
1 INRODUCTION

The COOPERaTE (COOPERaTE, 2013) project is
challenged with developing and demonstrating an
open, scalable neighbourhood service and manage-
ment platform that integrates local monitoring and
control functions within the built environment with
the power, flexibility and scalability of cloud com-
puting for the delivery of energy and other valued
services based on innovative business models.

To realise that challenge the COOPERaTE plat-
form must acquire, aggregate, analyse and act on
data from disparate and dispersed sources. The re-
quirement for interoperability between these ICT
sources is paramount and depends on high-level data
models where standardisation is more easily attaina-
ble.

Such data models are needed to enable data ex-
change and interaction between different ICT tools
and are thus needed for value-added services aiming
at increasing the energy efficiency of the overall
neighbourhood. The COOPERaTE data model - the
neighbourhood information model (NIM) - has been
developed to address interoperability and allow for
various kinds of data to be stored and exchanged:

- time series data such as measured sensor
data, which changes in real-time

- data describing the installed systems,
which changes infrequently

- constant data, which never changes, such
as the geographical position of a building.

Additionally such data might be stored as factual
data (historical and real-time measurements) and

forecast data, acquired by external forecast services
or through simulation and optimization services.
Typically each data entry also contains additional
information, such as the last change, its time of crea-
tion or possible value ranges.

A NIM must be capable of integrating all data al-
ready available through either an existing building
information model (BIM) or building energy man-
agement systems (BEMS) using heterogeneous
standards. Even for a single concrete neighbour-
hood, integration is complex and has to define which
information is semantically equal within the differ-
ent standards. One approach to solve this problem is
the use of ontologies and mappings between them.
Within the eeSemantics Community (eeSemantics,
2012) there has been a lot of research in defining
ontologies for buildings and neighbourhoods at dif-
ferent scales. Such an ontology typically results in a
new high level data model which has to be extended
manually if new requirements arise or new data
models have to be integrated. Integrating the wide
range of existing data models within a single ontolo-
gy is infeasible due to the myriad of existing models.

This paper presents an alternative approach to de-
fining a NIM where data models can be integrated
by dynamically generating adapters between data
models. The NIM is integrated in a Neighbourhood
Energy Management System used within the CO-
OPERaTE project, enabling value-added services.
The implementation of the data model follows a
meta model based approach, such as in the Internet-
of-Things approach, allowing for runtime extension
of the overall system and for easily integrating het-

Integrating Heterogeneous Building and Periphery Data Models at the
District Level: The NIM Approach

Timo Greifenberg, Markus Look, Bernhard Rumpe

Software Engineering, RWTH Aachen University, http://www.se-rwth.de/

Keith A. Ellis
Intel Labs Europe, Intel Ireland Ltd., http://www.intel.eu/labs

ABSTRACT: Integrating existing heterogeneous data models for buildings, neighbourhoods and periphery
devices into a common data model that can be used by all participants, such as users, services or sensors is a
cumbersome task. Usually new extended standards emerge or ontologies are used to define mappings between
concrete data models. Within the COOPERaTE project a neighbourhood information model (NIM) has been
developed to address interoperability and allow for various kinds of data to be stored and exchanged. The
implementation of the NIM follows a meta model based approach, allowing for runtime extension and for
easily integrating heterogeneous data models via a mapping DSL and code generation of adaptation compo-
nents.

[GLRK14] T. Greifenberg, M. Look, B. Rumpe, E. A. Keith
Integrating Heterogeneous Building and Periphery Data Models at the District Level: The NIM Approach.
In Proceedings of the 10th European Conference on Product and Process Modelling (ECPPM 2014),
ECPPM 2014 - eWork and eBusiness in Architecture, Engineering and Construction, pages 821–828,
Vienna, Austria, September 2014. CRC Press Balkema, Leiden, Netherlands.
www.se-rwth.de/publications

erogeneous data models via adaptation by using
formal models. As a frontend the SEMANCO data
model (Corrado & Ballarini, 2012) is extended serv-
ing as a basic ontology for new services. This paper
presents an approach to creating simple, reusable
models of existing data models already used in a
neighbourhood for integrating the data into the over-
all NIM. As a language for expressing the models to
be integrated we use a Domain Specific Language
(DSL) defined by a context free grammar. DSLs are
widely used within model based software engineer-
ing and enable the domain expert to express
knowledge in a language specifically designed for
the domain. Such a language provides domain spe-
cific concepts as first-level language concepts.

