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ABSTRACT
In a software product line similar products are derived ba-
sed on a common foundation. With traditional methods a
number of similar products exist independently. To derive a
maintainable, reusable set of software components it is ne-
cessary to understand similarities and di↵erences. However,
an adequate similarity analysis involving several products is
a cost-intensive and di�cult task, compromising the pursu-
ed benefit. In this paper an automated syntactical simila-
rity analysis for software component interfaces is proposed
to support the software product line extraction and main-
tenance. We apply this general approach specifically to the
automotive domain, as the static nature of the architecture
and the high number of well-defined signals makes the inter-
faces especially expressive. The analysis supports three use
cases: the identification of similarities between two interfa-
ces, the automated extraction of a common interface for a set
of interfaces and the evaluation of interface changes during
the evolution history of a software component. In addition
the syntactical analysis provides the foundation for further
semantical examinations. Its applicability is indicated by a
case study on di↵erent variants and versions of interfaces
defined in an industrial context.

CCS Concepts
•Software and its engineering ! Software product
lines; Software reverse engineering; •Computer systems
organization ! Embedded software;

1. INTRODUCTION
In the automotive domain, the necessary quality level of

software functions demanded by standards like CMMI or
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ISO 26262 is increasing. In addition the market requests
shorter release cycles and more complex functionality [6].
Consequently software development processes needs to beco-
me more and more e�cient. Software Product Line Enginee-
ring (SPLE) [19] focuses on the establishment of a reusable
platform for a particular application domain with the target
to gain e�ciency through reuse. As the development of a
Software Product Line (SPL) is more cost intensive as the
development of just a specific product [19], it is necessary to
ensure that the SPL is really reused due to several projects
over time. In addition, in the industry the clone-and-own
approach is preferred as it does not need any structured
planning and can be performed easily and intuitively [9].
Still this approach is executed unsystematically and known
disadvantages, like increased maintenance e↵ort, can not be
solved [9].

Several approaches have been defined in the last years to
improve the situation and systematize clone-and-own [23,
12, 2]. In addition, inspired by di↵erent results from the field
of Agile Product Line Engineering (APLE) [8] we defined a
reactive process for the establishment and maintenance of a
SPL [24]. This application engineering focused software pro-
duct line development process is an extension of PERSIST
[29, 20], an AUTOSAR1-compliant process for product line
engineering.

Main important aspect is the comparison of software com-
ponents of the product line with components from other pro-
jects [24]. Similarities of structural or semantical aspects of
di↵erent software components are targeted to identify po-
tentials of reuse and avoid parallel development besides the
SPLE.

This paper focus on the structural similarity analysis of
di↵erent software components in the context of the automo-
tive domain with the target to identify similar or identical
components under development and to be able to extract a
generic interface for the establishment of a generic compo-
nent, which can be reused in the di↵erent analyzed project
contexts. Therefore in a first step matches between the si-
gnals of di↵erent interfaces needs to be established. Such a
match is also mandatory for further semantical analysis [25].

The outline of the paper is as follows: Sect. 2 provides

1http://www.autosar.org/
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Figure 1: Reactive software product line enginee-
ring process (from [24], coloured activities indicate
domain engineering related tasks).

the necessary background. In Sect. 3 the concept is explai-
ned, while in Sect. 4 its implementation is described. During
Sect. 5 the the approach is evaluated and in Sect. 6 similar
solutions are discussed. The paper finishes with a conclusi-
on.

2. FOUNDATIONS
This section provides an overview about the process de-

fined in previous work [24] which indicates the need for an
automated interface-based similarity analysis. In addition,
the basics regarding graph matching and aborescence are
shortly described, as both are used to identify structural
similarities between software component interfaces and to
derive a generic interface.

2.1 Reactive Software Product Line Enginee-
ring

In previous work we have defined a reactive and agile pro-
cess to synchronize a software product line with its products
[24]. It is based on PERSIST [20], which is an architecture
framework combined with an agile development process for
the development of automotive powertrain software.

PERSIST defines a syntax for components and their in-
terfaces consisting of several signals and parameters. Those
signals are communication ports (input or output) or para-
meter and are defined by a signature which includes, among
others, a name, a description, a width, a data type and a
unit. In addition, a signal naming convention based on AU-
TOSAR providing an exclusive set of physical, logical and
descriptive abbreviations is part of PERSIST to ensure con-
sistent signal signatures.

The main important activities of the suggested process are
illustrated in Fig. 1. When a new component is developed
in a project (1), its position in the reference architecture is
specified in the first place (2) and only if an adequate re-
presentative could not be identified, a new one is defined
(3) in the context of the project. This assignment is double
checked by the domain engineering team to ensure a correct
decision (4). Based on this first filter, the search space is al-
ready reduced significantly, as already evaluated in previous

work [24]. Therefore, in a next step, before or during the
development of a new component (semi-)automated mecha-
nisms can be used to identify similar components (6). These
mechanisms can be based on artifacts describing structu-
ral (e.g. interfaces) or semantical aspects (e.g. test cases or
behavioral models).

If a similar component could be found, a variability poten-
tial analysis is also conducted (8). This analysis determines,
if given similarities are worth the development of a generic
component (9).

Hence, the process needs a method to structurally com-
pare component’s interfaces in order to find existing com-
ponents in the software product line. Moreover, a method is
needed to extract a generic core from a set of similar pro-
ducts, which can be fed back into the product line.

