
Extensible Validation Framework for DSLs using
MontiCore on the Example of Coding Guidelines

Christian Berger, Bernhard Rumpe, and Steven Völkel

Rheinisch Westfälische Technische Hochschule (RWTH) Aachen
Department of Computer Science 3

Ahornstraße 55, 52074 Aachen, www.se-rwth.de

Abstract. Unit test environments are today’s state of the art for many
programming languages to keep the software’s quality above a certain
level. However, the software’s syntactic quality necessary for the devel-
opers themselves is not covered by the aforementioned frameworks. This
paper presents a tool realized using the DSL framework MontiCore for
automatically validating easily extensible coding guidelines for any do-
main specific language or even general purpose languages like C++ and
its application in an automotive R&D project where a German OEM
and several suppliers were involved. Moreover, it was exemplary applied
on UML/P-based sequence charts as well.

1 Introduction

The most popular and sophisticated methods for assuring the quality of soft-
ware today are unit test environments which are, especially for the Java pro-
gramming language, well combined with popular integrated development envi-
ronments (IDE) like Eclipse. For developers, especially those who are new to a
project, the source code’s syntactic quality is also important to reduce the time
necessary to understand the code and the concepts behind it. Coding guidelines
(CGLs) like [1–5] are available to be used in projects, but they are often re-
garded as recommendations rather than as regulations and their fulfillment is
not checked regularly due to missing appropriate tools. However, coding guide-
lines improve the source code’s quality implicitly by warning the developer in
case of complex statements or poor names for variables.

Tools for checking the source code’s conformance to a set of coding guide-
lines are for languages other than Java hardly available. Especially for C++,
besides C and Matlab/Simulink the major language for implementing software
for embedded systems, tools for automatically checking the source code are only
a few unavailable. The main reason is the complexity of the C++ language itself.
Using the preprocessor concept, nearly the entire language could be redefined or
extended.

This paper presents a tool for checking any domain specific language’s con-
formance to a set of easily extendable guidelines using a MontiCore generated
parser and symbol table and is structured as follows. Sec. 2 lists some related

[BRV09] C. Berger, B. Rumpe and S. Völkel 
Extensible Validation Framework for DSLs using MontiCore on the Example of Coding Guidelines 
In: Symposium on Automotive/Avionics Systems Engineering 2009 (SAASE 09) 
San Diego, California, USA, October 2009 
www.se-rwth.de/publications 



work with respect to tools for validating C++ guidelines and discusses differences
to our approach. In Sec. 3 the DSL framework MontiCore and its concepts for
developing domain specific language processing tools is presented. The following
Sec. 4 outlines the generic validation framework realized by using MontiCore. Its
application to C++ in an automotive R&D project and results of using this tool
are presented in Sec. 5. In Sec. 6 its application to the domain specific language
for sequence charts from the UML/P is demonstrated. A conclusion is given in
the last section.

2 Related Work

Tools for checking the source code’s conformance to coding guidelines for C++
are only a few available. Most commercial tools like the one from Parasoft1 use
the compiler front-end provided by Edison Design Group2.

Another commercial tool is QA-C++ offered by QASystems. This tool also
performs static code analysis comparable to Parasoft’s one and to VF.

Cxxchecker3 is an open source tool for validating coding guidelines for C++.
This tool only checks naming conventions, no public data members, the existence
of a copy constructor if pointer attributes exist and no public constructors in
abstract classes.

As aforementioned, some compilers like GNU G++ and Microsoft Visual
C++ offer the possibility to enable specific warning levels to avoid potentially
malicious code. Furthermore, regular expressions can be used to perform rudi-
mentary checks for naming conventions.

There are three main differences of these approaches compared to our work
described in this paper. First, we provide a language-independent framework
which can serve as a basis to develop a validation tool. According to our experi-
ence, the effort needed to implement such a tool decreases significantly. Second,
we developed an extensible framework to check coding guidelines for C++. Users
can easily define their own rules which can then be hooked in into the frame-
work. And third, we have an integrated tool which includes means to define
concrete syntax, abstract syntax, symbol tables, code generators etc. This in-
tegration permits a seamless development whereas using different tools for the
development of these artifacts often leads to integration problems.

