
cba doiȷ10‹18»„0›modellierung„0„„‚01„

M‹ Riebisch˛M‹ Tropmann‚Frick ˘Hrsg‹¯ȷModellierung „0„„˛
Lecture Notes in Informatics ˘LNI¯˛ Gesellschaft fżr Informatik˛ "onn „0„„ ««

Generating Digital Twin Cockpits for Parameter
Management in the Engineering of Wind Turbines

*udith Michael1̨ Imke Nachmannȷ̨ Lukas Netzȷ̨ "ernhard Rumpeȷ̨ Sebastian Stżberȷ

Abstract: The complexity of wind energy systems combined with an increased trend towards mass
customization require the collaboration of many experts to achieve high quality products‹ #urrently˛
a major issue arises from the lack of data integration among the dierent tools used during the
engineering process which may cause system failures eventually‹ %xisting tools largely do not support
automatic detection and indication of erroneous or contradictory parameter values between artifacts
of dierent tools‹ %mploying a model‚driven and functional engineering approach enables to establish
an integrated toolchain for the management and visualization of engineering artifacts that consume
and produce the data‹ Within this paper˛ we present an automatic approach to derive an engineering
digital twin for the cooperative development and management of engineering artifacts from functional
models of the system under development‹ We evaluate our approach on the example of a hydraulic
pump within the cooling system of a wind turbine‹ The prototype can be coupled with an existing
engineering tool ecosystem‹ The approach enables to exchange the data produced by engineering
artifacts according to a functional system model which facilitates the cooperation between dierent
stakeholders throughout the development process‹

Keywords: Parameter Management; Functional Modeling; Model‚$riven Systems %ngineering;
$igital Twin #ockpit; Wind Turbine

1 Introduction

The use of renewable energy is facing a massive growing‹ "etter engineering processes˛ cost
reductions and a strong political will constituting in the Paris !greement of „01— [L*W18=
are the driving factors for this growth‹ The complexity of wind energy systems combined
with an increased trend towards mass customization [Ve1ı= require the collaboration of
many experts to achieve high quality products‹ Such wind energy systems have to be
customized for each site and the requirements of wind park owners‹ Their engineering needs
various iterations˛ information exchange between dierent stakeholders and the simulation
of properties of a large number of individual components within dierent engineering and
simulation tools‹

Mechanical engineering employs heterogeneous tools to represent the system’s geometry˛
behavior˛ etc‹ These artifacts describe dierent aspects and perspectives of the system
using a common set of system parameters‹ Yet˛ in many engineering projects there is
1 Software %ngineering˛ RWTH !achen University˛ Germany˛ www‹se‚rwth‹de
{michael˛nachmann˛netz˛rumpe˛stueber}␣se‚rwth‹de

[MNN+22] J. Michael, I. Nachmann, L. Netz, B. Rumpe, S. Stüber:
Generating Digital Twin Cockpits for Parameter Management in the Engineering of Wind Turbines.
In: Modellierung 2022, pp. 33-48, GI, Juni 2022.
https://se-wth.github.io/publications/

«» *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

no standardized form of data storage˛ naming and exchange˛ making the set of common
parameters and their values implicit and only known to experienced users‹ Instead˛ data
is exchanged via %‚Mail attachments˛ or as links to a temporary cloud storage‹ ! central
data management system increases productivity˛ especially when combined with analysis
functionalities [Fe1‌=‹

%xisting Product $ata Management ˘P$M¯ systems are designed for large companies˛
where a dedicated team congures and maintains these systems‹ For small or medium‚sized
companies˛ setting up a commercial P$M can be very costly and time intensive‹ !gile
modications of the data structure is often not feasible and data sharing often relies on the
manual exchange of parameters in diverse artifacts‹

Research Question‹ Within this paper˛ we further investigate how to enhance the manual
engineering process by using modeling˛ data management and an integrated toolchain‹

#ontribution‹ We employ Model‚$riven %ngineering ˘M$%¯ to generate a $igital Twin
˘$T¯ cockpit from models which provides the graphical interface to visualize its data and
the interaction with services of the digital twin‹ Within this stage˛ it is an “as‚designed”
digital twin˛ which exists during design including technical design and simulation‹ The $T
cockpit allows for artifact exchange˛ versioning and visualization from architectural models
of the system under development‹ The $T cockpit continuously evolves towards a digital
twin of the real physical object called digital twins “as‚manufactured” during construction
and “as‚operated” during runtime‹ Our approach relies on software and systems engineering
methods using code synthesis from model artifacts‹ The generated $T cockpit allows to
modify data via a web‚interface or using a python !pplication Programming Interface ˘!PI¯‹
The !PI enables to integrate existing development tools˛ such as simulation programs like
M!TL!"2 as digital twin services‹ We demonstrate the results on a concrete use case from
the engineering of wind turbines‹

The paper is structured as followsȷ Sect‹ „ introduces preliminaries and Sect‹ « presents
the vision for an M$% process‹ Sect‹ » described the use case‹ !fterwards˛ Sect‹ 5 shows
the implemented tools‹ Sect‹ — discusses their features and shortcomings in comparison to
related work and Sect‹ ‌ concludes‹

2 Preliminaries

In this section˛ we explain the basic principles of functional systems models and our
technology stack to generate a digital twin cockpit‹