By having such a formal description for each
used data model the complete neighbourhood can be
integrated into the NIM. Thus, value-added services
using the overall neighbourhood data can be provid-
ed. Based on these models, code generation tech-
niques are used to generate adapters out of the ab-
stract mapping description. By adding a new model
to the Neighbourhood Energy Management System,
the NIM is extended at runtime and a new adapter is
generated which allows access to the data fitting to
the new model. Thus a specific NIM for a neigh-
bourhood can be implemented quickly by defining
models or even reusing existing models resulting in
faster integration of new data sources at runtime.
The exchangeability and reuse of mapping models
can additionally be increased by composing them
into libraries. Apart from the integration of existing
data models the implementation of new value-added
services within the Neighbourhood Energy Man-
agement System follows a similar approach shown
in this paper.

The rest of the paper is structured as follows:
Section 2 will describe the necessary background,
Section 3 will introduce the NIM, Section 4 will
provide related work and Section 5 will give a con-
clusion and an outlook to future work.

2 BACKGROUND

In this section we will provide the necessary back-
ground for our approach which relies heavily on
model based and generative software engineering
instruments and techniques.

One of these instruments are DSLs (Fowler,
2010) which can be used to enable domain experts to
express their knowledge with first class language
concepts. By using a DSL an abstraction from the
technological problem space to the domain problem
space can be achieved. For defining DSLs we use
our framework MontiCore (Krahn, et al., 2010) that
uses context free grammars as language definitions
and is able to provide a parser, a prettyprinter, edi-
tors, context condition support and support for code

generation (Völkel, 2011). For implementing code
generators we use the template engine freemarker.
Some languages provided by MontiCore include the
UML/P (Rumpe, 2012),(Rumpe, 2011), (Schindler,
2012), a slightly modified derivate of the UML
(OMG, 2011).

A code generator in principal provides a trans-
formation between the model, defined in the DSL,
and the specific source code required for a certain
technology. Thus the code generator is able to trans-
form the model into source code, which is Java in
our case, and to add the required technological
specifica.

Even though the effort for designing a DSL and
implementing a code generator is typically high,
additional value is created by reusing the generator
for different scenarios with different models. By
following certain guidelines (Karsai, et al., 2009) the
effort for creating a DSL and a code generator can
be lessened. For our approach we use MontiCore to
design a DSL that is able to express a mapping be-
tween two data models, to check context conditions
and generate specific source code out of the models.

3 THE NEIGHBOURHOOD INFORMATION
MODEL

As part of the COOPERaTE Project a concrete Data
Model for Neighbourhoods, the Neighbourhood In-
formation Model (NIM), was developed. The pur-
pose of this model is to gain a common understand-
ing on the data needed for describing the neighbour-
hood in a way that all the value-added services
planned to be developed within the project can be
implemented. To achieve this goal the NIM is based
on two different information sources: The identified
requirements and use cases of the project (Pesch, et
al., 2013) and the already existing data models of the
building domain (Corrado & Ballarini, 2012). For
the implementation of a prototype we chose a flexi-
ble approach which goes beyond simply using the
resulting model as domain model. The reason is that
we consider a flexible platform where the data mod-
el can be extended as described in the introduction
as needed.

Within this section we first present the concrete
data model that defines available data fields within
our system. After that we present the meta model
which can be seen as an abstraction of the concrete
model which is used as domain model of the proto-
type. After that we introduce our concept of defining
the data model in a DSL and the generation of re-
quired services for accessing the data.