3 MontiCore – A DSL-Framework

MontiCore (e.g., [6–9]) is a framework for agile development of textual domain-
specific and general purpose languages developed at the Software Engineering
Group, RWTH Aachen. It combines classical grammar-based concepts with to-
day’s meta-modeling approaches and permits an integrated definition of abstract
1 http://www.parasoft.com
2 http://www.edg.com
3 https://gna.org/projects/cxxchecker



and concrete syntax. Due to its comprehensive functionalities and especially its
extensibility, we have chosen to use MontiCore as basis for our generic vali-
dation framework. However, as MontiCore is subject of several publications in
literature, we will only briefly describe its characteristics in this paper.

3.1 Integrated Definition of Abstract and Concrete Syntax

MontiCore uses one single format similar to EBNF to define both concrete and
abstract syntax of a language. Fig. 1 shows an excerpt of our C++ grammar.

MontiCore-Grammar

1 token IDENT = (’a’ ... ’z’ | ’A’ ... ’Z’)+;

2

3 Type = Class | Enum;

4

5 Class = "class" name:IDENT "{" ClassBody "}";

6

7 Enum = "enum" name:IDENT "{" EnumBody "}";

8

9 ...

Fig. 1. Excerpt of our C++ grammar.

The first line introduces a terminal IDENT which defines identifiers to be used
as names of classes, variables, or methods4. Line 3 defines a nonterminal Type
which can be either derived to a class or an enum. Furthermore, lines 5 and 7
define the structure of classes and enums, respectively.

From this grammar, MontiCore generates both a parser and a lexer which can
be used to process C++ files. Furthermore, abstract syntax classes are generated
which will be instantiated as an abstract syntax graph (ASG) by the parser.
This ASG serves as a starting point for further processors such as our generic
validation framework.

3.2 Framework-based Approach for Language Processors

MontiCore offers a comprehensive framework which can be used as a basis for the
development of language processors. Beyond the aforementiond parsers, lexers,
and abstract syntax classes which are always language dependent, the frame-
work itself concentrates on cross-cutting, language-independent functionalities.
Typical examples are error handling, file creation, or structuring of the process-
ing workflow. Especially the latter property is of special interest as it permits
extensibility of our generic validation framework.

4 Note that the grammar is an excerpt only. Therefore, IDENTs have been simplified.



As stated above, the central entity for every language processor is the ASG.
The ASG and other useful information like a symbol table, the filename, or the
content of the file are stored in a class called DSLRoot. Furthermore, MontiCore
provides the concept of workflows which are used to encapsulate algorithms on
DSLRoots such as parsing, symbol table establishment, pretty printing, or - like
in our case - checking coding guidelines. The results of these algorithms are again
stored in the root and are thus available for other workflows.

Another concept supported by MontiCore are visitors. They are mainly used
in order to traverse the ASG based on the structure of the language’s grammar.
Typical applications are code generators, symbol table builders, or - as we will
show later - coding guideline checkers.

3.3 Further Concepts of MontiCore

Beyond the concepts we described in the former subsections, MontiCore offers
means for all parts of the development of language specific tools. For the sake
of space, we will only enumerate the main functionalities. For more information
we refer to [10].

– Support of meta-modeling concepts. MontiCore supports common meta-mo-
deling concepts in its abstract syntax definition (e.g., inheritance, interfaces,
and bidirectional associations).

– Compositionality of languages. MontiCore offers two concepts for composi-
tionality on language level. Inheritance can be used to inherit from existing
languages and to specify the delta only. Embedding supports combination
of languages (e.g., Java with embedded SQL) at runtime.

– Attribute grammar system. The MontiCore framework is equipped with an
attribute grammar system which can be used for different purposes like code
generation or type analysis. This attribute grammar system respects com-
positionality of languages.

