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ABSTRACT

Component and Connector (C&C) models, with their correspond-
ing code generators, are widely used by large automotive manufac-
turers to develop new software functions for embedded systems
interacting with their environment; C&C example applications are
engine control, remote parking pilots, and traffic sign assistance.
This paper presents a complete toolchain to design and compile
C&C models to highly-optimized code running on multiple tar-
gets including x86/x64, ARM and WebAssembly. One of our con-
tributions are algebraic and threading optimizations to increase
execution speed for computationally expensive tasks. A further
contribution is an extensive case study with over 50 experiments.
This case study compares the runtime speed of the generated code
using different compilers and mathematical libraries. These experi-
ments showed that programs produced by our compiler are at least
two times faster than the ones compiled by MATLAB/Simulink for
machine learning applications such as image clustering for object
detection. Additionally, our compiler toolchain provides a complete
model-based testing framework and plug-in points for middleware
integration. We make all materials including models and toolchains
electronically available for inspection and further research.
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1 INTRODUCTION

In embedded and cyber-physical systems software and physical
components are deeply intertwined and mostly interact with their
environment [45]; examples in automotive industry include ESC?,
ABS!, TCS/ASR!, EPS!, LKAS!, ACC!, PW!, and AFL!. Large Ger-
man automotive manufacturers develop embedded systems using
Component and Connector (C&C) models [8, 48], which are later
translated to C/C++ code and deployed on embedded devices often
exhibiting custom processor architectures. In test-driven modeling
[57], which is part of agile development processes [1], it is very
important that developers and/or continuous integration systems
can test changes quickly and automatically - long compilation and
test execution times may hinder the overall development process
as slow tests may kill the developer feedback loop [43].

Our first contribution is a compiler toolchain infrastruc-
ture, designed with respect to automotive software development
needs, for the C&C modeling language EmbeddedMontiArc [27].
This powerful cross-platform compiler serves a series of targets
including x86/x64, as well as ARM and WebAssembly; thereby en-
abling deployment and execution on a variety of devices ranging
from micro-controllers to tablets and smartphones. This compiler
infrastructure is also highly configurable and combines different
frameworks such as Octave [13] or Armadillo [44] as well as vari-
ous BLAS (Basic Linear Algebra Subprograms) backends such as
OpenBLAS [55] and Intel MKL [25] under the hood. The toolchain is
completed by a model-based testing framework, a web-based IDE,
and middleware integration.

Our second contribution are algebraic and threading op-
timizations for C&C models that can be derived automatically.
These optimizations allow simulations on computationally complex
tasks such as local traffic system scenarios for convoys, data mining
or image processing tasks on standard personal computers in a
small amount of time.

Our third contribution is an evaluation on four applica-
tions to measure the runtime performance for the generated
code which is produced by compiling C&C models (an image clus-
tering provided by the MathWorks homepage on matrix modifier
applications) with the presented infrastructure on an x64 archi-
tecture as native code, as well as running it in a web-browser on
a normal PC, and a smartphone. Thereby, we compare the run-
time performance of the generated code when using the Octave
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Figure 1: C&C architecture of the SpectralClusterer.
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mathematics framework with the one when using the Armadillo li-
brary. During this case study we compare the runtime performance
against the performance of code generated by MATLAB/Simulink,
which is the de-facto C&C modeling framework in German automo-
tive industry today, with equivalent models for native applications,
and the runtime performance against MathJS code for web-browser
applications.

Finally, as an important contribution of our work we made
our entire toolchain including its source code and all models
needed for our comparison with other frameworks public avail-

able from | http://www.se-rwth.de/materials/ema_compiler ‘ Ad-

ditionally we produced videos showing our complete setup and
experiments, so that all results and experimentation steps are trans-
parent to all readers. We encourage the reader to inspect these
materials and use them for their own research.

The outline of this paper is the following: Section 2 presents
the image clustering algorithm used as running example in paper.
Section 3 shortly introduces the C&C modeling language Embed-
dedMontiArc, tools needed for a multi target compiler platform such
as Emscripten, LLVM, clang and gcc, as well as the two mathematics
frameworks Octave and Armadillo. Section 4 contains our first con-
tribution the complete compiler toolchain infrastructure. Section 5
presents our second contribution, the optimizations to speed up
the runtime performance of the compiled code. Section 6 is the case
study section comparing the runtime performance using different
mathematics libraries, different BLAS backends, and running it on
different targets as well as it compares run-time results when using
Simulink or implementing the algorithms directly in JavaScript or
in Java. Finally, Section 7 concludes this paper.

2 RUNNING EXAMPLE

We introduce two compelling running examples to thoroughly ex-
plore our approach of a highly optimizing multi-target compiler.
The first one is an ObjectDetector employing spectral cluster-
ing for image recognition. The second one is a C&C model called
MatrixModifier which performs different matrix calculations. In
practice, these kinds of operations are pervasive in many domains
including navigation and routing where maps are represented as
large matrices and need to undergo various interpolations and
transformations [20].

Object Detector. Unsupervised learning has proven to be an im-
portant tool-set for automated data understanding and pre-pro-
cessing. One prominent application is image segmentation, e.g.
enabling self-driving cars to separate objects in a scene captured
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Figure 2: Original image from Henning Witzel [54] (left) and the
spectral clustering result (right).

by a camera. While there is no perfect clustering algorithm and the
best fit is highly domain-dependent, spectral clustering methods
are known to exhibit an outstanding performance in many complex
applications [41, 49]. The basic idea is depicted as a C&C model in
Figure 1 and can be summarized as followed. Let x;; € [0, 255]° be
the 3-dimensional pixel value of an image at position (i, j) encoding
a point in the HSV (hue, saturation, value) color space. For better
handling, an N X M image is represented as a vector, mapping a
position (i, j) to the vector index M - i + j, where N and M are the
height and the width of the image, respectively. First, a symmetric
similarity matrix W € RNMXNM i computed. Consequently, the
entry of W at position (h, k) provides information on the similarity
of the two pixels corresponding to the indexes h and k. Pixel similar-
ity may be defined in terms of distance, color, gradients, etc. Second,
the so called graph Laplacian is computed as L = D — W where D
is the so called degree matrix defined as D = diag (W1 nxpr) with
1M being an N - M dimensional column vector full of ones. Often
it is advantageous to use the symmetric Laplacian

Lsym = D_%LD_% = diag(lNM) —D_%WD_% (1)

as outlined in [49]. For efficiency reasons, as they do not carry valu-
able cluster information the identity matrix and the minus depicted
in red are often dropped in concrete implementations obtaining
the simplified term highlighted in blue. Note that computing Lsym
requires a matrix inversion on the diagonal matrix D as well as two
matrix multiplications. Now the eigenvectors corresponding to the
k smallest eigenvalues of Lsynm, have to be computed where k is the
number of clusters we want to detect. If this number is unknown
an index can be used to estimate it [12]. Furthermore, let U be an
NM X k matrix with the k eigenvectors as its columns. Each row
of this matrix represents one pixel in a feature space which should
be easier to cluster by the standard k-means algorithm. Finally, the
ObjectDetector can separate the objects shown in Figure 2 (a) as
depicted in Figure 2 (b).