In consequence, this paper proposes an analysis technique
to identify similarities between di↵erent software component
interfaces based on available attributes.

2.2 Graph Matching
Each interface consists of a set of signals. To identify si-

milarities between two interfaces it is necessary to calculate
the similarity between di↵erent signals and identify the most
potential signal matches afterwards. If signals of di↵erent in-
terfaces are expressed as graph nodes and the weighted ed-
ges express the similarity between such nodes (high weight
= high similarity), graph matching algorithms can be used
to identify best matches.

A matching on a Graph G is defined as ”a set of indepen-
dent edges of G” [4].
Given two edges (a, b), (c, d) 2 G, those edges are indepen-
dent if and only if (a, c), (a, d), (b, c), (b, d) /2 G.

A weighted matching is a matching, where the edges’
weights are taken into account. In a maximum weighted
matching edges are chosen such that the total weight of the
selected edges is maximal.

2.3 Arborescence
Once a maximum weighted matching between signals of

two di↵erent interfaces is derived it is also necessary to be
able to derive commonalities if more than two interfaces are
involved and to extract a common interface.

An arborescence of a directed graph G is a directed span-
ning tree of G. ”A subgraph T = (V, F ) of G is an arbore-
scence with respect to root r if and only if T has no cycles,
and for each node v 6= r, there is exactly one edge in F that
enters v” [13].

The search for a minimum cost spanning tree is known as
the minimum cost arborescence problem. Analogously, the
maximum cost arborescence problem refers to the search for
a maximum cost spanning tree. In order to find such an arbo-
rescence, Edmond’s algorithm [10] can be applied. However,
it is not always possible to find an arborescence, which con-
tains all of the original graph’s nodes. This can be the case
for weakly connected graphs. It is rather possible to find a
branching, which is a directed spanning forest. Fig. 2 shows
a graph, whose arborescence does not cover all of the graph’s
nodes (original graph on the left hand side, arborescence on
the right hand side).

An arborescence is defined to be an out-tree (as opposed
to an in-tree). In an in-tree, all edges are directed towards
the root, while they are directed away from the root node
in an out-tree. Edmond’s implementation generating out-

100



1

2 3

4

1

2 3

4 5

Figure 2: Graph (left) and its Arborescence (right,
in-tree, inverted directions already applied)

trees can be used to generate in-trees by simply inverting
the edges of the original graph, applying the algorithm, and
inverting the edges of the resulting graph again.

3. CONCEPT
This section describes the conceptual aspects behind the

proposed algorithm. The process can be divided into five
steps: interface import, signal similarity analysis, signal map-
ping calculation, signal transformation path calculation and
result evaluation.

In Fig. 3 simplified ingoing interfaces of three monitoring
components are shown. This constructed example is used
throughout the paper to motivate and demonstrate the dif-
ferent aspects of the proposed approach. The components in-
tend to calculate the current system status based on the cur-
rent system state (signals Init, StartUp and SystemState),
the velocity (signals Speed and Velocity together with signal
qualifier StatusSpeed and VelocityQualifier) and additional
attributes like acceleration, temperature or battery volta-
ge. The example is purely fictional and only inspired by
practical examples. The connections between the di↵erent
variants’ signals in Fig. 3 are illustrating the intended cor-
respondence (the matches to be identified by a structural
similarity algorithm).

In VariantA and VariantB the system state is represen-
ted by just one Boolean value (init/startup), while Vari-
antC defines a system state enumeration, able to represent
16 di↵erent states. Although an intended connection is gi-
ven, the corresponding signal names di↵er. In addition, the
system state is represented by di↵erent data types or dif-
ferent amount of signals. In case of the velocity attribute
either the name, datatype (fixpoint vs. floating point arith-
metic) or unit di↵ers. In consequence also the defined range
of the di↵erent signals are defined in relation to their unit
representation. For the velocity signal qualifier the problem
is similar to the status signal: one variant defines a simple
boolean value, while the other variants represent 10 di↵erent
states by an enumeration. Acceleration is considered by two
di↵erent variants only, while motor temperature and battery
voltage are variant specific signals.

The example shows four di↵erent important signal attri-
butes used in the automotive industry: name, data type,
unit, logical range. In comparison to the intended connec-
tions shown in Fig. 3, in Fig. 5 and Fig. 4 found matches
based on name or on the datatype attribute are shown.

As for datatypes many matches are possible, only the mo-
re important ones are represented. The thickness of the ed-
ges indicates the relation strength. In addition relations are
directed if an attribute can only be represented by a mo-
re general representation (e.g. Float32 can represent Int16).

StartUp
(Bool)

SpeedUp
(Int16, [], m/s2)

StatusSpeed
(Bool)

Init
(Bool) 

VelocityQualifier
(UInt8, [0,9])

SystemState
(UInt8, [0,15])

Acceleration
(Float32, [], m/s2)

VelocityQualifier
(UInt8, [0,9])

Variant A Variant B Variant C

Speed
(Int16, [0, 180], km/h)

Velocity
(Float32, [0, 250], km/h)

Velocity
(Float32, [0, 56], m/s)

VoltBattery
(Float32, [], volt)

TemperatureMotor
(Int16, [-20, 150], celsius)

Figure 3: Suggested similarities between simplified
ingoing interfaces of three monitoring components.

