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Abstract

Industry 4.0 opens up new potentials for the automation and improvement of production
processes, but the associated digitization also increases the complexity of this develop-
ment. Monitoring and maintenance activities in production processes still require high
manual effort and are only partially automated due to immature data aggregation and
analysis, resulting in expensive downtimes, inefficient use of machines, and too much
production of waste. To maintain control over the growing complexity and to provide
insight into the production, concepts such as Digital Twins, Digital Shadows, and model-
based systems engineering for Industry 4.0 emerge. Digital Shadows consist of data
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traces of an observed Cyber-Physical Production System. Digital Twins operate on Digi-
tal Shadows to enable novel analysis, monitoring, and optimization.We present a general
overview of the concepts of Digital Twins, Digital Shadows, their usage and realization
in Data Lakes, their development based on engineering models, and corresponding engi-
neering challenges. This provides a foundation for implementing Digital Twins, which
constitute a main driver for future innovations in Industry 4.0 digitization.

Keywords
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1 Introduction

The fourth industrial revolution, Industry 4.0, is a fundamental driver for agile manufac-
turing through integration and communication of production systems. It aims at integrating
Cyber-Physical Production System (CPPS) to optimize the complete value chain [74]. Ini-
tially announced by the German Federal Ministry for Education and Research in the year
2011 [6], Industry 4.0 has become an international phenomenon as the next big step towards
future development and manufacturing [7, 32, 48, 52]. To this end, it leverages state-of-the-
art research results from a variety of fields, including the Internet of Things (IoT), big data,
and machine learning. Combining these approaches, Digital Twins are envisioned as digital
duplicates of CPPS that represent, control, and monitor their physical counterpart to make
better use of resources. In this vision, Digital Twins need to rely on detailed knowledge of
the system, including its requirements and operation data. Since an exact digital replication
of all parameters down to the atomic level is not feasible, the concept of Digital Shadows
was introduced, which promotes purpose-driven compilations of production data. More-
over, while simulations approximate the behavior and effects, the calculated results often
diverge from reality due to external influences such as wear, tear, pollution, or environ-
mental impacts. Remedial actions require extensive manual effort by experienced operators
performing measures on real-world counterparts. In the following, we introduce the main
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themes of this chapter, including the aforementioned engineering models, Digital Shadows
and Digital Twins.

1.1 EngineeringModels in Industry 4.0

Modern product development processes employ methods of model-based systems engineer-
ing (MBSE) [28, 61] and model-driven development (MDD), in which models become the
primary development artifacts [15].MBSE raises abstraction in traditional systems engineer-
ing approach by harnessing structured models over unstructured documents. MDD extends
the classic model-based approach even further by establishing models as primary drivers
within the development process. Adhering to explicit modeling languages, with well-defined
semantics (meaning) [29], these promote understanding and transparency in development,
fostering intra- and interdisciplinary communication [41], as well as automated analysis and
synthesis [31] of (parts of) the system [57] under development.

Managing complexity in the interdisciplinary engineering process requires domain-
specific views on the overall system, filtering essential information. Thus, by leveraging
view-based modeling [18, 55], experts of participating domains are provided with the infor-
mation relevant to their specific concerns in suitable modeling languages (the views), which
is anchored in the overall system’s context. Systems Modeling Language (SysML) [23] is
a prominent collection of modeling languages, to describe the relationships between the
concerns of a system and thus provides the glue between participating engineering domains
and their domain-specific models.

Engineering models [8] are typically used constructively, i.e., to prescribe a system under
development, and contribute directly to the CPPS development process. As CPPS devel-
opment is a highly interdisciplinary effort, different models exist across different domains.
These are also relevant in engineering Digital Twins since they contain essential information
about the CPPS. Thus, engineering models do not only contribute to system development,
but also to the development of its twin by integrating important information as well as
runtime simulations.

1.2 Digital Shadows

Modern CPPSs are typically equipped with sensors that capture tremendous amounts of
raw data while these CPPSs are running. These large amounts of data can no longer be
transmitted in real-time or sensibly processed to gain insights into the system’s state. Thus,
a software system running in this context must provide mechanisms to reduce the sheer data
volume and its level of detail, while also coping with obsolete and incomplete data. Data
must be provided in a reduced and purpose-oriented fashion to achieve better performance
and more context adaptation. To address this, we conceived a notion of Digital Shadows that
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provide compact views on dynamic processes, usually combining condensed measurement
data with highly efficient simplified mathematical models [42]. Therefore, we define digital
twins as follows [3, 13]:

Definition 1 (Digital Shadow) A Digital Shadow is a set of temporal data traces and/or
their aggregation and abstraction collected concerning a system for a specific purpose with
respect to the original system.

Thus, the Digital Shadow is a set of data observed from the CPPS. This data is usually
captured using sensors of various forms but also data of the state of computation, actions
executed by control devices, or even input from human operators. ADigital Shadow contains
purpose-oriented data for a specific point in time, provided in a transformed (e.g., reduced
or augmented) form. Additionally, this data can be enriched with quality information, such
as origin, fidelity, accuracy, and more. Consequently, this implies the existence of multiple
Digital Shadow at different times and for a variety of objectives that may reference another.
The complete history of Digital Shadows is available to a Digital Shadow, enabling temporal
analyses such as predictive maintenance based on variations in the collected data.

1.3 Digital Twins

While there is some consensus that a Digital Twin is a sort of digital duplicate of a physical
entity [67], there is still no generally accepted definition that specifies what this means and
entails. There are numerous differing interpretations of what a Digital Twin actually is and
should be capable of. Many realizations of this concept heavily depend on their specific
domain or application purpose. Digital Twin applications range from simple data acquisi-
tions across virtual models of the physical system to an integrated twin with optimization
capabilities. Thus, they can serve observation and monitoring purposes purely or directly
support management and controlling to support the development process of CPPSs actively.
Engineering in Industry 4.0 is highly interdisciplinary, resulting in modern trends in MBSE
striving for integrated models to bridge the gap between different domains. Therefore, we
use a definition of the Digital Twin based on models that was developed within the German
Cluster of Excellence “Internet of Production”,1 which comprises 200 researchers in 25
departments from different domains, including mechanical engineering, electrical engineer-
ing, automation, factory construction, software engineering, systems engineering:

Definition 2 (Digital Twin) A Digital Twin of a system consists of a set of models of the
system, a set of Digital Shadows, and a set of services that allow using the data and models
purposefully with respect to the original system.