2 https://www.mathworks.com/products/matlab.html

$T#s for the %ngineering of Wind Turbines «5

2.1 Functional Modeling of Systems

Modern systems realize complex functionalities confronting engineers with highly challeng‚
ing engineering tasks‹ Part of the complexity is caused by the fact that nding solutions to
implement these functionalities requires the collaboration of experts from heterogeneous do‚
mains˛ i‹ e‹ software engineering˛ electrical engineering˛ and mechanical engineering [$r„0=‹
The challenge arises from a conceptual gap˛ because requirements are stated in natural
language at a very high level of abstraction˛ which most often concerns the function of the
system from which engineers derive technical product architectures directly‹ The artifacts
that describe the geometry and behavior of the geometric components in these architectures
are highly detailed down to the molecular level‹ In systems engineering˛M$% therefore aims
at exploiting the ideas introduced in mechanical design theory [++ı8˛Pa0‌=˛ that a system
realizes a function by transforming energy˛ material˛ and data‹ Functional models capture
this function which can be derived from the requirements more directly and decomposed
into functional components iteratively [Pa0‌=‹ $esign catalogs˛ e‹ g‹ [++ı8=˛ provide a
list of so called elementary functions which represent functions and link information on
possible eects˛ geometries and materials to engineer implementations to these functions‹
We refer to these implementations as principle solutions [Pa0‌=‹ The modeling technique
to represent the functional system architecture in Systems Modeling Language ˘SysML¯
proposed in [$r„0= allows to link system attributes along functional interaction lines to
support testing [Ze„1= and optimal dimensioning [Ho„1= across the geometric boundaries
of the product architecture‹

2.2 Model-Driven Engineering of Digital Twins

$igital twins are developed for various application domains such as healthcare [Li1ı=˛ laser
cutting [Li„1=˛ injection molding ["i„0=˛ or automotive [+u18=‹ In our understanding˛ “a
digital twin of a system consists of a set of models of the system˛ a set of digital shadows˛
and provides a set of services to use the data and models purposefully with respect to the
original system [$a„0=‹” In this work we focus on the development of a specic part of the
digital twinȷ the digital twin cockpit˛ that we specify as followsȷ

! digital twin cockpit is “the user interaction part ˘UI›GUI¯ of a digital twin‹ It provides
the graphical user interface for visualizations of its data organized in digital shadows and
models˛ and the interaction with services of the digital twin” ["a„„=‹ This enables humans
to access˛ adapt˛ and add information˛ and we enable them to monitor and partially control
the physical system‹

#onsidered heterogeneous models from various disciplines help to understand the system
in focus˛ which includes its’ structure˛ behavior˛ functions˛ and physical˛ geometrical or
mathematical relations‹ Model‚driven approaches for digital twin engineering ["o„0= aim
to use this models during runtime as well as for the generation of a digital twin‹ ! digital

«— *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

shadow is a passive set of data which includes “a set of contextual data‚traces and›or their
aggregation and abstraction collected concerning a system for a specic purpose with
respect to the original system” ["e„1=‹ $ierent services provide additional functionalities
for a digital twin such as analyzing˛ prediction or simulation of behavior or to control the
physical object‹

2.3 The MontiGem Generator Framework

MontiGem [!d„0= is a generator framework for the engineering of web‚based information
systems and $Ts [$a„0=‹ The full version of MontiGem uses a set of models as input
and synthesizes software code for the *ava‚based backend and Typescript›HTML‚based
frontend within the !ngular framework‹ These models include UML #lass $iagrams ˘#$s¯
for dening domain concepts˛ data models to dene the transportation of data in command
objects between the backend and frontend of the application˛ models dening the graphical
user interface and Object #onstraint Language ˘O#L¯ models to dene data validation
within the frontend and backend of the derived application‹

TheMontiGem version used within this paper includes an extension called #$„GUI [Ge„0b=
before code synthesisȷ The generation process takes only one class diagram as input and
generates data and GUI models which are further processed by the MontiGem generator
framework into a running application‹

MontiGem is used since several years in real‚world projects for nancial manage‚
ment [Ge„0a=˛ for energy management systems and for creating digital twin cockpits [$a„0=‹
Moreover˛ we use it in research projects on privacy‚preserving information systems [Mi1ı=
and goal modeling in assistive systems [MRV„0=‹

3 The Vision Towards Digital Twin Cockpits for Parameter Manage-
ment in the Engineering of Wind Turbines

In many engineering projects there is no standardized form of data storage and exchange‹
Instead˛ engineers exchange data via %‚Mails with attached informal documents or via
instant messages with links to a temporary cloud storage‹ This form of data management
has several downsidesȷ 1¯ #hanges in the data are not propagated fast enough˛ hence
outdated data might be used˛ „¯ data of past projects is not easily accessible˛ leading to a
slower development process and repetition of previous errors˛ and «¯ dierent tools cannot
interoperate due to dierent data formats‹

Vision. Thus˛we propose an agile˛model‚driven engineering process formechanical systems
which are supported by an engineering digital twin and its’ according cockpit‹ Functional
models contain the behavior of each subsystem and the interaction of the subsystems‹ !
functional model contains parameters˛ which are used in the behavior description‹

$T#s for the %ngineering of Wind Turbines «‌

For example˛ the functional module ‘#ounter Weight’ would have the parameter ‘mass’ and
a description of the mechanical‚behavior using this parameter‹ The concrete value of the
mass is not part of the functional module‹ This enables to reuse sub‚components across
dierent systems‹ Two ‘#ounter Weights’ with dierent masses still use the same functional
module˛ only the parameters change‹

From the functional models and models of the used data˛ we generate digital twin cockpit‹
Parameters and all other data are stored in a central database‹ When users need the concrete
values for parameters˛ e‹g‹˛ for a simulation˛ the values are queried‹ Moreover˛ the results of
simulations are also stored in the central database‹ To achieve reproducibility˛ the result
of a simulation is linked with the input parameters‹ Hence it is possible to later inspect
the parameters or run the simulation with the same parameters again‹ Logs of changes˛
an archive of old versions of data and access control are also provided‹ These aspects are
especially important if contributors are spatially distributed‹