3.1 A Concrete Neighbourhood Information Model

For a concrete data model we reused and extended
already existing data models. The SEMANCO data

model was extended to incorporate the notion of a
neighbourhood by including additional categories.
The concrete entries and the details of the data mod-
el can be found in Deliverable D1.2 (Look &
Greifenberg, 2013) of the COOPERaTE Project. As
shown in Figure 1 the neighbourhood element serves
as a composite for the other elements. A neighbour-
hood itself can contain information on traffic, per-
sons, reports, geographical information, energy grid
connections and other elements. Shown by the sub-
class hierarchy elements can be parking spaces or
energy elements which can contain information on
energy data and are divided into public lighting,
building, technical systems and electric vehicles.
Apart from the extension by a neighbourhood ele-
ment we introduced the information on the energy
grid connection, which has links to exactly two en-
ergy elements. This data field is required to store
information about energy connections within the
neighbourhood. This is especially needed when talk-
ing about other scenarios then electrical since there
is not always an underlying grid present.

3.2 The Generic Meta Model

To handle the huge variety of heterogeneous data
entries from several existing data models and to en-
able integration, a generic meta model of the con-
crete NIM was developed.

As shown in Figure 2 the NIM consists of several
NIMComponents. These components follow the
composite design pattern (Gamma, et al., 1994) and
are either categories or entries where the categories

in turn can contain other components. The categories
are linked to each other via an association to enable
cross referencing between categories.

Moreover the entries contain information about
their metadata such as a name, a unit and privacy
enabling fields. In the context of each entry, differ-
ent kinds of value data can be stored. The kinds of
values taken into account are: values, value ranges,
forecast data, historical data, meta information.

Values represent the measured, calculated or
manually inserted information of an entry. Each val-
ue has a timestamp whereby the value with the most
recent timestamp is considered as the actual value of
an entry. In addition to the actual value the older
values are of course available and thus historical
information for an entry is available. The value itself
is stored in the value field within the value element.
Forecast data is data which is assumed to be present
in the future at a specific point in time. The forecast
data is modelled as an explicit element in contrast to
the historical data which is model implicitly via the
timestamp. This explicit modelling is necessary
since several predictions for the same future, the
same point in time, should be possible. Thus for
each prediction a forecast is created that contains
values for a certain period of time. To distinguish
between different forecast sources a source identifier
is contained within the forecast element. The value
range stores the upper and lower bound of valid val-
ues.

Additionally, security aspects have been directly
woven into the data model to ensure that no data is
stored if a user, service or system does not consent

Figure 1. The extended concrete data model used within COOPERaTE. Based on the SEMANCO data model new catego-
ries such as a top level neighbourhood, as well as parking spaces and public lighting have been introduced.

with storing. The addition of an expiry date for each
value can be used to delete stored values after a cer-
tain point in time. Since historical data can also be
queried via the data model this is especially helpful,
because it enables that values can be padded auto-
matically and that users or systems can specify the
lifetime of the stored values. Another security mech-
anism is added by additional information to deter-
mine the agreed usage. The field itself contains in-
formation on all other people, roles, service identifi-
er, etc. that are allowed to access the entry. Since a
list of all people or names that might access the en-
tries is unfeasible the NIM can be used by a system
using role based access control (RBAC) concepts.
The role for users or a group of user can be added to
the agreed usage data field of an entry.

The last security aspect is the specification of the
geographical, physical location where entries or val-
ues are allowed to be store. This information is nec-
essary since most countries have different laws on
privacy and users may want to decide in which
countries or geographical locations entries and val-
ues of the NIM should be stored. The information
can then be used by an implementation to determine
the storage location. Moreover this information can
serve as a decision base for users when deciding
which information should be uploaded to a platform
which uses the NIM as data format.

3.3 Implementation of the Neighbourhood
Information Model

When technically implementing such a NIM on a
platform additional aspects have to be taken into
account. Especially the frequency of new values has
to be considered. Automated and regularly measured
values which are entered into such a platform can

lead to a high data load which has to be handled in a
different way than structural data of the neighbour-
hood which only changes sporadically over time.
This can be achieved by e.g. only sending messages
when there is a change in the value so that the last
sent message value remains the current or real-time
value. There are several reasons for this decision,
but the main reasons should be performance and
efficient use of storage capacity.

Also other important non-functional requirements
have to be taken into account. Since two different
neighbourhoods mostly do not have exactly the same
data models, and future neighbourhoods may need
data which cannot be foreseen at the moment or a
single neighbourhood may evolve over time and
thus, the corresponding data model has to be
adapted, an adaptable and extensible implementation
of the NIM is necessary.

