
COMPUTER 42

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

providing architectural descriptions of software-intensive
systems to cope with their increasing complexity and to
mitigate the risks incurred in constructing and evolving
these systems. According to this standard,1 as Figure 1
shows, a system fulfills a particular mission in the environ-
ment it inhabits and has one or more stakeholders that have
concerns relative to the system and its mission. Concerns
are defined as “those interests that pertain to the system’s
development, its operation, or any other aspects that are
critical or otherwise important to one or more stakehold-
ers.” Runtime concerns include performance, reliability,
security, and distribution; development concerns focus on
maintenance—in particular, evolvability.

The software architecture deals with multiple views
of a system including both its functional and nonfunc-
tional aspects. A structural view looks at the system as a
set of components that interact via connectors. Complex-
ity is mastered by means of hierarchical decomposition;
a component can be composed from subcomponents
with the hierarchy’s leaf components representing coded
functionality. As the “Architecture Description Languages”
sidebar describes, the research community has proposed
numerous ADLs, some of which have found their way into
commercial practice.

An explicit architecture description is important but
not sufficient to manage the complexity of developing,
maintaining, and evolving a critical software-intensive

S
oftware-intensive systems, whether real-time
embedded systems or information-processing
systems, present critical concerns for stake-
holders. A system may be mission-critical for
a company, in that it could lose its competi-

tive advantage or even be unable to survive if the system
doesn’t function properly. A system may be resource-
critical in terms of time, personnel, hardware, or any other
crucial resource on which it might rely; unavailability or
malfunction of these resources could cause the system to
fail. A system may be critical in a more traditional sense—
having specific nonfunctional characteristics that must be
satisfied at all times. For example, financial systems are
security-critical, whereas nuclear power plants, medical
applications, and public transportation are safety-critical,
as human lives might be at stake.

Software architectures provide a sound basis for explic-
itly documenting these concerns. IEEE standard 1471-2000,
which has also become ISO/IEC 42010:2007, recommends

To manage the complexity of developing,
maintaining, and evolving a critical soft-
ware-intensive system, its architecture
description must be accurately and trace-
ably linked to its implementation.

Tom Mens, Université de Mons, Belgium

Jeff Magee, Imperial College London, UK

Bernhard Rumpe, RWTH Aachen University, Germany

EVOLVING
SOFTWARE
ARCHITECTURE
DESCRIPTIONS OF
CRITICAL SYSTEMS

[MMR10] T. Mens, J. Magee, B. Rumpe
Evolving Software Architecture Descriptions of Critical Systems
In: Computer vol. 43, IEEE Computer Society, May 2010.
www.se-rwth.de/publications/

Figure 1. Fragment of IEEE Std. 1471 conceptual model of
architectural description. A software-intensive system fulfills
a particular mission in the environment it inhabits and has
one or more stakeholders that have concerns relative to the
system and its mission.

Stakeholder

Architectural
description

Concern

1..*

1..*

1..*

1..*

Architecture

Rationale
provides

System

has an

described by
1

identifies

has

Mission
fulfills

1..*
Environment

has
1..*

influences

inhabits

43MAY 2010

system. The description must also be accurately and trace-
ably linked to the software’s implementation, so that any
change to the architecture is reflected directly in the im-
plementation, and vice versa. Otherwise, the architecture
description will become rapidly obsolete as the software
evolves to accommodate changes. The architecture
description must thus be an integral part of the software-
intensive system and its documentation.

WHY EVOLVE ARCHITECTURE DESCRIPTIONS?
Any software-intensive system is constantly subject to

software changes, usually driven by external stimuli from
the system environment over which the developers have
little or no control. These stimuli may be as diverse and
unforeseeable as technological changes, enhanced user

ADLs have emerged as formal languages to define and document
the software architecture of systems.1-4 They facilitate com-

munication between software architects and other stakeholders
and make it possible to express, verify, and impose properties upon
the software that will implement the architecture. In contrast to
programming languages, ADLs are usually declarative and describe
a system’s architecture as a set of components, connectors, and
configurations of these elements.