This vision requires to provide multiple ways to create˛ read˛ or update dataȷ ! graphical
user interface and an programming interface‹ The graphical user interface˛ the digital twin
cockpit˛ can be used by developers to quickly modify parameters or interpret the results of
simulations‹ Tools can be integrated with the programming interface‹ The standardized way
of data‚storage enables the integration of heterogeneous tools‹

Long-term goal. We consider the early phase where a physical object is planned and
designed as starting point for a digital twin˛ i‹e‹˛ an engineering digital twin˛ which
continuously evolves over time to a fully‚functional digital twin representing a physical
product‹ Suitable models in the early phase are engineering models and models to describe
behavior‚to‚be˛ that can be simulated and analyzed‹ Relevant data are simulation inputs
and outputs˛ and result from dierent versions of the planned physical objects‹ Services
include simulation and analysis of the physical system‚to‚be‹ The latter fully‚functional
digital twin allows for bi‚directional synchronization of a digital twins and the physical
system‹ However˛ this evolvement is not further discussed in the paper˛ as we focus on the
creation of engineering digital twins and especially their digital twin cockpits‹

4 Use Case

Our running example is a use case for the engineering of a cooling system of a wind turbine
to which we have applied our approach‹ The functional architecture [$r„0= of this system
serves as a basis to derive a digital twin cockpit using a generation process‹

The main function of a wind turbine is to transform wind into electrical energy‹ Generally˛
wind is the movement of air in the earth’s ˘or another planet’s¯ atmosphere when it ows
from areas of lower pressure to areas of higher pressure ["r1—=‹ These pressure dierences
arise because energy is transferred into the air in the form of heat generated by the sun‹
Therefore˛wind can be considered a stream of energy that is transferred from the atmosphere

«8 *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

to the air molecules [FR‌—=‹ Speaking in terms of [FR‌—=˛ the energy being transferred
appears as motion ˘of the air molecules¯˛ which is bound to the physical quantities velocity
and force‹ Thus˛ a wind turbine transforms motion energy to electrical energy‹ The general
structure of a wind turbine ["r1—= comprises a rotor with several blades˛ which transforms
the motion energy to rotational energy˛ characterized by torque and angular velocity‹ The
rotor generates very high torque and low angular velocity‹ The main shaft transmits the
rotational energy to a gearbox which decreases the torque to increase the angular velocity‹
Finally˛ a generator transforms the so transformed rotational energy into electrical energy˛
i‹ e‹ voltage and current‹ These components make up the wind turbine’s drive train‹

In this setting˛ the generator and the gearbox generate heat due to energetic losses during
the transformation [To10=‹ Further˛ wind turbines are usually installed outside of urban
areas and are often exposed to extreme climate‹ To assure proper functioning˛ these systems
need sophisticated thermal management systems˛ that keep the temperatures of the wind
turbine’s components within an operating range while assuring a high eciency of the
power generation [To10=‹

The wind turbine’s components˛ and˛ in particular the generator˛ produce large amounts
of heat during operation˛ which makes ecient cooling essential for proper and ecient
operation the system‹ From a functional perspective˛ the wind turbine’s cooling system
assimilates that of an automotive engine ˘see [$r„0˛Ze„1˛Ho„1=¯‹ The SysML "lock
$enition $iagram ˘"$$¯ in Figure 1 shows the components of the cooling system with
their functional inputs and outputs together with a set of SysML value properties˛ while the
SysML Internal "lock $iagram ˘I"$¯ in Figure „ shows the interaction of these components‹

Fig‹ 1ȷ "$$ that models the functions of the cooling system‹

The value properties model the characteristics of the component they belong to˛ often˛
these are parameters of simulations or #!$‚models that could be linked to the functional
structure [Ho„1=‹ The cooling system in Figure 1 consists of a Pump˛ a Radiator˛ a Reservoir
and a Pipe System‹ The reservoir stores a cooling medium˛which is a uid that is particularly

$T#s for the %ngineering of Wind Turbines «ı

suitable for dissipating or absorbing heat‹ The pump causes a pressure dierence that
causes the uid to ow out of the reservoir and into the Pipe System which surrounds the
component from which heat has to be absorbed ˘see Figure „¯‹ In our case˛ the thermal
energy that is input to the Pipe System’s function stems from the wind turbine’s generator‹
The owing motion of the cooling medium facilitates the absorption of the heat from the
generator by the cooling medium‹ The cooling medium’s temperature therefore rises‹ The
radiator is responsible for cooling the cooling medium˛ i‹ e‹ for dissipating the heat absorbed
by the cooling medium into the surrounding air‹ The incoming ow of cool air passes the
cooling medium and thereby heats up by absorbing heat from the cooling medium‹ The
temperature of the cooling medium thereby drops and it is released into the reservoir‹

Fig‹ „ȷ I"$ that shows the internal structure of the cooling system‹

Therein˛ the pump for example is characterized by ve parameters˛ i‹ e‹ a name˛ an ideal˛
maximal˛ and minimal power and a volume ow the pump generates during operation˛which
the "$$ in Figure 1 shows‹ These values parametrize a possible simulation of the pump’s
physical behavior which facilitates˛ e‹ g‹ virtual testing [Ho„1=‹ The approach presented
in the upcoming sections allows to establish a systematic data management behind these
parameters which facilitates validation and reuse of the functional models‹

