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Abstract—Today’s industrial manufacturing challenges force
manufacturers to optimize and increase the flexibility of their
facilities. In practice, this requires analyzing, preparing for
adaptation, and adapting brownfield manufacturing systems. The
digital twin, a digital representation of a manufacturing system,
is a key enabler for efficiency, flexibility, and sustainability.
Unfortunately, the analysis and preparation of brownfield systems
for adaptation, as well as the creation of digital twins, are
challenging and time-consuming tasks. This paper presents an
approach to automatically create digital models of systems based
on 3D CAD models. To this end, the CAD data, stored as a
STEP file, is analyzed to extract relevant information for a
subsequent graph analysis, which is used to identify components,
their dependencies, and the resulting functional modules. Finally,
the gained knowledge is transformed into feature models that can
be used as a digital model for configuration selection to support
automatic reconfiguration planning of brownfield manufacturing
systems. The developed approach is evaluated based on an
industrial use case of a soft gripper system.

Index Terms—CAD data, Reconfiguration, Graph Analysis,
Adaptation, Reengineering, Digital Twin, Digital Model

I. INTRODUCTION

The manufacturing industry faces increased competition due

to lower market entry barriers as a result of globalization

and individualized customer demands. Furthermore, shorter

product life cycles and innovation cycles, as well as disrupted

manufacturing operations and supply chains, a problem ex-

acerbated by the COVID-19 pandemic, require reconfigurable

production systems [1]. To keep companies competitive, entire

value chains need to be optimized and automated based on

digitally available information.

In practice, this means that existing and operating man-

ufacturing systems must be prepared for reconfiguration to

be able to adapt to these changes [2]. In this context, the

topic of digital twins (DTs) receives increasing attention, as

a study by the market research company Gartner shows that

62 percent of interviewed companies plan to implement DTs

and 13 percent already use DTs [3]. To develop a DT, first

its desired characteristics and purpose need to be defined. The

following implementation is usually carried out specifically

for the respective application and is not integrated with the

system development [4]. Especially in the case of brownfield

systems, where the DT is created independently of the system

development, the DT modeling effort is increasingly high,

1Institute of Automation Technology, Helmut-Schmidt-University, Ham-
burg, Germany, email: birte.caesar@hsu-hh.de

2Software Engineering, RWTH Aachen University, Aachen, Germany,
email: jansen@se-rwth.de

as the virtual representation of real entities must be com-

pletely remodeled [5]. Thus, engineering of DTs can be time-

consuming and complicated [4].

Today’s manufacturing systems were designed to be in use

for several decades [6]. Accordingly, many brownfield systems

require adaptation and extensions to allow for further years

of operation. Therefore, new configurations must be created

during the operation phase to adjust to changed requirements.

Wiendahl et al. [7] describe that modularization is a key

enabler for the adaptation of systems. On the one hand, this is

due to the fact that modules provide defined functions and,

on the other hand, that modules form units that have few

interfaces to other components or modules. To modularize and

prepare existing manufacturing systems for adaptation, huge

manual effort is required [8].

For manufacturing systems, different engineering docu-

ments are available that vary in quality and information

content. In most cases, 3D CAD drawings are available, repre-

senting the hardware components of the manufacturing system.

These components fulfill the mechanical process, whereas

software components control these processes. The mechani-

cal process can be divided into several functions, clustering

components into modules as a basis for reconfiguration. This

results in the following research question. How can modules
of hardware components be automatically identified, based on
common engineering artifacts, and transformed into a model
with a suitable degree of formalization so that the manual
modeling effort for the creation of DTs for reconfiguration
planning of existing and in-use systems is reduced?

Therefore, this paper presents an approach to support the

creation of modularized system models based on common

engineering artifacts, in particular 3D CAD drawings, as well

as the creation of reconfiguration models in the form of feature

models. The boundary representation of 3D CAD drawings

that represent the minimum information content required to be

able to extract mechanical processes is used for this purpose.

Components, their contact faces, and the degree of freedom

(DoF) that any two components that share a contact face have

to each other are extracted from 3D CAD drawings provided

as STEP files. Furthermore, knowledge about clustering the

components into modules is inferred based on the design

principles for modularity described by Salvador [9]. The

first principle is that each module must provide at least one

function, in this context, the ability of two components to

enable relative movement to one another. Finally, we transform

the knowledge about the system and its configuration into a

feature model. The suitability of feature models to capture the
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configurations of manufacturing systems has been evaluated

in our previous work [10]. The feature model is extended

step by step with additional configurations the system can take

resulting in a suitable model for reconfiguration planning of

manufacturing systems. This paper is an extended version of

a work-in-progress paper published last year [11].

The remainder of the paper is structured as follows. Sec. II

introduces background knowledge about STEP and knowledge

graphs as well as definitions of key terms. Sec. III presents an

overview of related work, followed by Sec. IV, presenting the

concept of extracting knowledge of the hardware components

based on STEP files, as well as the concept of transferring the

knowledge into a knowledge graph and inferring the functional

module and the feature model creation. Sec. V presents

details of the implementation of the elaborated methodological

concept. The evaluation is presented in Sec. VI including

a discussion of the findings. The paper concludes with a

summary and outlook in Sec. VII on subsequent work.

II. BACKGROUND KNOWLEDGE

The approach elaborated in this manuscript is based on the

STandard for the Exchange of Product (STEP) model data,

developed by the International Standards Organization and

documented in ISO 10303. It is an exchange format designed

to include all product-related information along the product

life cycle, widely established in the manufacturing industry.

It enables the consistent and error-free usage of 3D CAD

data across different (often proprietary) tools. The standard

is clustered in several parts specifying different aspects of the

product and/or product life cycle information. Amongst others,

the standard describes the product in the form of an assembly

structure [12] as well as a boundary representation [13]. The

former is optional (and often omitted when handing over STEP

files for reasons of know-how protection), and additionally is

a subjective construct defined by the designing engineer and

not created based on objective criteria [14]. Whereas the latter,

consisting of the geometric and topological representation of

an object, is mandatory in a STEP file. Therefore, we base our

approach on the boundary representation. However, some tool-

specific information gets lost by using the exchange format

STEP. Geometric constraints, which are particularly important

for kinematics, are among the non-exported information.

