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Abstract The Internet of Things (IoT) networks everyday objects that can perceive 
and influence their environment using sensors and actuators. Since IoT systems 
are inherently distributed systems, often built on fault-prone hardware and exposed 
to harsh environmental conditions such as vibration or humidity, developing such 
systems is challenging. In recent years, some DSLs for IoT system development 
have been introduced, yet they only slightly improve IoT system development. 
This chapter provides an overview of MontiThings, an ecosystem for model-
driven development of IoT systems that covers the life cycle of IoT systems 
from design in the form of Component and connector (C&C) models, through 
(dynamic) deployment, to failure analysis. MontiThings is designed to handle 
different classes of errors and failures. By being able to make counter-suggestions to 
device owners, the requirement-based deployment algorithm enables device owners 
to customize their IoT systems to their needs. MontiThings also offers an app store 
concept to decouple hardware development from software development in order 
to prospectively reduce problems such as e-waste and security issues that result 
from too close a coupling. Overall, MontiThings demonstrates an end-to-end model-
driven approach to IoT system development. 

Note This chapter summarizes the thesis [16]. Thus, the content of this chapter is 
taken from [16]. In particular, all illustrations were taken from the dissertation and 
the respective papers the dissertation is based on. 
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1 Introduction 

The Internet of Things (IoT) networks everyday objects. Sensors and actuators 
enable them to perceive and influence their environment. The data obtained from 
the sensors is often used to automate processes with the help of the actuators. 
For example, in a smart home, the heating can be switched off automatically as 
soon as the window is opened. Because IoT devices belong to real-world objects, 
IoT systems are inherently distributed systems. The programming languages with 
which such systems are mostly developed today are often the same General-purpose 
programming languages (GPLs) such as C++ or Python with which all other 
types of systems are developed, according to an analysis of GitHub projects [7] 
and developer surveys [10]. These GPLs were not designed with the (primary) 
goal of improving the development of IoT applications. Accordingly, these GPLs 
are not well suited to address the challenges of developing IoT systems [32]. 
According to [32], the differences to programming traditional applications like web 
applications include, among other things, multidevice programming, the always-on 
nature of the system, heterogeneity, and the need to write fault-tolerant software. 

In contrast to GPLs, domain-specific (modelling) languages often focus on 
solving a specific problem. Such modelling languages raise the level of abstraction, 
allowing certain aspects of development to be solved systematically in a way that 
GPLs cannot, since they must provide a certain level of generality. In the last 
decade, quite a few modelling and programming languages have been published 
for the development of IoT applications, including ThingML [13, 24], Ericsson’s 
Calvin [3, 28, 29], Eclipse Mita [11], CapeCode [4], FRASAD [26], and Node-
RED [27]. However, these languages often offer only a low level of abstraction [9], 
ultimately leaving the complexity of challenges such as multidevice programming 
to developers or focus only on early development phases and mostly neglect 
deployment. 

In this chapter, we present MontiThings, an ecosystem for the model-driven 
IoT application development that covers the life cycle from initial prototypes to 
deployment on IoT devices to analysis of deployed applications. MontiThings 
consists of several modelling languages that clearly separate the business logic from 
the technical aspects of development. In doing so, MontiThings supports developers 
through various mechanisms in the development of error-resilient applications. In 
the event that errors do occur, MontiThings offers various analysis procedures. 
Since different instances of an IoT system can differ greatly from each other, 
MontiThings offers device owners the possibility to influence the deployment. In 
its app store concept, MontiThings also decouples the software from the hardware 
development, thus perspectively avoiding e-waste and security problems caused by 
outdated software or required cloud services discontinued by the manufacturer. 

Figure 1 provides a brief overview of the MontiThings ecosystem. At design 
time, the IoT developers are developing various artifacts. Through MontiThings 
C&C architectures, the business logic of the application can be defined. Data 
structures are specified using class diagrams. If the MontiThings C&C language
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is unsuitable to express a certain behavior, handwritten code in a GPL can be used 
as a supplement. Tagging languages can be used to define additional functionalities 
such as digital twins. In addition to these platform-independent artifacts, platform-
specific artifacts, e.g., certain libraries for controlling a sensor, can also be used. All 
these artifacts are uploaded as input to an online repository (e.g., GitLab). There, a 
Continuous integration (CI) pipeline checks the artifacts, performs model-to-model 
transformations if necessary (e.g., to add components for digital twins), and then 
generates C.++ code from the models. The generated code is linked against an RTE 
that provides common functionality such as communication between components. 
The generated code is then containerized and offered via a registry. From there, 
the IoT devices download the container images relevant to them. The Deployment 
Manager decides which images are relevant in each case. The Deployment Manager 
is one of several additional services that are operated at runtime alongside the 
actual application. These additional services enable communication between the 
components, provide digital twins, or offer analysis services, for example. 

