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Abstract: The development of safety critical systems requires a highly automated integrated
methodology supporting the design, verification and validation of the overall product. Such a
methodology maintains the consistency and correctness of all artifacts at all development stages
ideally incorporating requirements changes into the corresponding models, tests, and code. This
paper shows how the SMARDT process uses formalized SysML diagrams to identify inconsistencies
in architectural designs and requirements. An adaptive light system serves as illustrative running
example.

1 Introduction

Safety critical software systems undergo a complex development process before they are
introduced onto the market. The manufacturers are obliged to make their systems ISO26262
compliant and to guarantee the correctness of their implementation. Usually such systems
become very large and have to fulfill hundreds of intertwined requirements developed by
different teams. Therefore, an urgent need for automated means of consistency checking of
requirement specifications identifying errors in early design stages has been arising.

At BMW, one of Germany’s largest automotive companies, the new SMARDT process tries
to tackle this problem. One of its goals is to ensure artifact consistency for the different
phases of the development process by using model-based software engineering (MBSE),
particularly formalized SysML diagrams.

This paper shows how the SMARDT process uses formalized SysML diagrams to identify
inconsistencies in design decisions and requirements. Thereby, we focus on artifacts of
the logical layer of the SMARDT process and demonstrate the idea on the requirement
specification of a real-world Adaptive Light System (ALS).

Section 3 recaps the main ideas of the SMARDT process. Section 4 shows how Component
& Connector (C&C) views reveal structural design inconsistencies derived from different
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Fig. 1: Overview of the SMARDT methodology (copied from [Hi18]).

requirement specifications. Section 5 presents ideas how formalized Activity Diagrams
(ADs) help to detect behavioral inconsistencies in requirements.

2 Running Example

To demonstrate the feasibility and the advantages of the proposed methodology we use seven
real-world requirement specifications of an ALS [Be17]. The ALS model controls adaptive
high and low beam, turn signals as well as cornering and ambient light. Adaptive high
and low beam adjust headlamps to the traffic situation and provide optimized illumination
without dazzling others. Cornering light illuminates the area to the side of a vehicle to
take a look around the bend. Ambient light welcomes the driver with an indirect light. For
inspection purposes all 93 original requirements of the ALS are available at our homepage3.

3 The SMARDT Methodology

The SMARDT (Specification Methodology Applicable to Requirements, Design, and
Testing4) approach [Hi18] extends the German V-Model [BD95], which is the official
project management methodology of the German government. The SMARDT process

3 http://www.se-rwth.de/materials/cncviewscasestudy/

4 The original abbreviation SMArDT is related to the German term "Spezifikations-Methode für Anforderung,
Design und Test"

http://www.se-rwth.de/materials/cncviewscasestudy/
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delivers reliable specification methodologies by introducing formalized SysML diagrams
[OM15] with a well-defined semantics [HR04] to specify the functionality of automotive
systems. This allows to automatically ensure a permanent consistency between all abstraction
layers of the V-Model. This task can become particularly tedious if maintained by hand in
agile development processes as those are mostly iterative, incremental, and evolutionary
[Be01]. New validations enabled by SMARDT process are: (1) backward compatibility
checks [Ru15, Ri16, Be16, Ku18] for software maintenance and evolution between different
diagram versions of the same layer, (2) refinement checks [Ru96, HRvW17] between
diagrams of different layers allowing to detect specification inconsistencies between
different layers, as well as (3) advanced structural or extra-functional property [Ma16]
checks on SysML diagrams using OCL [Ma17].

The key principles of SMARDT for a formal specification of requirements, design, and
testing of system engineering artifacts according to ISO 26262 are illustrated in Figure 1.
The methodology is structured in four layers: (1) The object of reflection layer contains a first
description of the object under consideration and shows its boundaries from a customer’s
point of view. (2) The logical layer containing functional specifications without details of
their technical realizations. (3) The technical concept, e.g. C code or Simulink models,
belongs to the third layer. Finally, the fourth layer represents the software and hardware
artifacts present in the system’s implementation.

In SMARDT consistency between different layers is ensured by verification and model-based
testing of the final product against the requirements of all layers. More specifically, SMARDT
enables structural verification as explained in Section 4 between each layer indicated by
the green check marks in Figure 1. Furthermore, SMARDT enables a systematic and fully
automatic derivation of test cases for each layer as discussed in [Hi18] and illustrated on the
right side of Figure 1. The previous SMARDT paper [Hi18] showed how this methodology
is applied to develop a self-driving racing vehicle; its main focus was the use of formalized
ADs enriched by OCL constraints for automated test case derivation. In contrast, this paper
focuses on detecting structural and behavioral inconsistencies between different artifacts in
the logical layer of the SMARDT process.