By product, the standard refers to all kinds of 3D objects

including assemblies or single parts. Accordingly, a manu-

facturing system can also be referred to as a product. In the

following, we use the term system instead of product and

component instead of part to avoid confusion, as product in

the manufacturing domain is understood as the product that is

created by the manufacturing system.

Knowledge formalized in knowledge graphs can be uti-

lized to infer new knowledge automatically by using so-

called reasoners. Using standardized query languages (e.g.,

SPARQL), query engines can be used to retrieve knowledge

systematically. These advantages are the reason why knowl-

edge graphs are commonly used for knowledge formalization

in engineering. A prominent means for modeling knowledge

graphs in a machine-interpretable fashion is the Web Ontology

Language (OWL). Ontologies are conceptual representations

of knowledge in a specific domain and are commonly used in

research and manufacturing engineering [15]. Terminological

knowledge about concepts of the domain, their relations, and

attributes are formalized in the terminological box (TBox).

Similarly, assertional knowledge about individuals, i.e., entities

within the domain, is formalized in the assertional box (ABox),

following the rules specified in the TBox. Knowledge graphs

are graph data structures implementing the concept of an

ontology by defining TBox and ABox data as nodes and edges

of a directed graph.

III. RELATED WORK

In the following we will compare related approaches and

present in Table I an overview of the models used to extract

the knowledge, the input files required to use the approach

and the resulting output of each approach.

Barbau et al. [16] created an ontology TBox to represent

the concepts of the STEP standard as well as an algorithm to

automatically transform the STEP data into ABox individuals.

The goal of the approach is to link the transferred data with

other models that obtain information which are not provided

by the STEP file data, e.g., function and behavior description.

Therefore, the authors created an alignment ontology for

the core product model (CPM) [17] and the open assembly

model (OAM) [18]. However, the additional CPM and OAM

knowledge must be created manually and is required as input,

see Table I. Gong et al. [19] extend this work aiming to

infer the assembly structure from STEP files not including the

assembly structure description of ISO 10303-44. Perzylo et al.

[20] follow a similar approach and as well only considers the

boundary representation of objects, described in ISO 10303-

42, see Table I. This enables the automatic transformation of

STEP and Initial Graphics Exchange Specification (IGES) files

into ABox individuals of the so-called OntoBrep ontology

as both file types follow the same concept of boundary

representation. The OntoBrep ontology comprises a TBox

specification for geometric constraints that can be used for

robot assembly task description. Whereby it is not explicitly

described whether the geometric constraints are automatically

inferred or must be created manually. Köcher et al. [21] trans-

fer the assembly structure (ISO 10303-42) from a STEP file

as ABox individuals into a system structure defined according

to VDI 2206 (TBox). During the transfer, the parts are created

as components and the assemblies are created as modules.

Other solutions deal with the semantic annotation of 3D

CAD models for better reuse during engineering design.

Lupinetti et al. [22], [23] extract from STEP files the assembly

structure and analyze the contact type of each two components

being in contact. The number of contacts between two com-

ponents and the resulting degree of freedom is calculated. The

shape of the contact surface strongly influences the resulting

degree of freedom. This additional information allows more

precise, keyword-independent searches of 3D CAD model

databases. The approach of Han et al. [24] is based on that of
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Lupinetti et al. [22] and extends it by inferring more details of

the functional description of the components. First, the compo-

nents are classified into connecting and functional components.

Connecting components are components that connect or attach

two components, all others are functional components. Second,

based on the classification, the components are grouped. A

functional description is assigned to a group of components

using a similarity analysis. The similarity is calculated based

on a comparison with existing graph patterns in a database

that are associated with functions. Vilmart et al. [14] present a

similar approach to Lupinetti et al. [22] that allows for the ad-

ditional analysis of cellular models where single components

are merged and information about contact faces is missing.

Furthermore, analysis of symmetric patterns and repetition

of these within one system are used to define modules. In

this context, the term “module” is used to refer to assemblies

that do not necessarily represent a function as defined in the

Introduction. In Table I it is referred to as design module.

Another set of approaches extracts structural, kinematic,

or functional information of systems for further use in, for

example, virtual commissioning. The difference is that pro-

prietary file formats are used for the extraction as more

information such as geometric mating constraints. Thongnuch

et al. [25] present a method for the automatic generation of

kinematic simulation models from mechanical CAD assembly

models for virtual commissioning of mechatronic systems.

Components of the assembly model and assembly constraints,

i.e., kinematic relations between the components, are extracted

and mapped to kinematic joints. Based on the joints and con-

straints, motion vectors of the machine components are derived

and combined based on a fixed root component, resulting

in a kinematic motion chain of the system. This generated

range of motion and geometrical information is formulated as

COLLADA model for standardized geometry and kinematics

information exchange. Further, Hildebrandt et al. [26] present a

method to extract kinematic skills, i.e., abilities to implement

a production-related process, from 3D CAD assembly data

of a robotic gripping unit to assist engineers in checking

its functionality. The method utilizes movement restrictions

and materials to infer kinematics, reachable positions and a

maximum payload. The information is mapped into a target

ontology by means of a rule set. The ontology assigns reach-

able positions to components and combines movement vectors

of components to movement descriptions of the system. Kine-

matic skills are inferred from these descriptions in combination

with production system information.

