
First-Class Variability Modeling in Matlab/Simulink

Arne Haber
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Carsten Kolassa
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Peter Manhart
Software-

Variantenmanagement
Daimler AG, Germany

http://www.daimler.com
Pedram Mir Seyed Nazari

Software Engineering
RWTH Aachen University,

Germany
http://www.se-rwth.de/

Bernhard Rumpe
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Ina Schaefer
Software Engineering and

Automotive Informatics
TU Braunschweig, Germany
http://www.tu-bs.de/isf

ABSTRACT
Modern cars exist in an vast number of variants. Thus,
variability has to be dealt with in all phases of the develop-
ment process, in particular during model-based development
of software-intensive functionality using Matlab/Simulink.
Currently, variability is often encoded within a functional
model leading to so called 150%-models which easily be-
come very complex and do not scale for larger product lines.
To counter these problems, we propose a modular variability
modeling approach for Matlab/Simulink based on the con-
cept of delta modeling [8, 9, 24]. A functional variant is
described by a delta encapsulating a set of modifications. A
sequence of deltas can be applied to a core product to derive
the desired variant. We present a prototypical implementa-
tion, which is integrated into Matlab/Simulink and offers
graphical editing of delta models.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environ-
ments—Graphical environments; D.2.2 [Software Enginee-
ring]: Design Tools and Techniques—Computer-aided soft-
ware engineering (CASE)

Keywords
Delta Modeling; Variability, Matlab/Simulink

1. INTRODUCTION
Modern cars are highly configurable. Variability extends

over the whole range of vehicle functionality from techni-
cal base functionality to comfort functionality in the inte-
rior. Explicit management of variability is essential because
many market-specific regulations change and lead to agile
adaptions for requirements of different car lines. Also, the
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large number of variants is considered one of the main suc-
cess factors of car manufacturers, as it allows customers to
tailor their car to their own requirements and preferences,
e.g. comfort, safety, or sportiness. However, in order to
realize this variability the different variants of the vehicle
functions have to be planned and realized during develop-
ment. This requires to be able to deal with variability in all
development phases by adequate means.

In this paper, we concentrate on managing variability for
the model-based development of variant-rich vehicle func-
tions in Matlab/Simulink [32]. Simulink allows modeling
a dynamic system using block diagrams. Blocks may be
hierarchical decomposed using subsystem blocks to model
layered architectures of vehicle functions and may be con-
nected to model inter-block communication. Behavior is ei-
ther created by composing atomic blocks that, e.g., realize
mathematical functions, by composing hierarchical blocks,
or by modeling state charts in Stateflow [33].

While variability modeling on the requirements level with
feature models [17] is well understood, the representation
of different functional variants in the model-based develop-
ment using Matlab/Simulink is still problematic. The reason
is that there are no first-class variability modeling concepts
in Matlab/Simulink so far. Instead, an annotative variabil-
ity modeling approach [30] is used where a model contains
all Simulink blocks that may be contained in any variant
such that it is also called 150%-model. The selection of
blocks for different variants is realized by an encoding with
model elements that are actually to be used for modeling
functionality. For instance, switch-blocks or if-action-blocks
which are intended to capture the selection of functionality
at runtime are used for the modeling of variants. The con-
ditions of the switch- or if-action block are identified with
a product feature and can be set externally by assigning a
value to a constant which corresponds to the selection of a
variant. Fig. 1 depicts an example for variability encoding
using if-action blocks based on a braking system. Variable
block BASE is set externally and is forwarded to an if block.
If BASE is selected (u1 == 1), then if-action block Pres-
sureCalculator is selected that provides basic function-
ality by calculating the brake pressure for each wheel based
on a brake signal. If BASE is not selected, if-action block
ABS is used that also takes the speed of each wheel as in-
put to additionally prevent wheels from blocking during a
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Figure 1: Variability Encoding in Current Practice

slowing-down process. Outgoing ports are restricted to re-
ceive signals from one receiver exclusively, hence the outputs
of PressureCalculator and ABS have to be merged by
Merge blocks.

This approach to encode variability by functional blocks
leads to a significant increase in model complexity, since
different functional variants are encoded in the same 150%-
model. Additionally, descriptions of functionality and vari-
ability are contained in the same model violating the princi-
ple of separation of concerns. In these models, the developer
can no longer concentrate on designing the functionality, but
the modeling is bound to the representation of functionality.
For complex functionality with many variants, the result-
ing model easily becomes very large and difficult to debug.
Particular problems arise when variants require changes in
several places of a model or on different hierarchical lay-
ers. This leads to a variability encoding that is distributed
all over the model such that requirements of specific variants
can barely be traced back to the variable parts of the model.

