
Andreas Oberweis, Ralf Reussner (Hrsg.): Modellierung 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 109

Infrastructure to Use OCL for Runtime Structural

Compatibility Checks of Simulink Models

Vincent Bertram1 , Peter Manhart2 , Dimitri Plotnikov1, Bernhard Rumpe1, Christoph
Schulze1 and Michael von Wenckstern1

Abstract: Functional development of embedded software systems in the automotive industry is
mostly done using models consisting of highly adjustable and potentially reusable components. A
basic pre-requisite for reuse is structural compatibility of available component versions and variants.
Since each vendor in the automotive domain uses its own toolchain with corresponding models, an
unified modeling notation is needed. For this reason based on a detailed feature analysis of well-
established and commonly used modeling languages, a meta-model has been derived that allows
checking structural compatibility, even between heterogeneous modeling languages.

Keywords: Automotive, C&C ADLs, OCL, Meta-Model, Simulink, Structural Compatibility

1 Introduction

Nowadays, the differentiation of vehicles will take place not just in body and interior
design but also in embedded software systems like adaptive cruise control or road sign
detection. The growing number of Advanced Driver Assisted Systems (ADAS) and their
emerging variants and versions each using individual components cause an increase in
software maintenance costs making up to 60% of total software costs [Gl01]. Reusing
software components reduces development and maintenance costs. A basic precondition
is component compatibility. Structural compatibility serves as a first indicator as it is an
important prerequisite for full compatibility, which would also enclose behavioral com-
patibility [Ru15], also called refinement [Ru96].

First, the methodology and infrastructure to check structural compatibility will be intro-
duced. In Sec. 3 a meta-model is proposed that is based on a detailed feature analysis of
well-established and commonly used modeling languages and their constraints. In Sec. 4
the feasibility of the proposed overall approach is demonstrated using an ADAS model de-
veloped in the industrial research project SPES XT. This paper finishes with related work
in Sec. 5 as well as a conclusion and outlook in Sec. 6.

2 Method to Check Structural Compatibility

To define structural compatibility constraints at runtime, the first order predicate logic
language OCL [Ob14] is chosen to describe meta-model constraints. One of its benefits
1 RWTH Aachen University, Chair of Software Engineering, Ahornstraße 55, 52074 Aachen
2 Daimler Research & Development Ulm, RD/EEC, Wilhelm-Runge-Straße 11, 89081 Ulm

[BMP+16] V. Bertram, P. Manhart, D. Plotnikov, B. Rumpe, C. Schulze, M. von Wenckstern:
Infrastructure to Use OCL for Runtime Structural Compatibility Checks of Simulink Models.
In: Modellierung 2016 Conference, LNI P-254, pp. 109–116. Bonner Köllen Verlag, 2016.
www.se-rwth.de/publications

110 Bertram, Manhart, Plotnikov, Rumpe, Schulze and von Wenckstern

is that it is reasonable efficiently executable. The Java-based derivate OCL/Programmable
(OCL/P) is used; as it is based on an easier syntax and thus easier to read and understand
[Ru11, Ru12] compared to OMG’s OCL.

In order to express properties of widespread Component & Connector (C&C) architec-
tures, a generic meta-model which is encoded as a Class Diagram (CD) was developed.
CDs encapsulate the state and functions of objects in form of attributes and methods. They
are well suited to define the meta-model describing the data structure of C&C architec-
tures to check compatibility on. The semantics of a CD [HR04, CGR08] is a set of valid
objects. Since the meta-model describes the signature of C&C models in a notation in-
dependent manner, every C&C model can be transformed into an Object Diagram (OD)
instance being conform to the meta-model [MRR11]. OCL/P constraints are then used to
define structural compatibility between two of these ODs.

The overall idea of the proposed infrastructure is to check compatibility using a Satisfiabil-
ity Modulo Theories (SMT) solver. Thus, the meta-model, the used C&C model, and cor-
responding OCL/P constraints must be mapped to solver code. In a first step two Simulink

[DH14] model components (SLC)s are transformed to ODs using the MATLAB-Connector

API. Next the resulting ODs, the meta-model and the defined compatibility constraints are
mapped to SMT code. Furthermore, the compatibility constraints are defined and stored in
separated artifacts decoupling them from the C&C models. After merging all parts to one
file artifact using a PartMerger [Gr15], Microsoft’s Z3 solver [MB08] is invoked with the
resulted SMT file. The solver can deal with uninterpreted functions to generate counter-
example witnesses to show incompatibilities.