5 Realization of the Approach

We demonstrate how we have applied our approach to the use case‹ First˛ we model the
data‚structure for the cooling system based on the functional model presented in Sect‹ » as a
UML #$‹ From the #$ a $T cockpit is automatically generated‹ We show the Python !PI
to send and read data from the server‹ Finally˛ we extend the generated $T cockpit for the
analysis of simulation data‹
The tool was developed in cooperation with an industry partner‹ The use case is a simpli‚
cation of the #$ from the industry partner˛ which contains more than 100 classes‹

The Extended MontiGem Framework ˘Figure «¯ consists of three major componentsȷ
! preliminary model‚to‚model transformation˛ a data structure ˘$S¯ generator and a user

»0 *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

Fig‹ «ȷ Overview of the MontiGem Generation Process

interface ˘UI¯ generator‹ This framework only requires a data structure model as input˛ but
can be supplemented with additional models to rene the target application‹ In order to
use MontiGem˛ a domain model ˘!¯ has to be provided in the form of a #$‹ The model is
passed on to the $S‚Generator˛ that will create a corresponding database and infrastructure
to access it‹ The model is also passed to a model‚to‚model transformation that will create a
set of three UI‚Models for each class ˘Navigation˛ Overview˛ %diting¯‹ These models dene
user interfaces enabling the end user to inspect data and perform basic #RU$ operations on
the database‹ The models can be extended with handwritten ones ˘"¯ by the developer˛ in
case further user interfaces or modications to the existing ones are needed‹ "oth generated
and handwritten models are used as input for the UI‚Generator‹ In combination both $S‚
and UI‚Generator produce the the application front end ˘#¯ and back end ˘$¯‹

Fig‹ »ȷ #lass $iagram for #ase Study

For the Use #ase in Sect‹ » we have extracted a #$ describing the data schema‹ Fig‹ »
shows an extract this #$‹ %ach class has a human‚readable name˛ which describes the model
or conguration‹ The classes on the left represent the two types of components in our
cooling systemȷ Radiators ˘l‹1‚5¯ and Pumps ˘l‹—‚1„¯‹ On the right side is the composed

$T#s for the %ngineering of Wind Turbines »1

system ˘l‹1«‚1‌¯‹ The composed systems has links to its subcomponents‹ The attributes
overallPowerConsumption and overallCoolingCapacity are derived from the subcompo‚
nents‹ For example˛ the overallCoolingCapacity is the sum of the coolingCapacity of
each radiator ˘see List‹ 1¯‹

1 @Override
„ NubJGc Double getOverallCoolingCapacity() {
« returL thGQ.getRadiators().stream()
» .collect(Collectors.summingDouble(x->x.getCoolingCapacity()));
5 }

List‹ 1ȷ #omputing a derived value

From the #$˛MontiGem automatically generates a $T cockpit as described in Figure «‹
On this application we can create new entries˛ search existing entries˛ update values and
delete entries‹ Fig‹ 5 displays two generated elements of the $T cockpit‹ The left side is
an overview of all available Pump instances currently stored in the database‹ In this list
only the most important attributes are displayed˛ however the table can be customized to
hide or display any of the attributes of the pump class‹ To make the table more readable
less relevant attributes ˘e‹g‹ minimalPower¯ are hidden‹ Via the “settings button” ˘German
“%instellungen”¯˛ the user can congure which attributes are displayed‹

The user can inspect an object by clicking on the “eye” icon ˘see right side of Fig‹ 5¯ which
opens a separate page where the object can be modied‹ Pressing the “edit” button allows
to modify the attributes‹

Fig‹ 5ȷ Generated user interfaces for Pump class‹ Leftȷ Overview showing all Pump‚Objects currently
stored in $"‹ Objects can be created and deleted in this view‹

! CoolingSystem has links to multiple Pump objects‹ This is displayed in a separate table˛
shown in Fig‹ —‹ Visually this table is similar to the overview of all pump objects˛ but only
linked objects are listed‹ Furthermore˛ the “delete” button only removes the link between
the objects˛ and not the object itself‹

When a user adds a Pump object to a CoolingSystem˛ the derived attribute

»„ *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

Fig‹ —ȷ UI showing associated Pumps of CoolingSystem‹ Links to objects can be edited‹

overallCoolingCapacity is automatically updated‹ $irectly modifying derived val‚
ues is not possible ˘see Fig‹ ‌¯‹

Fig‹ ‌ȷ !ttributes of CoolingSystem‹ Only attributes stored in the database can be edited˛ aggregated
or otherwise derived attributes are immutable‹

Python Extensions. The data in MontiGem should be automatically usable with existing
mechanical engineering tools‹ Many tools ˘e‹g‹ Rhino˛ !nsys Workbench˛ Space#laim˛
Mechanical¯ already come with python support˛ so we used python for the integration‹ To
make the !PI as usable as possible in practice˛ the developed code runs both in IronPython„
and #Python«‹

The #RU$‚operations are fully supported and navigation of associations is handled
transparently‹ For performance optimization˛ associated objects are lazy‚loaded and only
retrieved from the MoniGem server on read‚access‹

1 obj = Factory.new(type_name="Radiator",
„ data={"name": "DIA_AB",
« "minimalVolumnFlow": 300,
» "coolingCapacity": 4000})
5 obj.push()

List‹ „ȷ #reate new Radiator via Python!PI

Archive and Metadata. The MontiGem application also stores a history of all changes
made to the data‹ This acts as an archive and ensures that no information is lost‹ For the

