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Abstract. Component & connector architecture description languages
often need to capture application-specific or company-specific require-
ments. Therefore, it is a crucial prerequisite for their successful applica-
tion to adapt the ADLs by customizing the languages themselves. Perva-
sive modeling with tailored ADLs can benefit from integration of DSLs
to model-specific forms of component behavior. This requires expertise of
the underlying language integration mechanisms. Current research in in-
tegrating heterogeneous component behavior DSLs into an ADL focuses
on integration of specific kinds of DSLs or is restricted to syntactic inte-
gration. However, language integrators can be liberated from requiring
in-depth language integration expertise using appropriate abstractions.
To this effect, we present a compact DSL for the integration of behavior
DSLs into a component & connector ADL that guides and facilitates
this form of language integration. Modeling the embedding of behavior
DSLs into ADLs facilitates their composition and ultimately the perva-
sive modeling of complex architectures.

1 Introduction

For a good acceptance of component & connector (C&C) architecture descrip-
tion languages (ADLs) [17], adapting to application-specific or company-specific
requirements is a crucial prerequisite [16]. Where domain experts contribute
component behavior, adaptation might include integrating appropriate compo-
nent behavior DSLs into the ADL of choice [8,18]. Model-driven development
and meta modeling can support such adaptation [15], but require expertise of
the underlying language workbenches [6], particularly their definition and inte-
gration mechanisms [3].

Language workbenches usually provide means to define a subset of abstract
syntax, concrete syntax, static semantics, and dynamic semantics for DSLs as
well as generic integration mechanisms, such as importing, inheritance, or embed-
ding, on top of these definitions (such as Eco [5], Kermeta [12], or Spoofax [25]).
While providing powerful means to compose new DSLs from existing ones, these
integration mechanisms are usually unaware of their operation context and hence
impose that language customization requires extensive language workbench im-
plementation knowledge. However, where the context of DSL integration is re-
stricted, such as inheritance from a fixed parent DSL or embedding a DSL into
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a well-defined extension point of an ADL, the degrees of integration freedom can
be greatly reduced to facilitate language integration.

We present a DSL for the adaptation of C&C ADLs in terms of embedding
application-specific component behavior DSLs. This DSL enables language in-
tegrators to easily embed DSLs as required by contributing domain experts. To
this effect it exploits features of the architecture modeling infrastructure Monti-
ArcAutomaton [20] and its underlying language workbench MontiCore [11] to
alleviate reuse of the embedded DSL’s syntax and semantics. This ultimately
facilitates architecture modeling with domain experts.

In the following, Sect. 2 motivates the benefits of easy, post-hoc DSL em-
bedding before Sect. 3 highlights MontiCore and MontiArcAutomaton. Sect. 4
presents the embedding DSL and Sect. 5 highlights observations. Afterwards,
Sect. 6 discusses related work and Sect. 7 concludes.

2 Example

Consider the development of an assembly line robot that sorts parts according
to their quality. The robot features a camera to detect parts and means to deter-
mine their quality based on various inputs. According to their quality, the parts
are sorted in different bins. The architecture of the system is as depicted in Fig. 1:
it consists of a composed component PartSorter that yields subcomponents
for sensors (Camera and QualityChecker), control, and manipulation. Com-
ponents exchange messages via connectors between their typed, directed ports
only and are either composed or atomic, i.e., yield a behavior specification in
form of a DSL model or general programming language (GPL) artifact. The
behavior of components Controller and Arm is provided by two respective
domain experts: one being a professional in part quality and sorting that prefers
to use Statecharts. The other is an expert in robot arm movement (including
trajectory planning and grasping) and prefers to use the LightRocks [24] DSL
for robotic manipulation. Hence, each domain expert should be enabled to use
the most appropriate DSL as depicted without requiring the system integrator
to become a language engineering expert.
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Fig. 1. Architecture of a robot that sorts parts using two embedded DSLs.