The rest of this chapter presents some parts of MontiThings in more detail: 
Sec. 2 first introduces the MontiThings language family. Sec. 3 then explains 
MontiThings’ deployment algorithm. After that, Sec. 4 shows how tagging can be 
used to add digital twins to the application. Sec. 5 introduces MontiThings’ app 
store concept. Sec. 6 shows different methods for error handling and analysis. Sec. 7 
concludes. The MontiThings ecosystem can only be briefly described in this chapter. 
Please find additional information on the respective papers [6, 17–20, 20, 22] and 
dissertation [16]. 

2 The MontiThings Language Family 

The core of MontiThings is a C&C language. This language is used to describe 
the business logic of IoT applications. For this purpose, IoT developers specify 
components that exchange data with other components via typed and directed ports. 
Instances of the components are connected to each other via connectors. 

Figure 2 shows an example of such an application. The example shows a section 
of a fire alarm system. MontiThings uses both a textual and a graphical syntax. 
However, only the textual models are actually processed. The graphical models exist 
only for better understanding. Thus, the top two models are therefore two different 
representations of the same FireAlarm component. 

The behavior of a component can be defined in four different ways: 

1. By instantiating subcomponents and connecting them to the ports of the 
component instantiating them, 

2. through a Java-like behavior language, 
3. using statecharts, 
4. using handwritten GPL code (e.g., in C.++ or Python).
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Fig. 2 An example of the graphical and textual syntax of MontiThings. The graphical syntax is 
only for better comprehensibility. Only the textual version is parsed. Figure adapted from [20] 

Components that define their behavior through subcomponents are also called 
composed components. Components that describe their behavior via one of the other 
three methods are also called atomic components. 

In the graphical syntax, one can see a difference between black and white ports. 
White ports represent a port that exchanges data with other components. Black 
ports represent a port for which the IoT developers have stored handwritten code. 
This handwritten code enables the port to access the hardware (e.g., a sensor). In 
the textual syntax, however, there is no difference between black and white ports. 
This makes it possible to use an override mechanism similar to that used by object-
oriented languages to override base class methods in subclasses. If a port for which
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Fig. 3 Overview of languages from the MontiVerse incorporated by MontiThings’ core language. 
Figure taken from [19] 

handwritten code exists is connected using a connector, the handwritten code is 
automatically ignored, and only the connector is considered. This mechanism makes 
it easier to reuse components in different contexts. For example, a component 
that accesses hardware can be connected in the context of a test case with mock 
components that take on the role of the real hardware for the test. 

MontiThings also serves as an example of how the MontiCore language work-
bench [15] can be used to build large languages. In total, MontiThings combines 46 
grammars from the MontiCore language library in addition to its own grammars. 
An overview can be found in Fig. 3. Besides MontiArc, which is the basis for 
MontiThings, the type system and the expressions are especially worth mentioning. 
MontiThings reuses the primitive types of MontiCore. They are extended by the 
types of the International System of Units (SI) Units language. Hereby, it is possible 
to use SI Units like primitive data types. This can be seen, for example, in the 
middle model of Fig. 2, where . ◦C is used like a normal data type. If two compatible 
but different types are to be converted into each other (e.g., km/h and m/s), 
MontiThings can automatically convert the values into each other in the background. 
This makes components more flexible to use, since the types of connected ports do 
not have to match but only have to be compatible to each other. If more complex data 
types are to be used, they can be defined via class diagrams of the Class diagrams 
for analysis (CD4A) project. MontiThings can import the symbols of such class 
diagrams and thus make them available to the components. These types can be 
instantiated using an object diagram-like syntax similar to Go’s composite literals.1 

Furthermore, MontiThings uses the Object constraint language (OCL) for  
expressions. The main use case here is to enable IoT developers to describe pre- and 
postconditions for component behavior. If an error is detected, the execution can

1 https://go.dev/ref/spec. 

https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
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either be aborted at this point or a behavior can be defined to handle the exception. 
For example, a default value or the last measured value could be used if a sensor 
value deviates too much from the expected range. Parts of the OCL can also be used 
within the Java-like behavioral language at points where Boolean expressions are 
provided. For example, an if condition can be specified using the OCL. 