$T#s for the %ngineering of Wind Turbines »«

future usability of the data˛ meta‚information can be linked to various places‹ !n example is
the “release status” which tracks the lifecycle state of an object‹ #ustomized phases can be
congured˛ e‹ g‹ draft > review > released > outdated‹ "efore switching to the released

status˛ MontiGem searches for associated objects that are not yet released and lists them to
the user‹ The user can inspect them individually or release all associated objects‹ This way
it is ensured˛ that released objects only link to other released objects‹

Display Dierences.When manually analyzing the data˛ for example before releasing an
object˛ the developer can be overwhelmed by the large amount of information‹ We have
implemented a dierence operation˛ which only displays the changed values‹ This helps the
developer to focus on modied values‹

Visualization. The automatically generated $T cockpit in its current version can only display
values in tables‹ While this is enough for many applications˛ some require a customized
visualization to be usable‹ For example˛ simulation results˛ which typically consist of large
lists‹ These are hard to analyze in the default table layout‹
For this case˛ we have manually developed an extension to the generated layout‹ In a
pivot‚table˛ the user can congure the ideal visualization‹ The attributes on the x‚ and
y‚axis can be selected using drag and drop˛ there are multiple aggregation functions ˘e‹g‹
sum˛ average˛ count˛ maximum¯ and multiple dierent visualization methods are available‹
%xamples for the visualization methods are shown in Fig‹ 8‹

Fig‹ 8ȷ Four exemplary visualizations of simulation results

»» *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

6 Discussion and Related Work

Discussion. Our model‚driven approach allows to change the data‚schema denition˛ and
automatically generate a new customized $T cockpit‹ For example˛ adding a new class
works straightforward‹

Generality of !pproach‹ While the presented case study is specic to wind turbines˛ our
approach is independent of the application domain‹ Other domains might use a dierent
programming language than python in their specic tools‹ ! wider language‚support for the
!PI would ease the integration‹

$igital Twin Functionality‹ Our generated $T cockpit focuses on the data management and
visualization services‹ The functional part of the digital twin was out of focus of this project‹
The generated $T cockpit is intended to use in combination with other services˛ which allow
for predictive control [*a1»=˛ model the behavior of physical systems˛ and can inuence the
physical system‹ %specially a combination with other model‚driven approaches as in [Ho„1=
or ["r„1= is promising‹

Integrate %xternal Tools‹ The ability to bind external tools with a database enables interesting
quality control and optimization methods‹ Geometric requirements like ‘#omponent X has
to t into Y’ are very common and can be checked fast and automatically‹ Similar to a
continuous integration pipeline˛ this can be checked after each modication‹

Lifecycle‹ While the integration of the “release status” enables a basic lifecycle tracking˛
this falls behind a fully edged workow‚tool‹ Furthermore˛ a notication system which
reminds an engineer of outstanding tasks would increase the usability‹

Generate GUI‹ In the context of this project˛ it was the rst time the extension to automatically
create GUI‚models for the provided #$ was applied to a real world scenario‹ There are
improvements needed within the UI as well as increasing the performance for data access‹
#urrently˛ there is only one option to perform a database operation‹ %xperiences from other
software projects have shown that having multiple options is required to work eciently
and pleasantly with the system‹ This could be combined with more options to customize
already generated models in order to have a more use case specic GUI‹

$ata Migration‹ #hanges to an existing data‚schema can lead to inconsistency and require a
manual data‚migration‹ Guiding the administrator and providing semi‚automatic upgrade
scripts generated using model‚comparison approaches is a possible future extension‹

RelatedWork. %xisting approaches for datamanagement in engineering processes evolved
from P$M to PLM [!G00= and more recent system lifecycle management systems [%i„1=‹
While our system oers a standardized way to read and write data˛ many #!$‚Tools
only provide proprietary storage formats and require data‚conversion‹ Hislop˛ Lacroix and
Moeller [HLM0»= discuss this and notes requirements for a data management system‹

$T#s for the %ngineering of Wind Turbines »5

While most approaches consider a digital twin from the moment a physical object exists
[MML1ı˛Go„1= over its lifetime˛ models and data from the planning and engineering phase
of this physical object are neglected‹ There is not a lot of research done in the automatic
derivation of GUI‚models˛ however low‚code development platforms are emerging which
enable a developer to dene a ˘web¯ application by conguration in the editor or by dening
a set of models [Wa1ı˛"GS„0˛$a„„=‹ The current eld of low‚code applications is well
documented by Gartner [Vi1ı= and recent studies ["F„1=‹

Model‚based systems engineering has recently become a broad research topic‹ Therein˛
modeling the system under development using dedicated modeling languages to obtain a
single‚source of truth is a major concern˛ to facilitate the cooperation among experts of very
dierent backgrounds˛ i‹ e‹ software˛ mechanics and electronics‹ The modeling technique
applied in this paper˛ relies on [$r„0= which allows to link the functional architecture of
a system to implementations of the functional components‹ Such models have also been
used for automating virtual tests and dimensioning in [Ho„1=‹ However˛ the latter approach
does not rely on a database and generative methods to systematically manage the data that
arise during the development‹ Other modeling techniques that do not necessarily focus on
the functional perspective of the system’s architecture or do not provide the necessary link
between a system’s function and its solutions are proposed˛ e‹ g‹ in [G$N10˛%+M1‌˛WS0ı=‹
Using informal sketches as in [Mo15= does not suce for generating data schemes and
hinders ecient and systematic data management in the engineering process‹ To the best
of our knowledge˛ existing approaches to automate activities of the systems engineering
process do not rely on functional models of the system to generate data management
infrastructure or $Ts‹