– Editor generation. MontiCore is able to generate language-specific editors
as Eclipse-plugins with different comfort functionalities (e.g., syntax high-
lighting, outlines, and autocompletion). The editor generation mechanisms
respect compositionality of languages.

4 A Generic and Extensible Validation Framework

Our approach for a generic and extensible validation framework (VF) bases to
some extent on [11]. As a start, overall design criteria and architectural con-
siderations are discussed for using this framework for different domain specific
languages or general purpose languages like C++.

4.1 Architectural Drivers and Design Considerations

The most important design considerations were extensibility and reusability for
different languages. Therefore, the VF must not operate directly on the syntax



of a concrete language but should rather use an intermediate representation.
We decided to use the abstract syntax graph as provided by our MontiCore
framework for this representation.

Since we decided to use the ASG itself as the representation for any language
the visitor design pattern could be easily applied to it for traversing all nodes
and querying necessary information like attributes or associations. For avoiding
every validation rule (VR) like a coding guideline to be implemented as a visitor
and running through the ASG several times which is very expensive in terms
of runtime complexity, we decided to use one generic visitor for traversing all
nodes only once and every VR registers itself at the visitor to get notified about
ASGNodes. Furthermore, it should be possible to select the VR to be used during
the visitor’s traversal as well as to configure the VR itself easily without touching
the implementation. Thus, a simple configuration file defines which VRs should
be applied to the ASG and sets up some parameters.

Another aspect was the possibility to integrate the VF into a continuous inte-
gration system for automatically validating the source code triggered by modifi-
cations. Additionally, this requirement demands a reporting interface for collect-
ing the output of all matching rules applied to the source code in an independent
representation to be used in different reporting contexts like a browseable page in
a Web portal or for email notification containing only a summary of the results.

4.2 General Architecture

VFWorkf low

+run(root:DSLRoot)

+getVFResults(): VFResults

ConcreteVisi tor

ASGVisitor

+register(listener:ASGListener)

+clearListeners()

+start(node:ASGNode)

1

0..*

<<interface>>

ASGListener

+getResponsibleClasses(): Class<? extends ASGNode>[]

0..*

1

SymbolTable

VFResults

VRInfo

0..*

1

VRMessage

0..*

1

Fig. 2. Architecture for the Validation Framework.

As shown in Fig. 2, the topmost two classes VFWorkflow and ConcreteVisitor
are provided by the MontiCore framework as described above. They realize the
traversal through an ASG constructed from an instance of a given grammar. The
abstract class ASGVisitor is the VF’s main visitor class and must be derived
once for every language to handle specific nodes from the ASG. At this class,
subclasses of ASGListener implementing a specific validation rule like a coding
guideline are registered for getting notified if matching nodes in the ASG are



visited. If necessary, a concrete VR can use the symbol table also provided by
MontiCore to query a variable’s visibility for example.

All validation rules report their results to VFResults by using a VRInfo
instance per applied coding guideline. Information about successful matches of
a specific validation rule are collected using VRMessages containing information
about the file, row and column where the match succeeded as shown in the VF’s
workflow depicted in Fig. 3. The root object VFResults is serialized to an XML
file using XStream5 which can be processed further using an XSL transformation
as shown in Sec. 5.4.

Fig. 3. Validation Framework’s workflow for checking an ASG.

5 Application in an Automotive R&D-Project

For testing the developed framework with real data, we applied it within an au-
tomotive R&D-project carried by a German OEM. Furthermore, selective use of
the well-known Motor Industry Software Reliability Association (MISRA) rules
in its elaborated version [12] for coding guide lines was required. Thus, we had
to implement the chosen rules to apply them automatically on the source code.
This section describes shortly the project itself and describes the C++ grammar
we implemented using our MontiCore framework. Afterwards, an implementa-
tion of a selected validation rule is presented as well as a report produced by the
validation framework.

5 http://xstream.codehaus.org



5.1 Project Settings

The goal of the project was the development of an automatically driving ve-
hicle for highways [13]. The system architecture consisted on the one hand of
an environment perception and driving decision component using different sen-
sors to detect the car’s surroundings like other vehicles or obstacles beside the
road. This component was realized using C++. On the other hand, parame-
ters for all actuators were computed by a controller component realized using
Matlab/Simulink. Both components communicated using the CAN bus.