Further language features of MontiThings’ core language such as the definition 
of initial behavior, periodic behavior, or dynamics can be found in [16]. 

Besides the C&C language, the MontiThings project consists of other languages. 
The MontiThings Configuration Language (MTCFG, bottom model of Fig. 2) is a  
tagging language that can be used to customize components depending on their 
target platform. For example, different code templates can be selected for different 
platforms (e.g., Arduino vs. Raspberry Pi). Technical requirements can also be 
specified here (cf. Sec. 3). 

Furthermore, MontiThings includes a language for specifying test cases based 
on [14]. Figure 4 gives an example of this language. Again, the graphical syntax 
is only for easier comprehension. MontiThings only parses textual models. Tech-
nically, MontiThings uses the test models to generate C.++ tests written against 
the GoogleTest framework. Based on MontiCore’s sequence diagram language, the 

Fig. 4 White box test cases can be specified in the form of sequence diagrams that describe the 
message exchange between component instances. The graphical syntax of placing ports below 
components is taken from [14]. Figure taken from [16]
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desired interaction between subcomponent instances of a composed component 
is represented in a sequence diagram. Of course, it is also possible to omit the 
specification of the inner workings and define a pure blackbox test where only 
the inputs and outputs are specified. In the depicted example, a smoke detector 
senses a voltage of 3.8 V and decides based on this voltage that there is a fire and 
informs the FireDetector’s in1 port about it. After a maximum delay of 2 s, the 
FireDetector must have sent a message to the alarm port of the FireAlarm 
component. Then the temperature sensor detects a temperature of .32 ◦C and 
informs the FireDetector about this. Nevertheless, the FireDetector does 
not change its decision as it still has sufficient evidence of a fire based on the 
SmokeDetector’s earlier message. 

3 Requirement-Based Self-Adaptive Deployment 

IoT applications are often distributed applications. Partial applications must be 
deployed to a large number of IoT devices. In the same way, parts of applications 
can also be deployed to a cloud. The interaction of the IoT devices and the cloud 
results in the overall business logic. Furthermore, IoT applications can also include 
user interfaces via which the data of the application can be viewed or commands 
can be sent to the application. Such graphical user interfaces are not considered in 
this chapter. 

IoT devices can be very different from each other. In addition to different 
computing power, they can also have different sensors and actuators. Consequently, 
the sub-applications cannot be deployed arbitrarily on the IoT devices. Instead, 
deployment requires precise planning of which devices should run which software. 
In addition to the purely technical framework conditions, the personal wishes of the 
device owners also play a role. For example, a device owner may wish not to install 
camera software provided by a social network on the devices in his bathroom. Legal 
requirements can also play a role. For example, in some countries, it is necessary 
to install a fire alarm in certain living spaces. A requirement could therefore be to 
install a fire alarm in every room, for example. 

Furthermore, the deployment of IoT applications is not necessarily static. One 
reason for this is that IoT devices—unlike a television, for example, which is sold 
as a complete product—are often sold in extensible form. Many people initially buy 
a small number of IoT devices. If these devices prove successful, more devices are 
purchased. In this way, the IoT system is continuously expanded. The deployment 
of the software must adapt to these changes in the hardware accordingly. On the 
other hand, IoT devices can also fail. IoT devices often consist of inexpensive 
hardware and are often exposed to harsh environmental conditions. These and other 
factors favor a failure of the devices. Furthermore, IoT devices can of course also 
be deliberately removed by their owners. If an IoT device leaves the system, the 
deployment may have to be adjusted accordingly.
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Fig. 5 The deployment manager generates Prolog code that calculates which IoT devices execute 
which images from the container registry based on technical requirements of the components, 
requirements of the device owners, and information about the IoT devices. Figure taken from [22] 

MontiThings relies on a requirement-based deployment process. Figure 5 gives 
an overview of this deployment process. MontiThings distinguishes between tech-
nical requirements and local requirements. Technical requirements define the 
properties that a component must technically fulfill in order to be able to execute 
a component. They are defined by the IoT developers at design time. Local 
requirements, on the other hand, refer to the locality in which a component is 
executed. These requirements can be different for each instance of an application. 
They are defined by the device owners. 