To counter these problems, our goal is to extend Mat-
lab/Simulink with an explicit first-class variability model-
ing concept that support modular and hierarchical variabil-
ity modeling for dealing with large and complex variant-
rich systems. In particular, we aim at an integration of
this approach into the existing development processes and
tool infrastructure within Matlab/Simulink. To achieve this
goal, we extend Matlab/Simulink by the concept of delta
modeling [3]. Delta modeling is a flexible transformational
approach for modular modeling of variability. It has been
successfully applied to class diagrams [23], architecture de-
scription languages [9, 8], or programing languages [24, 26].
The main idea of delta modeling is to describe a set of vari-
able systems by a designated core model and a set of deltas
that specify modifications to the core system to obtain other
product variants. A particular system variant is obtained
automatically by applying a set of deltas in a specific order
to the core system. The delta modeling approach allows en-
capsulating variability within deltas that are first-class vari-
ability modeling elements.

In this paper, we present a delta modeling extension for

Simulink, which we call Delta Simulink. Our contributions
are the following: Delta Simulink is the first delta modeling
approach using a graphical interface while previous delta
modeling approach use textual languages. It is fully in-
tegrated in Simulink allowing to modify, create and apply
deltas directly from the graphical user interface. It is imple-
mented based on the tool chain for delta modeling for block-
oriented functional architectures in ∆-MontiArc [9, 8]. The
applicability is demonstrated by the example of a product
line of braking systems.

The paper is structured as follows: In Sect. 2, we describe
the concepts Delta Simulink, and in Sect. 3, its prototypical
realization. Sect. 4 illustrates Delta Simulink with an exam-
ple. Sect. 5 discusses the applicability of Delta Simulink in
industrial practice. Sect. 6 reviews related work and Sect. 7
concludes this paper.

2. DELTA SIMULINK
In order to obtain a delta modeling extension in Simulink,

called Delta Simulink, we have to define the modeling lan-
guage for the core model, the possible set of delta operations,
the language for the application order constraints, the vari-
ant selection and the variant generation process.

Core Models. Core models are defined using plain
Simulink models. Our prototype of Delta Simulink restricts
the set of supported modeling elements to subsystem blocks,
model blocks, connections, inport, and outport blocks.
Subsystem blocks hierarchically decompose a system. Model
blocks include a referenced model into the current model.
The interface of all block types is given by in- and outports.
Signal flows are modeled using connections between ports.
An example for a valid core model is give in Fig. 2. It depicts
a model of a braking system component. The component
receives a brake command on its port brake. This signal
is forwarded to the model block brakefunction that ref-
erences the model PressureCalculator. The contained
block calculates the brake pressure for each wheel and emits
this results via its ports brakePressure1 . . .brakePres-
sure4. These results are forwarded to the outgoing ports
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Figure 2: Simulink Model of Core Braking System
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Figure 3: Delta Simulink Meta Model

of the braking system. The model corresponds to the basic
braking system variant contained in Fig. 1.

Delta Operations. To specify deltas, language con-
structs are needed to define delta operations on the afore-
mentioned model elements. The syntactical structure of
deltas in Delta Simulink is given by the meta-model depicted
in Fig. 3. Deltas are defined in their own Simulink model file
(DeltaSLModel) that contains at least one ModifyBlock
at the top layer that references the context that should be
modified. A Context corresponds to either a model or
a subsystem block and may be hierarchically decomposed
itself. This way subsystems contained in a model can be
modified. In addition, a delta may be associated with an
Application Order Constraint (AOC) that is used to
explicitly model inter-delta dependencies. In the majority of
cases this is needed if deltas modify the same (core) model el-
ements or product features realized by deltas depend on each
other. For example, a delta for adding a brake function with-
out ABS and a delta for adding a brake function with ABS
are mutually exclusive (if it should not be possible to switch
ABS on and off). So both deltas need the constraint that
they cannot be applied after the other one. Modifications
of the context are specified by DeltaOperations including
Add-, Remove-, Replace-, and ModifyBlocks.