For our experiments we use the MATLAB implementation by
Asad Ali [3], which is based on the original spectral clustering
algorithm [49]. We extend the implementation by an image loader
to allow images as input data.

The second example depicted in Figure 7 shows a component
performing several common matrix modifications. To better grasp
the performance benefits gained by using a smart code generator,
this example is chosen to be rather abstract but quite computation
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intense when the code is written or generated in a naive way. Simi-
lar models are often utilized in computationally intense applications
where a lot of information is stored and modified in matrices scat-
tered over multiple components. Further details will be provided in
the respective sections.

The full source of both examples modeled in EmbeddedMontiArc
is available from [14].

3 PRELIMINARIES

C&C Modeling and EmbeddedMontiArc. The main aim of
model-driven development is to model the domain knowledge,
which in our case is the functionality of embedded systems. In
contrast to a general purpose language programmer, the model
driven developer should not care about performance issues like
multi-threading or optimized algebraic routines. A good modeling
language allows the expression of the domain knowledge intuitively
and a smart compiler tool chain produces high-performance code
to efficiently test and simulate the functional models.

EmbeddedMontiArc [27] is such a textual domain specific lan-
guage to model logical functions in a C&C based manner. Especially,
EmbeddedMontiArc places emphasis on the needs of the embedded,
CPS (Cyber-Physical Systems), as well as the automotive domains
and is particularly used for controller design [19]. As an example,
the elaborate numeric type system allows declarations of variable
ranges as well as accuracies. Furthermore, units are an inherent
part of signal types and hence tedious and error-prone tasks like
checking the physical compatibility of signals (weights cannot be
added to lengths) as well as unit or prefix conversion (feet to meters,
km to m) are delegated to the EmbeddedMontiArc compiler.

Figure 3 (a) - (c) show how the spectral cluster in Figure 1 is mod-
eled in EmbeddedMontiArc. Figure 3 (b) and (c) represent the sub-
components of (a). As is inherent to C&C languages, the main lan-
guage elements of EmbeddedMontiArc are component and connect.
While the former defines a new component followed by its name,
e.g. in line 1 of Figure 3 (a), the latter connects two ports of sub-
components with each other, e.g. in lines 10-15 in Figure 3 (a). The
behavior of a component can be either defined by a hierarchical
decomposition into subcomponents as in the case of Figure 3 (a) or
using an embedded behavior description language.

The principal behavioral language used throughout this work is
a matrix based math language, used in lines 6-8 and 5-14 of Figure 3
(b) and (c), respectively. As EmbeddedMontiArc is strongly typed,
errors like wrong matrix dimensions are caught at compile-time, in
contrast to MATLAB/Simulink where this is a runtime exception.
A matrix property system leverages performance optimizations as
well as further compatibility checks in the compilation phase. If a
matrix is declared to be diagonal, both memory and computational
complexity of the generated code can be reduced dramatically. If fur-
thermore, the domain of the matrix is constrained to non-negative
entries, it can be inferred that the matrix is positive-semidefinite
allowing the inversion function to be used on it and guaranteeing
that the result will be positive-semidefinite again [9].

As our spectral clustering example shows each EmbeddedMon-
tiArc component resides in its own text file so that multiple users or
teams can work on one large C&C modeling project simultaneously.
Compared to other C&C languages where models are stored in a
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proprietary binary format in one single file, such as Simulink’s
slx format, this facilitates the usage of version control systems,
merging, and conflict solving but also textual searching in model
repositories.

The EmbeddedMontiArc language family has been developed
using MontiCore 5, a language workbench particularly known for
its leading language composition technology [22] and hence facil-
itating the integration of the main C&C architecture description
language with behavior description, configuration, testing, and
other sub-languages. However, EmbeddedMontiArc is not just a
modeling language frontend but rather a holistic model driven
software engineering methodology in the sense that all executable
code and binary files are generated directly from EmbeddedMon-
tiArc models, i.e., the developer does not have to deal with any
target languages, compilation, and linking issues. Therefore, the
heart of the proposed tool chain is an extensible highly-optimizing
cross-platform compiler presented in the following sections.

Finally, the question arises how components developed in Em-
beddedMontiArc can be tested and quality assured in continuous
integration environments. Writing unit tests for the generated code
using a framework of the target platform not only goes against our
holistic model driven engineering principles, forcing the developer
to understand the target details and to produce platform-dependent
code but is also infeasible in the long run as the interfaces of the
generated code might change. Instead we propose a so called stream
language allowing a test developer to write black-box tests for Em-
beddedMontiArc components by providing sequences of values for
the input ports (test data) and the corresponding expected output.

In Figure 4 a stream test example is given for the NormalizedLa-
placian component of Figure 3 (b) with the generic parameter n=3.
In lines 3 and 4 we provide the test inputs for the ports degree
and similarity whereas lines 5-8 specify the expected output of
the port nLaplacian. The tick keyword separates the values of
an input sequence allowing one to test the component behavior
for arbitrarily long input and output streams. This is particularly
important for stateful components such as PID controllers or au-
tomata. By specifying tolerance ranges using the +/— operator as
in lines 5-7 we can easily cope with floating point outputs, rounding
errors, and numerical inaccuracies.

Multi Target Compiler Platforms. Emscripten [56], developed
by Alon Zakai and Mozilla, is a Low Level Virtual Machine (LLVM)
to JavaScript or WebAssembly (WASM) compiler.

LLVM is a modular and reusable compiler framework for arbi-
trary programming languages. The LLVM framework [28] enables
transformations at link-, install-, run-, and idle-time, to optimize
memory usage, runtime speed, and program size.