As the effect of behavior DSL embedding is restricted to ADL concepts ‘vis-
ible’ in atomic components, the system integrator can leverage model-driven
development to describe integration of the component behavior DSLs using
a specific integration DSL. The compact models of this DSL require minimal
knowledge of the underlying language engineering principles and their represen-
tations in language workbenches. The DSL is tailored to component behavior
DSL embedding into the specific ADL and exploits this to reduce the freedom
(and complexity) of arbitrary DSL composition. In this restricted context, the
integrator can thus easily embed new component behavior DSLs by adding small
configuration models per DSL to be embedded. The next sections present this.

3 Preliminaries

MontiCore [14,11] is a language workbench for the engineering of compositional
DSLs. It generates DSL processing infrastructure from context-free grammars
(CFGs), which define abstract syntax and concrete syntax of a DSL in an inte-
grated fashion. MontiCore DSLs yield Java-based well-formedness rules, called
context conditions, for ensured static semantics, and code generators to realize
the dynamic semantics of a DSL. The generated DSL processing infrastructure
comprises abstract syntax tree (AST) classes, modular parsers for each pro-
duction of the CFG, a symbol table acting as language interface, and context
condition infrastructure. MontiCore supports three kinds of DSL composition:
embedding, inheritance, and aggregation. Embedding is purely syntactic and
combines the CFGs of participating DSLs, such that their instances can be pro-
cessed as integrated models. This, for instance, is useful, for embedding SQL
into Java or similar. Inheritance enables one DSL to extend or refine another via
inheriting or overriding the parent CFG’s productions. A typical use case is the
introduction of new constructs to an existing DSL, such as the ADL ArchJava [1],
which extends Java with C&C modeling elements. Aggregation enables the joint
processing of models of independent DSLs, such as class diagrams describing the
data types of a C&C ADL’s ports.

For embedding, MontiCore supports extension points in form of external pro-
ductions in the host DSL’s CFG. The productions of embedded DSLs are condi-
tionally mapped to these extension points and MontiCore combines the parsers
for the corresponding productions accordingly (i.e., whenever an instance of the
external production should be parsed, the corresponding embedded production
is parsed instead). For aggregation, the meta models of the participating DSLs
are related (for instance, to check that two ports with data types defined in
class diagrams can be connected). Instead of coupling the participating DSLs’
ASTs, their symbol tables are related. Symbol tables represent DSL interfaces
for specific integration purposes and, as such, may abstract from the technical
necessities of the AST classes. With aggregation, models of the participating
DSL may remain in separate artifacts. For embedding with joint interpretation
we apply aggregation although the models reside in integrated artifacts, hence in
the following, embedding also includes joint interpretation. Instances of Monti-
Core’s DSLTool class combine the generated parsers with context conditions and
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Fig. 2. Class BCLBuilder describes the syntax of BCL models and ultimately pro-
duces instances of EmbeddedDSL for each component behavior DSL to be embedded.

symbol table infrastructure to ease programmatic model processing. DSLTool
instances further can be extended with workflows that add additional model
processing capabilities (such as pre-processing model-to-model transformation
or automated extraction of documentation).

MontiArcAutomaton [20] is an infrastructure for model-driven development
of C&C architectures that is built with MontiCore. At its core is the Monti-
ArcAutomaton ADL [21] that enables to model architectures as hierarchies of
connected components. Components are black boxes with interfaces of directed,
typed ports for communication. Port types are modeled as class diagrams. Com-
ponent models in MontiArcAutomaton are either composed, if their behavior
is defined by a subcomponent configuration, or atomic. The behavior of atomic
components is defined via GPL artifacts or embedded DSL models. To this effect,
MontiArcAutomaton comprises an extensible ADL that supports integration of
DSLs to describe component behavior. To this extent, its CFG yields an external
production used by the production for components. It also supports composi-
tional code generation enabling transformation of such integrated models into
GPL artifacts. This relies on the identification of three code generator kinds with
specific interfaces describing the provided and required information for compo-
sition. For the specific context of behavior DSL embedding, these three kinds
suffice to enable black-box code generator composition.