Table 1 contains an overview of the delta operations that
are available in Delta Simulink and the model elements on
which they can be applied. All model elements supported
by our prototype may be added or removed from the enclos-
ing block. Additional modification operations are available

Operation Affected elements

add
model references, subsystems,
ports, connections

remove
model references, subsystems,
ports, connections

modify models, subsystems

replace model references, subsystems

Table 1: Overview of Delta Operations

for hierarchically decomposed elements, i.e., model reference
blocks and subsystem blocks. A modify operator allows al-
tering the internal structure of these blocks by defining a
set of delta operations for changing the contained block el-
ements. We also introduce a replace operator for hierar-
chically decomposed elements. This operator substitutes a
block bl with another block newBl that has a compatible
interface. The interface of newBL is compatible if newBl
has at least the same incoming and outgoing ports. By the
replace operator, all connections from/to bl are removed, bl
itself is removed, a block newBl is created, and in addition
all previously existing connections are created such that now
newBl is connected instead of bl.

Concrete Delta Syntax. Delta operations are specified
using a custom Simulink context menu. If a model at the top
level should be modified, the name of the respective model
block has to start with modify model followed by the
model’s name. If a subsystem should be modified, the name
of the respective subsystem block has to start with modify
followed by the subsystem’s name. Modify blocks hierarchi-
cally contain DeltaOperations that transform elements
of the associated context. As shown in the meta model
(cf. Fig. 3), the delta operations can be Add-, Remove-,
Replace-, and ModifyBlocks. A block or line that is
added is a delta is highlighted green. If it is removed, it is
highlighted in red.

A ReplaceBlock is represented by a subsystem or model
reference block with an orange outline, depending on the
model element that should substitute the target block. The
name of a replace block consists of several parts. After the
keyword replace the element to be replaced is referenced
by its name. Then, the keyword with is followed by the
substitute, that may be either a single block name if the
substitute is a subsystem, or a model name and a block
name if the substitute is a model.

An example of a delta in Delta Simulink that adds anti-
lock braking functionality to the braking system is depicted
in Fig. 4. The top level of the delta DABS is given on the
left side. The depicted modify block defines the context of
the contained delta operations. Hence, all contained op-
erations affect the model BrakingSystem. The associated
AOC states that delta DTW_post must not be applied before
the modeled delta, because otherwise changes performed by
DTW_post (cf. Fig. 9) would be reverted. In contrast to the
meta-model, the AOC is bound to the modify block instead
of to the delta itself. This is due to technical limitations of
Simulink which does not allow to attach a constraint to the
model itself. As a delta may contain more than one modify
model block on the top level, it is possible to add more then
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Figure 4: Delta for ABS Functionality

one AOC to a delta. In this case, all AOCs are combined to
a single AOC using a logical AND operation. The delta op-
erations in the right part adds the ports wheelSpeed1 . . .
wheelSpeed4 to model BrakingSystem and replaces the
contained block brakefunction with a model reference
block that references model ABS and has the same block
name.

Application Conditions. Delta operations must fulfill
a number of application conditions to be applicable in a
product generation process:

1. If an element eadd, i.e., a block, ports or a connection,
is to be added, there must not exist another element e
with the same name in the current context.

2. Connectors may only be added, if (a) source and tar-
get exist, and (b) the target is not already a target of
another connection.

3. Ports of subsystem blocks may only be removed, if they
are unconnected.

4. If an element erem is to be removed, erem has to exist in
the current context. As a special case, a weak remove
is not rejected, if erem does not exist. A weak remove
is useful to ensure that element erem does not exist
after applying a delta.

5. For modify blocks, we require the following:

(a) The context c of a modify block at the top level
of a delta always has to be a model.

(b) The context c of a modify block at lower levels of
a delta always has to be a subsystem.

(c) The context c of a modify block has to be valid.
If c refers a model, this model has to exist. If
c refers a subsystem sub, sub has to exist in the
parent context c.parent of c (c.f. Fig. 3).

6. For an operation ”replace bl with (modName) newBl”,
we require:

(a) The block bl that is to be replaced must exist in
the current context.

DABS_BrakingSystem.mdl

Figure 5: Braking System with ABS

(b) There must not exist another element named new-
Bl in the current context after removing bl.

(c) A model named modName must exist, if the sub-
stitute is a model block.

(d) The port interface of bl and newBl have to be
compatible.