Similar to the other mentioned attributes, these examples
shall demonstrate that the intended relation shown in Fig. 3
can not be extracted by just focusing on one of the provided
attributes. In this example both attributes would provide
misleading matches and only under the consideration of all
provided attributes a more adequate match can be found.
How this is done in detail will be explained in the following.

In the first step, the interface definitions of the interfaces
to be compared are imported and represented using an in-
ternal data model. This keeps the algorithm independent of
the format used to define the interface and enables di↵erent
input formats to be used. Next, the interfaces are compared
to each other by comparing the interfaces’ signals. Interfaces
are compared pairwise, and each signal from one interface
is compared to each signal from the other interface. Hence,
after the comparison step, there exist a similarity value bet-
ween each two signals from the two interfaces. Afterwards,
signal mappings are derived to map each signal from one
interface to exactly one signal from the other interface, such
that the total similarity is maximized. Those mappings de-
termine, which signals shall be transformed to which other
signals.

If the purpose is just to find the similarity between two in-
terfaces, step four, the calculation of a transformation path,
can be skipped. However, if the goal is to extract a generic
core from a set of interfaces, an additional step is required.
If the process is conducted for a set of more than two inter-
faces after step three, there exist groups of similar signals
from di↵erent interfaces. For each group of similar signals,
the goal is to find a signal that all other signals can be trans-
formed to. If such a signal can be found, it can be included
in the generic core. Hence, transformation paths between
similar signals need to be derived.

Finally, the results from steps three and four need to be
displayed to the user in a readable form to be used during
the variability potential analysis. Therefore, a collection of
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StartUp
(Bool)

ShutDown
(Bool)

StatusSpeed
(Bool)

Init
(Bool) 

VelocityQualifier
(UInt8, [0,9])

SystemState
(UInt8, [0,15])

VelocityQualifier
(UInt8, [0,9])

Variant A Variant B Variant C

Speed
(Int16, [0, 180], km/h)

Velocity
(Float32, [0, 250], km/h)

Velocity
(Float32, [0, 56], m/s)

Figure 4: Data type matches for the simplified ex-
ample.

StartUp
(Bool)

ShutDown
(Bool)

StatusSpeed
(Bool)

Init
(Bool) 

VelocityQualifier
(UInt8, [0,9])

SystemState
(UInt8, [0,15])

VelocityQualifier
(UInt8, [0,9])

Variant A Variant B Variant C

Speed
(Int16, [0, 180], km/h)

Velocity
(Float32, [0, 250], km/h)

Velocity
(Float32, [0, 56], m/s)

Figure 5: Name matches for the simplified example.

di↵erent views on the gathered data at di↵erent abstraction
levels is provided.

3.1 Signal Similarity Analysis
As mentioned above, two interfaces (I1 and I2) are compa-

red by matching their constituent signals. Let S1 and S2 be
the set of signals and parameters of I1 and I2. For each pair
of ingoing signals, pair of outgoing signals or pair of para-
meters (s1, s2) with s1 2 S1, a similarity value is derived. In
the following it is always referred to signals (s1, s2), nonet-
heless pairs of ingoing signals, outgoing signals or parameter
values are meant. The comparison is done by calculating the
similarity of each of the signals’ properties. The overall si-
gnal similarity is equivalent to the weighted arithmetic mean
over the signal properties’ similarities. The signal’s proper-
ties that are considered during the comparison are its name,
range (defined by a minimum and a maximum value), width,
data type and unit. Let Props be the set of considered pro-
perties and let p1 = prop(s1, p) be the property value of
property p of signal s1.

On a more abstract view two signal properties can either
be equal, similar or di↵erent, but a possible transformation
from one signal to another signal is always direction depen-
dent: it may be possible to transform a signal s1 to a signal
s2, but not the other way around (as signal s2 is more ge-

neric than signal s1). To di↵erentiate between similarities,
which allow a proper transformation in both directions, and
similarities, which permit only an one-sided transformation
a fourth similarity level is introduced: weakly similar.
Let trans

p

(p1, p2, p) be a function, that determines whe-
ther or not property value p1 is transformable to proper-
ty value p2 regarding property p. Two signal property va-
lues p1, p2 are defined to be weakly similar, if and only if
p1 6= p2 ^ trans(p1, p2) 6= trans(p2, p1). They are similar, if
p1 6= p2^trans(p1, p2)^trans(p2, p1) and they are di↵erent,
if and only if ¬trans(p1, p2) ^ ¬trans(p2, p1).
The following defines, when two signal properties p1, p2

of property p are considered to be transformable, expressed
by trans(p1, p2, p):

• name For two names n1, n2, trans(n1, n2, name) is
always true.

• width Given two widths w1, w2, then
trans(w1, w2, width) $ w1 = w2.

• range For two ranges r1 := [min1,max1] and r2 :=
[min2,max2], trans(r1, r2, range) $ r1 ✓ r2.

• data type Given two data types d1 and d2, then
trans(d1, d2, datatype) if and only if values of data ty-
pe d1 are also representable using the data type d2. For
example, an eight bit signed integer value can be re-
presented using a 16 bit signed integer, but the inverse
can not be granted.

• unit For two units u1, u2, trans(u1, u2, unit) if and
only if u1 can be converted to u2 using SI-unit con-
versions [27]. For example, the unit meters per second
can be converted to kilometres per hour.