1 Internet of Production: https://iop.rwth-aachen.de.

https://iop.rwth-aachen.de
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Hence, a Digital Twin can be engineered based on heterogeneous sets of engineeringmodels
of different domains. It relies on the Digital Shadows as highly optimized representations
of cohesive, purpose-driven, data of the CPPS to conduct analyses for monitoring, decision
making, prediction, and performing operations with the system. Additionally, the Digital
Twin of a system provides services for handling user input, controlling its real-world coun-
terpart, and interacting with other systems (e.g., product life-cycle management systems or
other Digital Twins). We assume that each CPPS will, in the future, have its own Digital
Twin and both closely interact for monitoring but potentially also for controlling purposes.

To conclude, Fig. 1 illustrates the triangular relationship between the production site, Dig-
ital Shadows, and the Digital Twin. Starting on the left-hand side of the figure, application-
specific viewpoints illuminate certain aspects of the production area to collect specific data
from the machines and processes. These are then collected figuratively by the Digital Shad-
ows and flow into the Data Lake. From there, the data diffuses into the Digital Twin. Engi-
neering models contribute to the digital replicate, releasing both analysis results back to the
Digital Shadows, as well as configuration and control parameters into the production site.

Fig. 1 Continuous Data Cycle in Industry 4.0
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1.4 Outline

The remainder is structured as follows: Sect. 2 discusses challenges in engineering Digital
Twins with respect to their construction, operation, and services. Section3 introduces a con-
ceptual structure of Digital Twins and Digital Shadows based on an underlying Data Lake
infrastructure, while Sect. 4 introduces specific engineering approaches based on state-of-
the-art technologies. Sect. 5 elaborates on data processing techniques (e.g., artificial intelli-
gence) for Digital Shadows. Sect. 6 concludes with an outlook on the future of Digital Twins
and Digital Shadows and their potential in Industry 4.0.

2 Challenges in Engineering a Digital Twin and Its Digital
Shadows

This section discusses challenges in the model-driven engineering and operation of Digital
Twins.

2.1 Challenges in Engineering Digital Twins

Integrated engineering of a digital twin and its represented system Engineering Digital
Twins either coincides with the engineering of the represented system, i.e., both systems are
conceived and developed together (“greenfield” engineering), or takes place after the repre-
sented system has been deployed (“brownfield” engineering) [26]. In both cases, the purpose
of the Digital Twin and its information management requirements must be made explicit.
However, during the greenfield engineering of Digital Twins, development of the repre-
sented system can consider these requirements, whereas in the brownfield case, the required
information might not be available, demand augmentation of the represented system, or
synthesis from other sources. Moreover, most Digital Twin operations demand information
with specific quality requirements, such as frequency, precision, reliability and augmented
with additional contextual information (e.g., time and source of origin). Where greenfield
approaches can consider this during development of the represented system, brownfield
approaches often cannot. This can lead to less precise, out-of-date, and unreliable Digital
Twins. Consequently, brownfield approaches can severely limit the capabilities of potential
Digital Twins and, to achieve effective Digital Twins, they should be considered an integral
part within the development of the represented system.

The systematic identification of Digital Twin purposes in the context of available,
producible, and synthesizable information is a complicated task. Consequently, its



Engineering Digital Twins and Digital Shadows as Key Enablers for Industry 4.0 9

systematic integration into the development of the represented system is a major
challenge in engineering useful Digital Twins.

Data quality in context of sensor data and data streams has been addressed in various appli-
cations [20, 38]. In the context of Digital Twins, this challenge has been recognized, but not
yet explicitly addressed [72]. The parallel development of a Digital Twin and its physical
twin is discussed in [51], where different levels of a Digital Twin are presented.

Systematic specification and implementation of digital shadows Another quintessential
challenge in engineering Digital Twins is enabling these to leverage the data retrieved from
the represented system and making sense out of it. In order to retrieve data, both the aspect
of data streams originating from different sources as well as heterogeneous formats of data
have to be addressed. in (domain-specific) real-time and ultimately hamper Digital Twins
to fulfill their purposes: On the one hand, the three Vs of big data—Volume, Velocity, and
Variety—pose a challenge for handling the data. At the same time, all possibly relevant data
shall be captured as one wants to keep all data for later possible usage. To mitigate this, data,
information, andmodels of the represented systemand related systems can be aggregated and
abstracted prior to processing, resulting in Digital Shadows [36]. To be more exact, it might
be even not possible to collect all data initially, as the volume is too large, the systems are not
capable of analyzing the data at the required speed, or there is no sensor to capture specific
information. As illustrated in Fig. 1, Digital Shadows are produced by different viewpoints
on the represented object, i.e., only data relevant for a specific purpose or application is
considered. Still, it is not possible to foresee all potential use cases in Digital Twins when
designing the CPPS or the corresponding data management systems. Therefore, we propose
to use a Data Lake [60] as a repository for raw data that supports functions to prepare data
as required by the Digital Twins, integrates models and other sources of information, and
provides the right amount, granularity, and precision of data at the right time.

For the definition of Digital Shadows, suitable data modeling and integration tech-
niques are needed. These must enable the implementation of Digital Shadows consist-
ing of required data integrated from multiple sources, including data transformation
functions to clean, harmonize, and restructure the data into the desired format.

Some case studies that apply the concept of a Digital Shadow have been described in [42].
Data Lakes have been proposed also in [70] as a solution to the data challenges that are
present in the context of Digital Twins, e.g., heterogeneity, volume.

