
GloSE-Lab: Teaching Global Software Engineering

Constanze Deiters†, Christoph Herrmann‡, Roland Hildebrandt‡, Eric Knauss∗, Marco Kuhrmann§,
Andreas Rausch†, Bernhard Rumpe‡, and Kurt Schneider∗

∗ Software Engineering Group, Leibniz Universität Hannover, Germany
Email: {eric.knauss,kurt.schneider}@inf.uni-hannover.de

† Department of Informatics – Software Systems Engineering, Clausthal University of Technology, Germany
Email:{constanze.deiters,andreas.rausch}@tu-clausthal.de
‡ Software Engineering, RWTH Aachen University, Germany

Web: http://www.se-rwth.de
§ Technische Universität München – Institut für Informatik I4, D-85748 Garching, Germany

Email: kuhrmann@in.tum.de

Abstract—In practice, more and more software development
projects are distributed, ranging from partly distributed teams
to global projects with each stakeholder located differently.
Teaching actual practice in software engineering at university
needs a proper mixture of theory and practice. But setting
up practical exercises for global software engineering is hard,
because students have to cooperate across different locations
and situations reflecting the teaching intentions have to be
provoked explicitly.

This paper presents the concepts behind our common teach-
ing environment for global software engineering – the GloSE-
Lab. It describes the experiences on setting up a distributed
course and reports our teaching intentions based on each
universities main focus: project management, requirements
engineering & quality assurance, architecture, and implemen-
tation. Furthermore, we discuss our setup – a stage-gate
process, where each location takes care of a different phase
– and report occurred problems and how they supported or
interfered with our teaching intentions.

Keywords-global software engineering; teaching; GloSE-Lab

I. INTRODUCTION

Distributed project settings are the typical case in software
development today. This results from the fact that in addition
to the inherent complexity of software development, there is
a huge cost pressure, which increases even further as systems
grow. To stay competitive, software development companies
make use of price differentials and shift development tasks
to low-wage countries. Complex engineering tasks, such as
requirements engineering or architecture, typically stay in
high-wage countries, e.g., USA or Germany.

Although the understanding of Global Software Develop-
ment has grown in the recent years, it is not yet a mature
discipline [1], [2], [3]. According to [4] 68% of GSD-
based teaching/training experiences are presented as case
studies, mainly presented by universities. An example for
courses/lectures is the Global Studio Project [5]. Accord-
ingly most curricula in Software Engineering (SE) at univer-
sities do not concentrate on such distributed project settings.
Instead, they usually contain methodological modules and

selected techniques with regards to requirements engineer-
ing, architecture, or development techniques. In addition,
project management is often covered only in the context
of project estimation or planning. Practical courses focus
mostly on small groups that work on-site and on synthetic
examples. As a consequence, the typical SE curriculum
does not respect the changes that occurred in software
development throughout the last decade and their impacts
on the SE disciplines. To highlight a few examples:

• The management has to respect multi-cultural settings.
• Communication has to be managed across time zones.
• Communication is bound to a language other than the

native one.
• Increased complexity of project planning and estima-

tion has to be considered, resulting from an overhead
for negotiations and online meetings.

• Architecture needs to respect the system boundaries as
well as the geographical and cultural boundaries given
by team distribution.

In the fall term of 2010/2011 we coordinated a practical
course among our four universities in Aachen, Clausthal,
Hanover, and Munich, to provide students with a distributed
project setting. The students should learn to work in a
distributed environment and make experiences related to
asynchronous work, dependencies on other teams without
direct access, and communication in a language other than
their native one.

Problem Statement: This paper covers the challenges of
establishing and coordinating a distributed course. The first
of the two core challenges is to create a setting that suits the
teaching requirements of each university, while respecting
the collaboration with the others. This requires the course
to be designed in a fashion that allows for distribution of
lecture aspects, since each participating university has its
own focus. The corresponding student teams need to fulfill
their individual tasks, while the whole distributed project
also has a commonly defined goal. The second challenge is

[DHH+11] C. Deiters, C. Herrmann, R. Hildebrandt, E. Knauss, M. Kuhrmann, A. Rausch, B. Rumpe, K. Schneider 
GloSE-Lab: Teaching Global Software Engineering 
In: Proceedings of the 6th IEEE International Conference on Global Software Engineering (ICGSE ‚11), 
IEEE Computer Society, August 2011. 
www.se-rwth.de/publications



to define a collaboration style that puts the single projects
together into an integrated project. Infrastructure is a key
aspect to do so.

Contribution: In this paper we describe at first the
chosen course setting. We describe how the overall project
objective has been defined and how the assignment of
responsibilities and tasks was done. Based on the setup
we describe our experiences from that course. We outline
problems and lessons learned, and derive concrete measures
to improve the course format.

Outline: In section II we describe the organizational
structure and the technical infrastructure of the GloSE-Lab.
We also introduce the system the students have developed.
Section III highlights the most relevant problems we ob-
served during the project and also the solutions we applied
to them. Furthermore, we discuss our experiences in general
and the project as a whole.

II. COURSE SETTING

First, we describe the setting of the distributed course.
Table I gives an overview of the participating universities,
the number of students at each site, and the tasks the students
focused on.

Table I
UNIVERSITIES WITH THEIR NUMBER OF STUDENTS AND TASKS.

Label Name S’s Task

RWTH RWTH Aachen University 13 Development
TUC Clausthal University of Technology 4 Architecture
LUH Leibniz Universität Hannover 9 Requirements
TUM Technische Universität München 3 Proj. Mgmnt.

A. Teams & Responsibilities

Each participating university either had a practical SE
course in place or created a new one. The single courses
correspond to the universities main focus as well as to the SE
core disciplines that are required to carry out a software de-
velopment project. To form the intended distributed course,
the single courses were integrated into a distributed setting
for our GloSE-Lab. Figure 1 shows the concrete assignment
of responsibilities for the considered course. Each course
was thereby advised by members of the academic staff.
Additionally, each student team chose a team leader through
whom most of the communication between the different
teams should occur.

B. Technical Infrastructure

To support the student teams of the different universities
a technical infrastructure for communication, coordination,
and development was provided. This infrastructure was
(roughly) determined before the course started.

For communication among the students we provided mail-
ing lists. One list was set up for all team coordinators, one

TUM 

RWTH 

Development 

Requirements 

Architecture 

Project 
Management 

Management 
Board 

Research Staff 

Team Leader/ 
Manager 

Team Member 
Email Skype, Chat, 

Telephone 

LUH 

TUC 

Figure 1. Course setting for the GloSE-Lab: Four teams represent a SE
discipline each; a Management Board coordinates the project at a whole.

for all students, and one for the academic staff. Weekly
videoconferences were held using Skype or Adobe Connect
Pro Meeting. As infrastructure for development a platform
called SSELab was used. This is a software engineering
platform developed at the RWTH Aachen University, which
provides basic project hosting services as well as advanced
software engineering services. From the range of tools
integrated in SSELab we chose Subversion as version control
system, Trac as project-management and bug-tracking tool,
and a wiki for documentation purposes. For the implemen-
tation task, the students in Aachen were offered virtual
developer machines hosted on servers of the university’s
computing center. This way, the students were provided
with a unified development environment with all necessary
tools and examples already installed and configured. We did
not introduce special tools for global software engineering.
The additional training seemed to be too much overhead,
especially regarding the limited experience of our students.

C. The Software Development Project

In order to motivate the students, we planned to let them
develop a system which most of them are in touch with
every day: A social network. This particular network should
provide support for distributed SE projects and combine
some of the features of Facebook and Twitter. Users of the
network should be able to maintain their own profile, e.g.,
with a picture, their skills, location, or organization they are
associated with. Users should be able to add other users as
contacts and join project groups to organize the work in their
projects. They also should receive status updates that were
published by their contacts or within their associated groups.

To have a more realistic setting the requirements engineer-



ing team elicitated the requirements for the system from a
customer. The customer was represented by a member of the
academic staff from the University of Hanover, who was not
involved in the course in any other way.

III. PROBLEMS, EXPERIENCES, AND SOLUTIONS

The goal of the GloSE-Lab is to let students experience
(and solve) real world problems in distributed software
projects. Therefore, we wanted some challenges to occur.
Of course, there were other problems that did not support
the teaching experience. A distributed software engineering
course has to face the risk that too many problems make the
course a frustrating experience with only marginal learning
effects. In this section, we share our experiences and discuss
strategies our students applied to solve their challenges.
Afterwards, we discuss the challenges from a teaching
point of view. We show how we managed the risks, which
unintentional challenges occurred, and give suggestions how
similar courses can avoid these pitfalls.

A. Basic Facts

As Table I shows, 29 students participated in the GloSE-
Lab. The lab was scheduled all in all for 16 weeks. The
lecture period of each involved university started at different
dates, which proved to be a major challenge to our schedule.
During this time, 10 weekly video conferences were carried
out by all universities, and around 100 emails were sent
via the global mailing lists. Interestingly, the students spend
more effort for internal communication (ca. 400 emails and
one hour communication via Skype in Aachen, ca. 300
emails in Hanover, and ca. 150 emails in munich). This
was caused by the fact that the local teams also worked
in distributed sub-groups.

While the issue management system Trac was offered to
both the global project management and the team managers
in Aachen, the team managers in Aachen employed it in a
greater extend. Overall they issued 109 Trac tickets during
the implementation phase of their course. In comparison, the
global Trac contained 24 tickets for all teams together.

B. Project Progression

Figure 2 displays a trend analysis of the GloSE-Lab
milestones. For each milestone of the stage-gate process
– i.e., requirements, architecture, first prototype, and final
delivery – the expected date (y-axis) is recorded at each
reporting date (x-axis). Some interesting facts/effects we
observed are also visible in this figure:

• The “waterfallish” stage-gate approach is visible by the
initial set of milestone dates (i.e. the y-axis).

• In the beginning, the students rescheduled several
times. E.g., the delivery of the requirement specification
was delayed in small dozes several times in a row.

• After the first adjustment in November, the architecture
team did not reschedule their delivery until shortly

Figure 2. Trend analysis of the GloSE-Lab milestones. No updates where
recorded during the Christmas break (23.12.2010–06.01.2011).

before the milestone was due, but then they were
detached from the overall project.

• The milestone “first prototype” was not planned at the
very beginning of the project, but was introduced when
the architecture was first delayed.

• Noticeable shifts occurred in the middle of the project
(middle of December):

– At this point in time the architecture team started
to be detached from the main development process.

– The first prototype was decided to be used as basis
for the final delivery.

– The final delivery was rescheduled due to the delay
of the prior milestones. As the students had learned
to estimate what they could accomplish in a certain
period of time, they also decided to disregard some
of the specified requirements.

• The product was actually delivered at the date that was
set in December, but – as mentioned – it did not realize
all the specified requirements.

C. Observations, Reasons and Workarounds

In addition to the problems mentioned in section III-B, we
outline more of the observations we made during the GloSE-
Lab. Furthermore, we identify reasons for these problems
and present strategies that we as well as our students
developed to compensate some of these shortcomings.

1) Broken Schedule: The four universities had different
start and end dates of their lecture periods, so that the
available time frame for the course was already narrowed



compared to a traditional non-distributed course. In the
beginning, the students underestimated the necessary effort
– due to missing experiences – and suffered from a “next
week syndrome”. I.e., they promised to finish a certain task
the next week but postponed it again when the delivery was
due. One reason for this was an implicit time table without
strict delivery dates. Another reason was the absence of
consequences for teams that missed deadlines. This can be
attributed to the fact that it was unclear who was responsible
to impose sanctions in such a situation (see also Unclear
Roles). Because of the postponed deliverables the teams that
depended on them became impatient. E.g., the implementa-
tion team increased the pressure on the architecture team.
As a consequence, this made the latter feel insecure and did
not lead to further progress. In the end the implementation
team gave up waiting and started without the deliverable of
the architecture team.

2) Communication Challenges: The teams were chal-
lenged by organizing themselves and communicating inter-
nally with each other, and also by communicating with the
other teams. E.g., they underestimated the communication
overhead and delay. Additionally, the inter-team commu-
nication was further complicated by choosing English as
working language. This choice had to be made as not all
students could speak German. This fact led to reduced
communication between the teams, e.g., especially between
the architecture and the implementation team. To mitigate
the communication situation, the project management team
tried to mediate between the two teams. Overall they did
not succeed, since the progress of a single team was not
clearly visible to the others due to insufficient usage of the
provided communication channels and management tools,
e.g., the Trac system. Closely related to such communication
issues is also the Technology Question problem.

3) Technology Question: Due to a lack of further infor-
mation the requirements team assumed that the customer
would decide which implementation technology to use (the
Play!-Framework). This led to conflicts with the implemen-
tation team which insisted on the technology they were
already trained in (Java EE). This problem arose because the
project manifesto was written before the start of the GloSE-
Lab. Only the latest version clearly stated which technology
(Java EE) should be used. Unfortunately, the ownership of
this document was unclear and nobody took responsibility
to ensure that the most recent version was used by all
students groups. Thus, this version was not available to the
requirements team.

4) Indefinite Project Resources: Whenever the require-
ments team asked the customer to validate the specification,
he added new requirements. Therefore, the number of re-
quirements and derived use cases reached an amount which
could only be implemented partially. The requirements team
was unable to solve this problem they did not perceive
effort estimation as their job. The other teams did not feel

responsible, too. Thus, the distributed team as a whole
was unable to limit the scope of the project. In the end,
the requirements team provided a list with priorities for
the different functional requirements and the customer was
made aware of the limited resources of the project by
the academic staff. In the context of this conflict, another
organizational communication problem surfaced. Because of
unclear escalation paths the requirements team first con-
tacted the project management team and not their advisers
directly. Contacting the responsible persons and solving this
conflict led to a delay. Finally, both the architecture team and
the implementation team made a compromise between two
options: partly implementing as many use cases as possible
or implementing only a few use cases in their entirety.

5) Unclear Management Roles: Unclear defined manage-
ment roles and responsibilities led to some confusion. E.g.,
it was unclear who was responsible for setting deadlines
and who had to enforce these deadlines. Some participants
tacitly thought this task would be assigned to the project
management team. But unfortunately, this issue was not
discussed during the GloSE-Lab, but showed an important
issue: Establishing “real” project management requires the
ability to give orders and to initiate sanctions. We are
currently unaware, how to setup a student project with that
mass of “power”.

6) Knowledge Deficit: Practical courses like the GloSE-
Lab are substantial for the education of students. Often such
courses represent their biggest projects so far for most of
the students. Hence, the teams did not have much prior
experience within their domain. Because of the phase-based
approach, the implementation team could use the timeslot
before the beginning of the implementation task to get
trained in Java EE. The architecture team did not have
such a timeslot they could specifically use for training, and
additionally they suffered from the least prior experiences.
Therefore, necessary training during the beginning of the
GloSE-Lab delayed their start of the actual work and the
delivery of results. Finally, they were detached from the
project (see Lost Team).

7) Lost Team: Around the end of December the architec-
ture team was left behind. There were different reasons for
this. Beside the language barrier their knowledge deficit was
considerable and they were not able to compensate this in a
short period of time. Their detachment from the other teams
frustrated not only themselves but also the other teams,
like the project management, which vainly tried to reach
them. To finish the project with results, the implementation
team extended their prototypes to final deliverables without
an architecture specification. Meanwhile, the architecture
team worked out an architecture specification which was
not included into the cooperative work.

8) Unequal Workload: Over the time the workload of
different teams was unequally distributed. The requirements
team started with the requirement specification. But until



they were finished, the other teams could not start to work.
And afterwards, the requirements team had no more tasks.
To mitigate this effect, we introduced prototyping phases for
the requirements team and the implementation team.