The former component was tested interactively by the developers as well as
automatically by a continuous integration system on every single commit to the
versioning system Subversion [14]. Therefore, the coding guidelines validation
tool should be part of this automatic workflow as well.

5.2 The C++ Grammar

The regular compiling process for C++ source code starts with the preprocess-
ing stage6. In this stage all preprocessor directives are resolved and #include
statements are embedded directly into a source file. For the sake of simplicity,
our implementation starts right after this stage.

MontiCore-Grammar

1 ...

2 Simple_type_specifier =

3 {symbolHelper.qualifiedItemIsOneOf(this,

4 EnumSet.<QualifiedItem>of(QualifiedItem.qiCtor, QualifiedItem.qiType))

5 }?

6 QualifiedType:Qualified_type

7 | ... // more rules

Fig. 4. Example for a semantic predicate.

The C++ language itself is a context-dependent grammar. An overview of
ambiguities can be found in [15]. Thus, it cannot be parsed using an LL(k) or
LR(k) parser without additional information from the context by either syntacti-
cal predicates using further tokens or semantic predicates using information from
the symbol table. As shown in Fig. 4, the production rule Simple type specifier
queries the symbol table to check if the following type is already known.

The complete MontiCore-grammar for the C++ contains 155 production
rules in 2,652 lines.

6 The GNU C++ compiler produces this output using the command g++ -E

mySourceFile.cpp.



5.3 Use of MISRA for C++ in the Validation Framework

As mentioned before, MISRA coding guidelines were adopted by the aviation
industries and are mandatory for safety critical systems. MISRA rules are divided
into SHOULD, SHALL and WILL. The first two classes are obligatory, whereas
the second class allows exceptions. The third one can be applied but the source
code’s conformance to it is not verified.

ConstructorChecker Validation of a specific order of constructors,
destructor and other methods

DestructorChecker Asserting a virtual destructor

EnumChecker Validation ISO-like enum-declarations

ExpressionChecker Checking for left-factorized expressions

ExpressionAssignmentChecker Validation for assignments in selection state-
ments

FlowControlChecker Checking for flow control (gotos, breaks,
labels)

FunctionChecker Various validations for function and method
usage (e.g., naming, maximum number of
lines. . . )

IdentifierChecker Ensuring for unique identifiers

IfChecker Checking for braces in if-statements

InitializedVariableChecker Checking the initialization of local variables

InterfaceChecker Ensuring that all public methods from a class
are declared in interfaces used by this class

MemoryChecker Validation for correctly freed memory

NamingConventionChecker Checking for correct naming convention (e.g.,
avoiding Hungarian prefixes. . . )

NamespaceChecker Ensuring correct namespace usage

SingleLetterVariableChecker Searching for variable names containing only
one letter

SwitchChecker Checking for braces in switch-case-statements

SymbolOrderChecker Validation for compact symbol declaration
(e.g., at the beginning)

TypeDefChecker Validation for correct naming of typedefs

Table 1. List of implemented coding guidelines.

For implementing MISRA guidelines using the VF, ASGVisitor must be
derived as mentioned before. Thus, we implemented ASGCPPVisitor which del-
egates visited nodes in the ASG to all registered listeners for a specific node.
Altogether, 18 validation rules as subclasses of ASGListener were implemented
as described in the Table 1.7

7 Compilers might also perform some of these checks using appropriate warning levels.



In the following, the implementation for InterfaceChecker is presented.
For validating the coding guideline that all declared public methods must be
provided by at least one interface, the source code shown partly in Fig. 5 was
used.