Integration of domain expert solutions Engineering Digital Twins is an interdisciplinary
effort that, dependingon their purpose, can demand the collaboration of experts fromautoma-
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tion engineering, human-machine interaction, software engineering, andmore. These experts
employ a variety of different solution paradigms, methods, and technologies that need to be
properly integrated to produce and deploy Digital Twins. To this end, often solutions fol-
lowing geometric and functional paradigms, continuous and discrete perspectives, heavily
front-loaded and agile methods, which employ a large variety of different implementation
techniques (CAD, knowledge representation, physical modeling, state-basedmodeling, pro-
gramming, etc.) must be integrated. Due to the required technical complexity and level of
detail of the different experts’ solution implementations, their integration and joint use in
Digital Twins introduces another level of complexity.

MDD is a solution paradigm that aims to facilitate the integration of these different
domains by overcompensating the growth in complexity of their solutions. To this end,MDD
lifts abstract models (in contrast to technically detailed implementations) to primary devel-
opment artifacts that can leverage terminology and concepts of the participating experts’
domains. Through automated analyses and syntheses that reify domain expertise, these
models can greatly facilitate the integration of solutions and their joint use in Digital Twins.
Consequently, the efficient inter-disciplinary engineering of Digital Twins demands suitable
modeling techniques and tools for the different domains and means to their integration.
While appropriate domain-specific modeling techniques and tools have been brought forth,
such as Simulink [11] or Modelica [16] for physical modeling, various CAD variants [21,
22, 43] for geometric modeling, and different software modeling techniques [14, 43, 54],
means for their integration are rare and either do not consider how the different domain-
specific solutions shall be integrated, nor consider the models’ semantics (meaning) [15],
but consider their syntactic structure [9] only.

The systematic, syntactic, and semantic integration of the Digital Twin parts con-
tributed by experts from participating domains demands suitable and precisemodeling
techniques for these experts that can be integrated easily and semantically meaning-
fully.

Research in software language engineering [31, 39] investigates the conception, engineer-
ing, and evolution of suitable modeling techniques; on the basis of SysML [14, 75], their
integration can be achieved.

Composable digital twins Systems of systems are ubiquitous in manufacturing. Through
well-defined interfaces, standards, or handcrafted integration, these collaborative system
groups achieve goals unachievable alone. While there are various standards on the inte-
gration of systems through joint interfaces or shared data structures in manufacturing [74],
research in Digital Twins rarely considers their collaboration, integration, or composition.
With Digital Twins often being data-intensive applications that conduct complex analyses
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relying on (domain-specific) real-time data acquisition, operating many Digital Twins on
the same data sources (e.g., Data Lakes) can lead to bottlenecks rendering the data acquisi-
tion in real-time impossible. Collaborative Digital Twin groups or composed Digital Twins
that share data, reduce redundant data acquisition, could mitigate this. For achieving this,
reuseability and interoperability of Digital Shadows is desirable. (8) Moreover, research
on composable Digital Twins can facilitate their engineering through reusing off-the-shelf
Digital Twins provided by third-party vendors.

The systematic, syntactic, and semantic integration of the Digital Twin parts con-
tributed by experts from participating domains demands suitable and precisemodeling
techniques for these experts that can be integrated easily and semantically meaning-
fully.

Leveraging the time-honored concepts of component-based software engineering [3], such as
encapsulation of functionality behind stable interfaces or substituability of implementations,
and applying these through modern architecture description languages [50] can greatly
facilitate engineering Digital Twins through composition.

Measurable digital twin and digital shadow fidelity Digital Twins intrinsically serve to
represent the system they observe. As such, the usefulness of a Digital Twin depends on the
fidelity, i.e., the precision of this representation, with respect to its purpose. For instance,
if a Digital Twin controlling an injection molding machine [3] is subject to a deviation
of several millimeters, the resulting products might be rendered unusable, whereas for a
Digital Twin monitoring an automated vehicle [40], this relatively small discrepancy might
be tolerable. Consequently, the quality of representation and its possible degradation leading
to divergence between the represented system and the Digital Twinmust be consideredwhen
engineering Digital Twins. As the possible quality of representation directly depends on the
quality of data in the Digital Shadow, the data quality requirements of Digital Twins need to
be made explicit, such they can be considered during design, implementation, and runtime
of the Digital Shadows. Moreover, Digital Twins must anticipate degradation of that quality
and provide metrics to gauge that quality during runtime. Similarly, as Digital Twins are
meant to strategically contribute added-value tomanufacturing, these expectations should be
made explicit and controlled at runtime, e.g., through simulation-based benchmarks applied
to the Digital Twin. Data quality requirements, degradation metrics, and benchmarks need
to be formulated relative to the heterogeneous models the Digital Twins consist of and, thus,
demand suitable modeling techniques as well.
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A Digital Twin and its Digital Shadows are subject to representation quality that
depends on the quality of available data and aim to produce added-value through
optimization. Measuring all of these must be anticipated at design-time measured to
prevent diverging of the represented system, its Digital Twin, and its strategic goals.

Asmentionedbefore, data quality issues have not been explicitly addressed forDigital Twins,
butmore general frameworks have been developed for representing data quality requirements
for sensor data and data streams. For example, [20] proposes an ontology-based approach
to model data quality requirements, dimensions, metrics, and measurements.

2.2 Challenges in Operating Digital Twins

Mind the gap between design-time and runtime Digital Twins can be used at system
design-time as well as during their operation and even after their decommissioning. At
design-time, they can support exploration of the design space through the rapid creation
of system variants for dimensioning, testing, and simulation. To this end, the design-time
Digital Twins need to operate on data and models from a system yet to be created. Both,
data and models, can be provided from observations of similar or predecessor systems
or synthesized from simulation of similar systems. When migrating from design-time to
runtime, not only the sources of data that the Digital Twin operates upon must change, but
changes in quality, precision, frequency, etc. of available real data might render observations
made from design-time data invalid. For instance, a Digital Twin at runtime, controlling a
real-time process, might not be able to reproduce behavior previously anticipated in design-
time.Moreover, migrating from design-time to runtimemight change the form ofmodels the
Digital Twin relies upon: while design-time models may be of arbitrary complexity due to
the availability of sufficient computing capacity, deploying the sameDigital Twin on a CPPS
of less capacity might demand reductions in the used models’ orders to ensure operation of
the Digital Twin.