The technical and local requirements are merged in the Deployment Manager. 
In addition, the Deployment Manager receives information about the devices used 
in an IoT system. The Deployment Manager uses all this information to generate 
Prolog code that can be used to calculate a distribution of the software components 
to the IoT devices. In the process, Prolog facts are generated from the information 
about the IoT devices, and queries are generated from the requirements. A special 
feature here is that the generated Prolog code can not only calculate a distribution of 
the software components to the IoT devices but can also make counterproposals 
in the case of unfulfillable requirements. In particular, the purchase of new IoT 
devices and the modification (i.e., weakening) of the requirements can be suggested. 
Once a deployment is agreed upon with the device owner, the Deployment Manager 
communicates it to the IoT devices, which then download the (Docker) containers 
assigned to them according to the deployment. 

Figure 6 shows the deployment process in more detail. First, IoT developers 
model their IoT components using MontiThings. In particular, they also specify 
the technical requirements of the components. If necessary, they also implement 
handwritten code to implement the behavior of the components. The IoT developers 
then upload all these artifacts to an online repository. There, a CI pipeline distributes 
the uploaded artifacts. First, the artifacts are checked for validity. If errors are
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Fig. 6 Deployment process. The artifacts of the IoT developers are checked and provided by a 
CI/CD pipeline. The device owners negotiate with the deployment manager which devices should 
run which software. Figure taken from [20] 

found, the IoT developers are asked to correct the errors with a corresponding error 
message. If the artifacts are accepted as valid, they are then used for code generation. 
The generated code is compiled and packaged into containers. 

The device owners who want to deploy the application on their infrastructure 
must first specify their local requirements. MontiThings currently supports the 
following four types of local requirements: 

1. A component shall (not) be deployed at a specific location, 
2. A location requires a (minimum, maximum, or exact) number of components to 

be deployed there, 
3. Two components may not be deployed to the same device, 
4. A component requires a certain number of components (optionally in a similar 

location, i.e., the same room, floor, or building). 

The Deployment Manager first validates these local requirements. If a valid 
deployment can be found taking into account the requirements, the device owners 
can decide whether they want to install this deployment on their devices. If no 
deployment can be found, the Deployment Manager suggests changes to the device 
owners. It is always possible to reject the proposed changes. In this case, the 
Deployment Manager calculates another proposal. In order not to overload the 
device owners with very similar proposals, the proposals are filtered so that the 
rejection of a proposal automatically counts as a rejection of all supersets of this 
proposal. For example, if the device owners refuse to buy a new fire alarm for the 
bathroom, a theoretically possible proposal to buy one fire alarm for the bathroom 
and one for the kitchen is automatically rejected.
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Fig. 7 Overview of the Prolog code generated by Deployment Manager. Left: high-level work-
flow. Right: applying a single negotiable requirement. Figure taken from [20] 

The process of how the automatically generated Prolog code processes the 
requirements is shown in more detail in Fig. 7. First, Prolog searches the list of 
all known IoT devices for the devices that are currently online and thus available for 
deployment. Based on this list, it then identifies the devices that meet the technical 
requirements. Since the IoT developers are not involved in the deployment process, 
their technical requirements are considered non-negotiable in the process. If a device 
does not meet the technical requirements of a component, it cannot execute the 
component. Device owners cannot overrule this decision. After applying the non-
negotiable requirements, the local requirements are checked. These are assumed 
to be negotiable because the equipment owners are involved in the deployment 
process and can respond to counterproposals. The reaction includes in particular 
the possibility to reject all counterproposals and to cancel the deployment, i.e., to 
consider the local requirements as non-negotiable as well. 