7 Conclusion

We have shown that the approach enables the exchange of data produced by engineering
artifacts according to a functional system model which facilitates the cooperation between
dierent stakeholders throughout the development process‹ The generated engineering
$T cockpit provides a graphical user interface for searching˛ inspecting and editing
values‹ Furthermore˛ existing mechanical engineering tools like !nsys Workbench or
Space#laim can be integrated through a python programming interface‹We have successfully
demonstrated the approach on a system provided by an industry partner and on the cooling
system from a wind turbine presented in this paper‹ However˛ for long term usage in
practice˛ further additions such as adding digital twin services for optimization˛maintenance
prediction˛ or self‚adaption of the wind turbine are needed‹

Acknowledgments

Funded by the $eutsche Forschungsgemeinschaft ˘$FG˛ German Research Foundation¯
under Germany’s %xcellence Strategy – %X#‚„0„« Internet of Production – «ı0—„1—1„

»— *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

Bibliography
[!d„0= !dam˛ +ai; Michael˛ *udith; Netz˛ Lukas; Rumpe˛ "ernhard; Varga˛ Simonȷ %nterprise

Information Systems in !cademia and Practiceȷ Lessons learned from a M"S% Project‹
Inȷ »0 Years %MIS!ȷ $igital %cosystems of the Futureȷ Methodology˛ Techniques and
!pplications ˘%MIS!’1ı¯‹ volume P‚«0» of LNI‹ GI˛ pp‹ 5ı–——˛ „0„0‹

[!G00= !bramovici˛Michael; Gerhard˛ $etlefȷ ! exible web‚based P$M approach to support
virtual engineering cooperation‹ Inȷ ««rd !nnual Hawaii Int‹ #onf‹ on System Sciences‹
I%%%˛ pp‹ 10–pp˛ „000‹

["a„„= "ano˛$orina;Michael˛ *udith; Rumpe˛"ernhard; Varga˛ Simon;Weske˛Matthiasȷ Process‚
!ware $igital Twin #ockpit Synthesis from %vent Logs‹ *ournal of #omputer Languages
˘#OL!¯˛ „0„„‹

["e„1= "ecker˛ Fabian; "ibow˛ Pascal; $alibor˛ Manuela; Gannouni˛ !ymen; Hahn˛ Viviane;
Hopmann˛ #hristian; *arke˛ Matthias; +oren˛ Istvan; +rțger˛ Moritz; Lipp˛ *ohannes;
Maibaum˛ *udith; Michael˛ *udith; Rumpe˛ "ernhard; Sapel˛ Patrick; Schčfer˛ Niklas;
Schmitz˛ Georg *‹; Schuh˛ Gżnther; Wortmann˛ !ndreasȷ ! #onceptual Model for $igital
Shadows in Industry and its !pplication‹ Inȷ #onceptual Modeling˛ %R „0„1‹ Springer˛
pp‹ „‌1–„81˛ October „0„1‹

["F„1= "ock˛!lexander #‹; Frank˛Ulrichȷ In Search of the %ssence of Low‚#odeȷ!n %xploratory
Study of Seven $evelopment Platforms‹ Inȷ „0„1 !#M›I%%% Int‹ #onf‹ on Model $riven
%ngineering Languages and Systems #ompanion ˘MO$%LS‚#¯‹ „0„1‹

["GS„0= "exiga˛Mariana; Garbatov˛ Stoyan; Seco˛ *oćo #ostaȷ #losing the Gap between $esigners
and $evelopers in a Low #ode %cosystem‹ Inȷ „«rd !#M›I%%% Int‹ #onf‹ on Model
$riven %ngineering Languages and Systemsȷ #ompanion‹ MO$%LS ’„0‹ !#M˛ „0„0‹

["i„0= "ibow˛ Pascal; $alibor˛Manuela; Hopmann˛ #hristian; Mainz˛ "en; Rumpe˛ "ernhard;
Schmalzing˛$avid; Schmitz˛Mauritius; Wortmann˛!ndreasȷModel‚$riven $evelopment
of a $igital Twin for Injection Molding‹ Inȷ Int‹ #onf‹ on !dvanced Information Systems
%ngineering ˘#!iS%’„0¯‹ volume 1„1„‌ of LN#S‹ Springer˛ pp‹ 85–100˛ „0„0‹

["o„0= "ordeleau˛ Francis; #ombemale˛ "enoit; %ramo˛ Romina; van den "rand˛Mark; Wimmer˛
Manuelȷ Towards Model‚$riven $igital Twin %ngineeringȷ #urrent Opportunities and
Future #hallenges‹ Inȷ Systems Modelling and Management‹ Springer˛ pp‹ »«–5»˛ „0„0‹

["r1—= "reeze˛ Paulȷ #hapter „ ‚ The Wind %nergy Resource‹ Inȷ Wind Power Generation‹
Lehmanns˛ „01—‹

["r„1= "rockho˛ Tobias; Heitho˛ Malte; +oren˛ Istvăn; Michael˛ *udith; Pfeier˛ *ĺrşme;
Rumpe˛ "ernhard; Uysal˛ Merih Seran; van der !alst˛ Wil M‹ P‹; Wortmann˛ !ndreasȷ
Process Prediction with $igital Twins‹ Inȷ Int‹ #onf‹ on Model $riven %ngineering
Languages and Systems #ompanion ˘MO$%LS‚#¯‹ !#M›I%%%˛ „0„1‹

[$a„0= $alibor˛Manuela; Michael˛ *udith; Rumpe˛ "ernhard; Varga˛ Simon; Wortmann˛ !ndreasȷ
Towards aModel‚$riven !rchitecture for Interactive $igital Twin #ockpits‹ Inȷ#onceptual
Modeling‹ Springer˛ pp‹ «‌‌–«8‌˛ October „0„0‹