Migrating a Digital Twin from design-time to runtime demands changes in the sources
of data, the form of models, and the interpretation of both. This may lead to additional
engineering challenges for a Digital Twin. A careful separation of data acquisition and
the conclusions drawn from design-time data can prevent this gap.

For numerical models, research in model order reduction [71] can contribute to the (par-
tially) automated and deployment-specific reduction of design-time models into run-time
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abstractions. For symbolic (knowledge bases, systems engineeringmodels) and subsymbolic
(artificial neural networks) models, this is subject of ongoing research [62].

Extensible digital twins Digital Twins are expected to chaperone their represented systems
during their lifecycles. Therefore, they need to evolve with changes to the represented
systems and in their environment. When new systems, subsystems, Digital Twins, sensors,
or actuators become available, their data sources and models might be useful for optimizing
the behavior of existing Digital Twins. Making these new data sources and models available
in a Digital Shadow, without stopping the corresponding Digital Twin, and without major
software engineering efforts either demandsmeans to automatically discover and incorporate
these or configurationmechanisms to adjust existing Digital Twins during their runtime. The
former not only requires inventing mechanisms to discover novel data sources and models
within theDigital Shadow, but also to integrate this new informationmeaningfully and safely
without causing operational issues. The latter requires means to describe the availability of
new data sources and models and their integration in Digital Shadows and Digital Twins
tailored to non-programmers.

The evolution of represented CPPS requires a Digital Twin to incorporate new data
sources and models during its runtime. Foreseeing this evolution during design is
crucial to ensure the future extension of a Digital Twin.

For the syntactic and semantic representation of data sources, models, their interfaces and
relations leveraging data structure modeling techniques, such as Unified Modeling Lan-
guage (UML) class diagrams [64], and knowledge representation techniques, such as ontolo-
gies [45, 59], can facilitate engineering extensible Digital Shadows and Digital Twins. For
both paradigms, (semi-)automated matching techniques that can facilitate discovering and
integrating newdata sources andmodels [1, 45] aswell as service discoverymechanisms [37,
46] are available. For the non-invasive configuration of Digital Twins during runtime, low
code modeling techniques [68] and results from research on models at runtime [2] might
facilitate the integration of new data sources and models.

Adaptive digital twins Digital Twins are used to predict the behavior or evolution of
the represented system, e.g., for predictive maintenance, future resource consumption, and
more. To this end, they simulate possible behaviors based on currently available data and
models. Depending on the frequency of changes of data and models as well as on the
duration of computing predictions, these predictions might become outdated while being
computed. Hence, computational resources are wasted and the Digital Twin’s chances to
react on properly predicted results are missed. If prediction is successful, but prediction
and reality diverge, either the Digital Twins underlying data, models, knowledge bases, etc.
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must be changed or the Digital Twins must use the predictions results to change reality.
The Digital Twin’s reaction to this divergence are highly application-specific and demand
suitable modeling techniques to describe these reactions by domain experts.

A predictive Digital Twin must support domain-specific actions for reacting on the
divergence of expectations and reality. These reactions can include applying domain-
specific expertise or adjusting its models of reality.

Modeling can facilitate encapsulating domain-specific expertise in a machine-processable
form that the Digital Twins can leverage. This can be continuous Simulink [63] models,
discrete state-based [64] descriptions, or rule-based specifications [3]. To enable domain
experts in efficiently reifying their expertise, all of these must be tailored to their domains,
e.g., by applying techniques from software language engineering [31].

3 Engineering a Digital Twin and Its Digital Shadows

For engineering Digital Twins and Digital Shadows, we first have a closer look at their
relationship and their components, which is depicted in Fig. 2.With respect to the definitions
introduced in Sect. 1, we identify a fundamental set of conceptual constituents that most
Digital Twin applications should comprise, even though concrete realizations might differ.

Modern CPPSs are usually equipped with sensors that monitor the system behavior. In
addition, there are also cameras and external sensors in production plants, for example to
monitor the activities of employees or to be able to react in time to smoke detection. These
data are usually managed in different databases but can be combined with the help of a Data
Lake.

TheDigital Twin accesses theData Lake and extracts Digital Shadows from it, combining
exactly the information it requires for a specific purpose. A dedicated component within the
Digital Twin, the Shadow System, performs this task. The Shadow System encapsulates the
Shadow Caster and the Shadow Controller. The Shadow Caster processes data of the Data
Lake and calculates Digital Shadows by combining insights and information of heteroge-
neous data sources within the Data Lake. It creates task-specific Digital Shadows, that can
support the Digital Twin in performing its tasks. For example, a Digital Shadow can be the
temporal evolution of a parameter within the CPPS to detect wear of CPPS components.
Combined with material and maintenance information about this component, the Digital
Shadow can enable predictive maintenance tasks. The Shadow Controller decides, when to
create and destroy Digital Shadows. It controls the storing process of digital shadow insights
and analysis results within the Data Lake and decides which data to be stored or ignored.
The Shadow Controller also manages the visibility and access rights of Digital Shadows.
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Fig. 2 Schema of the Relationship of Digital Twins and Digital Shadows

Other operative systems, such as ERP or MES, can access information provided by the
Digital Twin, or leverage the Digital Twin to understand or influence the behavior of the
CPPS. The same applies to other, domain-specific services. For applying reconfigurations
to the system and controlling its activities the Digital Twin has a control flow to the CPPS.
When the CPPS behavior needs to be adjusted and how its communication interface can
be accessed is managed by the CPPS Controller, which is part of the Digital Twin. The
Twin Controller encapsulates the behavior of the Digital Twin and decides which actions
the Digital Twin should take, which tasks it should perform, and which Digital Shadow it
requires for these tasks.

