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Abstract A larger number of people with heterogeneous knowledge and skills run-
ning a project together needs an adaptable, target, and skill-specific engineering
process. This especially holds for a project to develop a highly innovative, au-
tonomously driving vehicle to participate in the 2007 DARPA Urban Challenge.
In this contribution, we present essential elements of a software and systems engi-
neering process to develop a so-called artificial intelligence capable of driving au-
tonomously in complex urban situations. The process itself includes agile concepts,
like a test first approach, continuous integration of all software modules, and a reli-
able release and configuration management assisted by software tools in integrated
development environments. However, one of the most important elements for an ef-
ficient and stringent development is the ability to efficiently test the behavior of the
developed system in a flexible and modular system simulation for urban situations
both interactively and unattendedly. We call this the simulate first approach.

1 Introduction and Motivation

Innovative research is often centered around interesting challenges and awards. The
airplane industry started off with awards for the first flight over the British Channel

as well as the Atlantic Ocean. The Human Genome Project, the RoboCups, and
the series of DARPA Grand Challenges for autonomous vehicles serve this very
same purpose to foster research and developmentin a particular direction. The 2007
DARPA Urban Challenge took place to boost development of unmanned vehicles for
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urban areas. Although there is an obvious direct usage faRP¥ there will also
be a large number of spin-offs in technologies, tools, arginaering techniques,
both for autonomous vehicles, but also for intelligent drigssistance systems.

Such a system needs to be able to understand the situationcettee car, eval-
uate potential risks, and help the driver to behave cosresdifely, and, in case it
is desired, also efficiently. These topics do not only affaclinary cars, but also
buses, trucks, convoys, taxis, special-purpose vehiglésctories, airports, mines,
etc. It will take a while before we will have a mass market farscthat actively and
safely protect the passenger and their surroundings fradets in all situations
but their development is on its way.

Intelligent functions in cars are obviously complex systerRor a stringent
deadline-oriented development of such a system it is naoess rely on a clear,
usable, and efficient development process that fits the git®jgeeds. Furthermore,
changing requirements and enhancements of technologgekstaée incorporated
into the development effectively. This kind of situatiorvigll known in business
and web-based software development. Therefore, that tiydnas developed ap-
propriate methods and process frameworks to handle thisd€iprojects.

Among a number of agile development processes, Extremeaddnmging (XP),
Scrum, and the Crystal family of processes are the most premhiHowever, these
development processes are dedicated to software only andtsenot support tra-
ditional engineering processes properly at first sightcWioiften include the devel-
opment and setup of embedded systems. Therefore, a congimgradaptation is
necessary that addresses the needs of both worlds. Moreoseherent, efficient,
and automatable tool suite is inevitable for a goal-oriéievelopment project. We
describe an efficient tooling infrastructure necessargtich a development project
in Sec. 4. This tooling relies on a process for informal regmients to direct coding
approaches which we describe in Sec. 2.

For quality management, quite a number of actions are takmong others, the
steady integration, the requirement for continuously mgrode, and the regular
integration into the vehicle are part of the plan. Most intpot, however, and this
over time became a more and more obvious advantage in th®tCHr project
which itself is described in Sec. 3, are the automated antlended tests that have
been developed for all parts and integration stages. DeetHnygthe test first devel-
opment approach, tests for functions and algorithms aredoda parallel manner
to the actual code. The technology and measurements toeethédbtesting process
are described in greater detail in Sec. 4 as well.

The fulfillment of requirements for a safe autonomous cadaée be very inten-
sively tested. This is to a large extent achieved by runrtiegsbftware in airtual
test-bedfor avoiding race conditions on valuable resources likertsd vehicle.
The system simulation acts like real surroundings for tHeaswe by producing
information such that it thinks it was on the street and desidccordingly. This
real world system simulation was developed not only to testrequirements, but
also to allow the system to “virtually drive” through hundseof different situa-
tions, which may additionally contain other cars. The sysgémulation therefore
allows us to test—and especially to automatically re-tbstbehavior of the soft-
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(a) For realizing an overlapping and thus a (b) All data gathered from the sen-
redundant field of view around the car sors is transferred to Caroline’s
to perceive the vehicle’s surroundings, trunk, where different computers
different sensors like single and multi- were used to process the data to
layer laser scanners, radars, and cam-  derive driving decisions.
eras were used.

Fig. 1: A front and rear view of the vehicle “Caroline”, an anbmously driving vehicle for urban
environments (based on [13]).

ware in a regression testing manner without any possiblahake can not only test
for positive situations, but also for negative and phys$ydahpossible situations of
the surroundings and obstacles. Furthermore, the systamiation can be used in
an interactive mode to understand a vehicle’s behavios iBhone of the basic ele-
ments for actually being able to develop our autonomous$Wrdy vehicle as shown
in Fig. 1, called “Caroline” in the “CarOLO” project, in tim@ participate in the

2007 DARPA Urban Challenge. The technical aspects of thesysimulation used
in the CarOLO project are described in [2] which founded tasibfor this article.

However, in Sec. 6, an improved successor is outlined.

2 Overview of an Efficient Software Engineering Process

Whenever things become complex, they need to be decompuseshialler pieces.
Also when the development of a product is complex, not ondygioduct, but also
the development activity needs to be structured to beconmageable. Both in the
areas of software development and systems engineeringeayvaf such processes
exists. An appropriate process can be chosen based on tte ofethe project in
terms of complexity, criticality, and urgency of the protiudowever, due to the
different nature of “virtual” software vs. physically ekisg hardware, these devel-
opment processes differ greatly. Nowadays, this procgsssgaconstant source of
problems. Before we look at the process used for the devedapof Caroline, we
highlight a few of those distinctions.

Due to its immaterial nature, it is obvious that software ware easily be reor-
ganized and evolved than physically existing hardwareréfoee, software devel-
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opment processes can be iterative and incremental to al@va@utionary evolve-
ment towards a stable, robust, and mature result. Rececegses like XP, Scrum,
or RUP advocate iterations in all stages with various danati Ilterations are nec-
essary to continuously evaluate the current state of thioiies’s needs on the one
hand. On the other hand, iterations enforce to continudnghgrate existing arti-
facts to afunctionalsystem. Thus, iterations are a vital part to deal with theegec
sary improvement of existing software, changing requinetsieand an incremental
process that decomposes software into smaller pieces. dteeinmovative software
products are, the less predictable a software developmeogss is. In such a con-
text many small iterations are preferable over a few largesoMore and smaller
iterations allow the software management to adjust presréind to lead the project
more successfully.

We believe that in integrated software and systems devedapprojects with
a heavy software part an iterative software developmertga®needs to be used
instead of the traditional engineering process. The bgsbagh is to decouple sub-
projects as much as possible such that the individual psesesan be followed in
subprojects. A set of high-level milestones connect th@majbcts and ensure a co-
herent process on the top, but within each subproject difteiorms of processes
are in use. Furthermore, it is inevitable to decouple iteeatoftware development
from hardware e.g. through virtualization. Looking int@ thoftware development
process, we find that these many small iterations stronghyyim number of other
development practices that are necessary to ensure psayrdgjuality. However,
most important is a continuous integration of the softwaeegs. Experience shows
that software simply cannot be developed independentlyirstedrated later, even
if the interfaces are defined as precisely as possible, begaatchwork inevitably
must be done during integration that invalidates earlieretippment work. With
modern tools for version control and configuration manageneontinuous inte-
gration can be achieved rather easily. The most tricky amd teaachieve part is
to ensure that all team members are committed to a contirintegration process.
This is because software must be developed in a collaber&shion, where no
code ownership exists and everybody releases and intsdrsesoftware at least
several times a day.

Disciplined use of versioning is the basis for the next int@ot process element,
namely automated, integrated, and unattended testintjngdes by far the most im-
portant technique for quality assurance and comes in mdfeyelit flavors, begin-
ning with unit tests to integration tests up to full systestéelncremental software
development requires periodic testing to test artifactsvel as their integration
as already mentioned earlier. The “testing trap”, whichades unnoticed software
bugs due to inconsequential software testing, can only bapesl through auto-
mated replaying of tests, also called regression testorgedich single increment.
The important part of automated testing is not finding appad@tests, but the tech-
niques that run the current code to determine efficientlythdresome property of
the code is correct or wrong and without humans to run theoteisiterpret the re-
sults. As known from unit tests, automation helps each dgezlto know whether
an error was introduced to the code, in which iteration it wesduced, and in
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which part of the software. Error detection thus becomesmeasier and after de-
tecting an error, an identification of the location is relaly easy within a small
area.

A very important aspect of automated testing is that it caonty be used to test

subtask, may it be a 10-minute bugfix or a 3-hour developme&analgorithm,
can easily be checked against all available tests at noiadllittost of manpower.
We therefore integrated the automated testing infrastraavith the version con-
trol system: Each version which was committed to the veisgpserver triggered
automatically a testing process, where all available sgtsun and feedback in the
form of the number of failed tests with detailed informatisrgiven. Our experi-
ence is that in the long run this kind of quality assurance$ieery much to foster
an efficient development of software. Initially howevemdéeds a lot of discipline.
Furthermore, appropriate tooling infrastructure is itevie to make the developers
accept this discipline.

Even more discipline is necessary to start with develop@sgst first for soft-
ware elements as there should not be any untested functiadhg isystem at any
time. Fortunately, developers can later enjoy seeing aatiertests run through to
status “green” at every new version. Testing also needsdbwi¢h configuration
variations-a popular C/C++ problem allows code to behafferéintly on different
platforms. The test first approach can help to identify peoid early providing a
so-called automated build farm for various platforms.

When developing autonomously driving cars, automatednge$tas a number
of challenges to tackle. First of all software is integrasedl closely linked with
hardware, such as sensors and actuators, and through théra surroundings.
Appropriate abstractions for different parts of the sofevand the hardware are
necessary to run tests efficiently. For the “intelligenttpaf the software, it is not
necessary to run tests based on full sensory input, but tadeaistilled, aggre-
gated information about possible obstacles as well as ttievag to drive through
them. A highly important abstraction for efficient test aunttion is to replace the
real hardware by a simulation. A simulation of the hardwdienes automated tests
on ordinary computers and is thus available for each deeeiodependently. As all
physical elements are simulated, it furthermore allowdpting the time for run-
ning a software test from the real time. This allows to run mplete city traversal
in a few seconds. We are thus able to run thousands of testvdéoy new version
each night. As a prerequisite we needed to develop a testiragtructure that:

e allows us to define various constellations and subsysterfiguwations of the
software parts to be tested,

e provides a software test-bed to probe the software undeaiesto understand
whether it behaved correctly,

e is capable of providing physics-based behavior of the adiett vehicle as well
as the urban surroundings correctly and in sufficient detad

e allows us to easily define new tests including automateduatian of the test
results.
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Of course, tests that deal only with the simulation softwe® not enough to
ensure a robust automotive system. Therefore, a contirdepleyment of the soft-
ware subsystem into the car and a (re-) run of a sufficienttelaet of tests in the
vehicle are inevitable. For that purpose, we have an additiest team that runs the
fully equipped car in various traffic situations. The tesitegets software releasesin
regular iterations and checks the car’s abilities agahestéquirements from traffic
rules, DARPA Urban Challenge rules, and story cards mapibioge requirements
into concrete driving missions which is outlined in the éoling. However, a strin-
gent software testing process considerably reduces therrgnod time necessary
to fully run the hardware-in-the-loop (HIL) tests. Furthmare, the complexity of
traffic situations necessary to do the test usually reqsegsral people in each test
run. For example, any single test that deals with a correlstier in a junction
lasts for about at least 15 minutes to setup, run, and checkesulting behavior.
It involves several other cars and people to produce apjategunction situations.
Multiplied by the variety of junctions and the many possilas of cars coming in
different directions, this would take far too long to actyalin all of them in reality.
So quite a number of junction situations are tested only énsystem simulation.
The possibility to rerun those situations efficiently antbanatically is important to
ensure the stringent and effective development procesiedee

Another important issue to be taken care of from the begmisrno organize
the software in appropriate subsystems and componentsfiteedhe technical in-
terfaces, and to take additional actions so that the softwan be developed and
tested independently. Only if the software obeys a numbdrest practices and
design patterns it is possible to test the software effiielRor example we can de-
couple the time a test takes from the time the tested softthianks it runs in, if the
software does not directly call the operating system adwittrrent time or even
worse, counts itself, but uses an adapter interface. Siteiéhiniques are necessary,
if outside software needs to be incorporated that does nat hdestable software
architecture, neighboring systems are not part of thelstabsystem, or sensors
and actuators come into play. Architectural testing pattdrelps to develop soft-
ware that can be tested in various configurations and patigidiually e.g. mock
objects or abstract factories for object construction.

Moreover, we have adopted some more practices, e.g. fronefgtProgram-
ming, beyond short iterations. For example, one succesgfahizational and struc-
turing tool were story cards. A story card describes briefig explicitly the goals
for a development iteration and thus leads to a useful, efficand focused struc-
turing of the requirements and also the development profeompanied with a
definition of measurable goals for every task, these staiyscallow the developers
to understand and measure progress of development.

Having highlighted a number of special issues that arisewifiiegrating an ag-
ile software and a classic engineering process, we noteldsgic engineering and
software engineering indeed have different developmeltdras. It takes a while
until both cultures efficiently work together, but when pedy integrated, the re-
sulting output is tremendous and of very good quality.
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3 The CarOLO Project

The CarOLO project was carried out from May 2006 until Decen007. In this
project, the autonomously driving vehicle named “Cardliwas developed which
participated in the 2007 DARPA Urban Challenge. The contiim was among
only ten other vehicles from initially more than 85 vehiclesm all over the world
which achieved the Urban Challenge Final Event.

3.1 The 2007 DARPA Urban Challenge

The 2007 DARPA Urban Challenge was the third major competiind the suc-
cessor of the 2004 & 2005 DARPA Grand Challenges [6, 22]. Canexgbto those
elder series in which the competitors had to develop a vekibich was capable of
driving autonomously through an a-priori unknown and roteghain using a given
digital map, the Urban Challenge lifted the requiremergaificantly.

In the Urban Challenge, not only a digital map had to be prem@so reach a
given set of destinations, but even more the vehicle hadabwdigh dynamic vehi-
cles for the first time. These vehicles were controlled bgthibman safety drivers
and by other “robot” competitors as well. Moreover, the cad o obey logical
traffic rules which define priorities at intersections or ggted limits for example.
Furthermore, the car had to park without colliding with athready parked vehi-
cles in a parking lot.

The semifinal and the final itself took place at the former @edkirforce Base
in Victorville, CA. For the challenge, DARPA had rebuilt tharea to simulate an
urban environment with junctions, intersections, and jparlots.

For participating in the challenge, DARPA provided two pb#ities: The first
track called “Track A” was explicitly funded by DARPA, andgtlsecond track called
“Track B” was not funded at all and for nearly everyone wholdqurovide at least
an American team leader for the project. The CarOLO projactigipated in the
latter track.

Both tracks consisted of a multi stage participation precébe first major stage
was to provide a video demonstrating the vehicle’s capgadsliat an early stage.
In that video, the vehicle had to follow a road using the al#dé lane markings
and to stop right before an obstacle blocking its own lan¢erAd short while, the
vehicle had to start a passing maneuver and merge into itdavenagain to finish
the course.

Using the video, DARPA selected teams for a closer inspecttdhe so-called
“Site Visits” at performer’s site. Due to the fact that therO&O project was ini-
tiated in Germany, the team and the vehicle had to be shigptitetUnited States
for demonstrating its capabilities in June 2007. Therefoueteam cooperated with
the Southwest Research Institute (SwRI) in San Antonio, TX.

The site visit demonstration started with an inspectiorhefémergency control
system. Next, the vehicle had to follow its lane, pass atatiy vehicle as already
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shown in the video, show its U/K-turn capabilities, and beheorrectly at inter-
sections. Using this multi-stage participation proce#sRBA could enforce a high
quality for the semifinal.

For the semifinal which took place in Victorville, CA as memed before, only
35 teams were qualified after the site visit. The semifinalictviivas called “Na-
tional Qualification Event”, provided three independest treas which tested dif-
ferent aspects of the vehicles, respectively.

The first test area, “Test Area A’, provided an eight shapedsm®to test correct
merging at T-junctions. Therefore, the vehicle had to findpig the moving traffic
to merge into. The second test area, “Test Area B”, testedhileés capabilities to
pass safely any obstacles at the side of a road and to parlattie a parking lot.
The last area, “Test Area C” re-tested correct behaviortatsections and dynamic
re-planning in the case of blocked roads.

Based on the vehicles’ performance in the semifinal, onlyezléeams qualified
for the 2007 DARPA Urban Challenge Final Event which toolkcplan November,
3rd [16].

3.2 Team CarOLQO’'s Caroline

The vehicle already shown in Fig. 1 was named “Caroline”. Vélaicle is a 2006
Volkswagen Passat Station wagon which provided the negetesdnnical possibili-
ties like drive by wire to realize our software and systenh@ecture. For a technical
explanation with greater details we refer to [1] and [13].

In Fig. 2, the layered software architecture of Carolinedpidted. The architec-
ture consists of several only loosely coupled modules fiwisg different tasks like
detecting lanes, fusing incoming new sensor data, or upgl#tie currently planned
route. The entire system realizes the so-caflgbs-and-filterpattern where one
module processes incoming data for producing outgoingwhteh is the new in-
coming data for the following module. Thus, the task of driyiautonomously is
split into smaller pieces obeying the “separation-of-@ne” rule supported by a
self-developed software framework.

The software framework provides rudimentary system sesviile concurrency
and communication. Using this framework and the layereégpgnd-filters archi-
tecture, all modules could simply be reused for system sitiarl. Technical details
for the system simulation used in the CarOLO project can badan [2]. In Sec. 6,
a new approach is presented for efficiently designing, ysind unattendedly exe-
cuting system simulations which avoids some conceptuddgsoblems from the
software framework used in Caroline.
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4 Tools for an Efficient Software Engineering Process

Compared to any other development of complex softwarexgive systems, the
software development process described in Sec. 2 can ordgdmmplished if ap-
propriate tooling infrastructure is available. This is ionfant because to participate
in the Urban Challenge, the complete software and hardwaters has to be devel-
oped on a very tight schedule because there are no nego$iatiall. For a success-
ful participation, both efficiency and quality of actions/eao be balanced wisely.
These special circumstances led to the organizationakimghtation of the agile
software and system engineering process based on ExtremgeRming. Clearly,
a modern IDE like Eclipse is used for direct code developnre@++ and MAT-
LAB/Simulink for the control algorithms. However, as MATIBASimulink does not
scale for complex data structures or supports properly #sgd and implementa-
tion of software architectures, most of the code by far wagewrin C++. Therefore,
in the following, we concentrate on the C++-part of the saftevdevelopment.

For planning purposes, plain mathematical functions aeel tis understand the
algorithms, and UML class and deployment diagrams as welicgscharts are used
for the software architecture as well as the important dtated behaviors and data
structures. However, these diagrams are used for discuasid serve therefore as
documentation only.

As described, milestones are centered on story cards ansh&ig. 3 that serve
as a definition of measurable goals. These measurable gealsesabase for a con-
sistent test process and its tooling infrastructure thdecribed in the following.
The whole team is distributed in several locations and teambers sometimes
work in different time zones. For a uniform understandingoadgress, a single
source of information is necessary for collecting tasksking bugs, and publishing
progress. Using Trac as an integrated and easy to use weth fpasel for the com-
plete software and system development process enablesatiead track changes to
the software over time, and evaluate the actual state obfineare generated by the
back-end tool chain. As mentioned above, every story carittigally available for
every team member at any time to see the most important apetthe current and
next development iteration. In addition to the descriptibthe next iteration, a list
of tasks, each with a metric of its completion and a list ofropags are available
for every virtual story card.

For achieving the goals described in a story card, among ditiregs, system
simulations as described in Sec. 6 can be used by develapéestttheir code.
In an initial step, the requirements of the story card arediagted into an initial
number of tests which describesaenarioeven before the software is developed.
After fulfilling the requirements in the system simulatidretsoftware is put into
operation on the real hardware.

To manage parallel development as well as different cordiipms in the system
simulation and real hardware, a release and configuratioragement tool based
on Subversion and FSVS [21] is used. This allows us to pregrely enhance the
software development in small increments, while at the sime the reload of
older, stable versions for demonstrations and events, evhestable and demon-
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CarOLO -StoryCard MS10-SC01

Beschreibung:
Meifenstein 10

Termin 26. April 2007
Tite! Warteschlange
Ort Site Visit-Kurs, Campus Std,

Braunschweig

Beschreibung Start bei A, Folgefahrt bei C, Queueing bis zur
Kreuzung. Fremdfahrzeug passiert nach E,
Caroline stoppt.
Kreuzung frei, Caroline passiert nach A, fahrt
eine Runde. Bei 1 wartet bereits F-Fzg.
Caroline stoppt, lasst F-Fzg. nach 3 passieren
und biegt selbst nach A ab. Weitere
Permutationen durchspielen!

A9, B2, B.d

iodul * [ s [medhwiung Vermtwethch Mo | D | W | Do | e | s5a | o | W | o | W | be
T4 | 704 | 1507 | D00 | 2001 | .04 | 2209 | 01 | Ton | 507 | 2608

K1 K2 | 30| Erkernung der Kesusngerebartlos hamaser

Ke2 | 30 |euesng =

W3 30| Uamaltni bl Gezaniaken hamsier

Fig. 3: Story card which describes the requirements in antiahal manner for one scenario. This
card is inspired by Volere’s requirements’ specification.the first line, a unique identifier for this
scenario is provided. On the left hand side, some informdik@ a headline, date, and location are
defined. These information are followed by a detailed dpion of the behavior which is expected
from the vehicle to fulfill this scenario. On the right handesi an image illustrating the scenario
and its situations is depicted (for our example an aeriabienaf our testing site which is located
on former barracks from the German Forces is shown). In thtecarea, the natural description
is split into detailed and identifiableinctional requirements for every module. Further columns
are used for responsibilities and daily fulfillment ratés &ctual milestone is indicated by the last
green column.

strable software version needs to be loaded on the car iosdp Furthermore,
the configuration management has to ensure that hardwangehét to the loaded
software releases. As usual, all seven car computers amnholbacked up in their
own configuration, but also version-controlled.

Using FSVS as a version control system for filesystems eadleteam to sim-
ply and safely test new software versions and to maintainntegration between
parallel developments as well as tracking of open issuegatehtial bugs which
were found during real vehicle tests. Based on version obtite independent test
team has the ability to retrieve specific software reledsasthe development team
wants to be tested. This further decouples testing and dgreint and allows more
parallelization and thus increases efficiency. All car cateps are consistently re-
stored to the specific software release and a detailed testgs based on the mea-
surable goals of the virtual story cards can be carried dhereefficiently. In par-
ticular, bugs and behavioral issues can be recorded in sweayathat they can
be replayed and analyzed in detail if necessary. Both theldpment and the test
teams can simply restore the development state of the clae iddsired software re-
lease by switching every car computer to the appropriatgimvusing one simple
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command. Instead of FSVS, more recent filesystems like ZFS8rés can be used
for a similar purpose.

The combination of virtual story cards and a consistentisdeand configuration
management enables the team to safely develop and testipliyatangerous new
software functions without breaking an already runningvgafe system on the ve-
hicle. Furthermore, the list of open or closed tasks alldvesgroject management
to get a current impression of the project’s status. Appateitools which are used
in the project for developing Caroline are:

Specifying story cards: Microsoft Powerpoint.

Modeling algorithms: UML tools.

Realization: Eclipse for C++ (CDT), MATLAB/Simulink.

Version and configuration management: Subversion.

Unit testing: CxxTest [20].

Requirements testing: System simulation using scenasadb executable test
drive specifications.

Deployment: Unix-based scripts developed within the proombined with
FSVS.

Software build and integration process: Make/QMake/Cook.

Milestone planning and tracking: Trac [8].

Bug tracking: Trac.

Knowledge management: Wiki provided by Trac.

Our software and systems engineering process relies onietyaf software
development tools and some customizations and extengiarsbine these tools
and to optimize our tool chain. As mentioned before, elesiehExtreme Program-
ming, like the test first approach, common code ownership goagramming, and
continuous integration are the basis for an efficient andessgful development pro-
cess. Reducing integration activities to nearly zero tghothe continuous integra-
tion principle is one key element in our development procAssescribed earlier,
this implies that every developer integrates his work feggly and is disciplined in
using the controlled source code repository based on thsgovecontrol system.

Hence, Subversion manages nearly everything necessauyldotioe project to
ensure self-containedness of the entire project. Fronallnstripts, property files
and test scripts, up to IDE configurations, the repositornyta@ios and provides all
project-dependent data. This enables the team to fullglh#& system from just a
checkout on a machine with only a minimum amount of pre-liesissoftware like
some third party libraries. Moreover the use of Subversiwh the software build
tools allow us to setup the fully automated build procesduiting test runs, which
acts as a monitor to the repository needed for quality assera

With this approach we are able to find errors quickly and fixrthees soon as
possible. Triggered by every commit against the reposit®wtral servers start to
check out the project sources and initiate an entire buitds s the point where
software construction tools come into play. On the develsjte these tools help to
speed up the build process and at the same time ensure atentigibuilt result by
analyzing changes and dependencies to identify what rea#ys to be rebuilt. On
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the server side it allows us to build alternative targetsdifferent forms of use, so
we are able to run a system build with or without test codetifeumore, the testing
system separates time consuming high level tests by detthé complete auto-
mated test run to be done in a parallel manner on differemesgrThus, whenever
a developer checks in a new version of the software the camplgomated set of
tests is run.

Feedback of the automated and continuous build and teseégsas sent to the
developer by notification through email and through pulbigcaof the build and
test results on the project specific portal web site using.Trhis greatly improves
responsiveness of the test system. Problems do not remééteated for a long pe-
riod, and in only a short time the fault is bounded to a smatlipn of changed code.
Efficiency of the development process as well as a respanaiid self-disciplined
form of development are effectively assisted by the tooling testing infrastruc-
ture.

g Source Code Test Code Coding Guidelines

3

Y
Compile Check

. Report
Test Execution

Memory Leak Check Profiling

—

Test Coverage

Fig. 4: Multi-level test process: Obviously, the first stagatains the compilation check, followed
by a memory leak check which is executed during the test ruimtbpotential memory leaks
or NULL pointer access. After executing the test casesy ttwierage related to the source code
is computed. Here, different coverage criteria like statentoverage or path/branch coverage
can be defined and checked. These coverage criteria inditetee the developer should add or
modify existing test cases to fulfill the required coverageel. After fixing bugs, memory leaks,
or adding more test cases, the algorithm can be optimizexd) ysdfiling tools. Finally, the code
can be checked using a given coding guidelines definitiohreSults are aggregated into one
single report. This multi-level test process can stepwisebcuted manually by the developer or
completely unattendedly and automatically using the owoiatiis integration system.