Variant Selection and Generation. A product vari-
ant is defined by a set of deltas that have to be applied
to the core to generate this product variant. The genera-
tion process takes this set of selected deltas, called product
configuration, as input and computes the order in which
the selected deltas have to be applied by interpreting the
application order constraints. Then the deltas are applied
stepwise in the computed order to the core model. When a
delta is applied, the contained deltas operations transform
the core or the intermediate model. As an example, the
product variant ”BrakingSystem with ABS” is defined by
the product configuration {DABS}, containing delta DABS
as single element. The generated product variant that is
created by applying the delta DABS to the core model is
depicted in Fig. 5.

3. PROTOTYPICAL REALIZATION
In this section, we describe the prototypical realization

of Delta Simulink as an extension to Matlab/Simulink and
explain how a new Simulink variant model is created. The
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prototypical implementation of Delta Simulink is based on
the existing language implementation ∆-MontiArc which we
have developed in previous work [9, 8, 10]. ∆-MontiArc
implements the concept of delta modeling for the archi-
tecture description language MontiArc [12] that uses con-
cepts similar to Simulink block diagrams. However, ∆-Mon-
tiArc is a purely textual, prototypical language, whereas
Delta Simulink is the first graphical delta modeling language
and integrated into the industrial-scale development envi-
ronment Matlab/Simulink.

Fig. 6 shows the architecture of the prototypical imple-
mentation of Delta Simulink. Simulink core models and
delta models are both created graphically within Simulink
following the concepts described in Sect. 2. Core models are
defined as standard Simulink models. Deltas are specified
within an own delta modeling mode in Simulink, and each
delta is stored in a separate file.

The switching between the two modes is done via the
Tools menu. In the normal mode colors can be used with-
out limitations, while in the delta modeling mode elements
are highlighted as shown in Fig. 7. More precisely, blocks
that should be modified are marked as modify and are high-
lighted in blue. Blocks marked for an add operation are
highlighted in green, while blocks highlighted in red corre-
spond to remove operations. Blocks highlighted in orange
represent replace operations. The delta modeling mode is
implemented using the sl customize API of Simulink.

Using the Matlab Control Library [31], Simulink model
construction commands can be sent to Matlab in order to
read Simulink core models and the delta models. In this
way, Simulink core model elements are transformed to their
corresponding MontiArc elements and Simulink deltas are
translated to ∆-MontiArc deltas.

To specify which deltas are required to generate a par-
ticular product variant, a configuration file with the set of
required deltas has to be provided. The configuration file
can be created automatically via a tool menu in Simulink.
With the (transformed) MontiArc core models, the ∆-Mon-
tiArc deltas, each stored in separate file, and the ∆-Mon-
tiArc configuration file as input, ∆-MontiArc determines
the application order and handles conflicts and model de-
pendencies automatically. It does this by using application
order constraints (AOC) that define which deltas have to
be applied before or must not be applied before the respec-
tive delta. In addition ∆-MontiArc also checks correctness
of generated models according to the context conditions de-
scribed in [12]. Finally, the generated variant is transformed
back to a Simulink model by an import component using the
Matlab Control Library.

Figure 7: Delta modeling mode in Simulink.
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4. CASE EXAMPLE
To evaluate the applicability of Delta Simulink, we re-

alized a braking system product line. An overview of the
product variants and the corresponding set of deltas is given
in Fig. 8. The product line consists of seven product vari-
ants. Starting from a basic braking system that corresponds
to the core model (see Fig. 2), further product variants are
derived by adding and combining additional functionality
like antilocking (ABS), traction control (TC), electronic sta-
bility control (ESC), or four wheel drive (FWD). In addition,
variants for motorbikes (TW) with and without ABS are in-
cluded. Fig. 8 also contains the delta structure tree with the
deltas and their application order to generate the different
product variants. If, for example, product ”BS with ABS
and TC” should be generated, the deltas DABS, DTC_pre,
and DTC have to be applied to the core model.

The number of deltas is not necessarily equal to the num-
ber of features, since additional deltas may have to be ap-
plied before or after the delta that realizes the actual fea-
ture. In our case study, we denote these deltas by a suffix
_pre or _post. Usually, these deltas are necessary if more
than one delta operation affects a specific model element.
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Figure 9: Deltas for Two Wheel Braking Systems

In a graphical modeling language, such as Simulink, an or-
dering of these modification operations cannot be specified
using the graphical formalism, but the ordering is necessary
to generate a valid product. In this case, the modification
operations are split into several deltas that are explicitly or-
dered by their application order constraints. In addition,
some restrictions in Simulink itself prevent capturing delta
operations that affect the same model element in a single
delta. For example, connections have to be removed before
a model block can be rewired, because a port can exclusively
be a target of one connection. So, removing a connection to
a port and adding a new connection to the same port in one
single delta is not feasible. In this case, the removal opera-
tion and the addition operation are represented in separate
deltas that are successively applied.

