-, GR22b] J. Gray, B. Rumpe:
=l A ]

www.se-rwth.de/publications/

[=loris

Software and Systems Modeling (2022) 21:839-841
https://doi.org/10.1007/s10270-022-01001-4

= Explicit versus implicit models: What are good languages for modeling?.
- In: Journal Software and Systems Modeling (SoSyM), Volume 21(3), pp. 839-841, Springer Berlin / Heidelberg, April 2022.

EDITORIAL

()

Check for
updates

Explicit versus implicit models: What are good languages

for modeling?
Jeff Gray' - Bernhard Rumpe?

Published online: 7 April 2022
© The Author(s) 2022

Although modeling is used in almost all science and engi-
neering disciplines, the explicit definition of modeling lan-
guages is an invention of modern computing technology. It
was necessary to define modeling languages precisely so that
computers could process the models described in the lan-
guages, as a way to support various analysis and synthesis
needs (e.g., model analysis and code generation). However,
these were not the first languages that were defined pre-
cisely. Natural languages, for example English in the Oxford
dictionary and German in the Duden, received a rather for-
mal definition prior to digital automation with computers.
The ideas of grammars and related lexicographic definitions
were transferred from the natural language context to the
first computer languages, namely programming languages
and specification languages, where it received much more
precision. And for diagrammatic modeling languages, the
concept of a meta-model was popularized, often as a variant
of a class diagram.

The precise definition of modeling languages allows us
to make models explicit. The advantages of precise mod-
eling languages are well-known, namely (E1) support for
syntactically concise descriptions, (E2) attachment of pre-
cise semantics, (E3) a human-readable representation that
provides a language summary, (E4) models defined by a
language can be processed by computers to help identify
inconsistencies, incompleteness, and other issues, and also
(ES) provide the foundation for high-level analysis tech-
niques as promoted in various forms by the formal methods
community. Finally of course, other benefits also include
constructive use, including (E6) automatically deriving code,
tests, and related artifacts from the models, and (E7) the abil-
ity to interpret a model.

B4 Bernhard Rumpe
bernhard.rumpe @sosym.org

Jeft Gray

jeff.gray @sosym.org
1 University of Alabama, Tuscaloosa, AL, USA
2 RWTH Aachen University, Aachen, Germany

Over time, a larger set of modeling and specification
languages have been defined, among them the standards
UML and SysML (with all their benefits and deficits),
but also many logic-based languages, architectural mod-
eling languages, testing notations, as well as deployment
and configuration languages. Currently, we also can find
requirements-capturing languages that are a mixture between
traditional natural languages and structurally constrained tex-
tual languages, which can be regarded as precise modeling
languages in a textual syntactic form.

However, there are also approaches to embedding models
within existing languages. A famous example is the use of the
State Pattern as one of the initial 23 design patterns from the
Gang of Four in the early 1990s, where an efficient encoding
of state machines in an ordinary, general-purpose program-
ming language (GPL) is described. This embedding is very
useful and can be defined directly in the GPL. When describ-
ing the layout, e.g., as a grid of a GUI AWT/Swing window,
we actually specify the grid layout in a high-level abstrac-
tion, but do that within the Java PL. As a third example, class
diagrams can also be encoded directly as GPL classes, with
the exception of associations that need additional encoding
decisions.

Modern programming languages with enhanced forms of
syntactic compactness, such as Scala, support the definition
of APIs in such a way that the resulting code even looks like
itis not a traditional program, but rather an explicitly defined
domain-specific modeling language. As one example, the
tool chain integration DSL of Gradle is such an interesting
approach. Like the makefile language, it looks like a DSL,
but actually is an ordinary Groovy program using the Gra-
dle library functions. Similar observations can be made with
other forms of modeling languages, where a model is some-
times encoded directly in appropriate concepts of the GPL.

In other examples, a model may conform to a specific
style of programming (i.e., a kind of design pattern), assisted
by an appropriate predefined and reusable API, which itself
is realized in a generic library and allows a relatively com-
pact encoding of the “model.” These encodings are often so

@ Springer



840

J. Gray, B. Rumpe

straightforward that a direct decoding, also called reverse-
engineering, is possible such that the original model can be
extracted from the code. Yet, the extracted model still needs
an explicit representation form and thus must become an
explicit member of a modeling language.

Other forms of models remain completely implicit. For
example, the task dependency graph defined in Gradle and the
grid layout presentation in Java Swing are just data structures
that do not have explicit modeled representations beyond the
encoding in the GPL. They only come to life when the code is
executed, but are usually rather invisible in the code structure.
A traditional reverse-engineering does not help. We thus can
distinguish implicit models from statically extractable vs.
constructed through execution, even though the classification
might have some overlaps.