Fig. 4 shows the workflow of our multi-level build process.eTfally automated
process for checking the software quality consists of séeensecutive steps. Start-
ing with a compile check, compilation as well as syntactamaiflicts are detected
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pretty early. However, it is expected that code which cafreotompiled is never
checked into the version control system.

To automate tests, we are using a light-weight and portabteng framework for
C++, called CxxTest. During the test run, the memory chevkégrind searches for
existing and potential memory leaks in the source code. Alitiadal tool from the
GNU compiler collection named GCov is used to report the teserage of the
source code. While running the test code it counts and re@xelcuted statements.
The intentis to implement test cases which completely ciolantified critical parts
of the software.

Tests are usually implemented directly in C++. Experiefag shown that for
a disciplined test definition in a project, it is very helpthat the implementation
of tests is done in the same language. This enables an iteddest development
process and avoids the hurdle of learning another testitadion. The failure of any
single test case causes the complete build to fail and imatetiedback is given to
the developers. In order to check real-time properties whre of course necessary
for a timed execution in a traffic situation, a step for profilis done to check the
consumed computation time.

For an initial phase, we found it helpful to add another steghé build process,
which checks some compliance rules for the coding guidsliRer example, it an-
alyzes the source code for appropriate definitions of narhesrimbles and classes,
checks depth of inheritance, number of attributes, sizasethod bodies, appro-
priateness of indentation, existence of comments, andkéeBut moreover, even
complicated guidelines like visibility rules through inftence for example can also
be checked. This step can be automated as well [4].

The process outlined above is not only working automaticatlevery check-
in, but can also be executed manually by every developernvgtating a commit
cycle the developer first updates his working copy, runsealist and then commits
his changes only if everything builds well and all tests rathaut errors. This leads
to a double check, both before the developers commit andreatically at the server
side by the master build process. This is reasonable betteersds always a chance
that the repository was not properly updated by the devetope

As a result of this approach, developers can easily rerus &sl detect many
bugs or inconsistent enhancements locally and rather lyuithus, fixing discov-
ered bugs is done rapidly and we have a stable and properkivgosystem almost
all the time. The benefit is that everyone shares a stabletbadart development.
Frequent commits, usually more than once a day, guarangéedhintegration of
newly developed or enhanced code does not take long and vedlyukave little
integration overhead.
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5 Application of the Software Engineering Process in the
CarOLO Project

As outlined in [2], we are using the system simulation not/dat interactive devel-
opment of an artificial intelligence module in the CarOLOjpob but also as part
of an automated tool chain running on our servers over nigig.main goal behind
this application is to ensure a certain level of softwareligua herefore, we have
extended the test first approach mentioned in Sec. 4 by usingyistem simulation
as shown in Fig. 5. We call this approach the “simulate firgtrapch”.

Almost any development process starts with analyzing thi@irements docu-
ments provided by the customer. In the CarOLO project, wel tise DARPA Ur-
ban Challenge documents to understand the requiremergse Hocuments contain
mostly abstract and non-functional definitions for the aotaously driving vehicle.
On the one hand, these requirements were rather stablethenggh they were oc-
casionally changed. On the other hand, they were ratherevagd left open a lot
of options for possible traffic situations, weather cormuatif, forms of roads, etc.
Three big phases lead the project from an initial settingugh the first application
(end of phase 1), through the site visit (end of phase 2) tbltiteonal Qualification
Event (NQE) and Final Event (phase 3) as already describ8ddn3. Actually, in
any good development project, there is a final phase withraggective and a dis-
cussion of the insights, the gathered knowledge and experj@nd a consolidation
of the developed software. This also includes the identifioeof reusable parts of
the software. Each of the first three phases is broken up @vieral small iterations.

In every iteration a new task dealing with a coherent requénets group is cho-
sen by the development team, prioritized in the product loacland defined using
the Scrum process for agile software engineering as meadiam Sec. 2. These
requirements are refined into the already discussed stodg ead scenarios are de-
signed for both a virtual test drive and a real vehicle tesef@luations using the
completely equipped car. This early definition of the vittigst drive forces devel-
opers to clarify general parameters and conditions betarérgy their implemen-
tation. The result is aexecutable test drive specificatitirat tests all requirements
to be implemented. Now, the implementation of the systemtlaadirtual tests can
run in a parallel manner.

In the testing phase, after designing a virtual test drive,availability of nec-
essary validators is checked. If there is a condition whiindt handled yet by
a required metric, an appropriate validator is implemenfedmentioned earlier,
these validators are the base for automated test runs, vahichecessary for the
continuous integration of the complete software systemtaeifore a vital part of
a consistent software system engineering process.

The newly implemented test cases are grouped together 8t auite and form
an executable specificatioof the virtual test drive. The new test suite is finally
integrated in the tool chain. None of the old test suites khfail and only the new
one should not pass. With these failed tests, the implertientaf the new artificial
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Fig. 5: Simulate first approach inspired by the unit testipgraach: Here, the customer’s require-

ments are part of the technical software development psdzsause they are the basis for defining
scenarios to be used in interactive simulations. For gptmunattended simulations, not only the
customer’s needs are necessary, but even more his acceptéecia have to be discussed to de-
fine so called validators which continuously supervise aingsystem in a system simulation to

evaluate whether it fulfills the customer’s needs or not.

software functions begins. In small iterative developnsteps the software module
is extended for fulfilling every test case of the new testesuit

Although the above sounds like a normal test first appro&ehetare a number of
differences. First of all, the test suite which capturedtigé level requirements for
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handling traffic usually does not change the signature ofteeall system. The rea-
soner as well as the system simulation have stable intertamgneed only changes
in its behavioral algorithms. So we do not need to definefates before tests can
be defined. And second, these high level tests are black4tmbxa not rely on the
internal structure of the code. However, for a thoroughaégte reasoner, it is also
helpful to add more system simulation based tests afterdtle s implemented to
check the states and transitions between them that occheireasoner as well as
traffic situations that the reasoner has to handle.

As with usual test first approaches, these small steps aegtdteuntil the com-
plete test suite is satisfied. After completing the impletagon, the new intelligent
software function will fulfill the requirements in the vidltest drive. Subsequently,
the test drive is planned and executed using the real velhiegbplicable.

If the test drive is successful the new software can be reteasd marked as sta-
ble. After the test drive, usually optimizations must be liempented, bugs must be
fixed, and technical issues or misunderstandings from tipginements documents
must be fixed. Before the code is modified, the system sinomasi used again to
extend the test suite in such a way that the error becomdserisnder a virtual test
and then the software is modified. These virtual test drieeshe repeated at nearly
no cost and help the team to develop quickly and on time thessacy software
functions.