To provide an adaptable and extensible imple-
mentation a mechanism for storing unforeseen en-
tries that may arise during runtime of the overall
systems is necessary. Therefore the prototype makes
use of the generic meta model as its internal domain
model which allows for the handling and persistence
of arbitrary data entries fitting the meta model. Nev-
ertheless the entries from a different data model
have to be transformed into the meta model to be
stored in the database. However this approach has
the drawback that it works on the basis of a very
general domain model which is uncomfortable to
use. Moreover, data entries from other data models
have to be transformed into the meta model format
which would lead to enormous effort if implemented
manually for each existing data model. But even if
such a transformation would available via a manual
implementation, the extension at runtime would not
be possible for the new NIM entries. To overcome

Figure 2. A UML class diagram detailing the generic neighbourhood information model. The two possible NIM-
Components are shown as well as nesting possibility of components to enable hierarchy.

these problems we make use of a plugin based archi-
tecture that allows us to add new plugins at runtime.
The plugins themselves are generated by a code
generator that processes our input models at runtime.
The generated code includes code responsible for the
transformation between data in the concrete and ge-
neric format. In this way both problems have been
solved.

 The models are written in a DSL invented for de-
scribing concrete NIM data models in a NIM data
format (NDF). It should be noted that the NDF spec-
ifies a data model and not concrete data. The meth-
odology to configure the running prototype is shown
in Figure 3.

The implementation consists of two components:
a Model Management component and the Plugin
System. The Model Management component is re-
sponsible to generate new adapters and transfor-
mation code if a new model is uploaded. The Plugin
System itself represents the overall system that is
used by services, and neighbourhood elements for
accessing the data. To connect a new neighbourhood
or a single service to the platform three steps are
necessary.

In the first step an NDF model, specifying the
concrete NIM format, has to be written in a textual
syntax and uploaded to the prototype. The Model
Management component analyses the NDF, checks
context conditions and if it is valid, the component
internally passes the model to the transformation
generator and the adapter generator which generate a
concrete adapter and transformation services. Both

parts are then deployed to the Plugin System auto-
matically. It should be mentioned that both the code
generation and the deployment of the adapter and
the transformation are performed at runtime of the
system. The adapter serves as a webservice endpoint
and offers an interface related to the concrete data
model. It enables storing and retrieving the concrete
data types. The transformation contains the logic on
how data from a data model can be transformed to
the generic data model and vice versa, which will be
discussed after giving an example of the NDF.

The second step is then the usage of the new
adapter by neighbourhood services operating on the
defined data Model. The NDF models allow specify-
ing the structure of neighbourhood information data.
For example we could specify that rooms have a
room name like this:

Room {
 String roomName;
}

This example clarifies that the NDF specifies a data
format and not the concrete data, since we specified
that each room has a room name, but not how many
rooms exist and how the concrete names of the
rooms are.

Since a single NDF file for the whole data model
may become unfeasible and different neighbourhood
services may need a distinct set of data entries of the
concrete NIM, the definition of several data models
in several NDFs is possible. Thus also different

Figure 3. Overview of the overall implementation showing the Model Management component responsible for generating
the adapters and the transformations, as well as the Plugin Systems being the runtime environment of the adapters.

stakeholders as well as specific service developer
may develop their own description. Consider two
different buildings with different data models,
should be connected to the Neighbourhood Infor-
mation System. In this case a different definition of
a room, for each building can be provided. In com-
bination with the previous example such a second
extension could look like:

AnotherRoom {
 String roomID;
 Number surface;
}

Regarding the transformation between the concrete
data model and the generic one we have to consider
several cases. The first case, transforming a concrete
data model into the generic data model is relatively
straight forward. Taking up the example of the
Room, this would become a category with name
“room” within the generic data model. Additionally
the category room would have an entry with name
roomName. Since the NDF only describes data types
and no instances the values of the entry are allocated
at runtime and would contain the actual room name.
Furthermore at runtime there would possibly be sev-
eral instances of a room. The DSL also allows for
hierarchically defining data types within other data
types. This can be reflected via the category compo-
site in the generic data model.