D. The students’ point of view

Due to different motivations and perspective, the point of
view of the participating students might differ radically from
our point of view as advisers (as described before). There-
fore, we also asked the students to share their observations
and opinions. This information was obtained by question-
naires, from intermediate and final presentations given by
the different students groups, and during project debriefing
sessions. Altogether, their answers match our observations
and opinions. Ranging from scheduling issues (“Set real-
istic deadlines that must be held by the teams.”, “Give
to some teams some ahead time.”, “Illness and unforeseen
difficulties led to delays because no time buffer existed.”) to
the amount of specified requirements (“Too many require-
ments.”) they also addressed communication issues with
partially different opinions (“Drawbacks: Video conferences
were only for status updates; Email correspondence did
not include all interested parties; Misunderstanding and
misinterpretations”,“[I] think that the weekly conference
calls were reasonable and very good.”, ”Due to English
as project language solving questions took more time.“).
Also proposals for further projects of this kind were made,
like “The project management should work closer with the
supervisors.”. Beyond that some comments regarding their
individual experiences are mentionable: “[It was positive to]
practice negotiation and agreement settlement” and “I felt
really proud to say to my colleges that I was going to have
a teleconference that day with other Universities (I mean
every Thursday) [. . . ]: it’s impressing, isn’t it?”.

E. Discussion

A distributed course raises more and partly different
problems than an undistributed course. Beside their core
tasks the students were also challenged by a lot of problems
referring to communication issues and organizational coordi-
nation. Thus, they could experience how social aspects affect
communication. A foreign language as project language can
be a chance to extend their language skills, but it can also
hinder communication and threaten the project success.

Furthermore, unforeseen problems forced the students to
adjust their work and schedule. Already during the first
weeks of the course the students gained experiences and
made necessary adjustments. They could work out the ad-
justments on their own and could observe the impact of their
decisions in the following weeks.

The success of such a course stands or falls by the
knowledge level of the students (see: Lost Team). To avoid
this drawback, concrete prerequisites (e.g., project manage-
ment, language, technologies and methodologies) should be

defined for future courses and if necessary, local training
should be performed before the global kick-off.

Due to different locations some basic facts could vary
and need to be considered adequately. E.g., our universities
have different start and end dates of the lecture periods,
which we did not realize until the project already started.
This point also uncovers the need for an improvement of
the communication between the academic staff.

Lessons Learned: Summing up our experiences we
strongly suggest to keep the following issues in mind when
executing similar distributed courses:

• Clear Schedule.
• Choice of Technology.
• Clear roles, responsibilities, and escalation paths.
• Knowledge prerequisites.

IV. CONCLUSION

In this paper we presented our experiences of a distributed
practical course that displayed typical problems of global
software engineering and also approaches for overcoming
them. Motivated by the positive and negative feedback of
all participants, we are planning on additional GloSE-Labs.
For the future, we plan to further extend the course format
and invite other universities to the GloSE-Lab. Based on our
experiences we are now ready to invite universities from
other countries or even from other time zones to create
a setting that matches much more the industrial reality.
For today, we hope that others will already benefit from
our experiences and improvements we suggest. Most of
these suggestions relate to communication and coordination
between the students, but also between the academic staff.
In the end, the organization of a course for global software
engineering is also a distributed project.

REFERENCES

[1] D. Damian and D. Moitra, “Guest editors’ introduction: Global
software development: How far have we come?” IEEE Soft-
ware, vol. 23, 2006.

[2] J. D. Herbsleb, “Global software engineering: The future
of socio-technical coordination,” in 2007 Future of Software
Engineering, 2007.

[3] C. Bartelt, M. Broy, C. Herrmann, E. Knauss, M. Kuhrmann,
A. Rausch, B. Rumpe, and K. Schneider, “Orchestration of
Global Software Engineering Projects,” in Proceedings of
the Third International Workshop on Tool Support and Re-
quirements Management in Distributed Projects (REMIDI’09),
2009.

[4] M. J. Monasor, A. Vincaino, M. Piattini, and I. Caballero,
“Preparing students and engineers for Global Software Devel-
opment: A Systematic Review,” in International Conference on
Global Software Engineering (ICGSE), 2011.

[5] I. Richardson, A. E. Milewski, P. Keil, and N. Mullick,
“Distributed Development – an Education Perspective on the
Global Studio Project,” in 28th International Conference on
Software Engineering (ICSE), 2006.