Researchers have developed numerous ADLs such as AADL
(Architecture Analysis and Design Language), Acme, COSA (Com-
ponent Object-based Software Architecture), Darwin, Rapide, and
Wright. Appropriate architecture-centric software development
tools have also been developed, including ArchStudio, Acme-
Studio, and SafArchie Studio.

Koala5 is one of the few ADLs to have found application in com-
mercial practice. Philips uses it to define the software architecture
for consumer electronic products. Koala is model-driven in that it
directly uses the architectural description to construct the soft-
ware loaded into products.

Figure A. Architectural description of the software for a TV set
using Koala. The components can be configurations of more
primitive components or they can be base-level components
with their implementations defined in C.

Figure A5 shows an example of the architectural description of
the software for a TV set using Koala. The components shown in
the figure can be configurations of more primitive components or
they can be base-level components with their implementations
defined in C. This ability to describe systems as hierarchical com-
positions of components is the key to managing complexity and is
a feature of practically all ADLs.

In the figure, the boxes with arrows represent interfaces
defined by sets of function calls. If the arrow points into a compo-
nent, then the component provides or implements that interface;
if it points out of the box, then the component requires access to
the interface. The lines or connectors represent connections
between required and provided interfaces and represent runtime
function call paths. Connectors in other ADLs represent more gen-
eral connector semantics that can encompass streams, events,
and message-passing protocols.

Koala restricts itself to a structural description of software
architecture. However, much of the power of ADLs and their
importance to critical systems arises from the ability to associate
behavioral, functional, and nonfunctional properties with compo-
nents and reason about the preservation of overall system
properties.

With the advent of Unified Modeling Language v. 2.x, more
modern ADL proposals are essentially profiles that extend UML 2.x
by means of stereotypes to extend the existing UML 2.x structural
elements with additional properties and constraints.

References
 1. R.N. Taylor, N. Medvidovic, and E.M. Dashofy, Software

 Architecture: Foundations, Theory, and Practice, Wiley, 2009.
 2. L. Bass, P. Clements, and R. Kazman, Software Architecture

 in Practice, 2nd ed., Addison-Wesley, 2003.
 3. N. Medvidovic and R.N. Taylor, “A Classification and Com-

 parison Framework for Software Architecture Description
 Languages,” IEEE Trans. Software Eng., Jan. 2000, pp. 70-93.

 4. M. Shaw and D. Garlan, Software Architecture: Perspec-
 tives on an Emerging Discipline, Prentice Hall, 1996.

 5. R. van Ommering et al., “The Koala Component Model for
 Consumer Electronics Software,” Computer, Mar. 2000, pp.
 78-85.

ARCHITECTURE DESCRIPTION LANGUAGES

II2c

CTunerDriver
ctun

ptun

ri2c

IInit

pini

ITuner

pif
pini CHipDriver

chip

pscr
pini

CHopDriver
chop

pcol

IIf IColor IScreen

CFrontEnd
cfre

pprg
pini

IProgram

ppic
pini CBackEnd

cbke

IPicture

rscrrtun rif rcol

CTvPlatform pprg ppic

slowfast
II2c

pini

ri2cri2c

m

COVER FE ATURE

COMPUTER 44

models are often easier to evolve than programs. For
almost any modeling language, various techniques exist
to systematically modify the models to achieve certain
effects. For example, composite structure diagrams can
be transformed and refined4 in a semantic-preserving
way.

Many researchers have studied the formal foundations
of model transformation. One well-known formalism
used for this purpose is graph transformation, which
enables reasoning about the formal properties of model
transformations—in particular, how an architecture
evolves. For example, this approach can be used to verify
whether a given architectural transformation preserves
certain structural, behavioral, or other properties. This
is particularly useful in the context of architectural re-
structuring, which aims to improve the structure of an
architectural description while improving its behavioral
properties.