4 From EngineeringModels to a Digital Twin

Engineeringmodels aremodels that promote the design and construction of systems. Typical
engineeringmodels are technical or CAD drawings, circuit diagrams, or UMLmodels. They
support design and engineering activities by capturing a system’s properties and giving
insight about the system even before it is constructed, i.e., they prescribe properties of the
things to be. Therefore, their application domain is usually in constructive domains where
their prescriptive capabilities can support design decisions and design space exploration
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of different variants of a system before it is constructed. Engineering models are created
by domain experts, e.g., mechanical engineers, electrical engineers, software developers,
administration, UI designers, etc. to master the complexity of CPPS systems. As such, they
encapsulate domain knowledge that can support the realization of Digital Twins. In addition,
engineering models can also support the Digital Twin at runtime, as they provide the Digital
Twin the opportunity to understand and reason about the internal structure and behavior
of the represented systems to detect anomalies, divergence of expected (e.g., simulated)
behavior and real behavior, or other perils to operations.

Typically, engineering models are developed during the design phase of a CPPS and are
of limited use after deploying the system, as they are hardly updated and, therefore, cannot
represent the CPPS precisely. Their lifetime can be extended by deriving parts of the Digital
Twin’s functionality or providing a knowledge base for the Digital Twin. For this purpose,
the essential information must be extracted from the engineering models and prepared in
such a way that it can be further processed by other software systems and utilized by the
Digital Twin.

4.1 Semantic Data Extraction

Each phase of a system’s lifecycle contains specific activities, creates characteristic data,
and relies on different services of the Digital Twin. When integrating model information,
we distinguish between horizontal and vertical integration. Horizontal integration focuses
on combining information from different lifecycle phases of the CPPS. For example, a CAD
model of the design phase can help to evaluate whether the assembled product conforms to
the specification during the implementation phase.Vertical integration combines information
of models of different hierarchical levels. For example, a CPPS’ SysML model consists of
models representing its individual components. Vertical integration also refers to a stepwise
refinement, where higher-resolution models refine a coarse system description.

Figure3 shows the lifecycle phases of a CPPS and its Digital Twin. During Design the
system’s concept, its concrete functions and appearance are developed, based on customer
requirements and market information. Data aggregated during this phase consists of cus-
tomer requirements specification, often in unformalized mediums, such as plain text. How-
ever, it can also involve requirements models, e.g., specified in DOORS, where requirements
are recorded and managed. Typical models that support the design phase are CAD mod-
els, describing the appearance and dimensions of the CPPS, SysML models that translate
customer requirements into system functionality descriptions, and also simulations, e.g.,
in Matlab that evaluate the system’s behavior. The Digital Twin supports the design phase
by evaluating different variants of the CPPS and providing the optimal one concerning cus-
tomer requirements and estimated working conditions. The Implementation phase combines
all activities for creating the CPPS, including software development and hardware construc-
tion. During this phase, the different components of the CPPS are created, combined, and
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Fig.3 The DT contains data, models, and services for every lifecycle phase of the underlying CPPS

tested to detect errors. Data in this phase include human performance, use of resources,
material properties and test results. During the implementation, software architects create
models specifying the internal structure of the software components and interfaces to other
software systems. Also, models for Building Information Modeling (BIM) and Engineering
Change Requests (ECR) are employed to support the realization of hardware components.
The Digital Twin could support this phase by ensuring consistency between models of the
design phase and the implementation, or by generating test cases to evaluate the imple-
mentation. During the Operation phase, the system is assessed and evaluated to ensure it
functions as intended and does not become obsolete. In this phase, large amounts of data
are created, since modern CPPS are equipped with sensors that capture changes within the
system itself and its operating context likewise. The Digital Twin can monitor the system
and check whether the expected parameters from the design phase conform to the real oper-
ating data. It accesses the Digital Shadows that provide information about estimated and
real values and evaluate these to perform e.g., predictive maintenance.

4.2 Technologies for Connecting Digital Twins and Engineering
Models

For the further use of engineering models beyond their intended life phase, special software
technologies are required. During the realization of a CPPS different domains collaborate
and develop individual model artifacts that in combination describe the CPPS. Combin-
ing information from these different models requires model integration mechanisms [15].
Through model integration each discipline involved in the CPPS and product development
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process can develop using its own terminology and tools while the combination of these
models describes the entire CPPS . Language integration [27, 44] focuses on integration of
models on the language level, thus, also affects the tooling provided for describing CPPS.
Language aggregation employs several artifacts of different languages to describe aspects of
the target domain.Theprocessed artifacts remain separated but describe the sameCPPS.Lan-
guage embedding combines models into one common artefact, while keeping the languages
and tooling for these languages separated. Language inheritance also combines different
languages into one artifact but in addition customizes elements of these languages [30].

Another approach for combining knowledge is tool integration [12]. Tool integration
realizes the exchange of model data between specific tools. Thus, it reduces gaps during the
development process and reduces inconsistencies.

Model-Driven Software Development Generating software is crucial to successfully inte-
grate modeling in development processes [65]. Code for production systems or for test
drivers can be efficiently generated and thus, improve the consistency between model and
implementation and save resources. By deriving software code from engineeringmodels, the
development effort for Digital Twins can be reduced even further. Engineeringmodels incor-
porate domain knowledge from which components of the Digital Twin can be derived. One
challenge is the extraction of the relevant information from these models. In model-based
software engineering symbols are an established way of extracting the relevant information
from a model. Accordingly, it might be interesting to closely analyze engineering models
according to this aspect and identify the significant symbols, that can be useful in other life
phases, too.

Tagging One possibility to add required data to already existing engineering models is
tagging. A tag model logically adds information to the tagged model while technically
keeping the artifacts separated. Thus, the engineering model can stay clean of this additional
information, and domain experts are not confused by additional model elements that do not
directly correspond to the domain. A tag model could e.g., connect model elements from
different life phases, thus ensure horizontal integration. It could also add information about
the structural decomposition of a model to support vertical integration. It could also add
data retrieval information to models to connect the engineering model with data about the
physical system, its behavior or its development process.