3 Meta-Model for Component and Connector Languages

In order to express OCL constraints for heterogeneous C&C architectures in a uniform
way, this section defines an expressive meta-model. Existing meta-models were not ca-
pable to express all necessary aspects that were needed to check structural compatibil-
ity. Its syntax is derived from the results of an intensive analysis of the most important
Architecture Description Languages (ADLs) used in the automotive domain. This sec-
tion’s outline is top-down: First, the most specific meta-model classes such as Funct-

ionComponentElement and FunctionComponent are presented. Then, general classes
like TypeReference and Port are described. Finally DataType and Unit are introduced.

FunctionComponentElement: The interface FunctionComponentElement is realized as
composite design pattern to support hierarchical C&C models wherein the class Function-
Component contains components and the class PortConnector associates two Port

classes allowing directed communication from source to dest Port (c.f. Fig. 1a). The
class Interface shown in Fig. 1b uses in- and out-ports for direct asynchronous commu-
nication. Indirect communication takes place over shared GlobalStorage elements.

TypeReference: The DataType and the TypeReference meta-model are adoptions from
EAST-ADL [EA13] coupled with SysML. Properties being necessary for a concrete us-
age of a data type are split up for easier reuse. In order to be compatible with Simulink,

Infrastructure to Use OCL for Runtime Structural Compatibility Checks of Simulink Models 111

dest

CD

FunctionComponent

«interface»
FunctionComponentElement

PortConnector

*contains

Port

CD

Interface
name: String

ConstantGlobalVariable

read

*
write

*

*
implements

ports

*

name: String
in: Boolean

extends
0..1

«interface»
GlobalStorage

«abstract»
Port

source

FunctionComponent

name: String

1

1

Û

Û
a) b)

name: String[0..1]
*

Fig. 1: Meta-Model of FunctionComponentElement and FunctionComponent

1

«abstract»
Port

SignalPortConfigPort TriggerPort

VarPort

CalPort

sampleRate: Float

TypeReference

CD

«interface»
GlobalStorage

name: String

1 1

1

0..1

1..*

*

res

min

max

1

1

1

Resolution
value: Number

0..1acc

TypeReference
* {ordered}contains

«i
ns

ta
nc

eO
f»

Accuracy
value: Number

Composite
TypeReference

Constraint

DataType

Primitive
Type

Range Value

0..1

PrimitiveType
Reference

CD

«interface»
Unit

type

type
1

a) b)

Û

Û

SamplingMode ranges

Fig. 2: Meta-Model of Port, GlobalStorage and TypeReference

changes were made on EAST-ADL’s homogeneous container having now a fixed amount of
elements. A Simulink component that needs access to global variables is intentionally not
supported by AUTOSAR [AU08], EAST-ADL and MontiArc [HRR12]. As a result SysML’s
component interface model is used.

Port: The meta-model distinguishes three different kinds of Port classes (see Fig. 2a)
based on the signal’s purpose. This is similar to AUTOSAR. The class TypeReference of
a Port defines the kind of signal content. Each TypeReference has at least one Range

specifying the operative minimum and maximum (see Fig. 2b). If a signal has one range
with higher accuracy (e.g. at low speed) than in another range (e.g. at high speed), there
exists the possibility to define as many Ranges with its own Accuracies and Resolutions
as necessary. The difference between Resolution and Accuracy is that Resolution
represents the maximum delta how measured data can be stored and Accuracy represents
the maximum error on stored data. Each SignalPort has additionally a SamplingMode

describing the sample rate of a physical signal sampled into a digital one. If TriggerPort
has a SamplingMode, an event can only arise at a specific time interval.

112 Bertram, Manhart, Plotnikov, Rumpe, Schulze and von Wenckstern

1..*
siDim

CD

PrimitiveType
Composite
DataType

Boolean

1

Array
dim: Integer [1..*]

DataType
1

Number

ComplexType

2

Enum

dataType

elements

String

«enumeration»
CharacterEncoding

extends 0..1

EnumLiteral
1..*literals

1

id

a)

PhysicalDimension
currentExp: Float
lengthExp: Float
luminousExp: Float
massExp: Float
molarExp: Float
tempExp: Float
timeExp: Float

1

1

1..*

QuantityKind

name: String

quantity
Kind

BaseUnit

DerivedUnit
baseUnit:
Expression«interface»

Unit
name: String
symbol: String
convert(unit2: Unit):

PrimitiveTypeReference
isConvertable(unit2: Unit): Boolean

1base
1..*

CD

b)

Fig. 3: Meta-Model of DataType and Unit

DataType: The class DataType shown in Fig. 3a is based on the type systems used by Java

and Simulink where ComplexType represents complex numbers like 5+3i, a Composite-
Type is a heterogeneous container accessing its children by an unique id and an Array is a
homogeneous container of a specified length. An Enum consists of finite set of EnumLiteral
elements. Each String has a specific CharacterEncoding. Nested ports that are avail-
able in SysML are similar to ports having a CompositeType as DataType.

Unit: The interface Unit in Fig. 3b is based on the unit type system of SysML [Ha06]
and Modelica [Mo12]. Unit has a QuantiyKind such as acceleration, energy or speed.
Each QuantiyKind has a physical dimension defined in terms of basic units. Two dif-
ferent QuantityKind objects can have the same PhysicalDimension, e.g. torque (Nm)
and energy (J) are different units, but have the same physical dimension kg·m2

s2 . The class
DerivedUnit specifies how units with different magnitudes within the same QuantiyKind
are converted by stating a conversion formula. Among other earlier mentioned ADLs, the
proposed meta-model allows to create all existent units, supporting either the metrical
(km/h) or empirical (mph) measurement system.

4 ADAS Component Demonstrating Methodology

This section starts with an overview of the evaluated ADAS V1 component and continues
with the translation of structural information of SLCs into the proposed meta-model.

The provided ADAS model has four different levels of evolution and is realized as Simulink
model which is a special case of an C&C architecture software mainly but not only used in
the automotive domain. This section depicts the structure of the ADAS V1’s top-level SLC
only. The running example is simplified and does not represent a 100% real world model,
but it provides enough structural information without being overloaded with unimportant

Infrastructure to Use OCL for Runtime Structural Compatibility Checks of Simulink Models 113

Simulink
classdef(Enumeration) LeverAngle <

Simulink.IntEnumType

enumeration

ZeroDegree(0)

PlusFiveDegree(1)

MinusFiveDegree(2)

end

end

LeverAngle.m

>> el = CruiseControl.Elements;...

n = char(10);... % newline

for i=1:length(el)...

e=el(i);...

disp([...

e.Name n...

e.DataType '(' ...

e.DocUnits ')' n...

num2str(e.Dimensions) n...

'[' num2str(e.Min) ';'...

num2str(e.Max) ']' n...

]);...

end

% output of bus CruiseControl:

CC_active_b

boolean()

1

[;]

V_CC_delta_kmh

fixdt(1,9,0.1,0)(km/h)

1

[-20;20]

MATLAB Console
(SPa)

(SPb)

(VP)

(SPc)
(CP)

(TP)

(1)

(2)

(3)

(SPa)

Fig. 4: Syntactic Interface Description of ADAS V1 developed in the project SPES XT

details. The whole SLC interface is defined as the set of all in-, out-ports as well as used
variables being shared outside this component.

The SLC interface of the ADAS V1 as shown in Fig. 4 is clearly evident, because it is
completely covered by all visible in- and out-ports. This example consists of three different
port types: (1) signal, (2) configuration, and (3) trigger ports. Signal ports can be grouped
using arrays or non-virtual buses and have been divided into three subtypes: (SPa) for one
single primitive type, (SPb) for grouped signals having the same data type, and (SPc) for
grouped signals of different data types. Due to different purposes for using a configuration
port, it is divided into two subtypes: (VP) for software variation (enabling or disabling
features) and (CP) for calibrating subcomponents with parameters. The trigger port (TP)
has only one kind. All port types (CP, SP, TP, VP) extend the port concept defined in
AUTOSAR. The ports’ data types with its ranges together are displayed directly on the
signals connected to them; ufix12 Sp1 [0..250] stands for unsigned fixed point data
type of word length 12 and having a slope (resolution) of 0.1 and a value range between 0
and 250.

In the example SLC of ADAS V1, the port Lever enum is an enumeration of LeverAngle
and contains three values representing the deflecting angle of the lever: ZeroDegree,
PlusFiveDegree, and MinusFiveDegree (c.f LeverAngle.m in Fig. 4). Non-virtual
data types represent a semantic union. The non-virtual data type CruiseControl groups
the boolean signal CC active b and the fix-point number signal V CC delta kmh having
a [−20;20] range together to a non-virtual bus (c.f. MATLAB Console in Fig. 4).