Using model transformation, and especially graph
transformation, to express and formalize the evolution
of architectural descriptions isn’t new. Daniel Le Métayer5
proposed such an approach more than a decade ago. More
recently, Michael Wermelinger and José Luiz Fiadeiro6 used
graph transformation theory as a formal foundation for
software architecture reconfiguration. Even more recently,
Lars Grunske7 formalized architectural refactorings as
graph transformations that can be applied automatically.
In a similar vein, Dalila Tamzalit and one of the authors8

used graph transformations to express architectural evolu-
tion patterns as a means to introduce architectural styles
as well as to verify whether a given architectural evolution
preserves the constraints imposed by an architectural
style. Automated support for this approach is currently
under development using the COSA ADL and associated
tools.

Another interesting approach to transformation-based
architectural evolution, though not directly relying on
graph transformation, is work by Olivier Barais and col-
leagues.2 Their TranSAT framework supports architectural
evolution based on ideas borrowed from aspect-oriented
software development. The idea is to encapsulate new
architectural concerns as architectural aspects and to use
an architectural-transformation language to weave these
aspects into the existing architecture description. This
approach makes it possible to analyze transformations
statically and incrementally to verify whether the result-
ing architecture description is structurally consistent—this
saves considerable time and effort compared to doing a
complete analysis of the resulting architecture description.
Examples of such architectural restructuring include the
transformation of a monolithic architecture into a dis-
tributed client-server architecture or into a three-tiered
architecture that clearly separates the user interface, busi-
ness logic, and data layer.

organizational structures or business processes, new leg-
islation, or changes in resources.

To cope with any of these issues, all software artifacts
produced and used by the software-intensive system
must evolve. Depending on the software artifacts’ type
and granularity, the impact and rate of change may differ.
Source-code artifacts need to be changed frequently—for
example, to fix bugs—but often have a local impact only.
Changes to the architecture occur less frequently but have
a global impact.

Evolving a software architecture by modifying its
description to accommodate change requests faces nu-
merous research challenges. In particular, the evolution
of an architectural description should typically preserve
its purpose and criticality concerns. There are two ways to
verify that such properties are preserved: by analyzing and
verifying the resulting architectural description after the
changes, or by analyzing the initial architectural descrip-
tion together with the “delta” or “increment” applied to it
to make the changes.

Current ADLs provide little support for architectural
evolution, leaving it to processes, tools, and techniques
outside the architecture description’s concern.2 Never-
theless, researchers agree that evolving the architecture
description is beneficial, particularly in the case of critical
systems, and in recent years have made promising gains.

MODEL-TRANSFORMATION-BASED
EVOLUTION

The model-driven-engineering community uses models
as artifacts to describe well-defined software aspects at a
higher abstraction level than source code. Model transfor-
mation is a well-established technique to modify and evolve
models.3 Researchers have developed various model-trans-
formation languages, some of which—such as ATL (ATLAS
Transformation Language)—are seeing widespread indus-
try adoption. Others are part of a standardization process,
such as QVT (Query/View/Transformation), the de facto
standard proposed by the Object Management Group to
accompany UML (Unified Modeling Language). Because an
architectural description can be seen as a software model,
it makes sense to apply model-transformation approaches
to architectural evolution.

Developers are applying the proven program-trans-
formation technique of refactoring to models and
specifications as well. Due to their semantic richness,

The evolution of an architectural
description should typically preserve
its purpose and criticality concerns.

45MAY 2010

models. It’s even unclear how state-, activity-, and flow-
based models of the same architecture complement one
another.

PRESERVING CRITICAL
BEHAVIORAL PROPERTIES

It’s essential to ensure that any evolutionary software
adaptation retains desired properties that have been mod-
eled, validated with stakeholders, or even formally proven
correct versus requirements and implementation. This is
even more important for critical systems, in which errors
are often introduced during badly managed evolutionary
steps. Making large architectural changes in one step is
especially problematic. After such a “big bang,” consid-
erable validation and modification must occur to adapt
behavioral models as well as any implementation. In con-
trast, a stepwise approach to evolution lets developers
manage change more effectively through small, incre-
mental transformations.