The second case is the transformation from the
generic data model back to the concrete data model.
If the data stored in the generic model originates
from the same concrete model it should now be
transformed back to, the transformation is as straight
forward as the previously explained transformation
to the generic data model.

The third case is the transformation of data origi-
nating from a different concrete model than it should
be now transformed to. It is most likely that this is
the most common case since every service and

neighbourhood element wants to access data from
other systems and has to know their data model
therefore. Assuming that there may be an additional
service which needs information about all buildings
independent of the format, there are two possibili-
ties:

- Using all the required existing adapters
separately

- Specifying an additional NDF with a
mapping included

Of course a service implementation can use every
existing adapter separately and aggregate the data
manually from the different formats. Nevertheless
this is not envisioned and unfeasible.

The second alternative is more comfortable. The
service developer can define the data in his own
format like:

StandardRoom {
 String identifier;
}

In addition he needs to specify the mapping between
his own room type and the already existing types:

StandardRoom.identifier := Room.roomName |

 AnotherRoom.roomID;

This type mapping information can be added in ad-
dition to the format definition in the same NDF
model file. Note that the data type name serves as a
namespace and the included field can be directly
accessed. The NDF also contains a package declara-
tion concept, not illustrated here, that enlarges the
possible namespace and thus name clashes are to be
considered unlikely. The list of values that are used
for the identifier is separated by “|” and the list ele-
ments reference specific field from other NDFs. Ad-
ditionally context condition checks ensure that the
referenced types exist. On a technical level this is
achieved by the language integration concepts of-

Figure 4. The edited domain model of the Internet of Things (IoT) approach (IoT.est, 2013)

fered by MontiCore (Völkel, 2011) (Look, et al.,
2012). The generated adapter of our implementation
takes care of the aggregation and offers the follow-
ing methods to access the new defined Data:

List<StandardRoom> getAllStandardRooms();

This method allows resolving the data of all rooms,
automatically converted in the standard room for-
mat.

4 RELATED WORK

In this section we provide work related to the NIM
and to the integration of heterogeneous data sources.

In general there are two types of related work to
be considered: Those following a standardization
approach and those following a generic approach.
Both differ in the way of integrating different heter-
ogeneous data sources. Even within the two ap-
proaches there are different techniques applied for
matching one data model to another. This can be
done by ontologies, link models or adaptation.

Additionally approaches focusing on static data
provided by information models and approaches
focusing on measured, calculated building manage-
ment systems (BMS) data have to be distinguished.
Approaches like the OPC Unified Architecture
(OPC UA), as an IEC standard (IEC 62541)
(International Electrotechnical Commission, 2008),
already provide an abstraction from the various
management systems and will not be discussed in
more detail. Nevertheless for static data there exist
approaches such as the Industry Foundation Classes
(IFC), registered under ISO-16739 (
buildingSMART International Limited, 2013), the
Building Information Model (BIM) (Eastman, et al.,
2011), CityGML (Open Geospatial Consortium,
2007) and gbXML (gbXML, 2013), just to name a
few. While most of these approaches stop at the
building envelope they also do not provide extension
points for including additional data. Within
CityGML it is possible to define extensions but
these extensions also rely on a generic model. A
detailed discussion of the advantages and disad-
vantages can be found within the Adapt4EE project
(Tzovaras, et al., 2012).

Approaches like the HESMOS project (Hesmos
Project, 2012) are trying to setup an integration plat-
form that can integrate different data models via link
models (Liebich, et al., 2011). These link models
basically serve as adapters between the different data
types.

Within the eeSemantics Community
(eeSemantics, 2012) there are several research pro-
jects aiming at solving this issue. Approaches, such
as the SEMANCO project (Semanco project, 2012)
aim at defining a standardized data model as ontolo-

gy, which is able to capture most of the data occur-
ring in a building or in a neighbourhood.

Ontologies are commonly used when deducting
new information from existing data models or when
defining common concepts or mappings between
data models. The main difference to our approach is
that ontologies are mainly applied between two con-
crete data models and are thus bound to the concepts
provided by the models.