CLang is a C, C++, Objective C/C++, OpenCL C to X86-32, X86-64,
and ARM compiler based on the LLVM framework. CLang is com-
patible with GCC, but uses less memory and compiles faster while
still delivering programs with a better performance. On the other
hand, GCC addresses more targets such as PowerPC or embedded
processors. It supports any target architectures where int is 8, 16,
32 or 64-bit wide. A new target platform can easily be added by
providing a machine description containing an algebraic formula
for each available instruction [47].
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component KMeansClustering

1

2 <N1 n=50, N1 k=4, N1 maxCls=1> { 1
3 ports in Q*{n, n} img[3], 2
4 out Q*{n, maxCls} cluster; 3
5 instance Similarity<n> sim; 4
6 instance NormalizedLaplacian<n*n> nL; 3
7 instance EigenSolver<n*n, k> eS; §
8 instance KMeansClustering K

component NormalizedLaplacian

ports in diag Q*{n,n} degree,
Q*{n, n} similarity,
out 0”{n,n} nlLaplacian;
implementation Math{
nLaplacian=degree”®-.5%*

1
2 <N1 n, N1 nbVecs, N1 maxCls> {
<N1 n=2500> { 3 ports in Q*{n, nbVecs} vectors,

4 out Q*{n, maxCls} clusters;
5 implementation Math{
q Q*{n, nbVecs} UMatrix;
¥ for i=l:size(vectors,1l)
8 0*{1, nbVecs} target =

14

1s connect eS.eigenVectors -> kMC.vectors;

connect kMC.cluster -> cluster;}}

(a) EmbeddedMontiArc model of SpectralClusterer.

9 <n*n, k, maxCls> kMC; § similarity*degree”-.5;}} 9 vectors(i,:) .~ 2;
10| connect img[:] -> sim.img[:]; (b) EmbeddedMontiArc model of atomic 10 Q amount = sqrt (sum(target));
11l connect sim.degree -> nL.degree; componentNormalizedLaplacian. 11 UMatrix(i,:) =
12 connect sim.similarity -> nL. similarity; 12 vectors(i,:) ./ amount;
13 connect nL.nLaplacian -> eS.matrix; 13 end

14  clusters=kmeans (UMatrix, maxCls);}}

(c) EmbeddedMontiArc model of atomic
component KMeansClustering.

Figure 3: EmbeddedMontiArc code of selected components for the spectral clusterer model

1| stream LaplacianTest Stream
2 for NormalizedLaplacian<3>{

Values for,input ports
3| [degree: [1, 0, 0; 0, 2, 0; O, 0, 2] tick ..;
4 similarity: [0, 1, 0; 1, 0, 1; 0, 1, 1], tick ..;

3 x 3 matrix

5 nLaplacian: [0 +/- 0.05, 0.5 +/- 0.1, O +/- 0.05;
6 0.5 +/- 0.1, 0 +/- 0.05, 0.25 +/- 0.1;
7 0 +/- 0.05, 0.25 +/- 0.1, 0.25 +/- 0,1])
8 tick ..; Y
91} Expected Values for output port

Figure 4: Stream test model of the NormalizedLaplacian component.

WebAssembly [51] is a size- and load-time-efficient binary in-
struction format for a stack-based virtual machine, and it aims to
execute at native speed. WebAssembly runs on nearly all smart-
phone and desktop browsers [39], as well as on the nodejs server.

A generator toolchain supporting GCC, CLang, and Emscripten
can run its code on multiple targets at the best possible performance.
These targets include many embedded platforms, e.g. micro-
controllers used in drones, web-browsers on computers, smart
phones, or tablets as well as native x86/x64 applications using
optimizations such as threading and SIMD (Single Instruction Mul-
tiple Data) instruction sets, e.g. SSE, MMX and AVX, but also native
GPU (Graphical Processing Unit) support for CUDA and OpenCL.

Octave and Armadillo. As explained above, the behavior of an
EmbeddedMontiArc component can be implemented using a math
language. For basic mathematical operations the so called Basic
Linear Algebra Subprograms (BLAS) specification defines a set
of low level routines such as matrix additions and multiplications.
Examples of available BLAS implementations include the Intel Math
Kernel Library [53] as well as OpenBLAS [55]. To get the last ounce
of performance out of the executing processor, these BLAS libraries
rely on hardware specific optimizations such as SIMD parallelization
and multi-threading.

To generate component behavior code from the math model
in the component implementation, e.g. in lines 4-11 of Figure 3
(c) the EmbeddedMontiArc compiler does not use BLAS libraries
directly. Instead it lets the user choose between an Octave [13] or
an Armadillo [44] backend. These two high level linear algebra
and scientific computing libraries cover an even broader range
of mathematical functions than the BLAS specification including

matrix operations such as eigenvalue decomposition and k-means
clustering while offering an easier to use interface. Internally, both
Armadillo and Octave use an exchangeable BLAS backend to deliver
the best possible performance.

4 TOOLCHAIN

EmbeddedMontiArc Production and Test Compiler. In Fig-
ure 5 we show a comprehensive overview of our EmbeddedMontiArc
compiler infrastructure featuring its most important parts. This
infrastructure consists of two parts: (1) The (production) compiler,
depicted on the left side, translates textual EmbeddedMontiArc mod-
els to native code for different targets. (2) The test compiler, shown
on the right side, translates textual stream test models to native
programs executing the compiled native code of (1) and producing
test result reports. One contribution of this paper is this toolchain
generating native code for different targets as well as testing the
generated native code.

The compiler behavior can be controlled via the command line
interface (CLI), e.g. to specify the target platform. (1) In a first step
the compiler invokes the EmbeddedMontiArc-to-C++ Code generator.
The concrete output depends on the mathematics library chosen
via CLI, since the C++ code for matrix creation using the Octave
library differs significantly from the matrix creation code using
the Armadillo library. (2) The generated C++ code is compiled and
linked in a next step. Thereby our toolchain chooses the appropriate
C++ compiler for the specified target and math library automatically.
This hides technical details about compiler options and linker paths
for including the required mathematics runtime library from the
user. For example, Octave for Windows 64-bit is compiled with GCC,
while clang is used for Armadillo on Mac OS X.

To benefit from the highly optimized BLAS libraries working
only on primitive Integer and Float types, the compiler throws all
units away and converts all variables and constant values during
the C++ generation process to the corresponding SI base units.

If the EmbeddedMontiArc compiler needs to compile for the web
browser target, the C++ code generator does not generate optimal
source code as WebAssembly does not support C++ threads yet [6].
Also the linking process for WebAssembly is different as it cannot
link other WebAssembly files at runtime yet [52]. For this reason,
no runtime dynamic linking is supported and all libraries are linked
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Figure 5: Compiler Infrastructure for EmbeddedMontiArc modeling family.
1 ftags RosTags{ tagged symbol tag type
P
2 ltag nL.degree with RosConnection =

tag, value
{topic= (name=/deg, type=struct_msgs/Mat3)};

RosConnection with provided middleware meta data
A

3 [tag ML.W with RosConnection = )

{topic= (name=/w, type=struct_msgs/Mat3)};

RosConnection with :ne*ra data generated from EMAM model)

f . . . \
tag nL.nLaplacian with RosConnection;

Figure 6: Tagging example for the NormalizedLaplacian component.

at compile time. Otherwise the communication would need to be
based on JavaScript which would have a massive negative impact
on the runtime performance.

Our compiler also configures emscripten locally, runs clang to
compile the generated C++ code to LLVM and then runs emscripten
to compile the LLVM code to WebAssembly and JavaScript. The
options NO_FILESYSTEM=1 and 03 are used to produce smallest
possible JavaScript files.

For the web-browser target we also generate an adapter allowing
us to use the C&C model directly in JavaScript; the adapter also
accepts matrices as Strings having the same convenient syntax as
the matrices defined in EmbeddedMontiArc models. Since JavaScript
is typeless, the generated JavaScript adapter also checks whether
the input value fits to the type: are the matrix properties and the
physical quantities compatible and is the value in the defined range.
Additionally, the JavaScript generator produces an HTML file using
the JavaScript adapter. Opening such an HTML file in a browser
allows the modeler to test the component behavior by specifying
input values by hand and receiving the calculated output values;
examples of such generated HTML files are available from [14].
For the native code there are plug-ins allowing the developer to
generate adapters for different middlewares.

with a particular focus on embedded and cyber-physical systems,
quickly the question arose, how models can be integrated into a
vast amount of hardware and software platforms without having to
vitiate them by technical details or to add hand-crafted glue-code.
In domains like automotive, robotics, and cyber-physical systems
both hardware and software architectures can be highly distributed.
Thus, these systems often rely on middleware protocols such as ROS
(Robot Operating System) to ensure loose coupling, exchangeability,
and maintainability of the involved components.

Other C&C languages like Simulink [36] or LabView [24] enable
the design of middleware-connected systems by providing corre-
sponding component libraries. For instance, instead of outputting
a computed actuator value to a standard output port of the sys-
tem, the signal is sent to a pre-configured ROS [42] component
which in turn handles the distribution of the message to a ROS
network. Although easy to model and to use, the approach has
serious drawbacks:

First of all, the algorithmic part of the system, e.g., the design of
our clustering component, gets mingled with technical aspects of
the system, thereby violating the separation of concerns principle
and making the model platform-dependent.

Second, a variant of the model needs to be developed and stored
for each target system or robot configuration. This inflates the
required variant management overhead, although the actual model
logic remains unaltered.

Third, models contaminated by middleware components exhibit-
ing side-effects or having a behavior not only dependent on their
inputs are difficult to test.

To avoid these pitfalls in model-driven engineering of embedded
systems it is crucial to separate the conceptual model from the
integration aspects. In EmbeddedMontiArc we achieve this aim by
employing a so called tagging language to enrich the model by mid-
dleware specific information. Tagging allows adding information
to the elements of a model such as ports in a separate tag model
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artifact [31]. Hence, the original model remains untouched and
free of middleware specific information while all the information
concerning the middleware interface of the system is gathered into
a dedicated model.

If the original C&C model needs to be deployed in another ecosys-
tem, the only thing the designer has to do is to write a new mid-
dleware tag model specifying which middleware has to be used
and how ports and types are mapped to concepts of the middle-
ware of choice. Middleware tags create middleware symbols in the
symbol management infrastructure [37] of the EmbeddedMontiArc
model. The original EmbeddedMontiArc code generator is unaware
of these symbols and is hence not affected by the add-on. Instead,
we provide a generator for each supported middleware.

The original C++ generator as well as the required middleware
generators are registered with a supervisor orchestrating the gen-
eration process. Each generator creates code for the model parts,
i.e. symbols, it can deal with. Finally, the orchestrating generator
produces glue code melting the actual behavior code with the mid-
dleware adapters; thereby it produces an implementation ready to
integrate into a simulator or on a real hardware system with zero
hand-crafted code.

A tagging example for the NormalizedLaplacian component of
Figure 3 (b) is given in Figure 6. We use ROS tags here to integrate
the component into a ROS infrastructure. For the two input ports
we provide full middleware meta data, i.e., a ROS topic name as
well as the corresponding ROS type. It is important to provide this
information if the model is integrated into a system with a prede-
fined middleware infrastructure such as a simulator. If, however,
the components to integrate are all designed in EmbeddedMon-
tiArc, middleware meta data can be omitted and is generated by
the corresponding middleware co-generator. Examples are: (1) Em-
beddedMontiArc model controlling a Gazebo robot via ROS using
the tagging system [11]; (2) EmbeddedMontiArc model controlling
a Torcs car using OpenDaVinci [7] middleware [29]; (3) local traffic
system with 10 cars [23] driven by an EmbeddedMontiArc controller
in the MontiSim [16] simulator; and (4) an integration of the com-
piled WebAssembly code into the JavaScript PacMan simulator [18].

Further explanation videos describing the concrete models and
the EmbeddedMontiArc development environment using this com-
piler toolchain are available under Youtube [38, 50].

5 OPTIMIZATIONS

This section presents our second contribution: algebraic and thread-
ing optimizations of the C++ code generator. Algebraic optimiza-
tions are particularly important for data intensive mathematical
matrix-based tasks such as image processing or discretizing ordi-
nary or partial differential equations [4] modeling control systems.
Threading optimizations distribute all calculations defined in com-
ponents into different threads. The effect depends mainly on the
target CPU architecture, especially the number of available cores.

Algebraic Optimizations. All algebraic optimizations are explained
with our running examples, namely the theSpectralClusterer
and MatrixModifier model.