The similarity sim

p

(p1, p2, p) of a property value p1 from
signal s1 to property value p2 of signal s2 is defined as fol-
lows:

sim

p

(p1, p2, p) =

8
<

:

0 if ¬trans(p1, p2, p)
1 if p1 = p2

x if trans(p1, p2, p) ^ p1 6= p2

where x 2 [0, 1] is calculated using a property specific
similarity function for each similarity criteria. The similarity
functions for the di↵erent similarity criteria are defined as
follows:

• name For two names n1 and n2, simname

(n1, n2) is
calculated based on Levenshtein distance [15].

• width sim

width

(w1, w2) := 1 for two widths w1, w2.

• range Let r1 = [r1,min

, r1,max

] and r2 = [r2,min

, r2,max

]
be two ranges and R1 = r1,max

�r1,min

, R2 = r2,max

�
r2,min

. Then sim

range

(r1, r2) :=
max(R1,R2)�|R1�R2|

max(R1,R2)
.

• data type Let bit(x) be the number of bits in a data
type, then the similarity of two data types d1, d2 is
defined as sim

datatype

(d1, d2) :=
min(bit(d1),bit(d2))
max(bit(d1),bit(d2))

• unit Let u1, u2 be two units. [27] states that a quantity
Q’s unit is expressable in terms of SI base units: [Q] :=
10n ⇥m

↵ ⇥ kg

� ⇥ s

� ⇥ A

� ⇥K

✏ ⇥mol

⇣ ⇥ cd

⌘, where
�24  n  24. Hence, sim

unit

(n1, n2) :=
49�(|n1�n2|)

49 .
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Function sim

p

is direction dependent, while the similarity
functions for di↵erent specific properties are direction in-
dependent. In addition, a similarity threshold value can be
specified for each similarity criteria. If the similarity of two
properties is below the defined threshold, they are conside-
red to be di↵erent. This way, besides the general condition
of compatibility, it is possible to define a minimum degree of
similarity two properties must have in order to be considered
as similar.

The overall similarity sim(s1, s2) for two signals s1, s2 is
calculated as the weighted arithmetic mean over the signal
properties’ similarity:

sim(s1, s2) =

P
p2Props

w

p

⇤ sim
prop

(prop(s1, p), prop(s2, p))

|Props|
if

8p 2 Props : trans(prop(s1, p), prop(s2, p)) 6= 0

Otherwise, sim(s1, s2) = 0.
w

p

refers to the weight assigned to the property p. By
assigning weights to the properties, the importance of each
property for the overall similarity value can be adjusted.

Moreover, it is possible to select a priority order for signal
properties, which will cause them to be compared in this
order. Further comparisons can be ignored, if two proper-
ties are not considered transformable. This technique leads
to an increase in performance, as less comparisons have to
be carried out, and less signal pairs need to be considered
during the matching step.

Results gained from the comparison step are stored in a
graph structure. This enables them to be further processed
and analysed in the next step. Signals form the graphs’ no-
des, while directed edges between nodes represent the direc-
ted similarity between the signals. The concrete similarity
values are represented by the edges’ weights.

Fig. 6 illustrates the derived graph structure after simila-
rity values have been calculated for the simplified example.

Based on the similarity analysis for the property unit ma-
ny di↵erent pairs are detected already and therefore the
amount of possible matches reduces significantly. Only for
unit less inputs multiple options exist.

3.2 Signal Mapping
The example in Fig. 6 illustrates the similarity relations

between the interface of VariantA and VariantB and bet-
ween VariantB and VariantC. Nevertheless, during the si-
gnal mapping step only the relation between two interfaces
is considered at once. The goal of this step is to define which
signals from one interface are most similar to which signals
from another interface. Maximum weight graph matching is
applied to the graph gained from the last step in order to
retrieve a mapping, where the total similarity is maximized.
The signals from Fig. 6 would be mapped as outlined in
Fig. 7.

Again the matches between VariantA / VariantB and Va-
riantB / VariantC are shown, but the mapping is calculated
separately. Comparing Fig. 3 with the mapping extracted
based on the described approach, all results but the map-
ping between the boolean values match (indicated by the
red dotted lines). Based on the available attributes it is not
possible to identify the correct match: for boolean values

VelocityQualifier

(UInt8, [0,9])

SystemState

(UInt8, [0,15])

Acceleration

(Float32, [], m/s2)

VelocityQualifier

(UInt8, [0,9])

Variant B Variant C

Velocity

(Float32, [0, 250], km/h)

Velocity

(Float32, [0, 56], m/s)

1

0,72

0,466

0,95

SpeedUp

(Int16, [], m/s2)

StatusSpeed

(Bool)

Init

(Bool) 

Variant A

Speed

(Int16, [0, 180], km/h)

StartUp

(Bool)

0,51

0,8

0,85

0,466

0,466

0,644

0,7

VoltBattery

(Float32, [], volt)

TemperatureMotor

(Int16, [-20, 150], celsius)

Figure 6: Calculated similarity values of the simpli-
fied example.

only name, width and datatype can be a correct indicator.
Therefore, compared to other one dimensional booleans, on-
ly the name attribute can be taken into consideration for
separation. This example already demonstrates that mat-
ches derived based on only three attributes and based on a
very small naming similarity have a high chance to be false
positives (invalid matches). To avoid false positives in this
example a similarity threshold for the property name can
be used, as described in Subsect. 3.1. As shown in Fig. 7,
such a threshold can also result in false negatives (correct
match between signal StartUp and signal SystemState is re-
moved and intended matches between Init/StartUp and Sta-
tusSpeed/VelocityQualifer are still not identified).