When Prolog considers a local requirement, it first checks whether the require-
ment is already satisfied by the current allocation of components to IoT devices 
(1 in Fig. 7). If this is the case, one can proceed to the next requirement. If the 
requirement is not fulfilled, it is first checked whether too many IoT devices are 
currently executing the corresponding component (2). This can occur, for example,
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if device owners require a particular component to be deployed a maximum of 
5 times. If this is the case, components are removed from IoT devices using 
backtracking, and it is checked whether the requirement can be fulfilled in this 
way while complying with the previously processed requirements (4 and 5). If the 
component is not scheduled too often, it is handled that a component is not yet 
scheduled frequently enough. In this case, it is first checked whether the requirement 
can be met by purchasing more hardware (3). Only if this is not the case is it 
suggested that requirements be reduced (6 and 7). In order not to overload the device 
owners with requests that may not have any influence on the ultimate fulfillment of 
the deployment later in the process, the modification proposals are first collected 
before they are presented to the device owners until a theoretically valid deployment 
is found. The Deployment Manager implicitly assumes that all change requests are 
accepted. Should a valid deployment be found with this, the proposed changes will 
be offered to the device owners in a bundle. 

Creating local requirements requires some knowledge of the software com-
ponents of the IoT system. This is not desirable in some cases. On the one 
hand, because it requires IoT developers to disclose their software architecture 
to a certain extent and, on the other hand, because it requires training from 
device owners. Therefore, to increase the level of abstraction, MontiThings also 
offers an approach based on feature diagrams. Here, IoT developers create a 
feature diagram that models the features they envision in their application and 
their dependencies on each other. They use tagging to relate the features to the 
software components. This is illustrated in Fig. 8. This enables device owners to 
select the desired features based on the abstract feature diagram. Furthermore, 
device owners can run automatic analyses through which feature configurations are 
automatically calculated. For example, the largest possible feature configuration can 
be calculated or the largest possible feature configuration that can be deployed with 
the existing IoT devices. Behind the feature analyses lies the previously described 
requirements-based mechanism, which generates Prolog code from requirements. 

Fig. 8 Feature Diagrams can be used to tag architecture models. In this way, multiple components 
can be combined into a common feature. Device owners can thus select the desired features at a 
higher level of abstraction. Figure taken from [6]
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For this purpose, requirements are generated from the feature configurations, e.g., 
that a certain component must be deployed in the system so that a certain feature is 
fulfilled. 

4 Synthesizing Digital Twins 

Once the components are deployed to the target infrastructure, the next challenge is 
to observe or influence the system. For this purpose, digital twins can be created. In 
this chapter, we will refer to the definition of digital twins that the Chair of Software 
Engineering has developed through several years of discussions and a systematic 
literature review [8]: 

Definition 1 “Digital Twin, V2.1 
A digital twin of a system consists of 

• a set of models of the system and 
• a set of digital shadows, both of which are purposefully updated on a regular 

basis, and 
• provides a set of services to use both purposefully with respect to the original 

system. 

The digital twin interacts with the original system by 

• providing useful information about the system’s context and 
• sending it control commands.” [30] 

MontiThings offers the possibility to create digital twins based on class diagrams 
and C&C architecture models. The class diagram represents the data structure of a 
Digital twin information system (DTIS). In the actual implementation, the business 
logic of the system is created as usual with MontiThings. The information system is 
created with the help of MontiGem [1, 12], a tool for the model-driven creation of 
web applications. Figure 9 gives an overview of the process of synthesizing digital 
twins. After the IoT applications and the web application, and thus MontiThings 
models and class diagrams, have been developed (step 1 and 2 in Fig. 9), a system 
integrator connects the models together (step 3). For this purpose, he connects 
attributes of the class diagram with ports of the MontiThings architecture by means 
of tagging. 

For this purpose, let’s look at exemplary models of a fire extinguishing system 
in Fig. 10. The associated tagging model that the system integrator uses to connect 
the two models is shown in Fig. 11. First, the integrator uses the identify 
keyword to distinguish the different IoT devices from the web system. This can 
be done either by an entry in the database (especially if the digital twin is created 
before the real system) (ll. 1–5) or by the system automatically assigning identifiers 
to the IoT devices and storing them in the database (ll. 6–8). After that, the ports 
of the architecture models are connected to the attributes of the class diagram. The 
direction plays a role here. On the one hand, the real system can have data sent to its
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Fig. 10 An example of a fire alarm application. Left: the data structure of the web application. 
Right: the model of the IoT application. Figure taken from [17] 

Fig. 11 The tagging language associates attributes of a class diagram with ports of a C&C 
architecture (ll. 9-18). Additionally, it defines how the IoT devices identify themselves to the web 
application (ll. 1-8). Figure taken from [17]
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Fig. 12 Model-to-model transformations add components to the C&C architecture that synchro-
nize with the digital twin. Elements created by model-to-model transformations are shown in bold. 
Figure adapted from [17] 

digital twin by sending data from the port to the attribute in the class diagram (and 
thus to the database generated from it) (ll. 9–13). On the other hand, the digital twin 
can send data to its real counterpart by defining the reverse direction in the tagging 
(ll. 14–18). 

Once the models are connected, the next step is to process them through model-
to-model transformations (step 4 in Fig. 9). The transformations give the models 
additional elements that keep the real system and its twin in sync with each 
other. In the following, we will look at the transformations of the architecture. 
Interested readers can find a more detailed explanation of the method and the 
transformations of the web system in [17]. Figure 12 gives an overview of the 
architecture transformations. We distinguish three cases: 

1. Connecting an outgoing port 
2. Connecting an incoming port that currently has no incoming connectors 
3. Connecting an incoming port that already has an incoming connector 

In the first case, we add a new component via transformation that receives all data 
sent through the port and forwards it to the digital twin. In the second case, we 
do the reverse and add a component that receives data from the digital twin and 
forwards it to the port. In the third case, the already-existing connector must be 
resolved. We replace it with a new Injector component. On the one hand, this 
contains a Transceiver component that can both forward data to the digital twin 
and receive data from it. The situation can arise here that the value of the digital 
twin does not correspond to the value that the component receives via the connector 
replaced by the transformation. To resolve this situation, the Injector component 
includes a MUX that decides whether to use the data from the digital twin or from 
the real system. Users can control this MUX in the web interface. It enables them to 
prevent their desired values from being overwritten by the real system in the next
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moment. For example, in our fire alarm, a test alarm can be triggered even if the 
sensors report that there is no fire, and the alarm should therefore be switched off. 

5 IoT App Store Concept 

When IoT devices are sold today, they are usually sold as a single product consisting 
of hardware and software. This gives the provider a great degree of control over 
the IoT devices. Users are usually not free to install new software on their IoT 
devices. If the manufacturer of the IoT devices now decides to change the rules 
of the game after the devices have been purchased, e.g., to introduce a subscription 
model, the user usually has little recourse against this. If the device manufacturer 
decides to shut down the cloud services required to operate the devices or simply 
goes bankrupt, the devices can become electronic waste. This practice is neither 
economically nor ecologically sustainable. 

One way to solve this problem is to introduce an app store that would allow 
software to be installed independently of the hardware manufacturer. Such an 
IoT app store has already been proposed by various scientists, e.g., [2, 5, 25]. 
Consequently, MontiThings also includes a concept for an app store. Figure 13 
shows an overview of MontiThings’ app store concept. This concept is mainly 
based on the deployment algorithm already presented. A key feature of the concept 
is the clear separation between hardware and software development. The software 
developer specifies his application as previously introduced by C&C architecture 
models. In addition, their hardware requirements are specified for each component. 
The hardware requirements are specified thereby with the help of OCL. Thus, 
for example, also ranges of hardware requirements can be defined, e.g., a camera 
with at least 4 megapixels (instead of exactly 4 megapixels). Optionally, other 
models such as a feature diagram can be used to define high-level features. The 
applications specified in this way are transformed into executable container images 
by a CI/Continuous deployment (CD) pipeline. 

On the hardware side, device developers develop their IoT devices and the 
corresponding drivers to access their devices. In addition, they specify the properties 
of their IoT devices in the form of an object diagram. On the software side, the 
IoT devices have the following software stack: A container engine executes the 
containers of the actual IoT application as specified by the deployment algorithm. A 
message broker enables the device-internal communication between the application 
containers and the hardware drivers. The hardware access manager coordinates 
which application containers access which sensors and actuators. This is particularly 
relevant if there is more than one instance of a hardware component, e.g., four 
weight sensors. It ensures that the application containers do not conflict with each 
other. The hardware access manager tells the application containers on which topics 
they can communicate with the requested hardware. The hardware access manager 
is then no longer involved in the subsequent data exchange.
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To determine which hardware can execute which software components, the 
deployment algorithm must now check the OCL requirements of the software 
against the object diagrams that describe the hardware. For integration into our 
deployment algorithm, both are transformed into Prolog. The details can be found 
in [6]. To enable the software and hardware developers to match OCL and object 
diagrams in the end, even if the developers do not know each other, the app store 
provides a hardware ontology in the form of a class diagram. This class diagram 
specifies which types of hardware the app store expects in principle and which 
properties must be defined for such hardware. For example, it can be defined that 
cameras are a type of sensor and a width and height in pixels must be specified 
for each of the images shot. The rest of the deployment process then takes place 
as usual, i.e., device owners can specify additional local rules in a web interface. 
The deployment algorithm then decides which IoT devices should execute which 
software components and the IoT devices download the software accordingly from 
a container registry. 

6 Failure Handling in MontiThings Applications 

IoT devices are often based on low-cost hardware. One disadvantage of this 
hardware is that it is not particularly protected against failures or errors. IoT software 
must therefore be able to deal with the fact that errors occur. Such errors range from 
incorrect sensor values to completely failing devices. 

MontiThings’ C&C models describe the business logic of IoT applications. 
Technical details are not visible at this level of abstraction. Figure 14 shows an 
example of this. Even if the application has been modeled correctly in itself, 
various errors can occur at runtime due to unreliable hardware. Sensors can provide 
incorrect readings, affecting the flow of the system. Similarly, software errors such 
as incorrectly set clocks can affect the system. Network problems can delay or 
completely prevent the delivery of messages. This is especially noticeable on mobile 
devices that must rely on a cellular connection. 

Frameworks for developing IoT applications must therefore be able to handle 
errors. Thus, MontiThings provides several mechanisms for analyzing and handling 
errors, which are summarized in the remainder of this section. 

6.1 Record and Replay for Handling Failing Devices 

The strongest form of failure of an IoT device is its complete failure. MontiThings 
deployment algorithm can detect failing devices by missing heartbeat messages. 
When a device fails, the components that the device was executing before its failure 
(if possible) are reassigned to another IoT device. However, this new device is not 
in the same state as the failed device before its failure.
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Fig. 14 (Hardware) errors that are not caused by the business logic may not be detected directly 
in the C&C architecture. Figure taken from [18] 

Fig. 15 If components fail (due to hardware defects), the components that replace them are not 
necessarily in the same state. MontiThings restores the state of the failed component by resending 
messages sent to the failed component to the new component. Figure taken from [22] 

To address the issue of complete hardware failure, MontiThings uses record-
and-replay. Figure 15 shows an overview of this. MontiThings continuously records 
the messages exchanged between the devices during runtime. If one device fails, 
the deployment algorithm starts the component on another device. When the new 
component is launched, incoming connectors are first connected to a replayer. The 
recorded messages are then used to put the new component in the state of the failed 
component. The replayer plays back the recorded messages. Once the messages 
are replayed and thus the state is restored, the ports are connected to the rest. In 
particular, the outgoing ports are connected only now, so that the messages sent as 
a by-product during state recovery do not affect the rest of the system. 

This procedure has a complexity of .O(n), where n is the number of messages. 
To improve this, components can periodically serialize their state and store it in 
the record-and-replay system. If a component fails, only the constant number of 
messages since the last state serialization has to be replayed. Thus the complexity 
sinks to .O(1).
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6.2 Recording and Transformation-Based Replaying 

In less severe failure cases, only parts of the IoT system fail or misbehave. One 
problem in analyzing such errors is that they often cannot be reproduced under 
laboratory conditions. To analyze such faults, MontiThings therefore offers the 
possibility to record the behavior of the system and reproduce it later under 
deterministic conditions. Figure 16 shows an overview of this procedure. The 
procedure consists of the following steps: 

1. IoT developers model their application through a C&C architecture as usual. 
2. the developers’ models are used to generate (C.++) code that is executed by the 

IoT devices. 
3. during the runtime of the system, a recorder records all messages exchanged 

between the devices. Metadata is also recorded. This includes, for example, 
what time elapsed between sending and receiving a message. As a result, system 
traces are created that contain the recorded system behavior. 

4. a transformation engine uses the architecture models originally used by the 
generator and the system traces to create a new architecture model, the 
reproduction model. This model is a modified form of the original model that 
allows the replay of the system traces. 