Models at Runtime In contrast to those development methods for Digital Twins, models at
runtime focuses the utilization ofmodels during theCPPS runtime. Since engineeringmodels
encapsulate domain knowledge and information about the underlying CPPSs they can build
a knowledge base for Digital Twins to rely on while they are running [4]. Thus, they support
the Digital Twin to cope with new challenges and to adapt the twin to even to unanticipated
changes. Runtime models are reflective, meaning that they are causally connected with the
underlying CPPS. Thus, every change in the runtimemodel leads to a change in the reflected
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system and vice versa [47]. A structural model, that describes the components of the CPPS,
reflects the CPPS’s constituents and can be update if new physical assets are added, or
components are exchanged [24]. Physical models describe the dynamics and current state of
physical phenomena [69]. The Digital Twin can rely on physical models to assure selected
properties of the running CPPS. Behavioral denotes a runtimemodel capturing the dynamics
of the systems, i.e., what the system can or will do based on its current state. Behavioral
models can support run-time verification and sensitivity analysis, to determine how CPPS
parameters are affected based on reconfigurations. For example, behavioral models may
support the Digital Twin in predicting the CPPS’s behavior or evaluating several possible
reconfigurations for identifying the best solution for a present problem [17].

View-based Modeling Often, while applying model-driven development leads to redun-
dancies and inconsistencies if models share a semantic overlap and describe the same CPPS.
View-basedmodeling is an approach to tackle fragmentation of information across instances
of different metamodels and can support the Digital Twin in combining knowledge from
heterogeneous models. A view type defines the set of meta-classes whose instances can be
displayed by a view [5]. Different view types can support the visualization of relevant model
elements. Combined with a query language, they build a tool for describing and creating
Digital Shadows and thus can also support the Digital Twin in providing insight about the
current CPPS state.

Executable Metamodeling Ametamodel is a model of a model and specifies the concepts
and model elements that are useful for solving a specific class of problems. By means of
Kermeta workbench [49], Ecore [66] meta models can also be executed. Kermeta provides
an action language to implement the execution semantics of Ecore metamodels. It supports
adding new methods to existing Ecore meta-classes, that define the execution semantics of
the corresponding metamodel in the form of an interpreter [10].

5 Digital Shadows and Data Processing

For engineering Digital Shadows, the task of data processing is essential, as the Digital
Shadow is closely linked to the data providing infrastructure. Regarding the standard data
processing steps of ETL (Extract-Transform-Load) [34], the Digital Shadow has strong
ties to the transform task: in the traditional sense, data is adjusted in this step, in order to
be stored and used later. Digital Shadows exceed traditional data adjustment and aim to
embed further intelligence in this step, making the transform task more sophisticated and
therefore introducing a new smart data layer. For this to be possible, incoming data streams
have to be steered—which is taken care of by the Data Lake—and relevant data must be
identified, specified, and processed—which is the task of the Digital Shadow. Since Digital
Shadows serve specific purposes, their data granularity can differ significantly; for some
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Fig. 4 Purpose-Driven Digital Shadows

purposes, a very detailed view on data is necessary, whereas for other purposes, aggregated
or intelligently processed data is of interest. The structure of different granularity of Digital
Shadows is depicted in Fig. 4, as envisioned in the Internet of Production [33, 36, 58].

From the bottom to the top, we observe the data abstraction, aggregation, and refinement
process: In the bottom, data is in its raw format, corresponding to data gathering in the
interconnected infrastructure. With each subsequent step up, the data can increasingly be
refined, e.g., by employing data modeling, such that in the top we obtain task-specific
Digital Shadowswhere artificial intelligence is applied. Depending on the task, wemay need
more refined or more raw data. Use cases regarding long-term analysis, e.g., value stream
optimization, requiremore refined data, whereas, for ad-hoc analysis, e.g., tool optimization,
more granular data is required. Mid-term analysis, e.g., shop floor optimization, might
demand a mixture of both raw and already partly refined data.

The different levels of granularity and the different levels of data abstraction, aggregation,
and refinement of Digital Shadows correspond well with the concept of Data Lakes and their
levels of different data layers.
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5.1 Data Lakes as a Serving Infrastructure

A Data Lake, as described in [60] is a repository where data from various sources can be
stored in their original structures. In this regard, the concept of a Data Lake significantly
differs to the data-handling approach of traditional data storage systems, with the most
prominent concept being the data warehouse: The Data Lake introduces an ELT (Extract-
Load-Transform) approach instead of the traditional ETL. Raw data is stored in its raw
format without prior integration or aggregation to avoid restricting data usage and analysis
to a predefined integrated schema. This especially means that we do not—as is common in
datawarehouses—have a schema-on-write paradigm, but delay the importance of schemas to
the time of reading the data, i.e., we follow a schema-on-read approach. This also contributes
to the challenge discussed in Sect. 2, that Digital Shadows should be flexible and should be
able to incorporate newdata sources at least semi-automatically, without requiring a software
engineering process to define ETL workflows and integrated schemas.

In general, Data Lakes provide tools to extract data and metadata from heterogeneous
sources, offer a data transformation engine that can transform or clean data and integrate
it with other data, and provide interfaces to explore and to query data and metadata it con-
tains. According to [60], a Data Lake is distinguishable into four components serving those
purposes: Ingestion Layer, Storage Layer, Transformation Layer, and Interaction Layer. The
composition of a typical Data Lake is shown in Fig. 5 and described in the following.

Fig. 5 Data Lake Architecture
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Ingestion Layer: Tomakedata available inDigital ShadowsorDigitalTwins, it is important
that the data collection is as easy as possible. The ingestion of new data sources into the
Data Lake should be as simple as a copy operation in a file system, as data from the sources
is copied to the storage layer in its original format. To ensure sufficient data quality, the
ingestion should extractmetadata from the sources automatically and enforce data quality
rules to prevent that data with insufficient quality pollutes the Data Lake.