Implicit models embedded in the code of a GPL also have
advantages: (I1) the toolchain only consists of an ordinary
compiler (and a runtime library), which can (I12) efficiently
be used to generate running and testable systems as well as
simulations, and (I3) dynamic reconfigurations are possible.
This supports the addition of new states or redirected tran-
sitions in the State pattern or changes in the grid layout of
AWT.

Arguably, dynamic reconfiguration can also be seen as a
serious challenge because analytical considerations of how
a system will behave can be invalidated when arbitrary
dynamic reconfigurations are possible. But there is a seri-
ous second disadvantage, namely embedded models are not
amenable for explicit analysis at design time. As an exam-
ple, a compiler or classic code analyzer normally does not
know about a project-specific embedding of a state machine
or an activity diagram in the code, and thus cannot analyze
the embedded model for desired properties like complete-
ness and consistency. It does not make a difference if the
model has been defined in an explicit modeling language and
code was generated, or whether the implicitly defined model
was extracted into the explicit presentation. In both cases,
an explicit modeling language is involved to be able to ana-
lyze the model. For analysis purposes, it may be sufficient to
define the modeling language only through abstract syntax,
such as a meta-model, which would allow us to actually con-
sider the data structure of the State pattern an (incomplete)
meta-model of state machines.

The most important challenge with dynamic reconfigura-
tion is when a modeling language that is applicable to all
activities of development must allow controlled underspec-
ification of various forms. This is a necessary prerequisite
for modeling, because during development we often do not
know all of the technical details, and more importantly, we
do not want to predefine design decisions too early so that we
can explore the possible design space in later phases of the
development. Modeling languages must allow underspecifi-
cation and can do that in various forms, among others via

@ Springer

(U1) offering variability mechanisms to define alternatives,
(U2) parameters and configuration options that parameterize
models, (U3) logical constraints to relate such parameters
and the system behavior/structure, (U4) logic-based pre- and
postconditions to describe bandwidths of possible realiza-
tions of behavior, and (U5) non-determinism/choice within
behavioral notations that help in describing alternative behav-
ioral decisions.

All of these concepts can be implicitly embedded ina GPL.
However, programs are executable and their embedded mod-
els also are executable. In an execution, a deterministic and
completely defined behavior occurs. The underspecification
forms noted above as (Ul), (U2), and (US) can typically be
executed through either random choice (e.g., calling a ran-
dom() function) or default behavior selections (e.g., always
take the first available option). The other forms of underspec-
ification described as (U3) and (U4) can fail in constructive
executions because solutions for undecidable logical expres-
sions must be found. In all cases the “executed” model is not
equivalent with the intended model and further design deci-
sions may force other “executed” behavior that was specified,
but never seen and anticipated in earlier tests.

Underspecification is relevant and cannot be handled only
by executable models. However, there are solutions that
have been intensively investigated by the Formal Methods
community (e.g., logic reasoning, model checking, data and
control flow analyses, abstract interpretation, etc.). These
approaches can help to explore many or even all behavioral
paths and configurations “in parallel” and can be applied
when using explicit models in dedicated modeling languages.

As a consequence, however, we should accept that
some modeling languages should NOT allow developers to
describe all kinds of system properties, but restrict them-
selves in their expressivity. In general, the more restrictive a
modeling language is, the greater the ability to offer effective
and efficient analysis techniques. Thus, it is often a compli-
cated balancing act between the expressivity of models and
the power of available analysis techniques. At least it is clear
that with pure embedding of models in a general-purpose
language, i.e., implicit models, we get the advantage of sim-
ulation, but usually lose all advantages of explicit analysis.

Recently, most of the modeling techniques described in
SoSyM discuss explicit modeling techniques that are based
on explicit modeling languages. SoSyM, however, also wel-
comes papers that enlarge and improve our knowledge on
modeling technologies, where implicit models may also be
used. We look forward to seeing additional contributions in
this area.



Explicit versus implicit models: What are good languages ...

841

1 Content of this Issue

1.

BPMDS 2020 Special Section

Guest Editors: Pnina Soffer and Selmin Nurcan

Theme Section on “Al-enhanced Model-Driven Engi-
neering”

Guest Editors: Lola Burguefio, Jordi Cabot, Manuel
Wimmer, and Steffen Zschaler

Regular Papers

e “DEVS-based formalism for the modeling of routing
processes” by Maria Blas, Horacio Leone, and Silvio
Gonnet

e “Model-based ideal testing of hardware description
language (HDL) programs” by Onur Kilincceker, Erc-
ument Turk, Fevzi Belli, and Moharram Challenger

e “A generic approach to detect design patterns in model
transformations using a string-matching algorithm” by
Chihab Eddine Mohamed Omar Mokaddem, Houari
Sahraoui, and Eugene Syriani

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Publisher’'s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer





