
Generative Software Development

Bernhard Rumpe, Martin Schindler, Steven Völkel, Ingo Weisemöller
Software Engineering

RWTH Aachen University, Germany
http://www.se-rwth.de/

ABSTRACT
Generation of software from modeling languages such as
UML and domain specific languages (DSLs) has become an
important paradigm in software engineering. In this contri-
bution, we present some positions on software development
in a model based, generative manner based on home grown
DSLs as well as the UML. This includes development of
DSLs as well as development of models in these languages
in order to generate executable code, test cases or models in
different languages.

Development of formal DSLs contains concepts of meta-
models or grammars (syntax), context conditions (static anal-
ysis and quality assurance) as well as possibilities to define
the semantics of a language. The growing number and com-
plexity of DSLs is addressed by concepts for the modular
and compositional development of languages and their tools.
Moreover, we introduce approaches to code generation and
model transformation. Finally, we give an overview of the
relevance of DSLs for various steps of software development
processes.

1. INTRODUCTION
Languages are a key concern for software development.

This does not only apply to programming languages for
the implementation, but also to natural languages for re-
quirements specification and documentation, and to model-
ing languages such as UML. In addition to these languages,
domain specific languages (DSLs) have recently become in-
creasingly important to various activities in software devel-
opment processes. In order to develop a formal language
and to integrate it into a software development process, the
following steps need to be performed [1, 7].

First of all, the language has to be defined precisely. This
includes a description of the valid words of the language,
which is determined by its syntax and by context conditions.
These are often described by means of context free gram-
mars, attribute grammars, symbol tables and constraints.
The language definition also includes a description of the

Copyright is held by the author/owner(s).
ICSE ’10, May 2-8, 2010, Cape Town, South Africa
ACM 978-1-60558-719-6/10/05 ...$10.00.

semantics of the language [4]. This is often implemented by
means of model transformations or code generation.

The language can then be used in other software devel-
opment processes. Thus, developers need tools to describe
and transform models in the language, and the process has
to be adopted to the usage of the new language. Moreover,
measures for quality assurance of documents in the language
are required.

In the remainder of this contribution, we give a brief
overview of preliminary considerations about the use of a
DSL, important methods and techniques that are crucial
for the definition of the syntax and context conditions, and
the implementation of generators and transformations. We
also consider modularization concepts for DSL definitions,
quality assurance and the integration of a domain specific
language into software development processes.

2. PRELIMINARIES FOR DSL USAGE
The development of a domain specific language and the

corresponding tools is a software development process itself,
which may be expensive and error-prone. Therefore, the in-
troduction of a DSL is particularly useful in the development
of large and complex products [3]. In smaller development
processes, the improvements in terms of efficiency and soft-
ware quality may not be sufficient to compensate the initial
costs that are caused by the DSL development.

3. SYNTAX AND CONTEXT CONDITIONS
The syntax of a language can be defined a context free

grammar. This includes the concrete syntax, i.e. the ex-
ternal representation of the language to the user, and the
abstract syntax, i.e. the internal representation of the cor-
responding data structures. There are several compiler gen-
erating tools available, which can generate the implemen-
tation of the abstract syntax, parsers, pretty printers and
editors for languages from their grammars [1, 2]. However,
some restrictions for the set of valid words in a language
cannot be defined in such a grammar, because they are con-
text sensitive. Typical examples are validity of identifiers,
type safety or acyclicity of inheritance, package or composi-
tion hierarchies. For these restrictions, additional analyses
are required, which are usually implemented in a constraint
language (inside the grammar) or as an external program
linked against the classes of the abstract syntax.

As an alternative to grammars, metamodels can be used
to define the abstract syntax of a language. As with gram-
mars, we often encounter a combination of metamodels and
constraint languages. In order to define the conrete syntax

[RSVW10] B. Rumpe, M. Schindler, S. Völkel, I. Weisemöller
Generative Software Development
In: Proceedings of the 32nd International Conference on Software Engineering (ICSE 2010),
Volume 2, pp. 473-474 (tutorial summary), Cape Town, South Africa, May 2010.
ACM, 2010.
www.se-rwth.de/publications

of a language, metamodel based tools often rely on editor
frameworks.