Within the SEMANCO project a comprehensive
list of possible data has been identified. The com-
munity also aims at finding ontologies for other are-
as apart from building or neighbourhoods. Thus
there exists the FIPA device ontology (Foundation
for Intelligent Physical Agents, 2002) and several
smaller ontologies created within the AMIGO pro-
ject (Georgantas, 2006). There are also concrete ap-
proaches considering sensor ontologies (Barnaghi, et
al., 2012), linked data (Le Phuoc, et al., 2011) and
sensors as a service (Compton, M., et al. , 2012)
existent. Nevertheless, following a service oriented
approach within the neighbourhood, this fixed data
model is too rigid to be able to capture newly arising
data created by services running within the neigh-
bourhood. The underlying data model has to be
changed if new information does not fit the current
model. Thus our approach relies on a meta model
backend and a mapping that is quite similar to ontol-
ogy mapping approaches (Euzenat & Shvaiko,
2007). Other approaches like the Internet of Things
approach (IoT-A) (IoT.est, 2013) (OpenIoT, 2013)
(Probe-IT, 2013) already rely on a generic data
model, shown in Figure 4.

Our Implementation of the NIM is close to the
IoT-A model where we chose to have no explicit
virtual elements and no explicit metadata. Neverthe-
less our model is not restricted by this.

5 CONCLUSION

Within this paper we have presented our approach to
integrating heterogeneous building and periphery
data models into a neighbourhood information mod-
el. We have shown how the mapping from a con-
crete manifestation of a data model to the underlying
data model can be achieved and how the domain
expert is enabled to express domain knowledge in a
DSL which in turn is used to fully generate the re-
quired code at runtime of the overall system.

Nevertheless for the future we envision more
work on the tooling infrastructure. At the moment
the service developer has to know the existing data
models and has to extend the mapping if new data
models are integrated into the system. We envision
this to be resolved by a tooling infrastructure provid-
ing access to a library of existing models.

Moreover the mapping defined between different
models does not allow to distinct between specific

instances. It is not possible to receive the data from
specific instance in the standardized format, yet. For
now, the information of all available instances
matching the mapping instruction is resolved.

6 ACKNOWLEDGEMENTS

The work presented in this paper has been carried
out in the COOPERaTE project, co-funded by the
European Commission within the 7

th
 Framework

Programme (FP7/2007-2013) under grant agreement
no 600063.

7 REFERENCES

buildingSMART International Limited, 2013. IFC 4
Documentation. [Online] Available at:
http://www.buildingsmart-
tech.org/ifc/IFC4/final/html/index.htm

Barnaghi, P., Wang, W., Henson, C. & Taylor, K., 2012.
Semantics for the Internet of Things: early progress and
back to the future. International Journal on Semantic Web
and Information Systems (IJSWIS), pp. 1-21.

Compton, M., et al. , 2012. The SSN Ontology of the W3C
Semantic Sensor Network Incubator Group. Journal of Web
Semantics.

COOPERaTE, 2013. [Online] Available at:
http://www.cooperate-fp7.eu/ [Zugriff am 10 April 2014].

Corrado, V. & Ballarini, I., 2012. D3.1 Report on the
Accessible Energy Data. SEMANCO Semantic Tools for
Carbon Reduction in Urban Planning, Project ICT 287534,
http://semanco-
project.eu/index_htm_files/SEMANCO_D3.1_20120921-
1.pdf: s.n.

Eastman, C., Teicholz, P., Sacks, R. & Liston, K., 2011. BIM
Handbook; a guide to building information modeling for
owners, managers, designers, engineers, and contractors..
New Jersey: John Wiley & Sons, Inc..

eeSemantics, 2012. Login required. [Online] Available at:
https://webgate.ec.europa.eu/fpfis/wikis/display/eeSemantic
s/Home

Euzenat, J. & Shvaiko, P., 2007. Ontology matching.
Heidelberg: Springer.

Foundation for Intelligent Physical Agents, 2002. FIPA Device
Ontology Specification. [Online] Available at:
http://www.fipa.org/specs/fipa00091/SI00091E.html
[Zugriff am 10 April 2014].