4 A DSL for Behavior Language Embedding

The Behavior Configuration Language (BCL), which is responsible for configur-
ing the embedding of component behavior DSLs into the MontiArcAutomaton
ADL, is realized for usage with the language workbench MontiCore and as an
internal DSL implemented in Groovy. The former entails that it uses concrete
syntax referencing important concepts and artifacts of MontiCore DSLs. As Mon-
tiCore is implemented in Java and Groovy is compatible with Java, it also follows
that models of the integration DSL can directly interface MontiCore artifacts.

The BCL is realized as a fluent interface [9] using the builder pattern [10]
to enable DSL-like usage, while actually being a Groovy GPL API. Basically,
methods of the builder class become keywords of BCL models and ultimately the
builder produces an instance of an embedding configuration that is used by the
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Fig. 3. Specification of name, behavior production, tool, and generator suffices to em-
bed a DSL. More complex embedding scenarios are supported as well.

MontiArcAutomaton infrastructure. To this effect, it uses the MontiCore classes
ContextCondition, ModelingLanguage, MCGenerator, and MCParser.
The class diagram depicted in Fig. 2 illustrates this. The methods of class
BCLBuilder contribute the concrete syntax and abstract syntax to describe
BCL models and successively create and fill an instance of EmbeddedDSL. The
BCL well-formedness rules are encoded in the build() method of BCLBuilder
and, for instance, ensure that referenced grammar productions exist and mini-
mal configuration is available. With Groovy, much of the notational noise [26]
of a GPL can be omitted, hence, BCL models actually are chained calls of
BCLBuilder methods with brackets and dots omitted. Omitting relations to
BCLBuilder is possible as Groovy enables to process scripts in the context of
so-called base classes. The Groovy parser is configured for BCLBuilder as base
class and interprets method calls in its context.

BCL models vary in complexity, which depends on the behavior DSL’s ‘com-
pleteness’ and the possibilities to derive DSL infrastructure elements from others.
The activity diagram depicted in Fig. 3 describes the configuration flexibility of
the BCL: providing name, behavior, and generator are the only manda-
tory properties of each BCL model. The name specifies which production of the
behavior DSLs grammar is mapped to the unique extension point in MontiArc-
Automaton’s grammar (cf. Sect. 3), hence each model must at least identify
the grammar production (behavior) to be embedded. With MontiCore defin-
ing concrete syntax and abstract syntax in integrated grammars, this specifica-
tion covers embedding of both. Also, supporting usage of arbitrary productions
of the behavior DSLs enables reusing required DSL parts only. As a tool in
MontiCore may process multiple DSLs, it may comprise symbol table infras-
tructure, workflows, and context conditions for all processable DSLs. If not all
DSLs of a DSLTool are to be reused, the required constituents can be specified
individually in terms of their respective MontiCore ModelingLanguage in-
stance [11]. If it only processes a single DSL, this DSL, together with its symbol
table, workflows, and context conditions is derived from the DSLTool. Where no
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Fig. 4. Principal artifacts in processing architecture models with embedded behavior
DSL models using the BCL and MontiArcAutomaton.

ModelingLanguage is available, their constituents must be provided individ-
ually. A BCL model also may add new workflows and a code generator com-
patible to the behavior DSL and the code generator of the MontiArcAutomaton
ADL. Where additional information is necessary (such as inter-language well-
formedness rules [23]), additional modeling elements support their specification.