In a second variant, we have enhanced our system simulatiiroement in
such a way, that multiple car instances can drive in the saor&lwnodel. Using
multiple instances allows running several intelligentscimgether with each other.
On the one hand this is a good way to investigate artificiahlieg of optimal driv-
ing behavior in a potentially dangerous world. On the othemndy we can handle
racing conditions by running multiple instances of thefii#l intelligence that
start from the same position in the world data with the sanssion, i.e. have to
drive the same route. Starting multiple instances with Hreesmission data allows
us to understand and compare the performance of severaneaf our intelligent
car. It is also possible to measure the stability of the ligieht algorithms over time
when using the same software revision in slightly enhancenses. Furthermore,
it is possible to watch the virtual Caroline becoming an ewere optimal driver
based on the increasingly optimized revisions of the aidifintelligence modules.

6 The Hesperia Framework — An Integrated Approach for a
Virtualized Software Engineering

In the CarOLO project, we developed and used a specialifagae framework for
system simulations as outlined in [2] and [13]. Howevers fhamework had some
design drawbacks. One important issue was the chosen coication concept.
In that software framework, we have chosen TCP for religbpurposes to send
data from one component to another. TCP allows a streamtededirected, and
most important a synchronized communication. These cltexisiics are suitable
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for different contexts; however, in the context of autonasidriving, where several
components are sending compact messages with a high fregaeother protocol
is more suitable.

Moreover, TCP does not allow to broadcast messages onlyfonseveral re-
ceivers. Hence, the same message is sent twice or even ntenedafpending on
the number of receivers and thus, the data is redundant oreti@rk which might
causes packet collisions, consumes valuable bandwidire\an worse costs trans-
mission time.

Furthermore, the communication based on TCP is directads, il modules are
knowing their communication counterparts. Thereforestfetem architecture must
be defined a-priori in a very mature manner to avoid frequieahges to communi-
cation paths between all modules. And even more, if anothraponent C needs the
same data from a component A which is already sent to a conmp&reomponent
A must be modified to fulfill component C’s needs.

Moreover, the software framework used in the CarOLO prajiétinot provide
a formal specification to define scenarios with differentagions in a machine pro-
cessable manner. Thus, the setup of virtual test scenaassiat supported well.

Therefore, these conclusions and results yielded the digweint of an integrated
approach for a virtualized software engineering [3]. Thppr@ach is called “Hes-
peria® realizing a multilayer software framework which is outlhbriefly in the
following.

6.1 System Architecture of an Autonomous System

In Fig. 6, the general system architecture of an autononsoslsdwn. Such a system
which is embedded in the system’s context consists of thiage fayers: Perception
layer, decision layer, and action layer.

The gray inner box depicts the complex embedded systenf @sakisting of
the aforementioned three processing layers. The systetfh d@n be supervised
using tools from the support layer. Some important toolsecerderfor recording
non-reactivelydata exchanged by the running componentsgagerfor replaying
the data. Moreovemonitor is available to visualize complex data flows like the
perceived sensor raw data or a computed trajectory to berdiy the vehicle.
This component also does not interfere at all with the thfeeeanentioned layers
compared to the software framework developed in the CarOiojeet.

For allowing interactive as well as unattended system sitianis, a layer for
closing the data processing lodp necessary. This layer is calledttualization
layer due to its main task to simulate either missing componentiseofeal system
like sensors or the modify a system’s context like movingeotbehicles using a
mathematical model.

1 The name “Hesperia” is derived from a town in California whhe team CarOLO was accom-
modated.



Engineering Autonomous Driving Software 19

System's Context

Complex Embedded System

[Support Layer

%N,pm»,m.wwm %mrnnlor %plmjc! %nuﬂvnhm %mummr

A A A

Perception Layer Decision Layer Action Layer

> >

A

Virtualization Layer
% _— e% :

)

Framework Hesperia Framework Hesperia

% libcore. <—>$ libhesperia. 1 libcore. H% libhesperia

¥

|0pe.»aung System (e.g. Linux) | |0pemnng System (e.g. FreeBSD) |

Computer 1 Computer 2

Fig. 6: System architecture for a complex embedded systeimsensors and actuators. In the cen-
ter of this figure, the main processing components are dmpi€terception, Decision, and Action.
The first layer perceives the system’s surroundings foraekitig relevant features or abstracting
from the incoming raw data. The second layer analyzes amdpirgts the preprocessed data for
deriving a set of actions which are processed by the last layesing control algorithms for ex-
ample. For inspecting the system non-invasively the suppyer offers possibilities to monitor a
currently running system or to record and replay previogslytured data. For setting up interac-
tive or unattended system simulations, the previouslyriteest processing chain must be closed.
This is realized by the virtualization layer provided by freemework Hesperia.

Technically, any component can be virtualized without rfiodtion using the
library libcontextwhich is responsible for controlling the overall systemediand
the entire communication. Thus, the running system undgrigedecoupled from
the real system time and can be run faster or slower if negesdaus, this library
as part of the software framework Hesperia is the enablicigntelogy for re-using
unmodified components in unattended and repeatable systaratons.

For providing suitable mathematical models of the driviedgévior of vehicles,
the librarylibvehiclecontextvas developed. This library can be used for interactive
as well as unattended system simulations.

6.2 Modeling the System’s Context

For defining repeatable and meaningful system simulatefeymal description of
scenarios and situations is necessary. This input data ealetived for example
from the aforementioned story cards. In Fig. 7, an excerfii@formal description
of a scenario is depicted.
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Fig. 7: Excerpt from the formal description of a scenarioisTUML diagram is the base for a
domain specific language.

This formal description consists of more than 25 entitigsdiescribing the sta-
tionary system context and nearly 20 entities to define dynatements like other
vehicles with their associated behavior. For using thisnfdrdescription in a ma-
chine processable manner, a domain specific language (D&t ylerived. The DSL
was designed using experiences from the 2007 DARPA UrbafieRige as well as
conditions from a context of a vehicle which is driving auttioally on highways
[23].

For optimizing the DSL itself, its first implementation waside using the Mon-
tiCore framework for developing and using DSLs [10]. Thhg, language could be
simply enhanced and modified to be suitable for use in autll@tystem simula-
tions. Furthermore, a graphical editor as shown in Fig. @tam the Eclipse Rich
Client Framework [19] was realized easily re-using the Jauarces generated by
the MontiCore framework [17]. In that figure, a traffic sitizat at an intersection is
shown.