5. from the reproduction model, a new (non-distributed) application and (C++) 
code are created. Unlike the original version of the application, this is not a 
distributed application but a single binary. We call this application Reproduction 
Executable. 

6. the Reproduction Executable can now be analyzed by the IoT developer using 
the usual debugging tools such as gdb. In particular, he now also has the 
possibility, for example, to set breakpoints and thus stop the entire system. 
Inspecting the global state of the system like this is not easily possible in a 
distributed system [31]. 

In step 4, the reproduction model was created from the architecture and system 
traces. Figure 17 gives a detailed insight into the relationship between the original 
model and the reproduction model. The transformation engine looks for places in 
the original model where the hardware or the environment affects the execution of 
the IoT system. At these points, the corresponding model elements are replaced 
or extended in such a way that the influences are removed and deterministically 
reproduced for the reproduction. In particular, sensors and actuators are replaced 
by components. By the mechanism described in Sec. 2, it is sufficient to insert new 
components and connect their ports to the black ports for this purpose. The new 
components then mock the real hardware by, for example, replaying recorded sensor 
values at the right time. Where components are connected, new components are 
introduced that simulate the recorded network properties. This means in particular 
delaying or losing messages. Where components execute a computation (atomic 
components), a wrapper is introduced around the components, which maps the
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Fig. 17 The reproduction model (top) replaces hardware- or environment-dependent model 
elements in the original model (bottom) with elements that replay the recorded data. Figure adapted 
from [18] 

delay by the computations of the processor. Further details like the handling of non-
deterministic computations can be read in [18]. 

6.3 Web-Based Failure Tracing 

The method presented in the previous section analyzes faults in an environment 
separated from the real system. Another popular option for debugging is the analysis 
of logs. The difficulty with IoT devices is that they are distributed applications. 
The logs of the individual IoT devices are therefore not necessarily available in a 
coherent form. If errors occur, such as clocks not being perfectly synchronized, the 
logs can be misleading. In order to analyze errors, a large amount of additional 
information must be logged that may not be relevant to the analysis of the problem 
at hand. These log messages further complicate troubleshooting by distracting from 
the relevant messages. 

In practice, error analysis often takes the form of noticing misbehavior at a certain 
point. In the best case, this misbehavior can be detected in the logs. From this point, 
the developers perform a reverse search and try to identify how the error occurred. If 
the application is modeled in the form of a C&C application, the modeled data flow 
yields additional information that can narrow down the error search: by knowing 
which component exchanges data with which other components, log messages can 
be filtered.
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Fig. 18 MontiThings correlates log messages from interacting components. Thus, in large logs, it 
is possible to trace which logs have led to the generation of a log message. Figure taken from [21] 
and based on [23] 

MontiThings offers a tool for this that lets developers interact with the real system 
at runtime. The logs of each individual component are displayed. If a developer 
clicks on a log message, it is displayed which other log messages are related to 
this log message. For this purpose, a graph is built that graphically represents the 
architecture, reducing it to the relevant communication paths. 

Technically, this works as shown in Fig. 18. When a message arrives at a port, 
MontiThings starts to bundle log messages. A unique ID is assigned for each bundle. 
If the component now sends a message on a port in response to the incoming 
message, the ID of the current bundle of log messages is also sent. In this way, 
a graph structure of bundles of log messages can be created. When a developer 
asks for the origin of a particular log message, the log system communicates with 
the components to get the log messages associated with the IDs. Details about this 
process can be found in [21].



An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 69

7 Conclusion 

Developing distributed IoT applications based on heterogeneous, error-prone IoT 
devices is complex. GPLs are not designed for this task. Model-driven approaches 
promise to make this problem manageable through abstraction. In this chapter, 
we presented MontiThings, a model-driven ecosystem for developing, deploying, 
and analyzing IoT applications. MontiThings also outlines an app store concept 
that decouples hardware and software development. Overall, MontiThings’ deploy-
ment algorithm and app store concept help give device owners more control 
over their devices. By negotiating deployment with device owners, the deploy-
ment algorithm increases the flexibility of IoT systems. Possible future work 
includes more automated exploitation of cloud services, integration of user-defined 
behavior (including, e.g., through Large Language Models), and generation of user-
understandable explanations for system behavior. 

Source Code 

MontiThings is available on GitHub: https://github.com/MontiCore/montithings. 
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