Transformations that refine or preserve behavior while
adapting the architectural description to new requirements
or technical needs are relatively complex, even in small
evolutionary steps. Tools are therefore necessary to assist
such transformations. Unfortunately, none of today’s tools
adequately preserve syntactical correctness and seman-
tics. Further, researchers have mainly applied them to
isolated modeling viewpoints and not to loosely coupled
heterogeneous views, which are needed to describe an
architecture’s structure and behavior.

Transformation-based evolution of behavioral models
is much harder to achieve than evolution of purely
structural models. Tools usually carry out structural
transformations rather efficiently. When behavior is in-
volved, however, undecidability problems pop up such as
semantic equivalence of logical preconditions. A simple
solution to these problems would be to review them by
hand; the most complex would be to feed them into an
interactive verifier and enforce their formal correctness
proof. This is why evolution techniques for behavior in

ARCHITECTURAL
COEVOLUTION

While in many disciplines archi-
tectural descriptions are primarily
concerned with structure, architec-
tural descriptions of software serve
as structural containers in which
the complex behavior resides. From
the end-user viewpoint, achieving
correct and reliable behavior and
functionality is the ultimate goal
of a critical software-intensive
system. The internal structure is
only relevant to the software ar-
chitects and developers who use it
to master the software complexity. To reconcile both
types of stakeholders, we need different views to rep-
resent the structural and behavioral descriptions of
architecture.

Behavioral descriptions are often modeled in a precise
formal form. Various modeling languages such as state-
machine diagrams, sequence and activity diagrams, Petri
nets, and temporal or other forms of logic are used to de-
scribe a system’s behavioral aspects. All these behavioral
languages either incorporate their own structural descrip-
tion or can be combined with a separate one expressed
using some ADL or modeling language.

Evolving architectural descriptions inevitably requires
the coevolution of different viewpoints: the structural
viewpoint, the behavioral viewpoint, and often many
other viewpoints as well. In addition, as Figure 2 shows,
the architecture must be synchronized with other ar-
tifacts produced during software development such as
system requirements, documentation, and, of course,
implementation.

While most modeling languages have transformation
techniques to evolve models in small, understandable
steps, keeping models synchronized remains a challenge.
Tool chains currently translate all models into a logic
language and feed that into a verifier, but this clumsy
technique fails to capture the modeling language’s se-
mantic richness and structure, and a modified model
often can’t be translated back into the original model.

Understanding how to transform structural de-
scriptions and accompanying behavioral models in a
synchronized, consistent way is critical to software de-
velopment. Even more important is the coevolution of
analysis or certification arguments, which can retain
already validated properties if not affected directly.
Proof-replay techniques for verifiers have had some
success in this regard. However, researchers don’t yet
grasp how heterogeneous modeling languages semanti-
cally fit together or how to consistently coevolve them.
This is especially true for structural ADLs and behavioral

Programming
language

Modeling
language

Software
implementation

Software
designBehavioral

view
Structural
view

Behavior
speci�cation
language

ADL

Architecture description

sync. sync.

Figure 2. Coevolution of architectural viewpoints, design, and implementation. The
architecture must be synchronized with other artifacts produced during software
development.

COVER FE ATURE

COMPUTER 46

Designer dilemma
Unplanned evolutionary change introduces a dilemma

when designing built-in ADL language constructs to sup-
port change and extension. On one hand, constructs that
always result in structurally well-formed and type-cor-
rect systems would inevitably permit only a subset of all
possible valid system changes. On the other, constructs
that result in invalid systems could only be permissible
in an environment that comprehensively detects struc-
tural problems and type errors, especially with critical
systems. There is thus a need to combine the freedom
to perform incorrect changes with the ability to detect
these errors to achieve sufficient expressiveness for un-
planned changes. This comprehensive approach can
accommodate destructive change—deleting elements
from an architecture description—in addition to con-
structive change—adding elements to an architecture
description.