For processing the DSL in the software framework Hesperia+# lexer and
parser are necessary. To avoid additional tooling in thievsoé build process, which
may be error-prone or cause inconsistencies between tleeaged classes from the
DSL and the classes using these generated ones, a compél@¢inerated imple-
mentation was chosen based on Boost Spirit [5]. Here, thaitlefi of the DSL is
provided by a C++ template specification which is read by the €mpiler itself to
generate the necessary classes for the non-terminalsramidaés of the language.
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Fig. 8: Graphical editor for using the DSL realized with thdifgse Rich Client Framework. In the
lower left corner, a small map of the scenario from the bigys view is shown. On the left hand
side, a hierarchical representation of the DSL'’s instancétfe currently edited scenario is shown
which can be modified by the user. In the center of this figure,rhain editor view is depicted
which shows a situation at an intersection modeled for twaclkes. On the right hand side, a set
of elements is available which can be added to the scenamsinily using drag and drop.

This Boost Spirit framework itself is wrapped in the softedfiramework Hesperia
to encapsulate the access to the classes of the abstraax gyaph (ASG) as well
as to handle errors in the given DSL’s instance appropyiatel
The DSL is a core part of the software framework Hesperia &imihg inter-

active or unattended system simulations. Therefore, nigtadrstract elements like
lane markings or traffic rules can be defined; even more, cexmotd detailed 3D
models from popular 3D modeling applications can be simglyeal to a scenario.
Thus, not only a realistic appearance for the user can bizeddbut these models
are also used to generate realistic sensor raw data for éeampmescribed in the
following.
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6.3 The Framework Hesperia

In Fig. 9, all core components of the software framework téeigpare shown. First,
one of Hesperia’s core concepts is to decouple a module’srilmcies to third
party supplied libraries. Therefore, inspired by tfesign-by-contraatoncept, only
interfaces of a module’s required existing algorithms aglable for the module.
The library supplied by a third party is entirely wrapped daver layers allowing
a transparent exchange if necessary. For example, for dststiorage, the Berke-
leyDB is transparently available for all modules; for presiag images as well as
matrices, the OpenCV library is wrapped and a generic iaterfis exported to
higher layers.

Applications

% supercomponent

gpw gd %za gpmer gubmm

Weae <—>$ libhesperia monitor
% BerkeleyDB % Boost % OpenCV % 71P % OpenGL % Qt

{

Operating System |

Framework Hesperia

LrHh

Fig. 9: Components of the software framework Hesperia.

In libcore, rudimentary system services are implemented and intenssied
using CxxTest. These services include concurrency fotinealand non-realtime
services, 1/0 handling for URLs, and the basic communicetionceptClientCon-
ference A ClientConferencés an enhanced wrapper around the UDP multicast pro-
tocol. Using UDP multicast as the core communication cop@djdata is sent only
once regardless how many recipients are listening.

Furthermore, the communication is realized using untypsahferences” but
typed messages callébntainerswhich contain one serialized object. Using this
concept, the receiver can use different thread-safe datagss like FIFOs, LIFOs,
or key/value maps provided Hibcore to receive data using the listener/observer
pattern. Furthermore, these data storages can be simglgdéai filter and combine
different data like position data and features extracteshfimages.
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The serialization of data structures is realized in a qualg-manner. Therefore,
a class’ attributes-dependent identifier is computed atpdlentime. This identifier
is used to access a class’ attributes in a random mannegdiegerialization. Thus,
changing the order or adding new attributes to a class do eaklexisting compo-
nents; furthermore, these existing components do not reeleel te-compiled.

For supporting the development, some additional comparaetprovided with
Hesperia. The most important componensigpercomponenthich is mandatory
for every ClientConferenceThis component tracks the lifecycle of each running
component and delivers the module-dependent configuraltita using theDy-
namic Module Configuration ProtocDMCP) which is inspired by the well-known
DHCP. Thus, the configuration data can be modified centrallthe supercompo-
nent's node and is consistent for a complex embedded systeamvs distributed
automatically to several computing nodes.

As mentioned before, components for recording and repipdata are also avail-
able. These component can transparently record all trarsfdata of a running sys-
tem without interfering with other components by simplynjioig a runningClient-
Conference For producing videos to illustrate a traffic situation, tt@mponent
rec2videocan be used. This component reads a previously recordeidrsessl
generates frames to render a video file.

6.4 Generating Synthetic Sensor Raw Data

As mentioned above, the software framework Hesperia pesJitiraries to generate
synthetic sensor raw data. On the example of a single lager &canner, results are
shown in Fig. 10.

For producing this raw data, the formally specified systemtext is used pro-
vided by the software framework Hesperia. Therefore, dgms also described
in [3] were integrated in the software framework which islioetd briefly in the
following. The algorithm bases on a scene which can be rendesing OpenGL.
Therefore, the system context is transformed automagiaaib a renderable scene
representation using the visitor concept which traversesAISG produced by the
DSL's parser.

After generating the scene graph, a camera which is lookitathis scene is
defined for each single layer laser scanner. This camerasifigreed to the corre-
sponding virtual mounting positions of the scanners.

Following, a so-called projector is created for each camire projector is used
to project a texture into the scene which describes the sbifiee scanning line.
Using a specialized shader program which is executed on e, @e distances to
the camera, where the line hits the first visible object, amded into the resulting
rendered image.

The final step of this algorithm is to analyze this synthesdireage by inter-
preting the encoded distances to transform them into the Bxanner coordinate
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(a) Scene with three single layer laser (b) Same scene with the hidden station-
scanners. ary context.

Fig. 10: The software framework Hesperia can be used to geneynthetic sensor raw data for
a single layer laser scanner and camera systems. In thispéxatimree independent scanners are
defined: Two pointing to 8m and 15m in front of the vehicle whare scanning orthogonally and
one scanner which is scanning in a parallel manner to thendradirection.

system. Then, the resulting coordinates can be serializédistributed to imitate
a sensor’s protocol.

A similar principle without the shader programs can be usesimulate a simple
color or gray-level camera. Therefore, the current rerlen@ge “captured” by the
OpenGL camera is read back from the GPU and provided as irgtatfdr vision
algorithms.

6.5 Automating System Simulations

As mentioned befordibcontextandlibvehiclecontextan be used to automate the
execution of system simulations. As outlined in Sec. 5, ti&amer’s needs must
be available to define acceptance criteria for the softwadeutest. Compared to
unit tests, acceptance criteria define the set of conditidmsn to evaluate a test
scenario to passed or to failed.

The software framework Hesperia was successfully appbea tesearch and
development project for the development of an autonomairshing vehicle which
should navigate on a given digital map. The project wasedwut at the University
of California, Berkeley together with the RWTH Aachen Unsigy from June to
August 2009. Therefore, three validators for continuoesigluating the software
in a purely virtualized system’s context were developed.

