s10270-021-00908-8.

[3] A. Bucchiarone, J. Cabot, R. F. Paige, A. Pierantonio, Grand challenges
in model-driven engineering: an analysis of the state of the research,
Software and Systems Modeling 19 (1) (2020) 5–13. doi:10.1007/
s10270-019-00773-6.

[4] F. Gemeinhardt, A. Garmendia, M. Wimmer, Towards Model-Driven
Quantum Software Engineering, in: 2021 IEEE/ACM 2nd International
Workshop on Quantum Software Engineering (Q-SE), 2021, pp. 13–15.
doi:10.1109/Q-SE52541.2021.00010.

[5] N. Moreno, J. R. Romero, A. Vallecillo, An Overview Of Model-Driven
Web Engineering and the MDA, Springer London, 2008, pp. 353–382.
doi:10.1007/978-1-84628-923-1_12.

[6] A. Cicchetti, D. Di Ruscio, R. Eramo, F. Maccarrone, A. Pierantonio,
becontent: A model-driven platform for designing and maintaining web
applications, in: M. Gaedke, M. Grossniklaus, O. Dı́az (Eds.), Web
Engineering, Springer, 2009, pp. 518–522.

[7] O. Pastor, J. Molina, Model-Driven Architecture in Practice: A Soft-
ware Production Environment Based on Conceptual Modeling, Springer,
2010. doi:10.1007/978-3-540-71868-0.

https://doi.org/10.1007/s10270-021-00908-8
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1109/Q-SE52541.2021.00010
https://doi.org/10.1007/978-1-84628-923-1_12
https://doi.org/10.1007/978-3-540-71868-0

[8] L. Cretu, F. Dumitriu, Model-Driven Engineering of Information Sys-
tems: Principles, Techniques, and Practice, Apple Academic Press,
2014. doi:10.1201/b17480.

[9] M. González, L. Cernuzzi, O. Pastor, A navigational role-centric model
oriented web approach - MoWebA, International Journal of Web Engi-
neering and Technology 11 (1) (2016) 29–67. doi:10.1504/IJWET.
2016.075963.

[10] G. Rossi, M. Urbieta, D. Distante, J. Rivero, S. Firmenich, 25 Years
of Model-Driven Web Engineering: What we achieved, What is miss-
ing, CLEI Electronic Journal 19 (3) (2016) 5–57. doi:10.19153/
cleiej.19.3.1.

[11] K. Schewe, B. Thalheim, Design and Development of Web Information
Systems, Springer, 2019. doi:10.1007/978-3-662-58824-6.

[12] M. Urbieta, S. Firmenich, G. Bosetti, P. Maglione, G. Rossi, M. Oliv-
ero, MDWA: a model-driven Web augmentation approach—coping with
client- and server-side support, Software and Systems Modeling 19
(2020) 1541—-1566. doi:10.1007/s10270-020-00779-5.

[13] M. Dalibor, J. Michael, B. Rumpe, S. Varga, A. Wortmann, Towards
a Model-Driven Architecture for Interactive Digital Twin Cockpits, in:
G. Dobbie, U. Frank, G. Kappel, S. W. Liddle, H. C. Mayr (Eds.),
Conceptual Modeling, Springer International Publishing, 2020, pp. 377–
387.

[14] S. Alvarado, A. Cortiñas, M. Luaces, O. Pedreira, A. Places, Mul-
tilevel modeling of geographic information systems based on interna-
tional standards, Software and Systems Modeling 21 (2021) 623–666.
doi:10.1007/s10270-021-00901-1.

[15] M. Snoeck, C. Verbruggen, J. De Smedt, J. De Weerdt, Supporting
data-aware processes with MERODE, Software and Systems Modeling
(March 2023). doi:10.1007/s10270-023-01095-4.

[16] B. Rumpe, Agile Modeling with UML: Code Generation, Testing, Refac-
toring, Springer International, 2017.