[$a„„= $alibor˛Manuela; Heitho˛Malte; Michael˛ *udith; Netz˛ Lukas; Pfeier˛ *ĺrşme; Rumpe˛
"ernhard; Varga˛ Simon; Wortmann˛ !ndreasȷ Generating #ustomized Low‚#ode $evel‚
opment Platforms for $igital Twins‹ *ournal of #omp‹ Lang‹ ˘#OL!¯˛ ‌0˛ „0„„‹

$T#s for the %ngineering of Wind Turbines »‌

[$r„0= $rave˛ Imke; Rumpe˛ "ernhard; Wortmann˛ !ndreas; "erroth˛ *oerg; Hoepfner˛ Gregor;
*acobs˛ Georg; Spuetz˛ +athrin; Zerwas˛ Thilo; Guist˛ #hristian; +ohl˛ *ensȷModeling
Mechanical Functional !rchitectures in SysML‹ Inȷ „«rd !#M›I%%% Int‹ #onf‹ on Model
$riven %ngineering Languages and Systems‹ !#M˛ pp‹ ‌ı–8ı˛ October „0„0‹

[%i„1= %igner˛ Martinȷ Forty Years of Product $ata Management from P$M via PLM to SysLM‹
Inȷ System Lifecycle Managementȷ %ngineering $igitalization ˘%ngineering »‹0¯‹ Springer
Fachmedien Wiesbaden˛Wiesbaden˛ pp‹ 5–„5˛ „0„1‹

[%+M1‌= %igner˛ Martin; +och˛ Walter; Muggeo˛ #hristian˛ eds‹ Modellbasierter %ntwick‚
lungsprozess cybertronischer Systeme‹ Springer˛ „01‌‹

[Fe1‌= Fernăndez‚Miranda˛ S Suărez; Marcos˛ M; Peralta˛ Marňa %stela; !guayo˛ Fȷ The chal‚
lenge of integrating Industry »‹0 in the degree of Mechanical %ngineering‹ Procedia
manufacturing˛ 1«ȷ1„„ı–1„«—˛ „01‌‹

[FR‌—= Falk˛ Gottfried; Ruppel˛ Wolfgangȷ %nergie und %ntropieȷ $ie Physik des Naturwis‚
senschaftlers‹ %ine %infżhrung in die Thermodynamik‹ Springer˛ 1ı‌—‹

[G$N10= Gausemeier˛ *żrgen; $orociak˛ Rafal; Nyđen˛ !lexanderȷ The mechatronic modelerȷ !
Software Tool for #omputer‚!ided Modeling of the Principle Solution of an !dvanced
Mechatronic System‹ Inȷ 11th Int‹ WS on Research and %ducation in Mechatronics‹ „010‹

[Ge„0a= Gerasimov˛ !rkadii; Heuser˛ Patricia; +etteniđ˛ Holger; Letmathe˛ Peter; Michael˛ *udith;
Netz˛ Lukas; Rumpe˛ "ernhard; Varga˛ Simonȷ Generated %nterprise Information Systemsȷ
M$S% for Maintainable #o‚$evelopment of Frontend and "ackend‹ Inȷ #omp‹ Proc‹ of
Modellierung „0„0 Short˛ Workshop and Tools ˚ $emo Papers‹ #%UR˛ pp‹ „„–«0˛ „0„0‹

[Ge„0b= Gerasimov˛ !rkadii; Michael˛ *udith; Netz˛ Lukas; Rumpe˛ "ernhard; Varga˛ Simonȷ
#ontinuous Transition from Model‚$riven Prototype to Full‚Size Real‚World %nterprise
Information Systems‹ Inȷ „5th !mericas #onference on Information Systems ˘!M#IS
„0„0¯‹ !IS˛ pp‹ 1–10˛ !ugust „0„0‹

[Go„1= Govindasamy˛ Hari Shankar; *ayaraman˛ Ramya; Taspinar˛ "urcu; Lehner˛ $aniel; Wim‚
mer˛ Manuelȷ !ir Quality Managementȷ !n %xemplar for Model‚$riven $igital Twin
%ngineering‹ Inȷ International #onference on Model $riven %ngineering Languages and
Systems #ompanion ˘MO$%LS‚#¯‹ pp‹ „„ı–„«„˛ „0„1‹

[HLM0»= Hislop˛ $ave; Lacroix˛ Zoĺ; Moeller˛ Geraldȷ Issues in mechanical engineering design
management‹ !#M SIGMO$ Record˛ ««˘„¯ȷ1«5–1«8˛ „00»‹

[Ho„1= Hoepfner˛ Gregor; *acobs˛ Georg; Zerwas˛ Thilo; $rave˛ Imke; "erroth˛ *oerg; Guist˛
#hristian; Rumpe˛ "ernhard; +ohl˛ *ensȷ Model‚"ased $esign Workows for #yber‚
Physical Systems !pplied to an %lectric‚Mechanical #oolant Pump‹ Inȷ IOP #onference
Seriesȷ Materials Science and %ngineering‹ volume 10ı‌ȷ01„00»‹ IOP Publishing˛ „0„1‹

[*a1»= *assmann˛ U; "erroth˛ *; Matzke˛ $; Schelenz˛ R; Reiter˛M; *acobs˛ G; !bel˛ $ȷModel
predictive control of a wind turbine modelled in Simpack‹ *ournal of Physicsȷ #onference
Series˛ 5„»ȷ01„0»‌˛ jun „01»‹