When defining architectural changes as a first-class
construct in an ADL, software architects should consider
the different requirements of organizations responsible
for system development, deployment, and modification.
Consider, for example, a common scenario in the domain
of enterprise resource planning software. A development
organization produces a software framework product used
by other organizations to build applications. To meet their
local development requirements, these organizations may
need to customize (modify and extend) the framework to
support their applications. The original framework will
evolve over time, so the organizations that use it must
apply their local changes to the framework before using
the evolved framework for their applications. In addition,
a third party might wish to use applications from more
than one framework customizer and thus needs to merge
changes from both these organizations and the original
framework provider.

Regarding an architecture description only as design
documentation leads to the coevolution problem shown
in Figure 2: keeping this documentation in synch with the
software implementation as the system evolves. A model-
driven-engineering approach ensures that an architecture
definition isn’t just a documentation artifact but a precise
model for constructing both initial implementations and
extensions to these implementations.

Example: Resemblance and replacement
Figure 3 illustrates two techniques, resemblance and

replacement, that can be used to extend UML 2.x to permit
the intrinsic definition of architectural evolution.10

Resemblance defines a new component as the differ-
ence in structure from one or more existing components.
It’s the delta—the set of additions, deletions, and replace-
ments—of the components’ elements applied to arrive at
the new definition. Component elements include

architecture descriptions will first arise only in certain
kinds of critical systems.

A less expensive alternative is to use automated tests
and invariants to iteratively check whether each evolution
step is carried out correctly. However, this raises another
problem: When evolving software architecture based on
architectural descriptions, how do you keep the architec-
ture consistent with the implementation?

One way to keep architectural artifacts consistent
during evolution is to trace information-flow dependen-
cies through them. Horizontal tracing aims to ensure
consistency between architectural descriptions at the
same stage of development, while vertical tracing aims

to maintain consistency between the stages of devel-
opment—for example, by aligning artifacts with code.
Informal tracing is difficult because dependencies are
easy to forget. Formal tracing techniques exist—for
example, to formally check source-code annotations.9
Explicitly adding evolution operators to the language helps
to alleviate this problem, as the original information is still
available and no trace is needed to recover dependencies.
The optimal solution would be to generate parts of the
code in such a form that it can be regenerated after each
evolutionary step; automated tests could then regressively
test system behavior.

ARCHITECTURAL CHANGE
AS A FIRST-CLASS CONSTRUCT

Current ADLs such as Koala don’t directly address
evolution, regarding it as extrinsic to architectural descrip-
tions. The alternative is to provide first-class structural
constructs to express and capture architectural change
during both initial development and subsequent evolution.
This necessitates dealing with unplanned modification, for
it’s impossible, whichever development process is adopted,
to foresee all possible future requirements for evolving a
system. While this approach may initially seem unusual,
some programming languages already contain explicit
constructs for system evolution. For example, subclass-
ing could be interpreted as a form of evolution of classes
where the “old” class taken from the library isn’t evolved
but adapted through the subclass only. However, subclass-
ing permits only conservative extension—adding elements
to but not removing them from a class.

It’s impossible, whichever
development process is adopted,
to foresee all possible future
requirements for evolving a system.

47MAY 2010

placement is the key to managing change in composite
hierarchical definitions because it enables substitution of
definitions at one level of the hierarchy without necessarily
affecting higher layers. For example, Figure 3c shows an
improved implementation of the Database component that
replaces the original Database when applied to the simple
database server system (Figure 3a) or the managed server
system (Figure 3b).