4 Architecture Specification using Views

Embedded software systems are often created in Simulink as C&C models describing
functional, logical or software architectures [TMD09] in terms of components executing
computations and connectors effecting component interaction via typed and directed ports.
An advantage of this approach is that complex components such as ALS can be hierarchically
decomposed into other smaller components to be developed by different teams. Interaction
between components occur only via connectors. SysML and Modelica are two other famous
representatives for C&C modeling languages.
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Fig. 2: Very simple example C&C model for ALS.

C&C views, as presented in [MRR13], are developed to focus on important view points
(excerpts) of large C&C models without being required to model all the other (for the
view point unimportant) information. For example a view can only show how a component
is decomposed into subcomponents without showing any ports and connections of the
subcomponents. The main aim of C&C views concept is to have many but therefore small,
precise and good-readable view points of one large C&C model. For this reason C&C
views introduce four major abstractions: hierarchy, connectivity, data flow, and interfaces
of C&C models. The hierarchy of components in C&C views is not necessarily direct
(intermediate components may be skipped); abstract connectors can cross-cut component
boundaries and they can also connect components directly (if the concrete connected port is
not important for this view); abstract effectors describe data flow abstracting over chains of
components and connectors, and C&C views do not require complete interfaces with port
names, types and array sizes. Intuitively, a C&C model satisfies a C&C view iff all elements
and relations shown by the view have a satisfying concretization in the model. The formal
definitions of C&C model, C&C view, and their satisfaction are available in [MRR13] and
from supporting materials website of paper [Be17].

C&C View Verification and Witnesses for Tracing Figure 2 shows the example C&C
model of an adaptive light system (ALS). This simplified model controls the flash LEDs
for turning as well as the left and right light bulbs for cornering and ambient lights. The
ALS consists of the two subcomponents Flashing and HeadLight. Component HeadLight is
hierarchically decomposed into two further components: CorneringLight, and AmbientLight.
The C&C view ALS1 shown in Figure 3 describes the CorneringLight component illuminating
on intersections the road where the driver wants to turn into. Thus, the input port BlinkerLever
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of the ALS component has effect (modeled by an abstract effector) to at least one input
port of the CorneringLight component. The calculated light values (CLeft, and CRight) of
the CorneringLight component are passed directly (without being modified anymore) to
the output ports of the ALS component (modeled by two abstract connectors). The C&C
view ALS2 is about the relation between the Flasing and the AmbientLight component. It
specifies that the FlLeft (flashing left) output of components Flashing effects the ambient
left light (port ALeft of component AmbientLight); e.g. brighter left ambient light when the
left parking mode is activated. The model ALS satisfies the view ALS1.

C&C view verification, as presented in [MRR14], gets as input a C&C model and a C&C
view. Besides a Boolean answer whether the C&C model satisfies the C&C view, the
verification algorithm produces a local minimal satisfaction or one or more local non-
satisfaction witnesses. As an example, a witness for satisfaction ALS1s is shown in Figure 4
and demonstrates how the C&C model satisfies ALS1. The SMARDT approach uses the
generated witnesses to automatically generate traceability information between SysML
artifacts of layer 2 (C&C views) against the large SysML model of layer 3 (C&C models).
The witness is itself a well-formed model. The witness contains all view’s components (here
ALS, and CornerningLight) as well as their parent components to show the complete hierarchy
between two components specified in the view. Therefore, the witness contains also the
HeadLight component. The positive satisfaction witness also contains all ports corresponding
to a view, therefore the witness contains BlinkerLever port of ALS as well as CLeft, and
CRight ports of CorneringLight. Additionally the witness contains all model connectors and
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all data-flow paths. The abstract connector from CorneringLight (port CLeft) to ALS (port
unknown) introduces the following elements in the witness: (1) port CLeft of component
HeadLight; (2) connector of ports CLeft from component CorneringLight to component
HeadLight; and (3) connector of ports CLeft from component HeadLight to component ALS. For
the abstract effector from ALS (port BlinkerLever) to CorneringLight the following elements
in the chain serve as witness: (1) component Flashing; (2) ports BlinkerLever and FlLeft of
Flashing; (3) connector of ports BlinkerLever from ALS to Flashing; (4) connector of ports
FlLeft from Flashing to HeadLight; and (5) connector of ports FlLeft from HeadLight to
CorneringLight.

The model ALS does not satisfy the view ALS2. Every negative non-satisfaction witness
contains a minimal subset of the C&C model and a natural-language text, which together
explain the reason for non-satisfaction. These witnesses are divided into five categories:
MissingComponent, HierarchyMismatch, InterfaceMismatch, MissingConnection, Missing-
Effector (see [MRR14]). A witness for non-satisfaction ALS2n (case MissingEffector) is
shown in Figure 4. It shows all outgoing connector-effector chains starting at port FlLeft
of component Flashing as well as the abstract effector’s target port, AmbientLight’s ALeft,
which is not reachable. Removing the effectors in the view ALS2 would cause the model to
satisfy this modified view even though Flashing and AmbientLight are direct siblings in the
C&C view and are not direct siblings in the C&C model; C&C views allow to abstract away
the intermediate component HeadLight.