The presented approaches show potential methods for ex-

tracting information from 3D CAD models and the value of

reusing existing 3D CAD data across applications. Further-

more, the related work shows that the information relevant

to our approach can be extracted from the STEP files. As

described in the introduction, a function is the freedom of

relative movement of components to each other. The DoF

are extracted explicitly by Lupinetti et al. and Han et al.

and indirectly by Thongnuch et al. and Hildebrandt et al.

within the kinematic description, see Table I. However, Han

et al., Thongnuch et al., and Hildebrandt et al. use proprietary

data formats that contain kinematic information that is not

accessible when using STEP files. The work of Lupinetti et

al. provides an important scientific basis for our approach.

Furthermore, the approaches that take into account the assem-

bly structure either use information that is not available in

all STEP files (ISO 10303-44), such as Lupinetti et al. and

Köcher et al., or rebuild the assembly structure (ISO 10303-

42), such as Gong et al., without taking into account that

the assembly structure is a subjective construct defined by

the designing engineer and not created based on objective

modularization criteria [14]. Vilmart et al. creates the assembly

structure based on the contact classification and the identified

design modules. However, the division of the modules does

not correspond to the principles of modularization as already

described above. The approach of Köcher et al. uses the same

target model as our approach (VDI 2206), see Sec. IV-B,

but adopts the assembly structure from the STEP file without

any modification, thus neglecting that the assembly structure

does not follow any modularization principles. In general, the

limitations apply to the usage of information not available in

all STEP files, i.e., ISO 10303-44 information or proprietary

CAD file information, or considering a assembly structure not

based on objective modularization criteria.

To the best of our knowledge, there are no approaches

that use 3D CAD files to create feature models to represent

the hardware configurations of mechatronic systems. However,

in the context of mechatronic systems, there are approaches

that build feature models based on the existing control code

[27]–[29] or process descriptions [30]. Furthermore, there exist

several approaches that deal with merging feature models [31],

[32]. These approaches assume that feature models exist and

that merging is necessary due to their evolution, for example,

due to multiple teams working on the same models.

In summary, there is no approach that takes into account the

hardware structure of the mechatronic system when creating

reconfiguration models (i.e., feature models). Either 3D CAD

data are analyzed or feature models are created. Therefore,

the aim is to develop a system structure variability mining

approach that considers 3D CAD data as a basis for the

feature model creation while taking into account objective

modularization principles.

IV. METHOD FOR RECONFIGURATION MODEL

EXTRACTION

In this section (a) the method to identify the functions of the

examined systems, (b) the classification of the system compo-

nents into modules, and (c) the reconfiguration model creation

are described. Following assumptions have to be considered

to conduct the analysis. All components are considered as

rigid parts and the contacts of these parts do not change over

time. Further, models with volumetric interferences can be

processed but no meaningful results are created. The method,

therefore, considers only surfaces in contact, and if a clearance

is detected, the surfaces are processed as not in contact. Only

STEP models following the application protocol AP214 can
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TABLE I: Related Work Overview

Approach Model Input Output

Barbau et al.

ISO 10303-42 STEP file Integrated Graph

ISO 10303-44 CPM file

CPM OAM file

OAM

Gong et al. ISO 10303-42 STEP file Assembly Structure

Perzylo et al.
ISO 10303-42 STEP file Geometric Constraints

IGES file

Köcher et al.
ISO 10303-44 STEP file Assembly Structure

VDI 2206

Lupinetti et al.
ISO 10303-4 STEP file Assembly Structure

ISO 10303-44 Contact Classification

Degree of Freedom

Han et al.

not specified Proprietary Assembly Structure

CAD file Degree of Freedom

Geometric Constraints

Component Classification

Assembly Function

Vilmart et al.

ISO 10303-42 STEP file Assembly Structure

Contact Classification

Symmetric Patterns

Design Modules

Thongnuch et al.
not specified Proprietary Kinematics

CAD file

Hildebrandt et al.
not specified Proprietary Kinematics

CAD file

This approach
ISO 10303-42 STEP file System Structure

VDI 2206 Degree of Freedom

Contact Classification

Reconfiguration Model

be processed, as there are syntactical differences for each

STEP application protocol. The procedure can be clustered

into three main tasks, which will be subsequently explained

in Section IV-A, IV-B and IV-C. First, extracting the relevant

data from the STEP file and analysing the contact faces of

the components regarding their DoF, see Fig. 1, 1©. Second,

converting the gathered information into a knowledge graph to

perform the knowledge graph analysis to identify the modules

(Fig. 1, 2©). Third, creating feature models based on the

created knowledge (Fig. 1, 3©).

A. Component & Degree of Freedom Extraction

Generally, STEP provides a topological and geometrical

export of the 3D object. The topology describes adjacency

relationships and the position and arrangement of geometric

objects, while the geometry is the mathematical description of

the object itself. However, knowledge of the functional hierar-

chy is not explicitly provided. To extract mechanical interfaces

between components, the possible interactions between the

different solids concerning their mutually relative position and

shape need to be analyzed. Therefore, the geometry of atomic

elements of the solids, i.e., their faces, edges, and vertices,

are pairwise analyzed for contact events to derive their mutual

translation and rotation properties to each other.

Translational events result from at least two faces of differ-

ent components being in contact. The result of this contact

is a restriction of the translational movement to a specific

direction. The direction, in which they interlock, is given

by the normal vector of the corresponding faces. Since 3D

Contact

A

B

Feature Model 
Creation & Merging

Component & 
DoF Extraction

Knowledge Graph 
Synthesis & Analysis

STEP

- Solids
- DoFs

Closed Shells 
4, 9:
trans: 4, 9: 
[0.0, 1.0, 0.0] 
rot: 4, 9: 
Axis Origin = 
[0.0, 0.0, 0.0], 
Axis Vector = 
[0.0, 1.0, 0.0]

OWL

ODP

SPARQL

XML

Fig. 1: Proposed method for STEP data extraction to recon-

figuration model

modeling of mechanical systems allows complex geometric

shapes, performing this translational detection analysis thor-

oughly is essential. Even relatively simple components have

concave surfaces (e.g., gears). Determining the exact collision

of such solids is a complex and computationally expensive

task known from computer graphics [33], which can result

in a long computation times. However, since the detection

described does not have to be performed in real-time, it is

possible to perform the analysis pairwise for all faces without

any simplifications. Whenever a contact is detected between

two solids, we store a translational event for the associated

assemblies in the normal vector direction. Since various faces

with different orientations can exhibit contact points, multiple

translational events between two components are possible.