Java

1 public void notifyVisit(ASGClass_decl_or_def d) {

2 Scope s = SymbolCache.getInstance().getScope(d);

3 ClassScope c = ((ClassScope) s);

4 ClassBinding cB = c.getBinding();

5

6 List<FunctionBinding> implFs = new LinkedList<FunctionBinding>();

7

8 for(ClassBinding iC : cB.getInheritedClasses()) {

9 if (iC.hasOnlyInterfaceMethods()

10 && cB.getSpecifierOfInheritedClass(iC)

11 .contains(Specifier.PUBLIC)) {

12 for(FunctionBinding fB : iC.getAllFunctions()) {

13 if (fB.hasSpecifier(Specifier.PUBLIC))

14 implFs.add(fB);

15 }

16 }

17 }

18 for(FunctionBinding fB : cB.getAllFunctions()) {

19 boolean notInInterface = true;

20 if (fB.hasSpecifier(Specifier.PUBLIC)) {

21 for(FunctionBinding b : implFs) {

22 if (fB.equalSignature(b))

23 notInInterface = false;

24 }

25 } else {

26 notInInterface = false;

27 }

28 if (notInInterface)

29 addMessage(d, "Class " + cB.getName() + " has public functions"

30 + " not declared in interfaces: " + fB.printSignature());

31 }

32 }

Fig. 5. Example for validating correct interface usage.

In line 2-4, information about the current node is retrieved from the symbol
table. The following lines 8-17 collect all methods from the current class that
are inherited from interfaces. Finally, the last lines 18-31 verify that all public
methods are declared in super classes implemented by the current class.



5.4 Results

The VF was integrated into the continuous integration system (CIS) of the au-
tomotive R&D project. Thus, the source code’s conformance to the previously
defined coding guidelines could be verified automatically. For providing an eas-
ily accessable report about the source code’s quality, the results were embedded
into the developer’s Web portal Trac8 as shown in Fig. 6 using an XSL trans-
formation.

Fig. 6. Automatically generated report in a developer’s Web portal.

During the project, for about 100,000 lines of code were analyzed and totally
5,338 VF warnings were found. Nearly 8.6% were classified as highly critical VF
warnings like assignments in boolean expressions or misuse of memory handling.
For about 29.5% are classified as warnings of medium criticality like uninitialized
variables and their use in logical expressions. The remaining 61.9% were non
critical warnings like layout or design violations (e.g., not all public methods are
inherited from interfaces) which could be fixed automatically to be conform to
predefined layout rules. All critical warnings have been reviewed manually by
the developers to fix potentially malicious code. Furthermore, due to the tool’s
integration into the CIS, a regular report about the source code’s quality could
be provided automatically to check the source code’s quality over time.

8 http://trac.edgewall.com.



6 Application on UML/P

To test the eligibility for other languages, we decided to implement a simple
coding guidelines validation tool for sequence diagrams based on UML/P[16].
The criteria listed in Table 2 were tested[17].

TriggerChecker Checking for stereotype �trigger� at the
beginning of an interaction

NoCallToTestDriverChecker Validation that the object under test does not
call the test driver itself

Table 2. List of implemented coding guidelines for UML/P sequence charts.

In Fig. 7, a sequence chart used as test case specification is shown. In line 9
the mandatory �trigger� statement is omitted. In line 21, the system under
test tries to call the test runner which is not permitted at all.

UML/P

1 sequencediagram librarytest {

2 object test:LibraryTest;

3 object library:Library;

4 object librarian:Librarian;

5 object client:Client;

6 object request:Request;

7 object book:Book;

8 {

9 test -> librarian : setup(); // <<trigger>> missing.

10 test -> librarian : <<trigger>> startService();

11

12 librarian -> client : startBorrowing();

13 {

14 client -> librarian : requestBook(request);

15 librarian -> library : requestBook(request);

16 librarian <- library : return book;

17 client <- librarian : return book;

18 }

19 librarian <- client : endBorrowing();

20

21 librarian -> test : finish(); // No calls to test runner allowed.

22 }

23 }

Fig. 7. Malicious sequence chart.



For using the VF to validate instances of this DSL, the ASGVisitor had to
be derived as well as the ASGListener to implement the rules. Everything else
like the reporting interface could be simply reused. Since the UML/P itself is
part of the MontiCore framework, it was pretty easy to apply the VF on the
ASG.