Following the definition in (1), the NormalizedlLaplacian com-
ponent of the SpectralClusterer shown in Figure 3 (b) needs
to calculate the inverse square root of the degree twice. Note that
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we use the simplified definition highlighted in blue in order to be
comparable to the publicly available MATLAB implementation also
using this variant. Since the degree matrix is a diagonal matrix hav-
ing non-zero entries only on its main diagonal the inverse square
root of degree is just the element-wise inverse square root of all
elements of the principal diagonal, i.e.,

0 fori+j

= -0.5 2
(i.5) (D|(,-, l—)) else @

D is diagonal matrix : (D_O'S)

The type system of EmbeddedMontiArc is based on the mathematical
domain allowing one to declare a matrix to be diagonal, tridiagonal,
symmetric, positive-definite, etc. The C++ generator uses these
matrix types to select the best suited algorithms [30] for invert-
ing matrices. In most cases (not in the case of diagonal matrices
though) when a matrix inversion is combined with a vector or
matrix multiplication, e.g. A™!x, no explicit matrix inversion is
calculated. Instead linear equation solving algorithms are applied.

Other common compiler optimizations like caching computa-
tional expensive results to avoid recomputing the same problem are
also implemented; for instance, the two occurrences of degree ™
in lines 7-8 of Figure 3 (b) are replaced automatically by a helper
variable. At compile-time, the type inference mechanism of Em-
beddedMontiArc allows one to derive not only the matrix dimen-
sions but also the algebraic type. Thus the compiler knows that
degree™®- is a diagonal matrix, as well, and is hence able to choose
the best suitable multiplication algorithm only considering the prin-
cipal diagonal for the left side expression in degree > - W. The
aforementioned statical algebra analyses together with the pre-
sented optimizations improve the efficiency of the generated code
dramatically.

The next paragraphs show algebraic optimizations based on the
matrix dimensions [21] to figure out the best execution order to
evaluate matrix expressions. Equations (3) — (6) summarize the
formulas used for optimizations, where A, B, and C are matrices, b
is a vector, and A is a scalar:

A(BC) = (AB)C  (5)
AB-1)=(AB)- 1. (6)

AC+BC=(A+B)C (3)
CA+CB=CA+B) 4

Since the matrix optimizations of equations (3) and (4) are in-
dependent of the matrix type and, thus, can be applied always,
tools such as Armadillo rewrite expressions following these two
rules by using C++ function templates. The MatrixModifier com-
ponent example, shown in Figure 7, illustrates the optimization
process using equation (5); (6) is a special case of (5) with A being
a scalar. MatrixModifier consists of five input ports, one output
port, and four Multiplication subcomponents. Based on the matrix
dimensions defined in the ports and the mathematical expressions
you can estimate the number of needed operations for each atomic
component; e.g. multiplying a 5 X 7 matrix with a 7 X 10 matrix
needs 2 - 5- 7 - 10 = 700 arithmetic operations.

Equation (7) shows the natively derived calculation of the Matrix-
Modifier component based on its C&C structure and the the es-
timated operations (est. ops) needed for all calculations; for the
sake of clarity all matrix dimensions of the input ports and of the
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intermediate results are shown, as well. The estimated total num-
ber of operations needed to perform all the calculations of the
MatrixModifier component is the sum of all estimated (single) op-
erations, in our case 4 million+40 million+20 million+200 billion ~
220 billion estimated operations.
200000 000 000 est. ops
20000000 000 est. ops
I 4000000 est. ops 40000000 est. ops I

I matl - mat2 - Ilmat’a‘I . Imat4|I -+ mat} 7)
1000x2 2x1000/ \1000x2 2x10000/ [ 10000x10000
Toooxto00 T000X10000
1000X10 000
I 1000x10 000 I

40000 000 est. ops
8000 est. ops

8000 est. ops 400000000 est. ops

I 1 I 1
matl -| mat2 - mat3 ||-| mat4d - mat5 (8)
1000x2 \2x1000 1000x2 2x10000 10000X10 000
1 1 1 1

2X2 2X10000
L 1

1000x2
I 100010 000 I

If the estimated operation count surpasses a specified threshold,
the compiler starts to restructure the expressions. To deliver a rea-
sonable trade-off between compilation and runtime performance,
the compiler only optimizes computationally expensive expressions.
Applying rule (5) transforms equation (7) to equation (8). However
evaluating (8) needs only 8 thousand + 8 thousand + 400 million +
40 million ~ 440 million estimated algebraic operations. Compared
to the originally needed 220 billion operations, our algebraic op-
timization reduces the calculation effort by a factor of 500. This
factor holds only for algebraic computations, but a program must
also load the matrices from the RAM to the processor caches and
store them back into the RAM again since these large matrices need
several hundreds of megabytes of storage and do not fit into the
L3 cache. The case study in the next section shows that the real
runtime benefit achieved by rewriting the mathematical formula is
only a factor of 8. But real-world image processing systems consist
of large hierarchies of filter components offering much more opti-
mization potential then our small MatrixModifier example with
only four matrix-processing subcomponents.

Threading Optimizations. The threading analysis tries to de-
tect independent calculation paths to schedule them on different
CPU cores. All threading optimizations are executed after doing the
previously mentioned algebraic optimizations. Since our toolchain
presented in Section 4 uses different BLAS backends such as Open-
BLAS, some parallelizations on matrix operations can already be
done by these libraries.

Thus, the C++ generator has to find a trade-off regarding the
number of threads created by itself and the BLAS backend, respec-
tively.

In general it should be avoided to create more threads than
the target architecture supports physically (number of cores plus
hyper-threading[26]) as this results in scheduling overhead for the
operating system and reduces the overall performance.
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matrix dimensions|
—

mat1: Q{1 000,2}
mat2: Q*{2,1 000}

MatrixModifier (cao)

[1—{] matOut: Q4{1 000,10 000}

mat1: QM1 000,2}[
mat2: Q2,1 000
mat3 9; 1 000 2
mat5: Q"(10 000 10 000

mat16: Q"(1 000,2)
mat17: QN2,1 000
 mails: QT 000, 2

Q~2,10 000

mat20" Q"(10 000,10 000

[F—{ ImatOut4: Q*{1 000,10 000}

Figure 8: C&C architecture of a MathUnit component utilizing
MatrixModifier (Figure 7).