An example for such a sequence of deltas is given in Fig. 9.
The three deltas DTW_pre, DTW, and DTW_post generate
the braking system for motor bikes. These deltas can be ap-
plied independent of the application of the delta for the ABS
feature. The first delta DTW_pre adds an incoming port
brakeRear to the Simulink models PressureCalculator
and ABS. The content of the modify model block defined in
delta DTW that transforms model BrakingSystem is de-
picted in the middle of Fig 9. It removes the incoming
ports wheelSpeed2 and wheelSpeed4, the outgoing ports
brakePressure2 and brakePressure4 as well as the
connections to and from block brakefunction. Here, a
weak remove is used, because wheelSpeed2 and wheel-
Speed4 only exist, if delta DABS has been applied before
(see Fig 4). In addition, an incoming port brakeRear and
its connection to port brakeRear of block brakefunction
is added. It is necessary to split up DTW_pre and DTW,
because according to the application conditions given in
Sect. 2 the target port brakeRear of the connection added

in DTW has to exist. Finally, delta DTW_post removes the
unused ports of the PressureCalculator and ABS mod-
els, since according to the application conditions these ports
may only be removed after the connections to and from them
have been removed. The result of configuration {DTW pre,
DTW, DTW post} that defines product ”Basic Bike BS”
is shown in Fig. 10. It now calculates brake signals based
on front and rear brake signals for two wheels only.

5. DISCUSSION
Delta Simulink allows representing variability as first-class

modeling elements by delta operations which are completely
integrated within the Simulink modeling environment. Vari-
ability is encapsulated in delta models while functionality
is developed in standard Simulink models supporting the
separation of concerns principle. The delta operations are
completely integrated within the hierarchy of Simulink mod-
els such that hierarchical modeling is supported. As Delta
Simulink is based on the standard Simulink language, model
reuse techniques such as model references are supported as
well. Deltas are modeled modularly with explicitly defined
dependencies to other delta models. This way distributed
development of distinct product variants is supported. Delta
modeling inherently supports the automated generation of
specific product variants requiring no manual intervention.

The prototypical implementation demonstrates that Delta
Simulink can be integrated into the existing Simulink devel-
opment tool chain. It can be combined with currently used
configuration tools which can be used to derive the delta se-
lection for a specific product variant automatically. As Delta
Simulink product variants are standard Simulink models,
code can be generated using the standard code generators.

However, the prototypical realization needs to be improved
in order to facilitate the usage of Delta Simulink in industrial
practice. Because of the graphical modeling and the restric-
tions of the Simulink editor (e.g., not allowing two ingoing
connections for the same port which would be inconsistent),
some modification operations have to be split up into sev-
eral deltas to be applied in a sequence. If the Simulink editor
can be extended to allow also inconsistent Simulink models
in deltas, this problem can be alleviated. In the current ver-
sion of the prototype, it is assumed that the deltas are spec-
ified directly in the Simulink editor by highlighting model
elements. In order to simplify the specification of deltas in
industrial practice, we consider two possibilities which can
be implemented in future versions of Delta Simulink: first,
to derive a delta from the differences between two Simulink
models; and second, to record a delta from the modifications
applied to a Simulink model within the editor.

6. RELATED WORK
For modeling variability of block-oriented architectures,

there basically exist four different variability modeling ap-
proaches (which can be combined partially): annotative,
compositional, hierarchical and transformational variability
modeling.

Annotative approaches represent all product variants in
one 150%-model. By removing parts of the model, concrete
product models can be derived. Variant annotations define
these parts with the help of, e.g. UML stereotypes [35, 7]
or presence conditions [4]. Orthogonal variability models
(OVM) [22] separate the representation of the model vari-
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Figure 10: Basic Bike Braking System

ability and the artifact model. This idea is specialized for
architectural models in the variability modeling language
(VML) [19]. Opposed to our approach, annotative vari-
ability modeling provides no first-class variability modeling
concepts such that it hardly scales for large and complex
variant-rich systems. Because variability and functionality
are mixed in the same model, reuse of common functionality
often is not possible. Variants are created using clone-and-
own practices.