Besides C++ and sequencs diagrams, we developed several other validation
tools for other languages. Thiese include other UML-languages (class diagrams,
state charts, object diagrams), Java, the MontiCore grammar format itself, and
OCL. All these validation tools are based on the framework we described in
this paper. This shows the applicability of the language independent validation
framework.

7 Conclusion

In this work we have presented a framework for domain specific languages as
well as general purpose languages for defining validation rules like coding guide-
lines. Besides design concepts and its generic architecture we have shown its
application in a real project from the automotive domain. By applying our tool
we discovered several potentially malicious sections in the R&D project’s source
code and improved its quality. Since the tool was combined with a continuous
integration system the validation of source code was conducted automatically
and the reports were delivered to the developers using the popular web portal
Trac. Furthermore, we have shown the generic nature of the VF by successfully
applying it to sequence charts from the UML/P and other languages.

References

1. Meyers, S.: Effective C++: 55 Specific Ways to Improve Your Programs and
Designs. Addison Wesley Professional (2005)

2. Henricson, M., Nyquist, E.: Industrial Strength C++. Prentice Hall (1997)

3. Sutter, H., Alexandrescu, A.: C++ Coding Standards. Addison Wesley (2005)

4. GNU Website. http://www.gnu.org/prep/standards/standards.html

5. Google C++ Style Guide Website http://google-styleguide.googlecode.com

6. Krahn, H., Rumpe, B., Völkel, S.: Integrated Definition of Abstract and Concrete
Syntax for Textual Languages. In: Proceedings of Models 2007. (2007)

7. Krahn, H., Rumpe, B., Völkel, S.: Efficient Editor Generation for Compositional
DSLs in Eclipse. In: Proceedings of the 7th OOPSLA Workshop on Domain-
Specific Modeling 2007. (2007)

8. Krahn, H., Rumpe, B., Völkel, S.: Monticore: Modular development of textual
domain specific languages. In: Proceedings of Tools Europe. (2008)

9. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Monticore: a
framework for the development of textual domain specific languages. In: 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, Companion Volume. (2008) 925–926

10. MontiCore Website http://www.monticore.de



11. Witt, S.: Entwurf und Implementierung einer erweiterbaren
Qualitätssicherungsschnittstelle für Codierungsrichtlinien im automobilen
Forschungsumfeld für das Framework MontiCore am Beispiel der Sprache C++.
Master’s thesis, Technische Universität Braunschweig (2007)

12. AT&T Research website http://www.research.att.com/~bs/JSF-AV-rules.pdf:
Joint Strike Fighter Air Vehicle (December 2005)

13. Weiser, A., Bartels, A., Steinmeyer, S., Schultze, K., Musial, M., Weiß, K.: Intel-
ligent Car – Teilautomatisches Fahren auf der Autobahn. In Gesamtzentrum für
Verkehr Braunschweig e.V., ed.: AAET 2009 – Automatisierungssysteme, Assis-
tenzsysteme und eingebettete Systeme für Transportmittel. Volume 10. (February
2009) 11–26

14. Bartels, A., Berger, C., Krahn, H., Rumpe, B.: Qualitätsgesicherte Fahrentschei-
dungsunterstützung für automatisches Fahren auf Schnellstraßen und Autobahnen.
In Gesamtzentrum für Verkehr Braunschweig e.V., ed.: AAET 2009 – Automa-
tisierungssysteme, Assistenzsysteme und eingebettete Systeme für Transportmit-
tel. Volume 10. (February 2009) 341–353

15. Willink, E.D.: Meta-Compilation for C++. PhD thesis, University of Surrey (2001)
16. Rumpe, B.: Agile Modellierung mit UML : Codegenerierung, Testfälle, Refactoring.

Springer, Berlin (August 2004)
17. Fraikin, F.: Entwicklungsbegleitendes Testen mittels UML-Sequenzdiagrammen.

PhD thesis, Technische Universität Darmstadt (2003)