Fowler, M., 2010. Domain-specific languages. s.l.:Pearson
Education.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1994.
Design patterns: elements of reusable object-oriented
software. s.l.:Pearson Education.

gbXML, 2013. gbXML specification schema Version 5.10.
[Online] Available at:
http://www.gbxml.org/currentschema.php
[Zugriff am 14 Februar 2014].

Georgantas, N., 2006. D3.2 Amigo Middleware Core:
Prototype Implementation & Documentation. Amigo, IST-
004182. [Online] Available at:
http://www.hitech-
projects.com/euprojects/amigo/deliverables/amigo-d3.2-
final.pdf

Hesmos Project, 2012. [Online]
Available at: http://hesmos.eu/

International Electrotechnical Commission, 2008. 62541 - 1
Ed. 1.0: OPC Unified Architecture Specification - Part 1:
Overview and Concepts. s.l.:IEC Std..

IoT.est, 2013. Internet of Things Environment for Service
Creation and Testing (IoT.est). [Online]
Available at: http://ict-iotest.eu/iotest/

Karsai, G. et al., 2009. Design guidelines for domain specific
languages. The 9th OOPSLA workshop on domain-specific
modeling, pp. 7-13.

Krahn, H., Rumpe, B. & Völkel, S., 2010. MontiCore: a
Framework for Compositional Development of Domain
Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT), 12(5), pp. 353-372.

Le Phuoc, D. et al., 2011. The Real World – The DERI
Testbed. IEEE Sensors.

Liebich, T., Stuhlmacher, K., Katranuschkov, P. & Guruz, R.,
2011. D2.1 BIM Enhancement Specification. Platform for
Holistic Energy Efficiency Simulation and Lifecycle
Management Of Public Use Facilitie (HESMOS) -
Integrated Virtual Lab, Project ICT 26088,
http://hesmos.eu/downloads/20110831_hesmos_wp02_d21
_final.pdf: s.n.

Look, M. & Greifenberg, T., 2013. D1.2 Report detailing
Neighbourhood Information Model Semantics.
COOPERATE Control and Optimisation for energy positive
Neighbourhoods, http://www.cooperate-
fp7.eu/files/cooperate/downloads/COOPERATE_D12.pdf:
s.n.

Look, M. et al., 2012. Black-box Integration of Heterogeneous
Modeling Languages for Cyber-Physical Systems. GEMOC
workshop.

OMG, 2011. UML 2.4.1 Infrastructure. [Online]
Available at:
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

Open Geospatial Consortium, 2007. CityGML specification
document Version 0.4.0. [Online] Available at:
http://www.citygml.org/index.php?id=1522
[Zugriff am 17 April 2014].

OpenIoT, 2013. Open Source Solution for the Internet of
Things into the Cloud. [Online]
Available at: http://www.openiot.eu/

Pesch, D., Ellis, K., Kouramas, K. & Assef, Y., 2013. D1.1
Report on Requirements and Use Cases Specification.
COOPERATE Control and Optimisation for energy positive
Neighbourhoods, http://www.cooperate-
fp7.eu/files/cooperate/downloads/COOPERATE_D11.pdf:
s.n.

Probe-IT, 2013. Pursuing ROadmaps and BEnchmarks for the
Internet of Things. [Online]
Available at: http://www.probe-it.eu/

Rumpe, B., 2011. Modellierung mit UML: Sprache, Konzepte
und Methodik. s.l.:Springer.

Rumpe, B., 2012. Agile Modellierung mit UML:
Codegenerierung, Testfälle, Refactoring. s.l.:Springer.

Schindler, M., 2012. Eine Werkzeuginfrastruktur zur agilen
Entwicklung mit der UML/P. s.l.:Shaker.

Semanco project, 2012. [Online]
Available at: http://semanco-project.eu/

Tzovaras, D. et al., 2012. D1.3 State-of-Art and Industry
Analysis Report. Adapt4EE Occupant Aware, Intelligent
and Adaptive Enterprises,
http://www.adapt4ee.eu/adapt4ee/files/document/deliverabl
es/Adapt4EE-Deliverable-D1.3.pdf: s.n.

Völkel, S., 2011. Kompositionale Entwicklung
domänenspezifischer Sprachen. s.l.:Shaker.