Compositional approaches associate model fragments with
product features that are composed for a particular feature
configuration. In [5], product variants are defined by merg-
ing model fragments. In [14, 30, 20], aspect-oriented compo-
sition is used to build the models whereas feature-oriented
model-driven development (FOMDD) [27] combines feature-
oriented programming (FOP) with model-driven engineer-
ing. Model superposition [1] is another way for composing
model fragments. Different from delta modeling, composi-
tional variability modeling is restricted to the addition of
elements to a model such that it is always required to start
with the smallest possible core models. In contrast, deltas
can also remove model elements which allows to start from
any existing core model.

Hierarchical variability modeling combines the component
hierarchy in the architecture with the component variabil-
ity. In [21], partially defined components are extended with
variation points and associated variants where variants can
be cross- or non-cross-cutting architectural concerns that
are composed with the common component architecture by
weaving mechanisms. The extended components are called
plastic partial components. In the Koala component model
[28, 29], switch components serve as variation points which
allow the selection of different subcomponent variants. In [11],
the architectural description language MontiArc [12] is ex-
tended by hierarchical variability modeling concepts similar
to the Koala approach targeting at the architectural design
phase, where as Koala is mainly tailored for the implemen-
tation phase. Hierarchical variability modeling concepts re-
quire appropriate tool support to deal with their inherent
complexity.

Transformational approaches employ model transforma-
tions for capturing product variability. The common vari-
ability language (CVL) [13] represents the variability of a
base model by rules describing how modeling elements of
the base model have to be substituted in order to obtain
a particular product model. In [16], graph transformation
rules capture the variability of a single kernel model compris-
ing all commonality. For describing variability in software
archtictecture often a combination of the above approaches
are used. In [15], architectural variability is represented by

change sets containing additions and removals of compo-
nents and component connections that are applied to a base
line architecture.

The concept of delta modeling [3, 24, 10] that is applied to
represent variability in Delta Simulink can also be classified
as a combination of a compositional, hierarchical and trans-
formational approach. The deltas are defined in separate
models and can transform also blocks on lower hierarchical
levels. The core model is transformed to a new variant by
applying a set of deltas. Delta modeling allows modular, yet
flexible variability modeling in an intuitive way, such that
we decided to base Delta Simulink on it.

With respect to Matlab/Simulink, we have so far only ob-
served variability modeling approaches using 150%-models.
[34] presents a decision-oriented approach for modeling vari-
ability in a prototypical Matlab clone. Common functional-
ity has to be modeled first and is then extended with explicit
variation points within the same model. A variant is created
by answering predefined questions which resolve the varia-
tion points to given variants. In contrast, in Delta Simulink,
the specification of variation points in the core model is not
needed due to the use of deltas. In [2, 6], variation points
containing variability information for Simulink models and
variability mechanisms determining how variability is re-
solved are distinguished. For the latter, resolution blocks
are used, e.g., model variant and enabled subsystem blocks.
Depending on the input signal of a resolution block, a spe-
cific variant is chosen. The input signal is regulated by so
called control blocks, i.e., constant blocks, referencing the
variant parameter and the value zero (variant not selected)
or one (variant selected). The variant blocks have a reference
to the corresponding variation point. Hence, for a specific
variation point, several variant mechanisms can exist which
can be accessed through a generic interface. In contrast to
our approach, in [2, 6] variability and functional aspects are
represented in the same model.

7. CONCLUSION AND FUTURE WORK
In this paper, we apply the concept of delta modeling [3]

to Matlab/Simulink in order to obtain a modular, yet flexi-
ble variability modeling concept for Simulink models. Delta
Simulink provides first-class language constructs to repre-
sent variability. This provides a clear separation between
modeling functionality and variability and alleviates the com-
plexity of modeling complex variant-rich functionalities with
Matlab/Simulink. It is the first graphical delta modeling
language and integrated into the industrial-scale model-based
development environment Simulink. For future work, we
aim at extending the language constructs of Delta Simulink
by computation blocks and by fine-grained delta operations
for busses. Along the lines of [18], we will also extend delta
modeling to Stateflow models within Simulink block dia-
grams. We plan to develope a consistency checker (following
[25]) and a tool for managing and debugging deltas. We also
intent to evaluate our prototype in industrial practice.
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