Based on the derived maximum match M a directed ave-
rage similarity between interface I1 and interface I2 is cal-
culated by:

sim

dir

(I1, I2) =

P
(s1,s2)2M

sim(s1, s2)

|S1|
Again, the derived similarity is direction dependent and

considers only all signals of the first interface to calculate the
average similarity. In consequence, I1 can be 100% similar to
I2, although I2 consist of more signals, as long as all signals
from I1 are matched with 100% similarity. The undirected
similarity between two interfaces is calculated by the average
of the directed similarities:

sim(I1, I2) =
sim

dir

(I1, I2) + sim

dir

(I2, I1)
2

3.3 Calculation of Transformation Paths
Based on the extracted matches between di↵erent inter-

faces a generic interface can be extracted. Connecting the
matches found between the di↵erent interfaces, separated
graphs can be extracted. In the following step for each of
these graphs an arborescence is calculated to identify the
most generic signal, which can be used for a generic inter-
face suitable for all variants.
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VelocityQualifier
(UInt8, [0,9])

SystemState
(UInt8, [0,15])

Acceleration
(Float32, [], m/s2)

VelocityQualifier
(UInt8, [0,9])

Variant B Variant C

Velocity
(Float32, [0, 250], km/h)

Velocity
(Float32, [0, 56], m/s)

VoltBattery
(Float32, [], volt)

SpeedUp
(Int16, [], m/s2)

TemperatureMotor
(Int16, [-20, 150], celsius)

StatusSpeed
(Bool)

Init
(Bool) 

Variant A

Speed
(Int16, [0, 180], km/h)

StartUp
(Bool)

Figure 7: Calculated matches of the simplified ex-
ample (filtered matches in red dotted lines).

Considering the separated graphs from Fig. 7, Edmond’s
algorithm can be used to retrieve arborescences with hig-
hest similarity values for each of them. However, Edmond’s
algorithm generates out-trees with minimum weights. By in-
verting the similarity values and the edge direction before
applying Edmond’s algorithm, and reinverting afterwards,
the required transformation paths can be extracted. As each
edge between two signal nodes corresponds to a possible
transformation, this would mean that there is a path of sub-
sequent transformations from each signal node to the root
node. Hence, the root node corresponds to the signal that all
other signals can be transformed to. The result gained from
the graph from Fig. 7 is displayed in Fig. 8. The highlighted
nodes represent the extracted root nodes.

For each group of similar signals S, that are transformed
into one signal s, with s /2 S, a transformation path simi-
larity sim

path

(S, s), based on the derived single similarity
values, is calculated:

sim

path

(S, s) =

P
t2S

sim(t, s)

|S|
This overall similarity value is the final indicator, if the

extracted generic signal is a potential candidate for a generic
interface. As Edmond’s algorithm is calculating a spanning
arborescence with minimum weight the derived total simila-
rity value is the maximal similarity available by considering
at many variants as possible.

In addition two preconditions needs to be fulfilled to ensu-
re that the extracted arborescence represents a valid trans-
formation path. First, many arborescences describe only a
valid transformation path, if the relation described by the
function trans(p1, p2, p) defined in Subsect. 3.1 is transitive
(in case not all nodes are connected directly). Therefore, in
the following it is proven that for three signal property va-
lues p1, p2, p3 of property p, the following holds:
trans(p1, p2, p) ^ trans(p2, p3, p) =) trans(p1, p3, p).

VelocityQualifier
(UInt8, [0,9])

SystemState
(UInt8, [0,15])

Acceleration
(Float32, [], m/s2)

VelocityQualifier
(UInt8, [0,9])

Variant B Variant C

Velocity
(Float32, [0, 250], km/h)

Velocity
(Float32, [0, 56], m/s)

SpeedUp
(Int16, [], m/s2)

StatusSpeed
(Bool)

Init
(Bool) 

Variant A

Speed
(Int16, [0, 180], km/h)

StartUp
(Bool)

VoltBattery
(Float32, [], volt)

TemperatureMotor
(Int16, [-20, 150], celsius)

Figure 8: Transformation pathes extracted for the
simplified example (filtered matches in red dotted
lines, generic signals highlighted).

• Name A name can always be transformed into any
other name.

• Range For three ranges r1, r2, r3, the following holds:
trans(r1, r2, range) ^ trans(r2, r3, range) =) r1 ✓
r2^r2 ✓ r3. Hence, r1 ✓ r3 and thus trans(r1, r3, range).

• Width Let w1, w2, w3 be three widths.
Widths are only transformable if they are equal, hence
trans(w1, w2, width) ^ trans(w2, w3, width)
=) w1 = w2 = w3 and therefore trans(w1, w3, width).

• Unit For three u1, u2, u3, trans(u1, u2, unit) and
trans(u2, u3, unit) implies that u1 is transformable to
u2 and u2 is transformable to u3. Hence, u1 is trans-
formable to u3 and thus trans(u1, u3, unit).

• Data Type Let d1, d2 and d3 be three data types.
trans(d1, d2, datatype)^trans(d2, d3, datatype) implies
that values of data type are representable by data type
d2. Those values again are representable by data type
d3, hence trans(d1, d3, datatype).