[17] A. Boronat, Code-first model-driven engineering: On the agile adoption
of mde tooling, in: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 874–886. doi:10.
1109/ASE.2019.00086.

https://doi.org/10.1201/b17480
https://doi.org/10.1504/IJWET.2016.075963
https://doi.org/10.1504/IJWET.2016.075963
https://doi.org/10.19153/cleiej.19.3.1
https://doi.org/10.19153/cleiej.19.3.1
https://doi.org/10.1007/978-3-662-58824-6
https://doi.org/10.1007/s10270-020-00779-5
https://doi.org/10.1007/s10270-021-00901-1
https://doi.org/10.1007/s10270-023-01095-4
https://doi.org/10.1109/ASE.2019.00086
https://doi.org/10.1109/ASE.2019.00086

[18] K. Lano, S. Kolahdouz-Rahimi, J. Troya, H. Alfraihi, Introduction
to the theme section on agile model-driven engineering, Software
and Systems Modeling 21 (4) (2022) 1465–1467. doi:10.1007/
s10270-022-01016-x.

[19] S. Mirachi, V. Da Costa Guerra, A. M. Da Cunha, L. A. V. Dias, E. Vil-
lani, Applying agile methods to aircraft embedded software: an experi-
mental analysis, Software: Practice and Experience 47 (11) (2017) 1465–
1484. doi:10.1002/spe.2477.

[20] J. G. Süß, S. Swift, E. Escott, Using devops toolchains in agile model-
driven engineering, Software and Systems Modeling 21 (4) (2022) 1495–
1510. doi:10.1007/s10270-022-01003-2.

[21] M. Snoeck, Y. Wautelet, Agile merode: a model-driven software en-
gineering method for user-centric and value-based development, Soft-
ware and Systems Modeling 21 (4) (2022) 1469–1494. doi:10.1007/
s10270-022-01015-y.

[22] K. Adam, J. Michael, L. Netz, B. Rumpe, S. Varga, Enterprise In-
formation Systems in Academia and Practice: Lessons learned from a
MBSE Project, in: 40 Years EMISA: Digital Ecosystems of the Future:
Methodology, Techniques and Applications (EMISA’19), Vol. P-304 of
LNI, Gesellschaft für Informatik e.V., 2020, pp. 59–66.

[23] K. Adam, L. Netz, S. Varga, J. Michael, B. Rumpe, P. Heuser, P. Let-
mathe, Model-Based Generation of Enterprise Information Systems, in:
M. Fellmann, K. Sandkuhl (Eds.), Enterprise Modeling and Informa-
tion Systems Architectures (EMISA’18), Vol. 2097 of CEUR Workshop
Proceedings, CEUR-WS.org, 2018, pp. 75–79.

[24] A. Gerasimov, P. Letmathe, J. Michael, L. Netz, B. Rumpe, Model-
ing Financial, Project and Staff Management: A Case Report from the
MaCoCo Project, Enterprise Modelling and Information Systems Archi-
tectures - International Journal of Conceptual Modeling (2023).

[25] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, F. P.
Basso, B. Medeiros, Systematic mapping study on domain-specific lan-
guage development tools, Empirical Software Engineering 25 (5) (2020)
4205–4249.

[26] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, G. Wachsmuth, DSL Engineering - Designing, Imple-
menting and Using Domain-Specific Languages, dslbook.org, 2013.

https://doi.org/10.1007/s10270-022-01016-x
https://doi.org/10.1007/s10270-022-01016-x
https://doi.org/10.1002/spe.2477
https://doi.org/10.1007/s10270-022-01003-2
https://doi.org/10.1007/s10270-022-01015-y
https://doi.org/10.1007/s10270-022-01015-y

[27] D. Karagiannis, H. C. Mayr, J. Mylopoulos (Eds.), Domain-specific con-
ceptual modeling: Concepts, methods and tools, Springer, 2016.

[28] Object Management Group, OMG Unified Modeling Language (OMG
UML) (2017).
URL https://www.omg.org/spec/UML/2.5.1/PDF

[29] B. Rumpe, Modeling with UML: Language, Concepts, Methods,
Springer International, 2016.
URL https://mbse.se-rwth.de/

[30] Chair of Software Engineering, Class Diagram For Analysis (2023).
URL https://github.com/MontiCore/cd4analysis

[31] A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga, Continuous
Transition from Model-Driven Prototype to Full-Size Real-World Enter-
prise Information Systems, in: B. Anderson, J. Thatcher, R. Meservy
(Eds.), 25th Americas Conf. on Information Systems (AMCIS 2020),
AIS, 2020, pp. 1–10.