Therefore, the C++ generator should only parallelize calculation
paths having a similar number of operations. In equation (8) it
makes no sense to calculate mat1 - (mat2 - mat3) on one core and
mat4 - mat5 on another one. The second core would theoretically
perform 50 thousand times more operations than the first, thus
spending most of the time in idle mode waiting for the second core
to be finished before the last matrix multiplication can be executed.
The best option for (8) is to let the C++ generator create one thread
for the entire computation and let the BLAS library create multiple
threads for its matrix additions and multiplications.

However, the MathUnit component in Figure 8 contains four
independent calculation paths, namely the four MatrixModifier
subcomponents, each performing the same amount of calculations.
Hence, it is advantageous to execute each subcomponent on its own
core and to reduce the number of BLAS threads for each subcom-
ponent; the reason is that a matrix multiplication distributed onto
multiple cores needs more communication between the cores than
the complete independent subcomponent calculations distributed
onto multiple cores.

Sometimes, it is even better not to use multiple threads at all;
if the computation bottlenecks are special hardware registers, e.g.
SIMD units shared by all cores, threading would cause many L3
cache misses. For this reason, the EmbeddedMontiArc compiler
toolchain can be configured via CLI to control the threading options
for the C++ generator and for the BLAS libraries.

6 CASE STUDY

Our case study utilizes the following four C&C models:

(i) ObjectDetector with four SpectralClusterer subcomponents
(ii) ObjectDetectorManOpt is a manually optimized version of (i)
to accelerate runtime performance in MATLAB

(iii) ObjectDetectorLight is (ii) without the kmeans operation
(iv) MathUnit with four MatrixModifier subcomponents.

The object detector C&C models (i)-(iii) consist of four Spectral-
Clusterer subcomponents assuming that a vehicle has a camera
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on each side. The incoming images are clustered to detect objects,
pedestrians, or other cars.

Model (i) contains the original formula of the spectral clusterer
used in [41]. In contrast, model (ii) contains manually optimized
code of the NormalizedLaplacian subcomponent to speed up the
calculation significantly; this version is the Asad Ali’s optimized
MATLAB code [3]. In addition to our real-world examples (i) and
(ii), the C&C model (iii) was created to have also a comparison with
tools not supporting the kmeans operation. The model (iv) is our
syntheticMathUnit C&C example from Section 5.

For each of these four example applications (i)-(iv) this case study
executes the following experiments:

(a) measure effect of algebraic optimization on runtime speed

(b) evaluate impact of math backends on runtime performance

(c) compare runtime of code compiled with EmbeddedMontiArc,
Simulink, OpenModelica, and Java with time interpreting it in MAT-
LAB, or Octave

(d) measure web-browser performance running WebAssembly code
produced by our compiler against handwritten Math]S code

(e) check EMA, Simulink, and Modelica model sizes versus Java,
MATLAB, and JavaScript program length.

Figure 10 (a) shows that with a factor between 8 and 10 the alge-
braic optimizations of our toolchain based on mathematical domain
knowledge deliver the largest impact on the runtime performance.
Adding threading optimization for the MatrixModifier model has
nearly no impact. For the ObjectDetector model the performance
gain through threading is as little as 30%.

Figure 10 (b) shows the impact of using different mathematics
libraries or frameworks in the compiled code. It is obvious that the
Octave backend is always slower then Armadillo. The performance
difference when executing the MathUnit model with the Octave
backend instead of Armadillo however is quite small as for normal
matrix addition and multiplication operations Octave offers native
C++ functions, whereas other functionality in Octave is defined
via m-code and must be interpreted at runtime. Executing all three
ObjectDetector examples with the Octave backend takes signifi-
cantly more time than executing these models with the Armadillo
backend; the main reason is that eigenvalue and element-wise in-
verse square-root (2) calculations are much slower in Octave than
equivalent native C++ implementations used by Armadillo.

The experiment showed that the Blas library performs multi-
threading automatically. Using it we were not able to measure any
improvement when letting our toolchain create multiple threads for
the subcomponents of MatrixModifier and SpectralClusterer.
Therefore we aggregated the results for the Blas backend in the
column Armadillo (Blas) 1/4 Threads in Figure 10 (b). Another
finding of the experiment was Blas being faster than OpenBlas for
basic matrix operations such as multiplying and adding matrices.
In contrast, the OpenBlas library is faster for more complex matrix
operations such as eigenvalue calculation or matrix inversion. For
this reason Armadillo (Blas) turns out to be the best library when
compiling the MathUnit model whereas Armadillo (OpenBlas) is
the best option for translating all object detector models to native
Windows applications.

To compare the runtime performance of the compiled Embed-
dedMontiArc native Windows 64-bit code with the compiled native
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code produced by other existing tools, programming languages
or libraries we modeled/programmed all four applications in
Simulink[36], OpenModelica[15] with OMEdit[5], Java using
RelativeGPS[2] library, JavaScript using MathJS [32], and as
m-code for MATLAB [33] and Octave [40] again.

The MATLAB code for the ObjectDetectorManOpt model was
already given and we did not modify it to have an evaluation with
an application not created by us. The EmbeddedMontiArc code con-
tains exactly the same matrix operations (also in the same order)
as they are present in the downloaded m-files from the MathWorks
website. The only difference is that EmbeddedMontiArc groups func-
tionality into components instead of functions and interaction takes
place via connectors and not via function calls. The Simulink and
OpenModelica code is a 1:1 mapping (of the syntax) of the Embed-
dedMontiArc code, as all three tools are based on the C&C paradigm.
The Java and the JavaScript applications are based on the MATLAB
code as all the three are imperative programming languages.

Figure 9 contains selected model and code snippets showing
how we remodeled the functionality in different tools/languages.
In the left top part @ the SpectralClusterer subsystem with all
its subcomponents is depicted. The two listings below contain the
code of the atomic MATLAB Function block types: @ shows the
original code used in the publication to model the behavior of the
NormalizedLaplacian block, and @ presents the manually alge-
braically optimized code (based on the fact that the degree matrix
is a diagonal one, and therefore the power and matrix multiplica-
tion operations can be accelerated). The ObjectDetector appli-
cation uses @), whereas the ObjectDetectorManOpt and Object-
DetectorLight applications use the optimized one @. The code
in @ and @ is the same as used in the m-files for the correspond-
ing applications. Only the additional expression nLaplacian =
zeros(2500, 2500) must be added when using the MATLAB code
in Simulink as the MathWorks embedded coder needs the exact
matrix dimensions for C code generation.