Hence, all relations trans(p1, p2, p) are transitive.
Second, the extracted graph can not contain two edges

extracted from the same variant. If this is the case, the
resulting transformation path would indicate to transform
two signals of one interface to one signal of another inter-
face. E.g. in Fig. 9 the identified matching between Init and
SystemState would result in a transformation path, which
transforms both signals Init and StatusSpeed to signal Sy-
stemState. In addition, in a separate arborescence the signal
Init is transformed to signal VelocityQualifier.

Instead of performing a correction upfront, the resulting
path is highlighted as invalid to indicate a possible conflict:
the transformation path maybe invalid, but already provides
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VelocityQualifier
(UInt8, [0,9])

SystemState
(UInt8, [0,15])

VelocityQualifier
(UInt8, [0,9])

Variant B Variant C

StatusSpeed
(Bool)

Init
(Bool) 

Variant A

StartUp
(Bool)

Figure 9: Invalid transformation path indicating fal-
se positives.

useful information to identify the source issue. In this exam-
ple, if the invalid matches have not already been detected
by an established threshold of the name property, the ad-
ditional information gained by connecting several matches
can be used to indicate false positives and therefore avoid
invalid generic interface extractions.

4. IMPLEMENTATION
A prototype implementation of the proposed algorithm

has been developed in Python in order to evaluate the ap-
proach.

The implementation focus on precision, instead of perfor-
mance. The target is to be able to easily compare, exchange
and modify parts of the proposed logic to increase the cor-
rectness of the identified signal matches and the derived ge-
neric interfaces.

The application has been divided into three major parts:
the model, the controllers and the view module.

The model contains the data model for the internal repre-
sentation of interfaces and their signals. Moreover, it con-
tains an abstraction layer for the library independent re-
presentation of graphs. In the current implementation the
library networkx2 is used.
The controllers operate on the model and provide basic

services like import, the comparison of signals or the gene-
ration of signal mappings. The logic importing the data, the
metrics calculating the similarity values and the graph based
algorithms (matching and Edmonds algorithm) are separa-
ted from each other and can easily be exchanged.

The comparison controller is responsible for the compari-
son of two or more signals and stores the results in a graph
structure, which can be used for further analysis. In additi-
on, metrics, which extract similarity relations based on the
provided model, can easily be exchanged to support a fast
comparison of di↵erent approaches. Another controller is re-
sponsible for the analysis of the comparison results. It gene-
rates signal mappings and calculates signal transformation
paths.

The view module is responsible for the generation of re-
ports, which display the gathered data like similarity values
for signals or signal properties, signal mappings or transfor-
mation paths.

2https://networkx.github.io/

5. EVALUATION
The described approach has been evaluated on preselec-

ted software components currently under development at
FEV GmbH. The preselection of software components has
been performed based on available extrinsical matches. The
available components with multiple extrinsical matches have
already been identified in preliminary work [24]. The eva-
luation focus on measuring the precision of the described
approach. Therefore, each derived mapping is evaluated by
experts to identify all false positives (wrong signal matches)
and false negatives (missed signal matches). In consequence,
to be able to perform a qualified evaluation in a suitable
time frame the amount of derived signal matches has be-
en reduced to an adequate size. From the preselected com-
ponents, 6 components with together 15 variants have been
chosen, resulting in 721 signal matches (including unmat-
ched signals).As already indicated by the simplified example
the amount of available attributes in relation to the over-
all defined attribute seems to influence the correctness of
the derived signal mapping. Therefore, during the evaluati-
on for each signal mapping the minimum data accuracy of
the involved signals has been measured to identify a possible
correlation between the approach’s precision and the degree
of available information. Considering the name property as
an information which is always provided and the min and
max value of the range attribute as two separately defined
attributes, the data accuracy of a signal represents the per-
centage of defined attributes width, min, max, data type and
unit. In consequence, boolean signal’s highest data accuracy
value is 0, 4 (no unit and no range), while integers reach only
0, 8 (suggesting no unit is defined). In addition, a threshold
on the name property could decrease the amount of false po-
sitives, but maybe increase the amount of false negatives at
the same time. Therefore di↵erent thresholds for the name
property have been evaluated to check if such a threshold
is a proper mechanism to handle low data quality. All pro-
perties are considered with the same weight of 1 during the
evaluation.

The results of the evaluation considering the data accu-
racy of the provided data set and the precision (percenta-
ge of correct matches) of the proposed approach are shown
in Fig. 10. A calculated Spearmen correlation coe�cient of
0, 23 and a p-value below 0, 001 indicate a relation between
data accuracy and precision. Analyzing the provided data,
attribute definition occurrences are provided in the followi-
ng order: name, width, data type, unit and range. In most
cases the definition of a physical unit is enough to achieve
a correct signal matching, while the consideration of name,
width and data type only results in a failure rate around 50
%. In Fig. 11 the precision of the derived matches is shown
in relation to the applied name similarity threshold.