Identifying Design Inconsistencies with C&C Views The previous paragraphs showed
how C&C views verification can be used to check structural consistencies and how to
generate tracing witnesses between artifacts of layer B (view models) against artifact
of layer C (concrete logical C&C models). This part focuses on identifying structural
design inconsistencies between different artifact models of layer B. Figure 5 shows two
requirements about the cornering light. Since the last requirement AL-139 is a safety feature
for armored vehicles, a special team is responsible for it. Thus, the architectural designs (view
AL-122, and view AL-139) for the two requirements are developed by two different teams. The
top design shows the CorneringLight with two modes (subcomponents Cornering_Active,
Cornering_Deactive, and MultiSwitch), whereby the mode Cornering_Deactive is selected if
the voltage is too low. In the bottom design model the min block in combination with the
Switch one deactivates indirectly the cornering light by propagating 0% as light value to
OvervoltageProtection’s input ports when the DarknessSwitch port has the value true. C&C
view synthesis [MRR13] is the process in deriving one valid C&C model which satisfies
all given C&C views. The first part of this algorithm checks whether views contain design
contradictions. When all views as in our example are positive views (only expressing what
should be present; and do not contain negations such as component A should not contain
port B), then the contradiction check can be done in polynomial time and scales very well
to many hundreds views.

The contradiction check for the both views view AL-122 and view AL-139 would result in an
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error as in the top view the port CLeft of component CorneringLight is directly connected
(without modifying the value) to the component OvervoltageProtectionwhereas in the bottom
view the value from CorneringLight’s CLeft is manipulated by the min component before it
goes to the OvervoltageProtection’s CLeft port. Similar to the C&C view verification process
presented above, the contradiction algorithm generates an intuitive witness to highlight
incompatible parts of two views. The formalized C&C view verification problem with its
derived contradiction problem enables early analysis of structural design models in the
SMARDT process to detect as early as possible inconsistencies between different artifacts
created by different persons or teams, to avoid problems when integrating at a later time
step different software modules developed on inconsistent designs.

5 Formalized Activity Diagrams

In [Hi18] we showed how formalized ADs can be used in combination with OCL constraints
in order to generate test cases. In this paper, we demonstrate how formalized ADs can
help finding inconsistencies in requirement specification. Consider the Figures 6 and 7
illustrating two ADs describing the steering column stalk and the hazard lights behavior
based on the requirements AL-40 and AL-41 from [Be17], respectively. In Figure 6 the
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model would receive the state of the steering column stalk through the corresponding input
port. If the position of the steering column stalk is set to left, the left lights of the car are
set to the blinking mode with an on/off ratio of 1:1, denoted as BLINKING1:1. This value is
written to the output port of the AD. The else branch is underspecified, i.e., nothing is said
about the output for the cases if the steering column stalk is set to right or to straight. Note,
that this is in accordance with the underlying requirement.

In the AD of Figure 7, the hazard light switch is read in order to decide whether to turn
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the lights on or not. However, to determine the concrete blinking mode, the position of
the ignition key is required. If the key is inserted, the 1:1 blinking mode is activated,
otherwise the 1:2 mode is used to save battery power. The else branch is underspecified
again. Note, that according to the requirement the same physical lights are used for hazard
blinking as for direction indication. This leads to a contradiction which becomes obvious
in the two ADs: if the key is not inside the lock and the hazard light switch is pressed,
according to AL-41, the vehicle’s indicators lamps should blink with a ratio of 1:2. Now
imagine that at the same time the steering column stalk is set to blinking (left). According
to AL-40 the blinking ratio of the left direction indicators should be 1:1. Considering that
a faster blinking drains the battery in a shorter amount of time, this specification error
might even become critical for human lives in cases of emergency. The error is discovered
automatically by creating a table mapping the three input signals to the specified lamp light
modes and filling it with all specified combinations. For Figure 6 we would obtain one
single combination, namely: (SCS = LEFT,HLS = DC, IK = DC) → (Le f tLights =
BLINKING1 : 1, RightLights = DC) where DC stands for "don’t care". Figure 7
produces two combinations one of which is (SCS = DC,HLS = ON, IK = OFF) →
(Le f tLights = BLINKING1 : 2, RightLights = BLINKING1 : 2). Expanding the DC
fields to all possible values reveals that the specification requires two contradictory outputs
for the same input.

6 Conclusion

In this paper we discussed the need for automated consistency checks for requirement
and design artifacts of safety critical systems. Therefore, we developed a methodology
supporting the SMARDT process - a formalized version of the widely used V-Model - by
identifying wrong or contradicting requirements at early development stages using C&C
views and activity diagrams. The methodology was demonstrated on a real-world ALS
requirement specification. Using the proposed concepts we were able to detect structural and
behavioral inconsistencies on the logical layer of the SMARDT process, i.e., long before
the actual implementation would be created. Future work comprises analysis of further
formalized diagrams and their respective combinations as well as detailed case studies of
the complete SMARDT process and the proposed tooling.
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