[32] K. Hölldobler, O. Kautz, B. Rumpe, MontiCore Language Workbench
and Library Handbook: Edition 2021, Aachener Informatik-Berichte,
Software Engineering, Band 48, Shaker Verlag, 2021.

[33] H. Krahn, B. Rumpe, S. Völkel, MontiCore: a Framework for Composi-
tional Development of Domain Specific Languages, International Jour-
nal on Software Tools for Technology Transfer (STTT) 12 (5) (2010)
353–372.

[34] K. Hölldobler, J. Michael, J. O. Ringert, B. Rumpe, A. Wortmann,
Innovations in Model-based Software and Systems Engineering, Journal
of Object Technology (JOT) 18 (1) (2019) 1–60. doi:10.5381/jot.
2019.18.1.r1.

[35] A. Haber, K. Hölldobler, C. Kolassa, M. Look, K. Müller, B. Rumpe,
I. Schaefer, C. Schulze, Systematic Synthesis of Delta Modeling Lan-
guages, Journal on Software Tools for Technology Transfer (STTT)
17 (5) (2015) 601–626.

[36] T. Greifenberg, M. Look, S. Roidl, B. Rumpe, Engineering Tagging
Languages for DSLs, in: Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’15), ACM/IEEE, 2015, pp. 34–43.

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://mbse.se-rwth.de/
https://mbse.se-rwth.de/
https://github.com/MontiCore/cd4analysis
https://github.com/MontiCore/cd4analysis
https://doi.org/10.5381/jot.2019.18.1.r1
https://doi.org/10.5381/jot.2019.18.1.r1

[37] I. Drave, J. Michael, E. Müller, B. Rumpe, S. Varga, Model-Driven En-
gineering of Process-Aware Information Systems, Springer Nature Com-
puter Science Journal 3 (November 2022).

[38] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe,
S. Varga, A. Wortmann, Generating Customized Low-Code Develop-
ment Platforms for Digital Twins, Journal of Computer Languages
(COLA) 70 (June 2022).

[39] J. Michael, I. Nachmann, L. Netz, B. Rumpe, S. Stüber, Generating
Digital Twin Cockpits for Parameter Management in the Engineering
of Wind Turbines, in: Modellierung 2022, Gesellschaft für Informatik,
2022, pp. 33–48.

[40] D. Bano, J. Michael, B. Rumpe, S. Varga, M. Weske, Process-Aware
Digital Twin Cockpit Synthesis from Event Logs, Journal of Computer
Languages (COLA) 70 (June 2022). doi:10.1016/j.cola.2022.
101121.

[41] A. Butting, J. C. Kirchhof, A. Kleiss, J. Michael, R. Orlov, B. Rumpe,
Model-Driven IoT App Stores: Deploying Customizable Software Prod-
ucts to Heterogeneous Devices, in: 21th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences
(GPCE 22), ACM, 2022, pp. 108–121.

[42] J. Michael, L. Netz, B. Rumpe, S. Varga, Towards Privacy-Preserving
IoT Systems Using Model Driven Engineering, in: Proc. of MODELS
2019. Workshop MDE4IoT, CEUR Workshop Proceedings, 2019, pp.
595–614.

[43] J. Michael, A Vision Towards Generated Assistive Systems for Support-
ing Human Interactions in Production, in: Modellierung 2022 Satellite
Events, Gesellschaft für Informatik e.V., 2022, pp. 150–153.

[44] J. Michael, B. Rumpe, L. T. Zimmermann, Goal Modeling and MDSE
for Behavior Assistance, in: Int. Conf. on Model Driven Engineering
Languages and Systems Companion (MODELS-C), ACM/IEEE, 2021,
pp. 370–379.