A first significant increase of precision is measured by a
threshold value of 0.5, while the peak of 95% for the evalua-
ted data set is achieved with thresholds 0.78, 0.79 and 0.8.
Starting with threshold 0.81 the validity is decreasing again.
Nevertheless, a threshold of 1.0 still provides a precision of
87%. Analysing the concrete amount of false positives (in-
correct matches) and false negatives (missing matches) an
increase of false negatives is introduces at threshold 0.65 (1
false negative), as can be seen in Fig. 12. A more or less
even relation between false positives and false negatives is
provided in the same area where the highest overall precisi-
on is given: between thresholds of 0.77 and 0, 78 the amount
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Figure 10: Precision in relation to data accuracy.
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Figure 11: Precision for di↵erent name similarity
thresholds.

of false negatives becomes higher than the number of fal-
se positives. If only a general similarity value needs to be
extracted to identify potential candidates for reuse the over-
all precision is important, while the origin of the inaccuracy
is secondary. If in a next step, a generic interface shall be
extracted and further evaluation consider semantical simi-
larity based on the extracted matches, false positives are
less problematic than false negatives. False positives can be
identified either manually or with additional automated se-
mantical analysis, while false negatives are much harder to
detect afterwards. In addition, all false positives extracted
by a threshold higher than 0.65 have not been matched with
the wrong signal, but would not match with any other signal
at all. In consequence, for the given data set all valid mat-
ches are detected if no false negative is provided. Therefore,
a di↵erent weighting of the properties during the similarity
analysis should not provide better results for the given data
set.

The main reason for the strong relation between preci-
sion and the name similarity threshold in the context of
low data accuracy is the consequent application of a signal
naming convention within PERSIST[29, 20]. This conventi-
on provides additional standardized semantical information
based on abbreviated keywords of the automotive domain.
Consequently, correct matches with no name similarity, as
illustrated in Fig. 3, can occur hardly. Although the results
are quite promising they can not be generalized. The exami-
ned components are all developed in the context of the FEV
GmbH, specified by specific teams and relate to specific sub
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Figure 12: Amount of false positives and false negati-
ves in relation to applied name similarity threshold.

domains. Therefore, further investigations are necessary to
consolidate the observed.

Based on the extracted matches arborescences are calcu-
lated to extract common interfaces. In only two cases several
signals of the same interface are included in one transforma-
tion as illustrated in Fig. 9. In these cases the corresponding
paths targeted false positive signal matches. Reports are ge-
nerated which illustrate either an overall interface suitable
for all variants or which define the generic core: an inter-
face consisting of a signals shared by all considered variants.
As long as the derived signal matches are correct, the ex-
tracted transformation pathes represent a valid generic in-
terface. The measured average structural similarity between
di↵erent variants of a software component is 29%, while the
specific similarity for all variants of one software component
reach between 11% and 67%. Therefore, several indicator
for the implementation of general components, as requested
in [24], are provided automatically. In addition, correspon-
ding interfaces are derived, too. Besides the identification of
similarities between di↵erent variants the described signal
matching is also used to extract similarities between two ver-
sion of the same interface. Thereby, a change analysis can
be performed as shown in Tab. 1 to be able to monitor the
evolution of a software product line and its components. The
example is directly taken from an evaluated component, but
revision numbers, history length and comments are abstrac-
ted. Column two and three indicate the average similarity
from the older to the newer revision (") or the other way
around (#). The average similarity is calculated by the ave-
rage similarity of all found matches from one interface to
another (see sim

dir

(I1, I2) in Sect. 3). If all signals of the
older version are matched by equal signals of the newer in-
terface the directed average similarity is 1.0, even some new
signals of the newer interface are not matched at all. Com-
paring these directed similarity values in the version history
shown in Tab. 1 it can directly be seen that only between
version one and version two small modifications of alrea-
dy provided signals are performed. In all other cases only
additional signals or parameters are defined. The changes
between revision 2/3, 3/4 and 6/7 are highlighted as major
changes. During the evaluation the history of 7 components
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Rev. " # Comment IN OUT CAL
8 1.0 1.0 description 29 25 28
7 1.0 0.84 branch merge 29 25 28
6 1.0 0.98 new signal 21 23 25
5 1.0 1.0 description 20 23 25
4 1.0 0.911 new signals 20 23 25
3 1.0 0.85 new signals 20 17 25
2 0.99 0.99 typos 19 17 17
1 - - creation 19 17 17

Table 1: Revision history including directed simila-
rity relations between di↵erent versions.

have been analyzed in detail. In all cases the extracted si-
milarity relations expressed the applied changes, although
without any name similarity threshold applied. This obser-
vation can be explained by the stronger cohesion between
elements of the same history, but also by the kind of chan-
ges applied: in no case a wild mix of rename, add and delete
signal operations are performed at the same time.

6. RELATED WORK
This section gives a brief overview of related work in the

context of software component retrieval, software product
line extraction or clone detection.

Chen et al. [7] propose a method to retrieve software com-
ponents from a component library based on signature mat-
ching. A database is used to store a pool of reusable softwa-
re components. Software components defined in an object-
oriented fashion are searched for by constructing database
queries that check for signature matches. Mili et al. use spe-
cification based matching to retrieve software components
from a database [17]. The method distinguishes between ex-
act retrieval, where the retrieved function is expected to fully
comply to the given specification, and approximate retrieval,
where a function’s behaviour is similar to a given specificati-
on and can be modified to satisfy it. The retrieval approach
for exact retrieval is refinement based, meaning a component
is a suitable candidate, if its specification refines the given
specification. For approximate retrieval, the goal is to find
a specification, that maximizes the information that it has
in common with the search argument, and hence minimi-
zes the e↵ort to adjust a component. Similar approaches to
preselect software components based on signature matching
are defined by Zaremski et al. [31, 32] or Fischer et al. [11].
In addition, di↵erent methods and metrics are proposed to
retrieve web services based on interface similarities [30, 28].