Rotational events result from two curved (e.g., cylindrical)

surfaces of different components forming a kind of joint.

This occurs when these faces have the same radius, are bent

around the same axis, and cover the same space. In contrast

to the constraining nature of a translational event, a rotational

event actually allows for a mutual rotation of the respective

components around the shared axis. For components without

interlocking faces, no constraints are derived.

Since an event between two components yields a single

motion constraint only, the next step involves analyzing all

events in a shared context to derive their mechanical interface.

For instance, a rotational event not only allows a rotation

around a corresponding axis but implicitly prohibits translation

in all directions orthogonal to that axis. Thus, after collecting

the events between all components of a STEP file, we use

them to extract their DoFs. The DoF is defined by the number

of independent variables of a system, which mechanically

characterize the independent motions of a body. It is expressed

by its translational and rotational possibilities of motion.
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TABLE II: Exemplary events and their corresponding transla-

tional and rotational DoFs in x, y, and z direction

Events Tx Ty Tz Rx Ry Rz

1 T(1,0,0) 0 � � - - -
2 T(1,0,0), T(0,1,0) 0 0 � - - -

3 RY (0,0,0) 0 � 0 0 � 0

4 T(0,1,0), RY (0,0,0) 0 0 0 0 � 0

5 RY (0,5,0), RY (0,9,0) 0 � 0 0 � 0

6 RY (0,5,0), RY (3,0,4) 0 � 0 0 0 0

7 RX (0,0,0), RY (1,1,0) 0 0 0 0 0 0

Generally, translation and rotation with respect to each

other are possible in any direction of a global coordinate

system. For simplicity reasons, but without loss of generality,

we explain the DoF derivation based on the standard axis

directions x, y, and z. Table II depicts exemplary event

occurrences between two components and their corresponding

DoFs concerning translation and rotation in, respective around,

these three coordinate directions. A single translational event

(l. 1) in x direction results mutual translational DoFs towards

y and z. Similarly, two such events in different directions

block the movement in the direction the event occurred,

so that translation is only possible in the direction of an

axis orthogonal to the event constraints (l. 2). In contrast,

a rotational event allows rotation along the specified axis as

well as translation along this axis (l. 3) as long as it is not

blocked by another translational event in the same direction

(l. 4). Multiple rotational events between two assemblies can

have a very different impact on the DoFs depending on their

characteristics. For instance, two rotational events around the

same axis may affirm their DoFs (l. 5) if and only if their

origin lies on their rotation axis. This is the case if two joints

are placed on top of each other, as in a door hinge. On the

other hand, if their origins are displaced, rotation is blocked

entirely (l. 6) while translation along the direction axis is still

possible. In the case of two rotational events with different

axis (l. 7), no movement is possible anymore, independent

of their origins. After evaluating all events between the two

components, we receive their remaining local DoFs.

B. Knowledge Graph Synthesis & Analysis

Once the components and their contact interfaces including

their DoFs have been extracted and computed from the STEP

file, the information is transformed into a knowledge graph.

Fig. 2 shows the TBox the knowledge graph synthesis and

analysis is based on. It is based on an ontology design pattern

(ODP) representing the guideline VDI 2206. The general con-

cept of creating reusable, modular TBoxes to adapt and extend

them according to project specific requirements was defined

in [34]. In this paper, the ODP of the VDI 2206 established

in [15] is reused. To describe the DoFs of two components,

the TBox has to be extended (cf. Fig. 2). While grey elements

represent the existing ODP, green boxes and green highlighted

relations depict new elements.

The extracted solids are created as individuals of the class

Component. Individuals of classes at a higher hierarchical level

(i.e., Modules and MechatronicSystems) are created later on,

Component

Module

Mechatronic System

RotationalDOF

+ directionalVectorX : double
+ directionalVectorY : double
+ directionalVectorZ : double
+ locationVectorX : double
+ locationVectorY : double
+ locationVectorZ : double

consitsOf

consistsOf

consitsOf

hasInterface

hasDOF

TranslationalDOF

+ directionalVectorX : double
+ directionalVectorY : double
+ directionalVectorZ : double

consitsOf

DOF

InformationInterfaceMechanicalInterface

Interface

EnergyInterface

Fig. 2: Excerpt of the Extended TBox ODP VDI 2206

during the knowledge graph analysis. Mechanical interfaces

resulting from detected events (cf. Sec. IV-A) are created as

individuals of the class MechanicalInterface along with object

properties hasInterface connecting the corresponding compo-

nents and the mechanical interface. The mechanical interface

is created for each pair of components, regardless of whether

the calculation resulted in no DoF (i.e., the components are

connected rigidly) or DoFs have been calculated. If DoFs

have been calculated, they are created as instances of the

new class DoF, or more specifically, the appropriate subclass

TranslationalDoF or RotationalDoF. DoF, TranslationalDoF
and RotationalDoF are extensions to the VDI 2206 ODP. The

created mechanical interface is connected with these DoFs

using the object property hasDoF, which is also an extension

to the VDI 2206 ODP. Each DoF is defined by a directional

vector and, in case of a rotational DoF, a location vector. Those

vectors are defined by the data properties directionalVectorX, -
Y and -Z and locationVectorX, -Y and -Z. This data also results

form the calculation of DoFs, according to the logic described

in Sec. IV-A and exemplified in Table II.