The middle part in Figure 9 represents the OpenModelica imple-
mentation of the SpectralClusterer component. The graphical
model shown in @ the structural view in OMEdit must not be con-
sistent with the semantics of the textual Modelica model, since
input and output ports are only visible in the graphical model if the
textual one is enriched with the correct annotations (see small text
snippets in ®). In our opinion the graphical annotations created
by OMEdit pollute the textual Modelica model so that it becomes
harder to read; a better solution would be to generate the graphical
layout based on the defined in- and output ports or to store the
graphical information in an additional file via tagging [17, 31]. The
middle bottom listing @ is the Modelica text code equivalent to the
MATLAB/Simulink code shown in @.

In contrast to the left and middle part in Figure 9 where the
spectral clusterer was modeled as a C&C architecture, the code
snippets on the right illustrate how to implement the spectral clus-
terer in an imperative programming language. The MathJS code
® is the equivalent to the MATLAB code in ®); same holds for the
middle right Java code @. The JavaScript code ® is very similar
to the MATLAB code, as both are untyped languages. On the other
hand, the Java code in ® is strongly typed, cf. line 2 where the
matrix is first created with its full-defined dimensions. Compared to
equivalent MATLAB code @ or the equivalent EmbeddedMontiArc
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@ [50x50] | [ -

‘D ——>fimg! __[[2500x2500] | - . JavaScript/MathJS
|mg1[ 5[)%%%?] similarty = Sox2500] " ™ 250062500] Modelica — structural view| [, . .o no - alized aplacian component  (§)
ima2 150x50] i pl=placiay img1 img1 @ var nLaplacian = [[;

Img2[50X50] R [2500x2500] degree P similarity similarity | for (i = 0; i < 2500;i++) {
imga [BOSO]L | [2500x2500] g < TR ) i nLaplacianfi] = [,
Similarity NormailzedLaplacian imgd ima3 e oS Lap °“"m for (j = 0; j < 2500; j++){
nLaplaciani][j] = similarityfi][j] /
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1[2500x4] | [2500x1]

L{matrix eigenvectors tors cluster| D (math-Sq’t(deQreeli][i])‘r math-sqff(degree[ﬂ[ﬂ));
[2500x2500] . l [2500)(4]‘ _‘ [2500x1] cluster [matgs Eigen gigenvectors vectors) Kmeans (cluster cluster }
EigenSolver KmeansClustering Sob > Clus(ering & }

@ [ MATLAB Function Simulink Block |

Modelica — text view

function nLaplacian=
NommalizedLaplacian(degree, similarity)
nLaplacian = zeros (2500, 2500);
nLaplacian = real(sqrtm(inv(degree))* ...
. similarity * sqrtm(inv(degree)));
[/ original code from publication formula

model NormalizedLaplacianModel

import Modelica.Blocks.Interfaces.Reallnput;
import Modelica.Blocks.Interfaces.RealOutput;
import Modelica.Math.Matrices.exp;

Reallnput degree[2500,2500] annotation (Placement(
visible = true, transfomation(extent = {{-140, 54}, {100, 94}}, rotation =

manually optimized code lo speedup calculation

Java/RelativeGPS
/# compute the normalizedlaplacian
Matrix nLaplacian = new Matrix(2500, 2500);
for (int i = 0; i < similarity.numRows(); i++) {
for (int j = 0; j < similarity.numCols(); j++) {
nLaplacian.setValueAt(, j, similarity.valueAt(, j) /

@ MATLAB Function Simulink Block

function nLaplacian=

0), iconTransformation(extent = {{-140, 54}, {-100, 94}}, rotation = 0)));

Reallnput similarity[2500,2500] annotation (placement(
visible = true, transformation{extent = {{-140, ), {-100, 34}}, rotation =

(Math.sqrf(degree.valueAt(, i)) *

NomalizedLaplacian(degree, similarity)
nLaplacian = zeros(2500, 2500);

0), iconTransformation(extent = {{-140, -6}, {-100, 34}}, rotation = 0))),

RealOutput nLaplacian[2500,2500] annotation

/ Math.sqri(degree.valueAt(, j))));
}
}

Omanua oplimized coae o speed up caiculation

(sqrt(degree(i,i))* sqrt(degree(,j)));
end
end

0 manually optimized code to speedup calculation

for I_:] '2500 58)}, rotation = 0), icot:';e.émfonnaﬁon(extem = {100, 48}, {120, -28}},
for J=1.2590 - o rotation = O}
nLaplacian(i,j) = similarity(i,j) / ...
equation
nLaplacian =

exp(degree, -0.5)* similarity * exp(degree, -0.5);

end NormalizedLaplacianModel;

={{100, 48}, {120, -

Java/RelativeGPS
/# compute the norm alizedlaplacian
Matrix nLaplacian = degree.matrixInvert().
matrixSqrt(). matrixMultiply (similarity).
2 matrixMultiply(degree.matrixl nvert().matrixSqrt());
[/ original code from publicationformula

Figure 9: Model Snippets for SpectralClusterer component being modeled in Simulink and Modelica
Code Snippets for SpectralClusterer component using JavaScript/Math]JS and Java/RelativeGPS

code in Figure 3 (b), the optimized Java code ® is cumbersome
to read having no support for operator overloading - the mathe-
matical infix expressions must be implemented using the cascade
pattern (method chaining). In contrast to @ MATLAB/Simulink [35]
EmbeddedMontiArc (Figure 3 (b)) also supports the matrix power
operation for non-integer exponents if both the matrix and the
exponent are real; therefore in EmbeddedMontiArc the short-form
degree”-.5 can be used whereas in Simulink/MATLAB the long
and cumbersome syntax sqrtm(inv(degree)) must be used.

As the model and code snippets in Figure 9 suggest that the im-
perative scripting languages need the least lines of code to develop
the functionality, Figure 10 (e) substantiates this fact showing that
JavaScript and MATLAB need the least amount of code to implement
the four applications. The C&C languages EmbeddedMontiArc and
Simulink (where besides the number of MATLAB lines of code also
the numbers of in-/outport blocks, subsystems and other atomic
blocks as well as the number of signal lines to connect two port
blocks with each other need to be counted as Simulink is not com-
pletely text-based) need nearly the same amount of code/modeling
elements as Java does. Due to their verbose syntax and annota-
tions, OpenModelica models are the largest ones being more than
twice as large as EmbeddedMontiArc or Simulink models and almost
ten times as large as the textual scripting models of MathJS and
MATLAB.