In the context of software product line extraction Koschke
et al. [14] suggest an apporach based on the reflexion method
[18]. Thereby the Levenshtein distance is used to derive simi-
larities between functions and global variables. Even the re-
lated case study is connected to the automotive industry, no
further attributes except data type are considered to iden-
tify proper matches. Berger et al. [3] propose a method for
the comparison of software components’ interfaces. Structu-
ral and semantic comparison are used to determine whether
two interfaces are equal or similar. Two interfaces are con-
sidered to be equal, if their names and signatures perform
an exact match. Further semantical comparisons are per-
formed manually. Based on the theory of software product
line refinement [5] Rubin and Chechik suggest [22] a gene-
ral product line refactoring approach for any type of models

represented in XMI. Similar to the proposed approach the
overall process is divided into a compare, a match and a
merge operation step. Nevertheless in a proposed example
for UML statecharts only the attributes name, type, depth,
actions and transitions are considered and weighted sepa-
rately. A detailed evaluation is not provided. Ryssel et al.
analyze the similarity of Simulink models to extract generic
models [26]. Regarding the interface the proposed similarity
metric does consider only the average of identical parame-
ters. In addition, due to the calculation of a neighbourhood
criteria the port connections between di↵erent components
are evaluated.

According to Roy et al.[21] metric-based clone detection
approaches (e.g. [1, 16] use a technique called fingerprinting
functions: di↵erent metrics are derived for specific syntac-
tical units to identify clones. Nevertheless these metrics do
not compare detailed attributes, but measure general di↵e-
rences regarding the amount of parameter declarations or
changed data types.

All mentioned approaches have in common that they are
not considering additional signal properties common in the
automotive industry, like unit or logical range, to derive ade-
quate signal matches. In addition, even lexical similarity of
parameter names or descriptions are evaluated, no naming
convention standard is available to significantly increase the
precision of the proposed approach.

7. CONCLUSION
This paper describes an approach for the automotive in-

dustry to derive a similarity statement between di↵erent va-
riants or versions of software component interfaces. By fo-
cusing on the additional signal properties provided in this
specific domain and applying a name similarity threshold
to make use of applied signal naming conventions, a very
precise signal matching could be established. The perfor-
med evaluation indicate a relation between precision and
data accuracy and a relation between precision and app-
lied name similarity threshold. The approach can be used
to indicate reuse potentials and to derive a generic inter-
face automatically. In addition, the similarity analysis can
be applied to monitor the evolution of software component
interfaces. Even the results are quite promising, further in-
vestigations are necessary to consolidate the observed and
further improve the described method. Considering both ob-
served relations, a dynamic threshold in relation to available
data accuracy could further improve the correctness of the
results. In addition, further information could be extracted
in a grey-box approach to increase available data accuracy:
e.g. the cohesion between di↵erent signals of one component
could be considered due to a control flow analysis to improve
the overall precision of the derived signal matches.
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[13] J. Kleinberg and É. Tardos. Algorithm Design.
Pearson Education India, 2006.

[14] R. Koschke, P. Frenzel, A. P. J. Breu, and
K. Angstmann. Extending the reflexion method for
consolidating software variants into product lines.
Software Quality Journal, 17(4):331–366, 2009.

[15] V. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. In Soviet Physics
Doklady, volume 10, page 707, 1966.

[16] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In Proceedings of the
1996 International Conference on Software
Maintenance, ICSM ’96, pages 244–, Washington, DC,
USA, 1996. IEEE Computer Society.

[17] R. Mili, A. Mili, and R. T. Mittermeir. Storing and
Retrieving Software Components: A Refinement Based
System. IEEE Transactions on Software Engineering,
23(7):445–460, 1997.

[18] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
reflexion models: bridging the gap between design and
implementation. IEEE Transactions on Software

Engineering, 27(4):364–380, Apr 2001.
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Verlag, 2015.

[25] B. Rumpe, C. Schulze, M. v. Wenckstern, J. O.
Ringert, and P. Manhart. Behavioral Compatibility of
Simulink Models for Product Line Maintenance and
Evolution. In International Conference on Software
Product Line (SPLC), pages 141–150, Nashville,
Tennessee, 2015. ACM New York.

[26] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic
library migration for the generation of
hardware-in-the-loop models. Science of Computer
Programming, 77(2):83 – 95, 2012. Special Issue on
Automatic Program Generation for Embedded
Systems.

[27] B. N. Taylor and A. Thompson. The international
system of units (si). 2001.

[28] O. Tibermacine, C. Tibermacine, and F. Cherif. A
practical approach to the measurement of similarity
between wsdl-based web services. Revue des Nouvelles
Technologies de l’Information, pages 03–18, 2014.

[29] H. Venkitachalam, J. Richenhagen, and S. Pischinger.
A generic control software architecture for battery
management systems. Technical report, SAE
Technical Paper, 2015.

[30] Y. Wang and E. Stroulia. Flexible Interface Matching
for Web-Service Discovery. In Web Information
Systems Engineering, 2003. WISE 2003. Proceedings
of the Fourth International Conference on, pages
147–156. IEEE, 2003.

[31] A. M. Zaremski and J. M. Wing. Signature Matching:
A Tool For Using Software Libraries. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 4(2):146–170, 1995.

[32] A. M. Zaremski and J. M. Wing. Specification
Matching of Software Components. ACM Transactions
on Software Engineering and Methodology (TOSEM),
6(4):333–369, 1997.

108