[++ı8= +oller˛ Rudolf; +astrup˛ Norbertȷ Prinziplțsungen zur +onstruktion technischer Produkte‹
Springer˛ "erlin˛ Heidelberg˛ 1ıı8‹

»8 *udith Michael˛ Imke Nachmann˛ Lukas Netz˛ "ernhard Rumpe˛ Sebastian Stżber

[+u18= +umar˛ Sathish; Madhumathi˛ R‹; #helliah˛ Pethuru Raj; Tao˛ Lei; Wang˛ Shangguangȷ !
novel digital twin‚centric approach for driver intention prediction and trac congestion
avoidance‹ *ournal of Reliable Intelligent %nvironments˛ »˛ 10 „018‹

[Li1ı= Liu˛ Y‹; Zhang˛ L‹; Yang˛ Y‹; Zhou˛ L‹; Ren˛ L‹; Wang˛ F‹; Liu˛ R‹; Pang˛ Z‹; $een˛M‹ *‹ȷ
! Novel #loud‚"ased Framework for the %lderly Healthcare Services Using $igital Twin‹
I%%% !ccess˛ ‌ȷ»ı088–»ı101˛ „01ı‹

[Li„1= Lipp˛ *ohannes; Sakik˛ Siyabend; +rțger˛ Moritz; $ecker˛ Stefanȷ LISSUȷ Integrating
Semantic Web #oncepts into SO! Frameworks‹ Inȷ „«rd Int‹ #onf‹ on %nterprise
Information Systems ‚ Vol 1ȷ I#%IS‹ INSTI##˛ SciTePress˛ pp‹ 855–8—5˛ „0„1‹

[L*W18= Lacal !rantegui˛ Roberto; *čger‚Waldau˛ !rnulfȷ Photovoltaics and wind status in the
%uropean Union after the Paris !greement‹ Renewable and Sustainable %nergy Reviews˛
81ȷ„»—0–„»‌1˛ „018‹

[Mi1ı= Michael˛ *udith; Netz˛ Lukas; Rumpe˛ "ernhard; Varga˛ Simonȷ Towards Privacy‚
Preserving IoT Systems Using Model $riven %ngineering‹ InȷMO$%LS „01ı‹ Workshop
M$%»IoT‹ #%UR Workshop Proceedings˛ pp‹ 5ı5–—1»˛ „01ı‹

[MML1ı= Madni˛ !zad M‹; Madni˛ #arla #‹; Lucero˛ Scott $‹ȷ Leveraging $igital Twin Technology
in Model‚"ased Systems %ngineering‹ Systems˛ ‌˘1¯˛ „01ı‹

[Mo15= Moeser˛ Georg; +ramer˛ #hristoph; Grundel˛Martin; Neubert˛Michael; +żmpel˛ Stephan;
Scheithauer˛ !xel; +leiner˛ Sven; !lbers˛ !lbertȷ Fortschrittsbericht zur modellbasierten
Unterstżtzung der +onstrukteurstčtigkeit durch F!S»M‹ Inȷ Tag des Systems %ngineering˛
pp‹ —ı–‌8‹ #arl Hanser Verlag GmbH ˚ #o‹ +G˛ „015‹

[MRV„0= Michael˛ *udith; Rumpe˛ "ernhard; Varga˛ Simonȷ Human "ehavior˛ Goals and Model‚
$riven Software %ngineering for !ssistive Systems‹ Inȷ %nterprise Modeling and
Information Systems !rchitectures ˘%MSI! „0„0¯‹ volume „—„8‹ #%UR Workshop
Proceedings˛ pp‹ 11–18˛ „0„0‹

[Pa0‌= Pahl˛ Gerhard; "eitz˛ W‹; Feldhusen˛ *țrg; Grote˛ +arl‚Heinrichȷ %ngineering $esign ‚ !
Systematic !pproach‹ Springer˛ London˛ « edition˛ „00‌‹

[To10= Tong˛WeiȷWind Power Generation and Wind Power $esign‹ WIT Press˛ „010‹

[Ve1ı= Veers˛ Paul; $ykes˛ +atherine; Lantz˛ %ric; et al‹ȷ Grand challenges in the science of wind
energy‹ Science˛ «——˘—»—»¯˛ „01ı‹

[Vi1ı= Vincent˛ Paul; Iijima˛+imihiko; $river˛Mark; Wong˛ *ason; Natis˛YemȷMagic quadrant
for enterprise low‚code application platforms‹ Gartner report˛ „01ı‹

[Wa1ı= Waszkowski˛ Robertȷ Low‚code platform for automating business processes in manufac‚
turing‹ IF!#‚PapersOnLine˛ 5„˘10¯ȷ«‌—–«81˛ „01ı‹ 1«th IF!# Workshop on Intelligent
Manufacturing Systems IMS „01ı‹

[WS0ı= Wțlkl˛ Stefan; Shea˛ +ristinaȷ ! #omputational Product Model for #onceptual $esign
Using SysML‹ Inȷ Int‹ $esign %ngineering Technical #onferences and #omputers and
Information in %ngineering #onference‹ „00ı‹

[Ze„1= Zerwas˛ Thilo; *acobs˛ Georg; Spuetz˛ +athrin; Hoepfner˛ Gregor; $rave˛ Imke; "erroth˛
*oerg; Guist˛ #hristian; +onrad˛ #hristian; Rumpe˛ "ernhard; +ohl˛ *ensȷ Mechanical
#oncept $evelopment Using Principle Solution Models‹ Inȷ IOP #onference Seriesȷ
Materials Science and %ngineering‹ volume 10ı‌ȷ01„001‹ IOP Publishing˛ „0„1‹