The information modeled so far represents the explicitly

defined geometric objects in the STEP file as well as resul-

tant geometric constraints. The goal of the knowledge graph

analysis is to group the system components into modules by

using implicit knowledge. Our approach is based on the design

principle for modularity that are defined by Salvador [9] based

on a systematic literature review including publications from

1963 to 2003. First, each module includes at least the com-

ponents that contribute to fulfill one function, titled functional

binding. As stated in the introduction, we define a function as

the ability of two components to enable a relative movement

to one another. This definition can be considered analogous to

the definition of capabilities in [35]. Relative movement can

be enabled in rotational and translational direction. A complex

movement, involving multiple components, can therefore be

divided into multiple functions. The second principle, loose

coupling, is that few relationships are implemented between

modules, but strong relationships exist between components

within modules.
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In a first step, components are grouped together whenever

they are adjacent and able to move relatively to each other

(i.e., they are connected with mechanical interfaces that have

assigned DoFs). Groups also consist of components that are

related to group members by sharing a mechanical interface.

For each group of components, an individual of the class

Module is created along with the object property consistsOf
between the new module and each component in the group.

Static components are components that are not assigned to

any module in the first step, i.e. they are either not adjacent

to any other component or adjacent and fixed to another

component. In terms of the defined TBox, static components

do not have an assigned mechanical interface, or have one or

more mechanical interfaces without any assigned DoFs.

The second analysis phase starts considering all static

components. Whenever a static component has a mechanical

interface with exactly one other component belonging to

a module, it is assigned to the same module. If it has a

mechanical interface with multiple components belonging to a

module, the static component is assigned to the same module,

if all of those components belong to the same module. In any

other case, the static component is not assigned to any module.

In the last step, a single individual of the class Mechatronic-
System is created, and the object property consistsOf is created

between the mechatronic system and each previously defined

module. Also, all components which have not been assigned

to any module are assigned to the mechatronic system. This

results in a system hierarchy strictly following the design

principles for modularization.

C. Feature Model Creation & Merging

Once the system structure is defined in the knowledge graph,

it can be transformed into a feature model. Each created

knowledge graph represents exactly one configuration of the

system. To create a reconfiguration model representing the

configurations the system can take, it would be necessary to

introduce variability means into the knowledge graph. This

would require a profound extension of the ontology TBox and

a rule set to maintain model consistency. Therefore, feature

models are preferred to ontologies as reconfiguration models

due to their usability and performance. This transformation

offers a further advantage, as only the configuration-relevant

aspects are transferred to the feature model and the holistic

system knowledge is retained in the form of the knowledge

graph. A clear separation between system knowledge and

configuration logic is achieved in this way. To avoid losing

the semantic meaning contained in the knowledge graph and to

establish an unambiguous mapping of features to individuals,

the individual’s IRI is used to name the feature.

To transform the system structure into a feature model,

the instance of class MechatronicSystem is created as Root
Feature. As the VDI 2206 ODP allows a mechatronic system

itself to consist of several mechatronic systems, only the top

hierarchy mechatronic system is created as root feature. Each

other mechatronic system is created as Abstract Feature below

the root feature. The instances of class Module are created

as Abstract Feature below the root or respectively below the

abstract feature created for the mechatronic system, of which

they are part. Finally, the instances of class Component are

created as Concrete Feature either below the abstract feature

of the module they are part of or below the abstract feature of

the mechatronic system they are part of. The later only applies

if the component is not part of any module. Fig. 3 shows the

transformation mapping between the VDI 2206 ODP and a

feature model, here only visualizing the transformation with

exactly one mechatronic system. Additionally, it is assumed

that each component in a single configuration of the system

is mandatory. Therefore, each concrete feature, representing a

component, is created as a mandatory feature, as at this time

no knowledge about optional features is present. This results

in a feature model from which only one possible configuration

can be derived. Only a restriction of such a strong nature can

guarantee that no configurations will be derived that cannot

be implemented in the real world. By merging several feature

models, which each represent one configuration, this restrictive

definition is relaxed as knowledge is gained about optional

features with each additional analyzed configuration.
Mechatronic 

System

Module

Component

consistsOf

consistsOf

consistsOf

Root Feature

Abstract 
Feature

Concrete 
Feature

Concrete 
Feature

Fig. 3: Mapping from Ontology VDI 2206 into Feature Model

The reconfiguration model is created based on a pairwise

comparison of two feature models, such as FMA and FMB.

There are three types of differences that can occur during

comparison. First, the comparison identifies differences in

the existence of features, e.g., feature B is not a feature of

the features FB of FMB (B �∈ FB). Second, the selection

rules differ, for example, different group types are used, or

a feature is mandatory in one feature model and optional in

the other. Third, there are differences in the location of the

feature in the feature tree; for example, the feature B has a

different parent feature in FMA and FMB. Each identified

difference between the two compared feature models must be

considered, and a merging rule is applied to integrate both

feature models. These rules are rather strict, as it is necessary

to not allow the selection of configurations that have not

been specified by the system manufacturer to guarantee safe

operation of the system. This is of great importance as we

consider explicitly the hardware configuration. Untested, not

validated, and approved configurations can lead to complete

system failure, as well as serious damage to the system

environment, such as personal injury caused by the expulsion

of improperly mounted components. Therefore, when merging

feature models, the goal is to design the selection rules so that

the number of valid configurations is the same as the number

of system variants. Due to limited pages the merging rules are

not included in this paper, but can be accessed on GitHub1.

1github.com/birtecaesar/FMCreaM
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V. IMPLEMENTATION

This section presents insights into our implementation of

the presented method. We have created two tools, the first

one step-modularization covering step one and two of our

presented method (Sec. V-A) and the second, FMCreaM im-

plementing the feature model creation. For details beyond our

following explanation we refer to our GitHub repositories1,2,

where the code is publically avialable.