Figure 10 (c) shows the runtime duration to execute the applica-
tions with other frameworks. The Octave interpreter executed the
same m-files as the MATLAB interpreter. The difference between
the duration of the Octave interpreter and the Octave backend is
that the Octave backend executed our algebraic optimized code

on four parallel threads, and the Octave interpreter interprets the
m-file in one thread according to the Windows Task Manager. For
the MathUnit application, the EmbeddedMontiArc compiled code
gets executed over 80 times faster than the interpreted m-file code
by Octave or MATLAB. Since the non-optimized compiled code
has a shorter execution time than the interpreted code (1.8s, see
Figure 10 (a)), we assume that this time overhead is caused by
the fact that the interpreter must parse all m-files and that since
version R2015b MATLAB must decide whether it uses its Just-In-
Time compiler producing C++ native code [46] or interpreting the
statements which in turn results in expensive operations. For the
ObjectDetector the compiled code is about six times faster than
executing the m-file via the MATLAB command-line. The efficiency
of MATLAB compared to Octave, both interpreting the same m-file,
is probably due to the fact that MATLAB also recognizes that our
degree matrix is sparse and then uses the backslash operator to
invert the matrix by solving linear equations [34]. During the exe-
cution of our case study we found it remarkable that MATLAB can
interpret the MathUnit model via m-file; but if the same model is
remodeled in Simulink using the Simulink MatrixMultiply subsys-
tems to multiply matrices we get the following compile error: The
Jacobian elements number of "MatrixModifier’ exceeds 2 147 483 647,
the maximum Jacobian elements allowed in memory (see screenshot
from [14]). This means Simulink cannot be used as compiler for
models dealing with large matrices. Also OpenModelica could not
execute the MathUnit example as it crashed with an out of memory
error message on a machine with 16 GB memory.

Figure 10 (d) shows the execution duration for the applications in
the web browser when translating the EmbeddedMontiArc models
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wsel (98 |392 1592 (505 (323 | 8872 | SESIEE|539(925 S| 58| 2| 2| E9| £|33%| 3t
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§ (B2 8RS |825|8 5| & =05 2R 2T |8%| 5§ Er S8 2| 3 3 23
5 5 [ 5 271 a « @ 3 o [0} g 5
=] =] =] ~ » .
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ManOpt 1145
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tDetecto min 2603 | 36/47/| 12037 | 988 |2866 | 685
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(iv)Math | 9.1s | 1.8s 14s 1.4s 1.2s 1.3s 1.2s - - 92s | 78s |- 2.2s >25 45/ 8/30/ | 110/ 11/ 57/ 12/
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Figure 10: Runtime and Code Statistics

to WebAssembly versus a direct MathjS implementation. While
the C&C compiled model of the ObjectDetectorLight finished
its execution in about 6.5 minutes in Chrome 66 (64-bit version),
the calculation of the same functionality developed in JavaScript
using the MathJS library needed more than half an hour where
we stopped the evaluation. The original ObjectDetector could
not be implemented in MathJS straightforward as in contrast to
EmbeddedMontiArc and MATLAB this library offers no k-means
clustering. This case study shows that it is possible to develop
computationally expensive applications for the browser target with
the EmbeddedMontiArc toolchain.

The runtime measurements of Figure 10 (c) and (d) were exe-
cuted on an Intel Core i7-6700HQ quad core laptop with 2.6GHz
clock speed and Hyperthreading support running Windows 10 Pro-
fessional 64-bit; further software used includes: MATLAB R2018a (64-
bit), OpenModelica v1.12.0 (64-bit), Octave 4.2.1 (64-bit), Armadillo
version 8.200.2, GCC 7.1, clang 1.37.36 (64-bit), emscripten 1.37.36,
OpenBlas version 0.2.20, and CLAPACK [10] 3.2.1 (containing Blas
and Lapack).

The presented case study showed that EmbeddedMontiArc
enables model driven development on a functional level
where the modeler must only care about the domain to be
modeled and can leave the implementation and the optimiza-
tion details over to the proposed toolchain. In comparison
to existing C&C tools like Simulink and OpenModelica, Em-
beddedMontiArc models are small regarding the code size.
The here presented compiler toolchain produces fast exe-
cutable native code. The EmbeddedMontiArc compiler is the
only one in the field producing portable code capable of deal-
ing with matrices of millions of elements such as in our
MatrixModifier example. Although MATLAB was able to han-
dle the problem, as well, the code cannot be redistributed
without the MATLAB environment itself. Simulink, Open-
Modelica, and Java failed due to internal restrictions, or defi-
cient memory management. Furthermore, not all languages
support complex operations such as k-means clustering. This
case study also showed that our compiler produces astonish-
ingly fast code running in web-browsers without the need to
adapt the EmbeddedMontiArc models.

7 CONCLUSION

Component and connector (C&C) models, with their correspond-
ing code generators, are widely used in the automotive industry.
This paper presented a highly optimizing and multi-target C&C
compiler for the component and connector modeling language
EmbeddedMontiArc, which enables calculations on ultra large ma-
trices occurring in real-world machine learning applications such
as object detection and map transformations.

Due to the domain driven type system of EmbeddedMontiArc
focusing on algebraic matrix properties, instead of only reusing the
existing byte-based type systems with int, double, or byte, better
algebraic optimizations based on mathematical matrix theory are
possible.

The case study showed that the toolchain built upon these al-
gebraic optimizations produces not only theoretically faster exe-
cutable code, but indeed delivers an outstanding performance for
existing real-world applications. Some computationally heavy cal-
culations were only possible with the here presented C&C compiler.

The EmbeddedMontiArc modeling methodology focuses primar-
ily on using mathematical algorithms directly from scientific pub-
lications. The main aim is to release the modeler from making
decisions on how to rewrite the mathematical program in order to
ensure runtime efficiently. This paper was a first step further into
this direction.

Finally this paper also showed that for executing a modeling lan-
guage efficiently much more than just a code generator is required;
tasks such as including the correct runtime libraries and configur-
ing the used compiler infrastructure with the correct parameters
must be supported by the tooling, since all of these decisions may
have a large impact on the runtime performance when executing
the models of your new modeling language.
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