4. GENERATORS
Generators are tools that transform models to software.

They can be used to implement the semantic mapping of a
language. We can distinguish betwenn model-to-text trans-
formations, which transform a model to a document in a tex-
tual language, and model-to-model transformations, which
transform it into a model in a different modeling language.
For both kinds of transformations, it is crucial that the tar-
get language has precisely defined semantics. In case of ex-
ecutable models, the target language is often a general pur-
pose language (GPL) such as Java or C++, and the runtime
semantics of the source model are the runtime semantics of
the generated code.

Model-to-Model transformations are formally founded on
graph grammars and graph transformations. They are usu-
ally implemented in dedicated model transformation lan-
guages (which can in turn be considered to be domain spe-
cific languages).

Most model-to-text-transformations are implemented by
means of template languages such as Velocity or Freemarker.
Model transformations can be executed locally on the ma-
chine of a developer, or remote as a transformation service.
Software engineering services for transformations reduce the
technical efforts that are necessary to use a DSL.

5. MODULAR DSL DEFINITIONS
The growing number and complexity of DSLs results in

the necessity to develop new languages efficiently [8]. One
obvious step towards this goal is to reuse existing artifacts
during language development. Inheritance concepts similar
to those known from object oriented programming can also
be applied to grammars or production rules inside gram-
mars. Moreover, it is possible to embed one language into
another, such as known for languages like Java Server Pages,
which embed Java Code into HTML pages [5].

6. QUALITY ASSURANCE
As in all software development processes, quality assur-

ance is important when using domain specific languages. In
contrast to software development with previously existing
languages, quality assurance is not limited to the documents
in the development process of system under development,
but is also required for the development of the DSL itself.

Quality aspects of a language include the language defini-
tion as well as the tool infrastructure provided to the users
of the language. Quality of language definitions is difficult
to ensure, although guidelines and reviews are measures that
can be transferred from programming to language develop-
ment. The appropriate measures for quality assurance of
the tool infrastructure depend massively on the development
method for the tools. If most parts of the tools are gener-
ated, the quality of the language definition is important.
If the tools are handcoded, concepts for quality assurance
known from traditional software development are appropri-
ate.

The introduction of a domain specific language is accom-
panied by the question how to assure the quality of instances
of this language, i.e. the models. Not all models that are

valid w.r.t. to the syntax and context conditions of the lan-
guage are of appropriate quality. Naming conventions may
help to make the documents easier to read and more com-
prehensible. The same goes for indentation guidelines, as
well as for conventions on comments, which may prescribe
what information should be contained in the comments of a
document and which (natural) language should be used.

Although modeling languages need to be quality assured
as described above, they may on the other hand contribute
to quality assurance for a system under development [6]. If
tests are used for quality assurance, input and output data
of test cases can be described as models. In this case, a
test case consists of an input model, the implementation of
the runtime behavior of the test, which may be written in
a GPL, and an output model that describes the expected
result of the test. The test case fails if and only if the actual
output differs from the output model. Modeled test cases are
very appropriate for test driven development, because they
allow for a rapid specification of high-quality tests, which
will result in faster development and excellent test coverage.

7. DSLS IN SOFTWARE ENGINEERING
Modeling languages and domain specific languages have

recently found their way into most activities of the soft-
ware lifecycle. In the requirements and analysis phase, al-
gebraic specification languages have been used for several
years. Recently, requirements specification languages that
are close to natural languages have been introduced in this
area. Architectural description languages and UML play an
important role in system design. Matlab/Simulink is a wide
spread language for the implemenetation of electronic con-
trol units in automotive industry. The model-based specifi-
cation of test cases has been described in the previous chap-
ter. Therefore, the development of high-quality languages
and language instances can contribute significantly to more
efficient and valuable software systems.

8. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] K. D. Cooper and L. Torczon. Engineering a Compiler.
Morgan Kaufmann, 2004.

[3] A. Deursen and P. Klint. Little Languages: Little
Maintenance? Journal of Software Maintenance:
Research and Practice, 10:75–92, 1998.

[4] D. Harel and B. Rumpe. Meaningful Modeling: What’s
the Semantics of “Semantics“? Computer, 37(10):64–72,
2004.

[5] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[6] B. Rumpe. Model-Based Testing of Object-Oriented
Systems. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W.-P. de Roever, editors, Formal Methods for
Components and Objects, volume 2852 of LNCS, pages
380–402. Springer Verlag, 2003.

[7] D. Watt. Programming Language Processors in Java.
Prentice Hall, 2000.

[8] I. Weisemöller and A. Schürr. Formal Definition of
MOF 2.0 Metamodel Components and Composition. In
MoDELS, pages 386–400, 2008.