Resemblance allows elements to be deleted in forming
a new definition from existing ones, but it isn’t destruc-
tive editing in the traditional sense. Using resemblance to
replace a definition in a base model with a new definition
in an extension model doesn’t remove the old definition;
instead, it records the deletion in a delta. This approach
enables history tracing, the use of base models instead
of derivatives, and the resolution of conflicts when inde-
pendently evolved extensions are subsequently merged.

•	 parts—instances of
subcomponents,

•	 ports—instances of
interfaces,

•	 connectors—bindings
between ports, and

•	 attributes—component
parameters.

Resemblance can also
be applied to interfaces, in
which case the modified el-
ements are operations. If a
resemblance delta consists
only of additions, then when
applied to an interface, it de-
fines a proper subtype and
thus can safely replace the
original component.

Figure 3a depicts the ar-
chitecture description of a
simple database server that
has two internal compo-
nent parts: Database and
FrontEnd. Figure 3b shows
an evolution of this simple
server that has been ex-
tended using resemblance
to add managed access to
the data stored in the server.
ManagedServer resembles
Server, and the text note de-
fines the delta that results
from editing Server to arrive
at ManagedServer.

Resemblance’s many-to-
one relation permits the merging of multiple component
definitions that may have arisen due to, for example,
distributed development. Applying a sufficiently radi-
cal delta to a component may result in a new definition
that bears little or no resemblance to the component
definitions from which it’s derived. Tracing evolutionary
origins remains very important in many project contexts,
as both engineering and nature provide many examples
of systems that have dramatically evolved from their
original form.

Replacement globally substitutes the definition of one
component for another while preserving the original defi-
nition’s identity, thereby maintaining any relations that a
larger system has with this component. Combined with
resemblance, replacement permits the incremental evolu-
tion of a component definition without having to change
the composite definitions that use this component. Re-

Database

Idata

Iuser

FrontEnd

Idata

Server

db : Database fe : FrontEnd

d

dd

d u

uu

d ud
u

ManagedServer

db : Database

cn : Control

fe : FrontEndIdataIdata
 component ManagedServer
 resembles Server
 {

 ports: m;
 parts: cn: Control;
 delete-connectors: dd;
 connectors:
 rd joins r@cn to d@db;
 pd joins p@cn to d@fe;
 mm delegates-from m@cn to m;
 } Server

(from Base)

Control

Imanage

d

mr p

d u
u

m

uu

mm

pd

rd

r
m

p

component Database' implementation-class ImprovedDatabase
 resembles Database replaces Database
 { }

Database
(replaces

Base :: Database) d

Iuser

Iuser

Imanage

(a)

(c)

(b)

Server
(from Base)

Idata

Figure 3. Evolving a software architecture description using Evolve, a UML 2.x evolution tool
developed by Andrew McVeigh. (a) Architecture description of a simple database server.
(b) Resemblance: architecture description of managed database server. (c) Replacement:
replacing the Database component.

COVER FE ATURE

COMPUTER 48

I
ncremental change is integral to both the initial
development and subsequent evolution of soft-
ware-intensive critical systems. Making evolution
intrinsic to architecture description is a principled
and manageable way to deal with unplanned

change. This intrinsic definition facilitates decentralized
evolution of software by multiple independent developers.
Unplanned extensions can be deployed to end users with
the same facility that plug-in extensions are currently
added to systems with planned extension points.

Acknowledgments
Tom Mens is supported by ARC project AUWB-08/12-UMH19,
“Model-Driven Software Evolution,” funded by the Ministère
de la Communauté française—Direction genérale de
l’Enseignement non obligatoire et de la Recherche scientifique,
and by the project TIC, cofunded by the European Regional
Development Fund (ERDF) and the Walloon Region (Belgium).

References
 1. IEEE Std. 1471-2000 and ISO/IEC 42010:2007, Recommended

Practice for Architectural Description of Software-Intensive
Systems, 2007.

 2. O. Barais et al., “Software Architecture Evolution,” Soft-
ware Evolution, T. Mens and S. Demeyer, eds., Springer,
2008, pp. 233-262.