114 Bertram, Manhart, Plotnikov, Rumpe, Schulze and von Wenckstern

ADAS_V1: FunctionComponent

VariantsEnable
Tempomat: VarPort

in = true

:Boolean

:Range
min = false
max = true

None:BaseUnit

data
Type

:Range
min = 0
max = 45

dataType

:Resolution
value = 0.2

unit
:Number

Degree:DerivedUnit
baseUnit = 180/pi*Degree

BrakeForce_pedal_pc:
SignalPort

in = true

:PrimitiveType
Reference

OD
Û

:PrimitiveType
Reference

:Boolean

:Range
min = false
max = true

None:BaseUnit

dataType

V_CC_delta_kmh:
PrimitiveTypeReference

:Range
min = -20
max = 20

dataType

:Resolution
value = 0.1

res :Number

KilometerPerHour:DerivedUnit
baseUnit = 3.6*KilometerPerHour

:CompositeTypeReference

:CompositeDataType

:Boolean :Number

1 2

dataType

CruiseControl: SignalPort
in = false

1 2

CC_active_b:
PrimitiveTypeReference

:Range
min = 0
max = 250

dataType

:Resolution
value = 0.05

unit

Meter:BaseUnit

Distance_Object_m:
SignalPort

in = true

:PrimitiveType
Reference

:Array
dim= 3

dataType

:Number

(VP)

(SPa)

(SPc)

(SPb)

res

res

Fig. 5: Example meta-model instantiation of ADAS V1 Limiter component

1def Boolean infix (Number v) isin (Range r) is:

2 result =

4 v >= r.min &&

5 v <= r.max &&

6 (~r.res ||

7 (v - range.min) % range.res == 0)

OCL/P

(Range r has no optional association res to Resolution)

Fig. 6: OCL code snippet and SMT function defining whether Number v belongs to a given Range r

To show an example instantiation of the meta-model, a subset of ADAS V1 is chosen and
shown as an OD in Fig. 5. The excerpt uses 3 of 15 in-ports (VariantsEnableTempomat
(VP), BrakeForce pedal pc (SPa), Distance Object m (SPb)) and 1 of 7 out-ports
(CruiseControl (SPc)) containing all port types already shown in Fig. 2. The classes
CompositeDataType and CompositeTypeRefence use numbers instead of names as
identifiers as this allow an easier iteration over the elements in the used OCL constraints.

The code shown in Fig. 6 defines the semantics for the overloaded isin operator in OCL.
This operator returns the Boolean value true when the Number v can be found in the
given Range r, which is specified by a minimum (min), maximum (max) and a resolution
(res). As an example a range with the properties min=1.0, max=4.1, res=0.5 would
return true only for the values 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0, which is

Infrastructure to Use OCL for Runtime Structural Compatibility Checks of Simulink Models 115

defined in the lines 4, 5 and 7. Line 6 is only necessary because the res association is
optional. If it is not defined, the range will contain all values between min and max.

5 Related Work

MontiArc [HRR12] is a C&C ADL where asynchronous message based communication is
done over directed connectors between typed component ports. It uses context conditions
for structural consistency checks such as data types and input/output directions of ports.
Context conditions extend the expressiveness of grammar based approaches and enable
checking of constraints, e.g. type systems, which are not expressible through grammars.

The approach presented in [Bh11] tackles the problem of defining and evaluating con-
sistency relation between architectural views imposed by various heterogeneous models
and a base architecture for the concrete system model. The consistency check happens
on different abstraction levels if the concrete architecture model is consistent to the more
abstract and less detailed abstract view. Instead, this approach checks compatibility on the
same abstraction level.

The approach from [Da14] presents an architectural framework where multiple views on
one system can be defined. The consistency is checked by leaving out details unnecessary
for comparison, which is termed as a “lifting” operation. It lifts the more detailed software
view to the more abstract functional view. This lifting operation causes valuable informa-
tion loss, so the architectural framework is insufficient to check the structural compatibility
as described in Sec. 2. The SysML meta-model which is used, supports only a subset of
features available in the meta-model presented in Sec. 3.

6 Conclusion and Outlook

This paper has presented a first overview of an infrastructure for compatibility constraint
checks using OCL. It was exemplified using a model from automotive domain but it is not
limited to only this. Comparatively MATLAB Simulink is also used in other domains like
aerospace and medical engineering. The main contribution is the proposed meta-model
which is based on an intensive analysis of well-established modeling languages to support
heterogeneous C&C architectures. It includes all meta-elements of the most known indus-
trial meta-models (SysML, Simulink, Modelica, AUTOSAR, EAST-ADL). All of these
ADLs can be mapped and as a result only a meta-model transformation must be written.

While this paper deals with the modeling aspect of the proposed infrastructure, future work
will give more information about the generative part. This will contain how to generate
SMT code for the Z3 solver using OCL/P constraints. The solver results will be presented
as user-friendly error messages describing the reason for constraint violations based on
counter-example witnesses. The highly modular infrastructure is capable of supporting
new third party plug-ins and consequently allows a seamless integration into industrial
development environments. To demonstrate the extensibility of the proposed infrastructure
further modeling notations will be implemented.

116 Bertram, Manhart, Plotnikov, Rumpe, Schulze and von Wenckstern

References

[AU08] AUTOSAR: SW-C and System Modeling Guide. Technical report, 2008.

[Bh11] Bhave, A.; Krogh, B.H.; Garlan, D.; Schmerl, B.: View Consistency in Architectures for
Cyber-Physical Systems. In: ICCPS. IEEE, 2011.

[CGR08] Cengarle, Marı́a Victoria; Grönniger, Hans; Rumpe, Bernhard: System Model Semantics
of Class Diagrams. Technical report, TU Braunschweig, 2008.

[Da14] Dajsuren, Yanja; Gerpheide, Christine M.; Serebrenik, Alexander; Wijs, Anton; Vasilescu,
Bogdan; van den Brand, Mark G.J.: Formalizing Correspondence Rules for Automotive
Architecture Views. In: QoSA. ACM New York, 2014.

[DH14] Dabney, James B.; Harman, Thomas L.: Mastering Simulink. Prentice Hall, 2014.

[EA13] EAST-ADL: EAST-ADL Domain Model Specification. Technical report, 2013.

[Gl01] Glass, Robert L.: Frequently Forgotten Fundamental Facts About Software Engineering.
IEEE Software, 2001.

[Gr15] Greifenberg, Timo; Hölldobler, Katrin; Kolassa, Carsten; Look, Markus; Mir Seyed Nazari,
Pedram; Müller, Klaus; Navarro Perez, Antonio; Plotnikov, Dimitri; Reiss, Dirk; Roth,
Alexander; Rumpe, Bernhard; Schindler, Martin; Wortmann, Andreas: A Comparison of
Mechanisms for Integrating Handwritten and Generated Code for Object-Oriented Pro-
gramming Languages. In: Proceedings of the 3rd International Conference on Model-
Driven Engineering and Software Development. 2015.

[Ha06] Hause, Matthew: The SysML modelling language. In: SysCon. 2006.

[HR04] Harel, David; Rumpe, Bernhard: Meaningful Modeling: What’s the Semantics of “Seman-
tics”? IEEE Computer, 2004.

[HRR12] Haber, Arne; Ringert, Jan Oliver; Rumpe, Bernard: MontiArc - Architectural Modeling
of Interactive Distributed and Cyber-Physical Systems. Technical report, RWTH Aachen,
2012.

[MB08] Moura, Leonardo; Bjørner, Nikolaj: Z3: An Efficient SMT Solver. In: TACAS. volume
4963 of LNCS. Springer, 2008.

[Mo12] Modelica Association: Modelica - A Unified Object-Oriented Language for Systems Mod-
eling. Technical report, 2012.

[MRR11] Maoz, Shahar; Ringert, Jan Oliver; Rumpe, Bernhard: Modal Object Diagrams. In:
ECOOP. volume 6813 of LNCS. Springer, 2011.

[Ob14] Object Management Group: Object Constraint Language, Version 2.4. Technical report,
2014.

[Ru96] Rumpe, Bernhard: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag, 1996.

[Ru11] Rumpe, Bernhard: Modellierung mit UML. Springer, 2011.

[Ru12] Rumpe, Bernhard: Agile Modellierung mit UML. Springer, 2012.

[Ru15] Rumpe, Bernhard; Schulze, Christoph; Wenckstern, Michael von; Ringert, Jan Oliver; Man-
hart, Peter: Behavioral Compatibility of Simulink Models for Product Line Maintenance and
Evolution. In: SPLC. ACM New York, 2015.