Storage Layer: This layer is comprised of common big data tools, such as Apache Hadoop
or Apache Spark. They provide storage and query mechanisms for heterogeneous data.
Metadatamanagement is usually limited to structural information, but should be enriched
with semantic and data quality information to make the data more usable.

Transformation Layer: Raw data needs to be transformed and cleaned if it should be
usable for an application. This functionality is provided by the Transformation Layer,
which might also be implemented with big data tools as Apache Spark. This layer can
be also considered as the Shadow Caster, as it creates Digital Shadows (or Application-
Specific Data Marts) by aggregating, transforming, reducing, etc. the raw data.

Interaction Layer: Finally, the Interaction Layer provides means to interact with the data
in the Data Lake or Digital Shadows and to make it available for a certain purpose in a
Digital Twin.

An example reference model of a Data Lake System is provided by Constance, introduced
in [25]. There are various benefits of Data Lakes compared to more traditional approaches.
These include easier integration of heterogeneous data (e.g., relational data, JSON, XML,
graphs, data streams, documents), easy exploration of heterogeneous data on data level
instead of application level, and avoidance of data transformation during data ingestion. The
latter has the effect of making it easier to handle data with a purpose that is unclear at design
time.

On the other hand, Data Lakes pose the threat of deteriorating into data swamps. A data
swamp is a Data Lake that is overwhelmed by unusable data to the degree of becoming
unusable itself, because data of interest cannot be found or data cannot be interpreted any-
more. A countermeasure for data swamps is to ensure metadata ingestion and data quality
management when loading the data. An additional approach to ensure data comprehensibil-
ity is to adopt ontologies and other rich data models in Data Lakes. The relationship of Data
Lakes and traditional data management systems is further addressed in [35].

For the use case of Industry 4.0 and the employment of Digital Shadows, the principle of
Data Lakes to store data in its raw format, in particular, gives us the following advantages:
The immense heterogeneity regarding the involved sensors and machinery, which often
characterizes industrial production settings, can be handled well since it perfectly fits the
paradigm of Data Lakes. The characteristic of Data Lakes to keep all data enables us to
create multiple purpose-specific Digital Shadows based on data located in the Data Lake. In
general, Digital Shadows fit well onto the idea that we have an extensive repository of data
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and may select different traces of data, depending on the application of the specific Digital
Shadow.

Addressing the challenges introduced in Sect. 2, we conclude: the three Vs of big data,
are addressed as follows: Volume is addressed by the distributed nature of Data Lakes.
Variety can be managed by the heterogeneous nature of the storage layer in Data Lakes.
Velocity is most challenging aspect for Data Lakes as they are more ‘static’ repositories for
long-term collection of data rather than real-time processing. However, it is also important
to store streaming data in the Data Lake, which can be used, for example, for the training of
machine learning algorithms. The challenges to capture all possibly relevant data and still
keep all other data for later possible usage are implicitly handled by Data Lakes because all
data is stored in its raw format.

With introducing a Data Lake as serving infrastructure for Digital Shadows, we face
another non-technical issue: in a conglomerate of cross-company contributors, each stake-
holder needs to collaborate ideally using a unified interface to access and share their data
and Digital Shadows. The Data Lake provides us with such a central repository instead of
many separate data silos. However, the nature of the collaboration may impose that not
all data may be kept in the Data Lake. Reasons may be data access rights or policies of
individual organizations. We address this issue by proposing a hybrid Data Lake approach:
We introduce one central Data Lake, that everybody has access to. At the same time, we
keep some data landscapes (e.g., Data Lakes) at participants’ sites where confidential data
that cannot be shared with everybody resides. Still, we keep the central Data Lake and its
interface as the primary instance in questions of data. This entails that the data which is not in
the central Data Lake has to be retrieved from the private data repository—if allowed for the
specific participant. With this, we face a new challenge—the challenge of integrating private
Data Lakes. One Solution for this is to employ data virtualization. Data virtualization may
take place on different levels, but for the architecture of a hybrid approach and to hide the
virtualization from the users, the best choice is to employ it on the lowest level possible [73].
In this case, data governance becomes an interesting and at least partially open problem. An
alliance-like approach to data governance is proposed by the Industrial Data Space initiative
[56]. Concluding, we see Data Lakes as an essential component to enable Digital Shadows,
already solving a lot of presented challenges.

5.2 FromData Processing to Digital Shadows

In order to engineer Digital Shadows, both application domain and computer science knowl-
edge become a necessity resulting in cross-domain collaboration. The added value of cross-
domain collaborations to engineer Digital Shadows is best illustrated by an example [36]: In
[53] the combination of domain knowledge and artificial intelligence expertise provided by
an interdisciplinary team allowed for the evaluation time of an engineering process simula-
tion to be reduced by six orders of magnitude: while traditionally finite element simulation
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is used to evaluate manually designed schedules for heavy plate rolling, [53] were able to
adequately approximate this simulation by six reduced analytical models operating on data
provided by Digital Shadows, therefore reducing the computation time from 30–240min
to less than 50 milliseconds. This example of significantly influencing a simulation’s com-
putability demonstrates the advantages for diagnosis and predictions in domain-specific
real-time if they are based on Digital Shadows.