A. Tool Implementation: step-modularization

In STEP, the different parts are stored in a data series-like

topology, where each line starts with a unique identifier and

further contains a classification label with a list of parameters

and references to other identifiers. The geometry of a compo-

nent is hidden in the structure of the format, making it eligible

for serialization but requiring further transformation for an in-

depth analysis. Our implementation is realized via MontiCore

[36], a language workbench for efficiently developing domain-

specific modeling languages. Besides a parser for reading the

textual model (i.e., the STEP file), MontiCore automatically

generates infrastructure, supporting analyzing, traversing, and

cross-referencing the processed model. We process the textual

STEP file and, using the visitor infrastructure MontiCore

provides [37], automatically transform it into a data structure

containing the actual elements, such as shells, their faces, and

corresponding edges and vertices.

After preprocessing and deriving the data structure rep-

resenting the geometry of the model, the tool collects all

components for further analysis. Here, we use so-called closed
shells (representing single solids) as simplification, ignoring

further augmented information, such as local displacements or

distinguishing metric from imperial units. Including additional

geometric transformation steps, which are stored in the STEP

artifact, is generally possible but out of the scope of this

proof of concept. We pairwise compare the closed shells for

translational and rotational contact events (cf. Sec. IV-A) to

further derive their mechanical interfaces and mutual DoFs

required for the knowledge graph synthesis.

To create a knowledge graph representation of the extracted

components as well as the calculated mechanical interfaces

with their associated DoFs, the Apache Jena3 framework is

used. Apache Jena is an open-source Semantic Web framework

with different features, e.g., an API for creating knowledge

graph data programmatically, which is used to implement the

steps mentioned in Sec. IV-B. The Apache Jena framework

also offers a query interface, which allows to analyze existing

knowledge graphs using SPARQL. Furthermore, SPARQL

INSERT operations can be used to systematically extend the

data in the knowledge graph. The steps described in Sec. IV-B

are implemented in this way.

All SPARQL queries found in this work (cf. Listings 1 to 3)

have been shortened and are not functional as they are printed.

The complete queries can be found in our GitHub repository3.

2github.com/hsu-aut/step-modularization
3jena.apache.org

First, components are grouped together whenever they

are connected with mechanical interfaces that have as-

signed DoFs. Listing 1 shows a SPARQL INSERT oper-

ation that evaluates this kind of relations in the WHERE

clause. In the INSERT clause, an auxiliary object property

(temp:hasCommonInterfaceWith), is created.

INSERT {
?comp1 temp:hasCommonInterfaceWith ?comp2 .

}
WHERE {

?comp1 vdi2206:hasMechanicalInterface ?interface .
?comp2 vdi2206:hasMechanicalInterface ?interface .
?interface vdi2206:hasDOF/a vdi2206:DoF .
[...]

}

Listing 1: SPARQL query to create auxiliary object properties

Listing 2 shows how this auxiliary object property is used to

find groups of components that are connected with mechanical

interfaces that have assigned DoFs using SPARQL property

paths. Property paths are means to specify a path consisting

of a sequence of object properties between two entities in a

knowledge graph without specifying in-between individuals.

Different operators exist to specify the desired sequence of

object properties, as well as the number of object properties

in the sequence. Using the operator + in SPARQL denotes

a sequence of one or more object properties of one kind in

sequence. As explained in Sec. IV-B, two components shall

also be grouped, if there is no direct mechanical interface

between them, but mechanical interfaces exist across one or

more other components. Therefore, property paths are used

to implement this behavior in an efficient way, which is the

reason for creating the auxiliary object properties beforehand.

The INSERT clause creates a new module as well as the object

properties connecting the module and components.

INSERT {
?module a vdi2206:Module .
?module vdi2206:consistsOf ?comp .

}
WHERE {

?comp temp:hasCommonInterfaceWith+ ?comp2 .
[...]

}

Listing 2: SPARQL operation to create modules

All components that have not yet been assigned to modules

are considered as static components. In the next step, several

static components are added to the created modules. Listing

3 shows the corresponding SPARQL operation. It evaluates

the knowledge graph for static components having mechanical

interfaces with other components that have been assigned

to modules previously. For such components, the number of

distinct corresponding modules is deduced using the COUNT

operation. If exactly one module is found, the component

is added to this module, by creating an consistsOf object

property, which is realized by the INSERT clause.

Finally, the main system is created as a MechatronicSystem
instance. The property consistsOf is created between the main
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system and each module, as well as each component that could

not be assigned to any modules in the previous steps.

INSERT {
?module vdi2206:consistsOf ?static_comp .

}
WHERE {
SELECT
?static_comp
(COUNT(DISTINCT ?module) AS ?m_count)
[...]

WHERE {
?static_comp

vdi2206:hasMechanicalInterface ?int .
?comp2 vdi2206:hasMechanicalInterface ?int .
?module vdi2206:consistsOf ?comp2 .
FILTER ( ?comp2 != ?static_comp )
[...]

}
GROUP BY ?static_component
HAVING (?m_count = 1)

}

Listing 3: SPARQL query to add static components to modules

B. Tool Implementation: FMCreaM
To create a feature model based on the knowledge graph,

the data is accessed via SPARQL. The tool to create and merge

feature models is created using Python. To query the data a the

SPARQL Endpoint wrapper for Python, SPARQL Wrapper4 is

used. To extract the present hierarchy levels of the knowledge

graph, four SPARQL SELECT operations are executed. The

first query selecting all systems the system consists of. The

second query selecting all modules a system consists of. The

third query selecting all components a module consist of. The

fourth query selecting all components a system consists of,

which are not part of a module.
Feature models can be encoded and exchanged as eXtensi-

ble Markup Language (XML) documents, a flexible, machine-

and human-readable, textual data format. XML documents are

hierarchical structured, whereas tags define the elements which

can be nested by enclosing them within parents elements.

Additionally, each element can be enriched by attributes. To

transform the retrieved data into a feature model, the tag

“feature” is assigned to leaf features, cf. components. The tags

“and”, “alt”, or “or” are used to specify the group type of

child features of no leaf features, cf. systems and modules.

Furthermore, the attributes “mandatory” and “abstract” are

used to indicate the type of features and finally the attribute

“name” is used to give each feature a name. As stated above

the IRI of each individual is used as name. To create and parse

the XML documents the element tree XML API5 is used.
To pairwise merge two feature models, the XML documents

are parsed and converted into Python dictionaries. The dic-

tionaries are analyzed, and the respective rules are applied.

The resulting merged feature model is encoded as an XML

document using the same tags and attributes as previously

described to create a feature model. Additional tags are used

to create constraints, such as “impl” to create a requires

constraint and “eq” to create an excludes constraint.

4sparqlwrapper.readthedocs.io/en/latest/main.html
5docs.python.org/3/library/xml.etree.elementtree.html

VI. EVALUATION & DISCUSSION

With the evaluation of our approach, we want to demon-

strate the consistency of our method. Consistency means that

the method should be able to generate a consistent feature

model from a STEP file. In addition, the method should be

able to produce comparable results when applied repeatedly to

the same input data, thus demonstrating reliability and repro-

ducibility. The evaluation is conducted in two stages. For the

first stage, one of the authors created 3D CAD files of simple

geometric objects, e.g., in the form of wooden toy blocks. The

created files are used as follows. Two such objects were placed

in space so that they shared no contact face, exactly one con-

tact face, exactly two contact faces, and finally exactly three

contact faces. For each of these different numbers of contact

occurrences, two test files, i.e., STEP files, were created, so

that both planar and cylindrical contact faces were considered,

resulting in translational and rotational DoFs. In total, eight

test files were analyzed. For each of these test files, the correct

results were extracted. In detail, exactly two components were

identified, each with no event, one translational or rotational

event, two translational or one translational and one rotational

event, and finally three events combining two translational

and one rotational event and vice versa. In the knowledge

graph for each test file exactly two individuals of the type

component were instantiated, one mechanical interface, and

respectively both components are related to that mechanical

interface by the object property hasInterface. Additionally, the

test files with events resulting in a DoF, a DoF is instantiated

and related to the respective mechanical interface. Correctly,

a DoF was instantiated for five test files and no DoF was

instantiated for three test files. The test files for which no DoF

was instantiated had no contact (two of the test files) or the

movement was restricted by the combination of events (one

test file). The correct modularization is not assessable by such

a small number of components in each of the test files and will

be addressed during a effectiveness evaluation of future work.

A feature model was created for each test file, with exactly two

mandatory leaf features representing the components, and one

root feature representing a system. The merged feature model

contains ten optional leaf features because the one contact

and no contact test files used the same components, and the

two contact test files also reused one component from each of

the previous files. The components were selected so that the

consistency could be demonstrated even for feature models

that not have common leaf features.

As second stage of the evaluation, we execute a case study

based on files kindly provided by the Chair of Logistics Sys-

tems Technology of the Helmut-Schmidt-University (HSU).

This is a soft-gripping system6 usable, for example, as the end

effector of a robotic arm. In total 15 variants are analyzed, nine

variants with four gripping fingers and six variants with three

gripping fingers. The variants consist of 29 to 39 components.

To reduce the error sources and still be able to evaluate the

consistency of our method, we have decided to access only the

6soft-gripping.com/
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modularization and the feature model creation and merging,

since these are the method steps that go beyond the state of

the art. To do so, we need the components, their contacts, and

their DoFs as input. This information was provided as Excel

spreadsheets, which are transferred into a knowledge graph

based on a rule set. To measure the effectiveness, we checked

the number of possible configurations after each additional

merged variant. The number of merged variants must equal

the number of possible configurations that can be derived

from the feature model. In addition, the created modules are

examined to see if the same relationships always lead to the

same modules and if the modules are suitable for reuse. The

latter is evaluated by a researcher of the Chair of Logistics

Systems Technology of HSU.

Additionally, we repeated the test for both cases three times

each and always received the same results. We conclude our

method provides consistency as the reproducibility and the

creation of feature models from STEP was demonstrated. How

far this result is generalizable is discussed in the following.

A. Discussion

With small and understandable examples, we have proven

the consistency of our method. However, during testing the

robustness by using different input files from industry partners,

to rise the complexity and vary the input data, we encountered

difficulties extracting the components. In detail, difficulties

arose in extracting the correct number of components if

the components are complex geometric objects consisting of

multiple solids. During extraction, components are derived

directly from solids, neglecting that components can consist of

multiple solids. This deficiency can be overcome by extracting

the “advance brep shape representation”, which groups the

solids that represent a component. The grouping does not

change the overall method. However, it requires an additional

step in which the identified contacts of the solids representing

a component are deleted. As the surfaces of the individual

solids represent the total surface of the complex component,

contacts with solids that are not part of the component remain

relevant. This problem was also reported by [19], providing a

solution for encountering the correct number of components

but not solving the challenge of recognizing the correct contact

surfaces, since they are repositioned in space by the transfor-

mation. To avoid these errors and still be able to evaluate the

graph analysis and the feature model creation and merging,

we created a rule set for the case study to map the required

information from Excel tables into a knowledge graph. The

scalability of our approach has been evaluated only to a limited

extent, as the size of the case study variants does not reflect the

size of industrial systems, where the number of components

for small systems is around 200 components, e.g., autonomous

logistic towing train. The number of variants compared is in

a realistic range. However, the number of variants can reach

several hundred.

For the DT, a comprehensive digital representation of the

system is critical. Therefore, our approach has the advantage

of automatically creating a reconfiguration model for use with

the DT, even with the current limitations. As presented in the

Related Work section, to the authors’ knowledge, there is no

approach that allows the creation of a reconfiguration model,

i.e., a feature model, based on 3D CAD data. Our approach

closes the gap between the creation of the knowledge graph

and the resulting feature model for dynamic reconfiguration,

thus eliminating the need to reconstruct the data. It also

reduces the manual effort required to create the DT model. By

using the VDI 2206 as a basis for the module classification

and the system description itself, our method can be applied

to a varity of systems in the manufacturing domain. Each of

the individual method steps can be executed separately from

each other and the results used as needed. The merging of

the feature models can also be performed separately from the

creation, if existing feature models are provided. The code is

publicly available, see the respective GitHub repositories1,2.

VII. SUMMARY & OUTLOOK

This paper presents a method to extract relevant information

to infer knowledge to cluster system components into modules

that represent mechanical functions. The implementation to

extract and identify the DoFs, the transformation into a knowl-

edge graph, the modularization, as well as the feature model

creation and merging has been described and can be accessed

online. The implementation and evaluation show that stepwise

extraction and analysis is an effective way to generate further

knowledge about a system’s hierarchy. As a first step, we have

implemented the mathematical analysis of DoFs for which a

knowledge graph is not suited. The strengths of the knowledge

graph in generating knowledge based on relationships and

interconnections can be built on these calculations. In addition,

the use of knowledge graph-based analysis enabled efficient

querying based on the SPARQL query language. A particular

strength of our approach is the use of the community informa-

tion resource VDI 2206 as the domain consensus of a system

hierarchy. The system description according to VDI 2206 is

automatically generated using the objective modularization

principles and the STEP file data. Furthermore, we take into

account the manufacturing domain specific ensuring that only

existing variants can be derived from the merged feature

model, by applying rather strict merging rules. Several differ-

ent STEP files have been used to verify the results and a real

world case study was used to evaluate the consistency, but a

more in-depth evaluation with industry examples to assess the

scalability and effectiveness must performed. Additionally, we

will investigate if we can integrate our approach with existing

approaches, e.g., [23], to overcome the identified difficulties

in extracting the components and DoFs.

In general, our approach shows the potential of reducing the

manual work effort for DT model generation. Furthermore,

the potential usage of the generated model in the context

of reconfiguration of manufacturing system can lead to a

reconfiguration time reduction up to 58% [38].

442

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:35:38 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENTS

(From SE RWTH:) Funded by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) under Ger-

many’s Excellence Strategy – EXC-2023 Internet of Produc-

tion – 390621612.

REFERENCES

[1] J. Morgan, M. Halton, Y. Qiao, and J. G. Breslin, “Industry 4.0 smart
reconfigurable manufacturing machines,” Journal of Manufacturing Sys-
tems, vol. 59, pp. 481–506, 2021.

[2] X.-L. Hoang, C. Hildebrandt, and A. Fay, “Product-oriented description
of manufacturing resource skills,” IFAC-PapersOnLine, vol. 51, no. 11,
pp. 90–95, 2018.

[3] Costello, Katie; Omale, Gloria, “Gartner survey reveals digital twins are
entering mainstream use,” February 2019.

[4] P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-
ing, M. Schmitz, and A. Wortmann, “Model-driven development of a
digital twin for injection molding,” in Advanced information systems
engineering, vol. 12127 of LNCS Sublibrary: SL 3, Information Systems
and Applications, incl. Internet/Web, and HCI, pp. 85–100, 2020.

[5] D. Braun, M. Riedhammer, N. Jazdi, W. Schloegl, and M. Weyrich, “A
methodology for the detection of functional relations of mechatronic
components and assemblies in brownfield systems,” Procedia CIRP,
vol. 107, pp. 119–124, 2022.

[6] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84, 2015.

[7] H.-P. Wiendahl, H. A. ElMaraghy, P. Nyhuis, M. F. Zäh, H.-H. Wiendahl,
N. Duffie, and M. Brieke, “Changeable manufacturing - classification,
design and operation,” CIRP Annals, vol. 56, no. 2, pp. 783–809, 2007.

[8] P. Marks, X. L. Hoang, M. Weyrich, and A. Fay, “A systematic
approach for supporting the adaptation process of discrete manufacturing
machines,” Research in Engineering Design, vol. 24, no. 3, pp. 1–21,
2018.

[9] F. Salvador, “Toward a product system modularity construct: Literature
review and reconceptualization,” IEEE Transactions on Engineering
Management, vol. 54, no. 2, pp. 219–240, 2007.

[10] X.-L. Hoang, B. Caesar, and A. Fay, “Adaptation of manufacturing ma-
chines by the use of multiple-domain-matrices and variability models,”
IFAC-PapersOnLine, vol. 52, no. 13, pp. 1361–1366, 2019.

[11] B. Caesar, N. Jansen, M. Weigand, M. Ramonat, C. S. Gundlach, A. Fay,
and B. Rumpe, “Extracting functional machine knowledge from step
files for digital twins,” in 2022 27th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pp. 1–4, 2022.

[12] ISO 10303-44, “Industrial automation systems and integration - product
data representation and exchange - part 44: Integrated generic resource:
Product structure configuration,” 2019.

[13] ISO 10303-42, “Industrial automation systems and integration - product
data representation and exchange - part 42: Integrated generic resource:
Geometric and topological representation,” 2019.
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[35] E. Järvenpää, P. Luostarinen, M. Lanz, and R. Tuokko, “Presenting ca-
pabilities of resources and resource combinations to support production
system adaptation,” in 2011 IEEE International Symposium on Assembly
and Manufacturing (ISAM), pp. 1–6, 2011.

[36] K. Hölldobler, O. Kautz, and B. Rumpe, MontiCore Language Work-
bench and Library Handbook: Edition 2021. Aachener Informatik-
Berichte, Software Engineering, Band 48, May 2021.

[37] F. Drux, N. Jansen, and B. Rumpe, “A Catalog of Design Patterns for
Compositional Language Engineering,” Journal of Object Technology
(JOT), vol. 21, pp. 4:1–13, October 2022.

[38] B. A. Talkhestani, D. Braun, W. Schloegl, and M. Weyrich, “Qualitative
and quantitative evaluation of reconfiguring an automation system using
digital twin,” Procedia CIRP, vol. 93, pp. 268–273, 2020.

443

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:35:38 UTC from IEEE Xplore.  Restrictions apply. 