The first validator calledestinationReachedReporteontinuously supervises
the current position and orientation of the vehicle. It retutrue, if the vehicle fi-
nally reached its overall destination. Therefore, thigdadbr is registered at the
virtualization layer atibcontextas a read-only listener for data sent in ®iéent-
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ConferenceThus, the entire system does not need to be modified and steath
be inspected non-invasively.
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Fig. 11: Quality assurance with the continuous integrasigstiem CruiseControl. Using continuous
integration, the same source code and test cases can besdhecldifferent compiler options
as shown in the figure, or even more for different platforrke LLinux and FreeBSD. Thus, the
developers can concentrate themselves on the core dewvatomithe algorithms and must only
modify or correct the code if one integration server repart&rror for a specific platform.

The second validator is calleshortestRouteChosenReporgard evaluates to
true, if the vehicle has chosen and driven the shortest tmiteeen two given way-
points. Therefore, it computes the shortest route usinglidital map provided by
the DSL which describes the stationary context. The reg$tiiti® computation con-
sists of a list of consecutive waypoints to be passed. Durkagution, this validator
continuously supervises the vehicle’s position and oaomh and returns true when
finally all waypoints were successfully passed.

The third validator, which is calleBistanceToRouteReporterontinuously su-
pervises the position and orientation of the vehicle andsuess its distance to a
given route. If the distance was finally never greater thanvangthreshold, this
validator returns true.

All the aforementioned validators were combined in differtest cases to define
criteria for quality assurance using the unmodified CxxTest test framework;
other validators are described in [3]. Thus, these testsaamad be easily integrated
with CruiseControl [7] as shown in Fig. 11.

Compared to the CarOLO project where a set of self-writteiptcwere used
to realize a continuous integration system, CruiseCowwald be applied without
modification. Moreover, older test runs can be still accggbeough CruiseCon-
trol’'s web front for further inspection. For example, forawest cases to evaluate the
aforementioned navigation algorithm, already 12MB of hessim XML are gener-
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ated per execution. Thus, appropriate post-processifga&SLT must be applied
to aggregate the information and to create a valuable rématie developers.

7 Related Work

The approach described in the first part of this article hanhesed to develop the
autonomous driving vehicle “Caroline” for the 2007 DARPAHAN Challenge. In
the CarOLO project a 2006 VW Passat station wagon has beeifi@toasing car
computers and many sensors for perceiving and understatigirenvironment and
actuators for controlling the car by software. In [2], theaglation approach devel-
oped for the competition is presented. However, and alrdatyssed in Sec. 6, the
solution developed for “Caroline” had some drawbacks. Tlagspresented in the
second part, the software framework Hesperia written @gtirom scratch allows
a more convenient and repeatable way to design and execstErsgimulations
[3]. Besides the results and experiences from the 2007 DAB®?an Challenge,
experiences from a research project to develop an autcetigtitriving vehicle for
highways found the base for the development of the softwaraéwork Hesperia.

Compared to the approach presented in this paper, simifgoaphes for sim-
ulation purposes are the CarMaker Vehicle Simulation by R@motive GmbH
and VEDYNA, [11] and [18], numerical simulations of full ceynamics with in-
terfaces to MATLAB/Simulink. Both try to ease the developrhand integration
of vehicle controllers. However, they do not support thesistent and integrated
simulation of software architectures and software compt:esing an embedded
domain specific language including the re-use of availablen®dels.

A similar approach as provided Ihijpcore from the software framework Hespe-
ria is realized in the Automotive Data and Time Triggerednkeavork (ADTF) as
outlined in [14]. The ADTF can be used to model a directed kynagilecting the
data flow through a set of processing modules. The commiumidatrealized using
so-called channels, which themselves are typed but whicltaay arbitrary typed
data in principle contrary to the approach realized in tHensoe framework Hes-
peria which relies solely on typed messages instead. Funtire, no support for a
formally specified, consistent data model is provided.

Additionally to the aforementioned ADTF, the toolkit VidlTest Drive is de-
veloped to manage previously recorded raw sensor data gntbetically generate
required input data to perform SiL-, HiL-, ViL-, or DiL-sintations [12]. Compared
to the software framework Hesperia, an approach to genseatsor raw data for a
single layer laser scanner for example is still not avadajat.

A similar approach to the software framework Hesperia arddbl-suite Virtual
Test Drive is provided by TNO PreScan [9]. This software carubed to support
the development of so-called pre-collision driver assisgasystems. Contrary to
the software framework Hesperia, the synthetic generatiGensor raw data for a
single layer laser scanner for example based on popular 3i2ks1& not supported
and no formal and integrated DSL is provided for the develope
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Another approach is provided by a tool from AV [15]. This tagenerates syn-
thetic raw data for arbitrary sensors. Therefore, the usatets in a 2D manner the
characteristics of a specific active sensor like a field ofEOV), a maximum
distance, and some error noise. Then, the software comptepsocessed sensor
data which would be provided by the ECUs of a specific sen&watrary to the
software framework Hesperia, only open-loop data germragi possible. Thus, no
resulting sensor data in interaction with other vehicles loa generated. Further-
more, the sensors’ models are only so-called visibility Biedvhich do not imitate
the actual measurement principles.

8 Conclusion

Intelligent driving assistance functions need a detailedeustanding of the vehi-
cle’s surroundings, of the driving situation, and the traffiles and regulations as
well as a sufficient knowledge about the physics of cars fidllftieir tasks. In the
end, an intelligent driver assistant must be able to drivéown. Thus, the 2007
DARPA Urban Challenge was a great opportunity to fosterdahés of autonomous
vehicles and intelligent driving assistants. Develophig kind of complex software
needs an innovative, agile development process that is atinigpwith the overall
system consisting of a standard car, such as a VW Passabyseastuators, and a
number of computers suitable for automotive use.

For an efficient and stringent development project, a nurabactions has to be
taken, including an iterative development in small incrategearly bug-detection
and bug-fixing, stable version and configuration managenaestlid architecture
which embraces automated tests at any level of the softwehéecture, and most
of all, a thoroughly designed test infrastructure. Evahga software’s quality in-
cludes tests of the entire system, but for efficiency reagioissimportant to test
as much as possible while focusing on the subsystem undeitass, individual
methods and classes are tested in the same manner as ther@dsarer. The test
architecture allows us to fully extract the reasoner inttuail, simulated traffic sit-
uations, and allows to check the car behavior in varioufidraituations efficiently.
Automation of these tests allows us to (re-)run tests aselbsit least every night
or for every commit to the versioning system.

There are many complex traffic situations, let alone jumclyouts and various
possibilities of behavior of other cars, that it is inevieato run many tests in a sim-
ulated environment. The system simulation is rather géa@awill be usable for
testing and interactive simulation in other contexts ad,weed. it can be combined
with HiL-tests.

The approach used and the results gained in the CarOLO psfjew that au-
tonomous driving is still a few years ahead, but also thatieffit development of
complex software in combination with the overall systemasgble if the devel-
opment process is disciplined, yet responsible, agile, asisted by appropriate
modern tool infrastructures.
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