The challenges formulated in Sect. 2 are tackled by Digital Shadows as follows: The
reduction of the three Vs of big data is partially handled by the Data Lake system. Unsolved
by the Data Lake is the reduction and refinement from massive data volumes to manageable
ones. The Digital Shadow addresses this issue for e.g., computability reasons—as opposed
to using the whole data in the Data Lake. The challenge of interoperability and traceability
of data traces in the data layers is addressed by [19], introducing the concept of FACTDAG.
Closely related to interoperability and traceability is the desired reusability of Digital Shad-
ows. Reusability is particularly powerful when the groundwork of agreed-upon ontologies
has been established beforehand. Using Digital Shadows, not only reusability of the data is
to be considered, but also the reusability of the component extracting this data, the Shadow
Caster. As Digital Shadows are digital artifacts describing real objects, they serve a specific
purpose regarding this real object. Beyond this, they can be used as input for other systems or
for analysis exceeding the extent of the primary use of the Digital Shadow. This is typically
achieved by conforming to best practices of development, e.g., modularization and reuse.
The difficulty to know which data is relevant and the data selection process that shall reduce
the used data for computability, are addressed by on the one hand collaborating with applica-
tion domain experts—for Industry 4.0 mostly mechanical engineers—and on the other hand
with the approach to systematically use artificial intelligence methods to first find structure
and insights in the data and second to automatize the process of building Digital Shadows,
yielding a combination of the two. The commitment of whether data is relevant usually has
to be made during the data gathering and design phase. However, based on the Data Lake
infrastructure, we obtain the possibility to gather all data and only with the engineering of
the Digital Shadow commit to a specific data model as input. This leads us to the importance
of Artificial Intelligence in Digital Shadows.

5.3 Artificial Intelligence in Digital Shadows

In order to understand how data that is about to be incorporated into the Digital Shadow
has to be prepared and handled, we first must have a closer look at the composition of the
Digital Shadow System (cf. Fig. 2). In general, the Digital Shadow System consists of two
main components—a passive part, the Shadow Data, and an active part, the Shadow Caster
that may be executed and manipulates the passive part. The first component Shadow Data
is typically located in a Data Lake. The second component, Shadow Caster, can embrace
advanced techniques, especially from the domain of artificial intelligence, transcending
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traditional transformations and thus incorporating intelligence. From a data-flow perspec-
tive, intelligence is applied earlier than before. This especially entails that Digital Shadows
themselves are already incorporating domain knowledge and intelligence, establishing a
new smart data layer.

Regarding the employment of AI in Digital Shadows, we distinguish between two
approaches: Digital Shadows repeatedly using AI methods to generate the Shadows’ data on
the one hand and Digital Shadows using AI initially and only once to determine the struc-
ture of the Digital Shadow. The first approach employs continuous learning and employment
of AI, whereas the second employs one-time learning of the structure. An example of the
first case would be to have some parameterized machine learning component in the Digital
Shadow, e.g., a neural network, where the parameters, i.e., in the case of the neural network
the weights of the edges, are continuously recalculated. An example of the second approach
would be to determine the inputs for the Digital Shadow, e.g., the input layer of a neural net-
work. Naturally, the two approaches are not exclusive and can be combined. The integration
of intelligence into the Digital Shadow raises the question at which point a Digital Shadow
ends, and the application using the Digital Shadow begins: depending on the complexity
of the Digital Shadow, intelligence that previously was contained in the application layer,
may now be shifted into the Digital Shadow instead. This can have the advantage that this
artifact can be used by several applications. In this case, however, they have to share the
same ontology to be able to use the same Digital Shadow, as they would otherwise use the
same data with different interpretations. Finding the right degree of transferring logic into
the Digital Shadow, and therefore deciding howmuch logic should remain in the application
layer and how much should instead be located in the Digital Shadow, poses an interesting
research question of its own.

6 The Future of Digital Twins and Digital Shadows

This chapter has covered the concepts ofDigital Shadows andDigital Twins,with a particular
focus on engineering methods. Digital Shadows consist of data traces of an observed CPPS.
A Digital Twin operates on them to enable novel analyses, monitoring, and optimization.
They both offer extensive support for production companies throughout the development,
production, and usage life cycles, while harnessing the interconnectivity of manufacturing
devices with processes and domain knowledge. This lifts the Internet of Things to an Internet
of Production, particularly considering the aspects of Industry 4.0. Integrated applications
on top then allow to specifically plan, simulate, inspect, and control processes. This is
an essential requirement to manage the ever-increasing complexity of modern production
processes.

Depending on the levels of sophistication and integration, these concepts elevate the
operability of CPPS. Low-level realizations, e.g. for real-time analysis, allow deployment
directly on the CPPS. In contrast, a variety of solutions rely on cloud-based systems, as these
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can dynamically provide necessary storage and computation capacities, often required for
complex operations. Following the platform as a service (PaaS) paradigm, virtual platforms
can be provided, which offer dedicated services for engineering individual Digital Twin
applications. In turn, this fosters general interchangeability and extension of these frame-
works. After all, complete and ready-made systems may be provided, which companies
can configure and directly put into operation, similar to the software as a service (SaaS)
approach. The conceptual separation of the Digital Shadow particularly offers enormous
application potential for sustainability in Industry 4.0. The archival storage of raw data in
Data Lakes ensures its long-term usability. This is an important factor in commissioning
production systems; the infrastructure must be able to sustain for years or even decades. For
instance, machine learning algorithms may operate on years ofacquired data to enable more
precise decision support. As a challenge, interoperability between various providers needs
to be ensured; the potential withdrawal of an operator may not cause disruptions. Similarly,
switching providers should not infer severe migration costs.

Developing corresponding frameworks offers exceptional possibilities for both research
and industry in the near future. The data collections can be used to perform sustainable
analyses on raw data collected over many years, to provide insights into CPPSs and auto-
matically optimize them by integrating domain expertise. It will also enable new data-driven
business model opportunities. It is particularly in cross-company collaboration that the auto-
matic exchange of data opens up entirely new perspectives. First and foremost, challenges
regarding data sovereignty must be solved [33]. Ultimately, however, a data-driven world-
wide integration of CPPS leads to the emergence of synergy effects. While the advantages
for machine manufacturers through distributed data collection are most obvious here, it also
offers new possibilities for the production industry in general, e.g. to mutually benefit from
the experience of other companies, for instance in terms of concrete machine parameters.
Similar effects can also be anticipated through the exchange of engineering models. There-
fore, Digital Shadows and Digital Twins will continue to be the key enablers of Industry
4.0, offering exciting new avenues regarding sustainability and data sovereignty.
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