 3. S. Sendall and W. Kozaczynski, “Model Transformation:
The Heart and Soul of Model-Driven Software Develop-
ment,” IEEE Software, vol. 20, no. 5, 2003, pp. 42-45.

 4. J. Philipps and B. Rumpe, “Refinement of Pipe-and-Filter
Architectures,” Proc. World Congress on Formal Methods
in the Development of Computing Systems (FM 99), LNCS
1708, Springer, 1999, pp. 96-115.

 5. D. Le Métayer, “Describing Software Architecture Styles
Using Graph Grammars,” IEEE Trans. Software Eng., vol.
24, no. 7, 1998, pp. 521-533.

 6. M. Wermelinger and J.L. Fiadeiro, “A Graph Transforma-
tion Approach to Software Architecture Reconfiguration,”
Science of Computer Programming, vol. 44, no. 2, 2002, pp.
133-155.

 7. L. Grunske, “Formalizing Architectural Refactorings as
Graph Transformation Systems,” Proc. 6th Int’l Conf. Soft-
ware Eng., Artificial Intelligence, Networking, and Parallel/
Distributed Computing and 1st ACIS Int’l Workshop Self-
Assembling Wireless Networks (SNPD/SAWN 05), IEEE CS
Press, 2005, pp. 324-329.

 8. D. Tamzalit and T. Mens, “Guiding Architectural Restruc-
turing through Architectural Styles,” Proc. 17th Ann. IEEE
Int’l Conf. and Workshop Eng. of Computer-Based Systems
(ECBS 10), IEEE Press, 2010, pp. 69-78.

 9. H. Krahn and B. Rumpe, “Towards Enabling Architectural
Refactorings through Source Code Annotations,” Proc. der
Modellierung 2006, Gesellschaft für Informatik, 2006, pp.
203-212.

 10. A. McVeigh, J. Kramer, and J. Magee, “Using Resemblance
to Support Component Reuse and Evolution,” Proc. 2006
Conf. Specification and Verification of Component-Based
Systems (SAVCBS 06), ACM Press, 2006, pp. 49-56.

Tom Mens is a professor and directs the Software Engineer-
ing Lab at the Institut d’Informatique, Faculty of Sciences,
Université de Mons, Belgium. His research interests are in
formal foundations and automated tool support for soft-
ware evolution. Mens received a PhD in sciences from Vrije
Universiteit Brussel, Belgium. He is a member of IEEE, the
IEEE Computer Society, the ACM, the European Research
Consortium for Informatics and Mathematics (ERCIM), and
the European Association of Software Science and Technol-
ogy (EASST). Contact him at tom.mens@umons.ac.be.

Jeff Magee is a professor, and heads the Department of
Computing, at Imperial College London, UK. His research
interests include software architecture, distributed sys-
tems, and mobile computing. Magee received a PhD in
computer science from Imperial College London. He is a
Chartered Fellow of the British Computer Society. Contact
him at j.magee@imperial.ac.uk.

Bernhard Rumpe is a professor of software engineering
in the Department of Computer Science at RWTH Aachen
University, Germany. His research interests include model-
ing, software architecture, and evolution. Rumpe received
an Habilitation in computer science from Munich University
of Technology (TUM). He is a member of the IEEE Computer
Society, the ACM, and Gesellschaft für Informatik (GI). Con-
tact him at rumpe@se-rwth.de.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

2 Free Sample Issues!
A $26 value

The magazine of computational tools
and methods for 21st century science.

http://cise.aip.org
www.computer.org/cise

Send an e-mail to jbebee@aip.org to
receive the two most recent issues of CiSE.
(Please include your mailing address.)

Recent Peer-Reviewed Topics:

Cloud Computing
Computational Astrophysics
Computational Nanoscience
Computational Engineering
Geographical Information Systems
New Directions
Petascale Computing
Reproducible Research
Software Engineering

MEMBERS
$47/year
for print & online

