
FormSERA Workshop on Formal Methods in
Software Engineering

Rigorous and Agile Approaches
2nd of June 2012 at ICSE’2012 in Zürich (CH)

1st Stefan Gruner, Bernhard Rumpe
sg@cs.up.ac.za, rumpe@se-rwth.de
DOI: 10.1145/2382756.2382777

http://doi.acm.org/10.1145/2382756.2382777

3rd Author
ABSTRACT
This report summarizes the activities and results of the
FormSERA workshop on Formal Methods in Software
Engineering – Rigorous and Agile Approaches. The workshop
took place on the 2nd of June 2012 in Zürich (CH) under the
umbrella of the 34th International Conference on Software
Engineering, ICSE 2012, see http://www.formsera.org/
Keywords:Formal Methods (FM), Agile Methods (AM),
Combination FM and AM

OVERVIEW
The FormSERA’2012 workshop at ICSE’2012 was the result

of an attempt to merge of two previously independent workshops
with the idea of gaining synergy effects from two different, but
closely related communities. The Formal Methods and Agile
Methods (FM+AM’2012) community was represented by
Bernhard Rumpe and Stefan Gruner.1 Stefania Gnesi and Nico
Plat –see Acknowledgments– represented the Formal Methods
in Software Engineering community. This merger resulted in the
new workshop called “FormSERA”: Formal Methods in
Software Engineering: Rigorous and Agile Approaches.

Our workshop FormSERA’2012 addressed the use of formal
methods in software development. Formal methods differ from
other software engineering techniques in that they demand and
exploit a mathe-matically rigorous semantic basis for the tools
and notions used. Such sound foundations permit the analysis of
software engineering artefacts to a depth, and with a degree of
automation, that is otherwise impossible to achieve.

Many studies have shown that formal techniques can be used
in real industrial settings if knowledge and tool-support are also
provided. But the maturing of formal techniques into industrial
software engineering really involves providing notations and
tools that are readily understood by software practitioners who
are –unfortunately– often not sufficiently educated in classical
computer science and theoretical informatics. Moreover, such
tools must also be integrated into practical “workflows” which
are beyond the simplified ideal-assumptions by which some of
the earlier formal methods research was characterized. Examples
include deployment of formal methods in conjunction with
structured requirements analysis, software architecture and
programming practices including aspect-oriented techniques and
agile development. Our workshop called for original papers in
all these fields.

1 Stefan Gruner& Bernhard Rumpe (Eds.): FM+AM’2010 Second International
Workshop on Formal Methods and Agile Methods. Lecture Notes in Infor-
matics, Vol. 179, September 2010, GI-Publ., ISBN 978-3-88579-273-4.

Making progress in the industrial usability of formal methods
requires also bringing together formalists and theoreticians
together with soft-ware engineers from a wide range of
backgrounds. In spite of the jargon and language problems
which such encounters will inevitably entail, the need to achieve
some dialogue between the fairly small formal methods
community and the much larger community of software
engineers and practitioners was our main motivation to establish
our workshop under the umbrella of the ICSE conference.

Some participants of the FormSERA’2012 workshop in at
the University of Zürich (Campus Irchel), Switzerland.

INVITED LECTURE
Michael Jackson (Open University and University of Newcastle,
England) addressed the participants on the limits of
formalization. His lecture (which was unfortunately not written
down as a full paper for the workshop’s proceedings), is
summarized as follows:
“Two fundamental pillars of Software Engineering practice are
formalism and structure. Formalism allows engineers to reason
rigorously about the system in hand; structure allows them to
understand its purposes and behaviours. In the constructive
activity of system development structure must therefore take
precedence. The central role of formalism is to check and verify
–or, where necessary, correct– the products of more informal
modes of thought. In this talk these ideas are explored in the

ACM SIGSOFT Software Engineering Notes Page 28 November 2012 Volume 37 Number 6

[GR12] Stefan Gruner, Bernhard Rumpe
FormSERA Workshop on Formal Methods in Software Engineering: Rigorous and Agile Approaches (FormSERA),
FormSERA Workshop June 2nd, 2012 at ICSE 2012, Zürich,
in: ACM SIGSOFT Software Engineering Notes, vol. 37, no. 6 pages 28-30, November 2012.
www.se-rwth.de/publications

context of an illustrative system. The large structure of the
system functionality is discussed, together with the nature of the
components of that structure. Informal criteria of functional
simplicity are presented. The inescapable mismatch between an
intelligible functional structure and implementable software
architecture is exposed. The role of formalism in these concerns
is suggested”.2

ACCEPTED PAPERS
After a thorough review procedure with at least three reviews
per paper submitted, the following 8 papers have been chosen
for presentation at FormSERA’2012. These papers are published
in the IEEE Xplore Digital Library.3 Prior to review 16 papers
had been submitted, which makes an acceptance rate of 50%
percent.

Further Steps towards Efficient Runtime
Verification – Handling Probabilistic Cost Models
This paper by Antonio Filieri and Carlo Ghezzi is about model-
checking techniques for systems with probabilistic models the
probabilities of which are subject to change at runtime. The
paper extends previous work of the authors for Discrete Time
Markov Models (DTMC) by considering that models are
enriched with rewards functions for states and transitions. The
considered properties are formulas of R-PCTL, an extension of
PCTL that allows to express properties concerning the
cumulated reward in a path. The paper proposes a technique that
reduces the online phase of model-checking to the evaluation of
polynomial formulas that depend on the actual probabilities and
actual reward values. The time complexity of the evaluation of
these formulas is analyzed and an empirical evaluation is also
conducted for one of the type of formulas that involve rewards.

Language Engineering as an Enabler for
Incremental Formal Analyses
This paper by Daniel Ratiu, Markus Voelter, Bernhard Schätz
and Bernd Kolb notices a semantic gap between today’s general
purpose programming languages on the one hand and the input
languages of formal verification tools on the other hand. This
makes integrating formal analyses into the daily development
practice artificially complex. The authors advocate that the use
of language engineering techniques can substantially improve
this situation along three dimensions. First, more abstract and
thus more analyzable domain specific languages can be defined,
avoiding the need for abstraction recovery from programs
written in general purpose languages. Second, restrictions on the
use of existing languages can be imposed and thereby more
analyzable code can be obtained. Third, by expressing
verification conditions and the verification results at the domain
level, they are easier to define and the results of analyses are
easier to interpret by end users. The authors exemplify their
approach with three domain specific language fragments
integrated into the C programming language, together with a set
of analyses: completeness and consistency of decision tables,
model-checking-based analyses for a dialect of state machines
and consistency of feature models. Their examples are based on
the “mbeddr” stack, an extensible C language and IDE for
embedded software development.

2http://www.formsera.org/FormSERA/Program.html
3http://ieeexplore.ieee.org/

Making Sense of Recursion Patterns
This paper by Paul Bailes and Leighton Brough analyses the
value of Functional Programming for contemporary Software
Engineering. Recursion patterns (such as “foldr”) have the
potential to supplant explicit recursion in a viable sub-recursive
functional style of programming. Especially however in order to
be able to eschew explicit recursion entirely, even in the
definition of new recursion patterns, it’s essential to identify and
validate a minimal set of basic recursion patterns. The
immediate plausibility of “foldr” is validated by its application
to the implementation of functions and recursion patterns, and
especially by an abstract characterization of the programming
devices used in these applications used to overcome
complementary information deficiencies in data and control.

Scrum goes Formal – Agile Methods for Safety-
Critical Systems
This paper by Sune Wolff (a former contributor to the related
FM+AM workshop) states that formal methods have only low
penetration in industry but have the potential for much wider
use. The use of agile methods has been highly limited in
development of safety critical systems due to the lack of formal
evaluation techniques and rigorous planning. A combination of
formal methods and agile development processes can potentially
widen the use of formal methods in industry as well as enabling
the use of agile methods in development of safety-critical
systems. Wolff’s paper describes a way to add the use of formal
methods to the agile development process Scrum. Experiences
from using a variant of the strategy in an industrial case are
described.

Revisiting Modal Interface Automata
This paper by Ivo Krka and Nenad Medvidovic states that
modern software systems are typically built of components that
communicate through their external interfaces. A component’s
behavior can be effectively described using finite state automata-
based formalisms. The basic formalism, labeled transition
systems, describes the behavior of a component in terms of
states and labeled transitions. More advanced formalisms, such
as modal transition systems and interface automata, extend LTS
to incorporate additional information related to interface
operation controllability and the possible partiality of a
component’s specification. Capturing controllability and
partiality aspects of a component’s specification facilitates
checking interface compatibility, checking whether one
component can safely replace another component, and checking
whether one specification is a proper refinement of another
specification. For their paper the authors studied the existing
definitions of these three types of checks and exemplified their
limitations in the context of the richest class of component
behavior specifications, modal interface automata (MIA). The
authors also outline a set of enhancements to MIA as possible
solutions to those limitations.

Automated Continuous Quality Assurance
This paper by Johannes Neubauer, Bernhard Steffen, Oliver
Bauer, Stephan Windmüller, Maik Merten, Tiziana Margaria
and Falk Howar, presents a case study which illustrates the
power of active learning for enabling automated quality
assurance of evolving systems. It is shown how the development
of OCS, Springer's online conference system, is accompanied by

ACM SIGSOFT Software Engineering Notes Page 29 November 2012 Volume 37 Number 6

continuous learning-based testing, that, by its nature, maintains
the synchrony of the running application and the learned (test)
model. The evolution of the test model clearly indicates which
portions of the system remain stable and which are altered. This
approach comprises classical regression testing and feature
interaction detection.

EMF to CSP – A Tool for the Lightweight
Verification of EMF
This paper by Carlos González, Fabian Büttner, Robert Clarisó
and Jordi Cabot, states that the increasing popularity of MDE
results in the creation of larger models and model
transformations. Hence converting the specification of MDE
artefacts is an error-prone task. Therefore mechanisms to ensure
quality and absence of errors in models are needed to assure the
reliability of the MDE-based development process. Formal
methods have proven their worth in the verification of software
and hardware systems. However the adoption of formal methods
as a valid alternative to ensure model correctness is
compromised by the inner complexity of the task. To circumvent
this complexity it is common to impose limitations, such as
reducing the type of constructs that can appear in the model, or
turning the verification process from automatic into user-
assisted. Considering such limitations as counter-productive for
the adoption of formal methods, the authors present EMFtoCSP,
a new tool for the fully automatic, decidable and expressive
verification of EMF models that uses constraint logic
programming as the underlying formalism.

Augmenting Event-B Modelling with Real-Time
Verification
This paper by Alexei Iliasov, Linas Laibinis, Elena Troubitsyna,
Alexander Romanovsky and Timo Latvala states that a large
number of dependable embedded systems have stringent real-
time requirements imposed on them. An analysis of real-time
behaviour is usually conducted at implementation-level.
However, it is desirable to obtain an evaluation of real-time
properties early at the development cycle, i.e., at the modelling

stage. In their paper the authors present an approach to
augmenting Event-B modelling with verification of real-time
properties in Uppaal. They show how to extract a process-based
view from an Event-B model that together with introducing time
constraints allows them to obtain a timed automata model – the
input model of Uppaal. The authors illustrate their approach by
the development and veri-fication of the data-processing on-
board software of the BepiColombo Mission.

PROGRAMME COMMITTEE, REVIEWERS
Yamine Ait-Ameur (IRIT/ENSEEIHT France), Gogul Balakrishnan (NEC Labs
USA), Manfred Broy (TechnischeUniversitätMünchen Germany), Marsha
Chechik (University of Toronto Canada), Jürgen Dingel (Queens University
Canada), Patrick Heymans (University of Namur Belgium), Alessandro Fantechi
(University of Firenze Italy), Mike Hinchey (LERO Ireland), Axel van
Lamsweerde (University of Louvain Belgium), Peter Gorm Larsen (Engineering
College of Aarhus Denmark), Thierry Lecomte (ClearSy France), Shaoying Liu
(Hosei University Japan), Antonia Lopes (University of Lisboa Portugal),
Michael Löwe (Fachhochschule für die Wirtschaft Hannover Germany), Tiziana
Margaria (Universität Potsdam Germany), Steve Riddle (Uni-versity of
Newcastle England), Matteo Rossi (Politecnico di Milano Italy), Bernhard
Schätz (Fortiss Germany), Wolfram Schulte (Microsoft USA), Chandrasekaran
Subramaniam (Rajalakshmi Engineering Col-lege Chennai India), Elena
Troubitsyna (Abo University Finland), Sebastian Uchitel (Universidad de
Buenos Aires Argentina), Willem Visser (Universiteit van Stellenbosch South
Africa), Bartosz Walter (University of Technology Poznan Poland), Fatiha Zaïdi
(LRI/CNRS France).

ACKNOWLEDGMENTS
Many thanks to Nico Plat (West Consulting BV – The
Netherlands) as well as to Stefania Gnesi (ISTI CNR – Italy) for
their cooperation in organizing and conducting the workshop.
We are also thankful to our invidted speaker Michael Jackson
for presenting the above-mentioned keynote lecture. Thanks go
to the organization FME for having sponsored Michael
Jackson’s keynote talk. Thanks also to all reviewers and PC
members for their diligence and scrutiny. Last but not least
thanks to the entire ICSE’2012 team, particularly Martin Glinz
in Zürich, for having accepted this workshop under the umbrella
of ICSE and for having provided all the necessary local support.

ACM SIGSOFT Software Engineering Notes Page 30 November 2012 Volume 37 Number 6