[45] A. Gerasimov, P. Heuser, H. Ketteniß, P. Letmathe, J. Michael, L. Netz,
B. Rumpe, S. Varga, Generated Enterprise Information Systems: MDSE
for Maintainable Co-Development of Frontend and Backend, in: Com-
panion Proceedings of Modellierung 2020 Short, Workshop and Tools &
Demo Papers, CEUR Workshop Proceedings, 2020, pp. 22–30.

https://doi.org/10.1016/j.cola.2022.101121
https://doi.org/10.1016/j.cola.2022.101121

[46] I. Drave, A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga,
A Methodology for Retrofitting Generative Aspects in Existing Appli-
cations, Journal of Object Technology (JOT) 20 (2021) 1–24. doi:
https://doi.org/10.5381/jot.2021.20.2.a7.

[47] A. Butting, N. Conradie, J. Croll, M. Fehler, C. Gruber, D. Her-
rmann, A. Mertens, J. Michael, V. Nitsch, S. Nagel, S. Pütz, B. Rumpe,
E. Schauermann, J. Schöning, C. Stellmacher, S. Theis, Souveräne dig-
italrechtliche Entscheidungsfindung hinsichtlich der Datenpreisgabe bei
der Nutzung von Wearables, in: Selbstbestimmung, Privatheit und
Datenschutz: Gestaltungsoptionen für einen europäischen Weg, Springer
Fachmedien Wiesbaden, 2022, pp. 489–508.

[48] F. Drux, N. Jansen, B. Rumpe, A Catalog of Design Patterns for Com-
positional Language Engineering, Journal of Object Technology (JOT)
21 (4) (2022) 4:1–13.

[49] M. Garcia, Bidirectional synchronization of multiple views of software
models., DSML 8 (2008) 7–19.

[50] J. Cámara, J. Troya, L. Burgueño, A. Vallecillo, On the assessment of
generative ai in modeling tasks: an experience report with chatgpt and
uml, Software and Systems Modeling (2023) 1–13.

[51] M. B. Chaaben, L. Burgueño, H. Sahraoui, Towards using few-shot
prompt learning for automating model completion, in: 2023 IEEE/ACM
45th International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), IEEE, 2023, pp. 7–12.

[52] C. Verbruggen, M. Snoeck, Practitioners’ experiences with model-driven
engineering: a meta-review, Software and Systems Modeling 22 (1)
(2023) 111–129. doi:10.1007/s10270-022-01020-1.

[53] V. Kulkarni, Model Driven Software Development, in: P. Van Gorp,
T. Ritter, L. M. Rose (Eds.), Modelling Foundations and Applications,
Springer Berlin Heidelberg, 2013, pp. 220–235.

[54] H. Alfraihi, K. Lano, Practical Aspects of the Integration of Agile De-
velopment and Model-driven Development: An Exploratory, Vol. 2019,
2017, pp. 399–404.

[55] S. Karg, A. Raschke, M. Tichy, G. Liebel, Model-Driven Software Engi-
neering in the OpenETCS Project: Project Experiences and Lessons
Learned, in: ACM/IEEE 19th International Conference on Model

https://doi.org/https://doi.org/10.5381/jot.2021.20.2.a7
https://doi.org/https://doi.org/10.5381/jot.2021.20.2.a7
https://doi.org/10.1007/s10270-022-01020-1

Driven Engineering Languages and Systems, MODELS ’16, ACM, 2016,
p. 238–248. doi:10.1145/2976767.2976811.

[56] J. Hutchinson, M. Rouncefield, J. Whittle, Model-Driven Engineer-
ing Practices in Industry, in: 33rd International Conference on Soft-
ware Engineering, ICSE ’11, ACM, 2011, p. 633–642. doi:10.1145/
1985793.1985882.

[57] J. Whittle, J. Hutchinson, M. Rouncefield, The State of Practice in
Model-Driven Engineering, IEEE Software 31 (3) (2014) 79–85. doi:
10.1109/MS.2013.65.

[58] J. Hutchinson, J. Whittle, M. Rouncefield, Model-driven engineering
practices in industry: Social, organizational and managerial factors that
lead to success or failure, Science of Computer Programming 89 (2014)
144–161, special issue on Success Stories in Model Driven Engineering.
doi:https://doi.org/10.1016/j.scico.2013.03.017.

[59] A. Nadas, T. Levendovszky, E. K. Jackson, I. Madari, J. Sztipanovits,
A model-integrated authoring environment for privacy policies, Science
of Computer Programming 89 (2014) 105–125, special issue on Success
Stories in Model Driven Engineering. doi:https://doi.org/10.
1016/j.scico.2013.05.004.

[60] M. Brambilla, P. Fraternali, Large-scale Model-Driven Engineering of
web user interaction: The WebML and WebRatio experience, Science
of Computer Programming 89 (2014) 71–87, special issue on Success
Stories in Model Driven Engineering. doi:https://doi.org/10.
1016/j.scico.2013.03.010.

[61] J. Davies, J. Gibbons, J. Welch, E. Crichton, Model-driven engineering
of information systems: 10 years and 1000 versions, Science of Computer
Programming 89 (2014) 88–104, special issue on Success Stories in Model
Driven Engineering. doi:https://doi.org/10.1016/j.scico.
2013.02.002.

[62] J. S. Cuadrado, J. L. Cánovas Izquierdo, J. G. Molina, Applying model-
driven engineering in small software enterprises, Science of Computer
Programming 89 (2014) 176–198, special issue on Success Stories in
Model Driven Engineering. doi:https://doi.org/10.1016/j.
scico.2013.04.007.

[63] T. Nepomuceno, T. Carneiro, P. H. Maia, M. Adnan, T. Nepomu-
ceno, A. Martin, AutoIoT: A Framework Based on User-Driven MDE

https://doi.org/10.1145/2976767.2976811
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/https://doi.org/10.1016/j.scico.2013.05.004
https://doi.org/https://doi.org/10.1016/j.scico.2013.05.004
https://doi.org/https://doi.org/10.1016/j.scico.2013.03.010
https://doi.org/https://doi.org/10.1016/j.scico.2013.03.010
https://doi.org/https://doi.org/10.1016/j.scico.2013.02.002
https://doi.org/https://doi.org/10.1016/j.scico.2013.02.002
https://doi.org/https://doi.org/10.1016/j.scico.2013.04.007
https://doi.org/https://doi.org/10.1016/j.scico.2013.04.007

for Generating IoT Applications, in: 35th Annual ACM Symposium
on Applied Computing, SAC ’20, ACM, 2020, p. 719–728. doi:
10.1145/3341105.3373873.

[64] B. Lelandais, M.-P. Oudot, B. Combemale, Applying Model-Driven En-
gineering to High-Performance Computing: Experience Report, Lessons
Learned, and Remaining Challenges, Journal of Computer Languages
55 (10 2019). doi:10.1016/j.cola.2019.100919.

[65] A. Ferrari, A. Fantechi, S. Gnesi, Lessons Learnt from the Adoption of
Formal Model-Based Development, in: A. E. Goodloe, S. Person (Eds.),
NASA Formal Methods, Springer Berlin Heidelberg, 2012, pp. 24–38.

[66] P. Mohagheghi, M. A. Fernandez, J. A. Martell, M. Fritzsche, W. Gilani,
Mde adoption in industry: Challenges and success criteria, in: Models
in Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg,
2009, pp. 54–59.

https://doi.org/10.1145/3341105.3373873
https://doi.org/10.1145/3341105.3373873
https://doi.org/10.1016/j.cola.2019.100919

	Introduction
	Background
	Domain-Specific Languages
	MontiCore
	MontiGem

	MaCoCo
	Ford - Tracking IoT devices
	Energy Management - Visualizing Building Information
	InviDas Platform - Privacy Policies of Wearable Devices
	Agile Data Dev - Data Management for Wind-Turbine Engineering
	Discussion
	User Communication: Involvement of non-experts, prototyping
	Generator development: Implementing a generator
	Generator integration: Applying MDE to a project
	Evolution of the MontiGem framework
	Global takeaways

	Roadmap
	Related work
	Conclusion