Interpretation of Groovy scripts does not require generating any infrastruc-
ture artifacts specific to the language combination (such as combined parsers
of symbol table classes), saving the expense of a generation process for each
application-specific language combination. We thus extended the infrastructure
of MontiArcAutomaton (i.e., its DSLTool subclass) to initially parse all Groovy
files in a MontiArcAutomaton project in the context of the BCLBuilder base
class and store the EmbeddedDSL instances before processing architecture mod-
els with embedded behavior models. Overall, the MontiArcAutomaton DSLTool
processes architecture models and BCL models as depicted in Fig. 4 using the
BCLBuilder infrastructure. From the models, it combines the parsers generated
by MontiCore for the referenced behavior DSL grammars with the MontiArc-
Automaton parser and aggregates context conditions, symbol table infrastruc-
tures, and workflows. It then parses the architecture with integrated behavior
models, creates symbol table instances, and applies the aggregated context con-
ditions and workflows. Afterwards, it loads the referenced code generators and
composes their execution to produce corresponding GPL artifacts.

The most compact case of DSL integration is illustrated in Lst. 1, where
UML/P Statecharts [22] are integrated into the MontiArcAutomaton ADL. The
integration infrastructure addresses properties of this embedding with the name
“statechart” (keyword name, l. 1). It embeds the production SCBody of the Stat-
echart DSL (keyword behavior, l. 2) and extracts context conditions, symbol
table, and workflows from the DSL’s SCTool (keyword tool, l. 3). Furthermore,
it will use the SC2Java code generator (keyword generator, l. 4) to produce
combined artifacts. The latter is a reference to a generator description artifact of



BCL1 name "statechart"
2 behavior "umlp.sc.SC.SCBody"
3 tool new umlp.sc.SCTool()
4 generator new SC2Java()

Lst. 1. BCL model that configures the integration of the Statechart DSL into Monti-
ArcAutomaton

BCL1 // abstract + concrete syntax
2 name "lightrocks"
3 behavior "lr.LightRocks.SkillDefinition"
4 tool new LightRocksTool()
5 language new SkillLanguage()
6 // inter-language well-formedness rules
7 error new ValidMotorRotation()
8 error new RespectPortDirection()
9 warning new TooManyActions()

10 // dynamic semantics
11 generator new Skill2Java()

Lst. 2. BCL model that configures the integration of the LightRocks Skill DSL into
MontiArcAutomaton

MontiArcAutomaton that describes provided and required information for code
generator composition (cf. [20]).

The BCL model for the integration of the LightRocks DSL is depicted in
Lst. 2. The listing begins with name, behavior, and tool (ll. 1-3). The
LightRocks DSLTool supports processing of multiple DSLs for the specifica-
tion of robotic manipulation processes, tasks, skills, and actions. As only skills
are being reused within MontiArcAutomaton, the corresponding MontiCore in-
frastructure must be selected manually. Hence, here the DSLTool contributes
workflows only, and the SkillLanguage (l. 5) contributes context conditions
and symbol table infrastructure related to robotic manipulation skills. After-
wards, the model adds three inter-language context conditions (ll. 7-9) that
are specific to the integration of skills into MontiArcAutomaton components
and either raise errors or warnings. Ultimately, it also adds a code generator
(l. 11). Following this approach enables to process architecture models with
embedded behavior models as depicted in Lst. 3, which shows the component
ActionController of Fig. 1. After importing the ImageProcessor data
type, it defines the ActionController component type (ll. 3-15), which com-
prises an interface of three ports (ll. 4-7) and a body using an embedded State-
chart model (ll. 9-14). The keyword behavior (l. 9) indicates that an embedded
behavior model follows. The subsequent concrete syntax is part of the Statechart
language and the tool chain configured with the BCL model illustrated in Lst. 1
will select the SCBody parser generated by MontiCore to process it.

5 Related Work

Integrating component behavior DSLs is supported by AADL [8] and xADL [13]
as well: AADL supports integration of state-based DSLs via its behavior an-
nex [2], but does not consider integration of static semantics or dynamic se-
mantics. The same holds for xADL, where embedding of a component behavior



MAA1 import ImageProcessor;
2

3 component ActionController {
4 port
5 in Image i,
6 in Quality q,
7 out Skill s;
8

9 behavior statechart {
10 state Waiting, Grasping, Moving, Deploying;
11 Waiting [ImageProcessor.findPart()]
12 -> Grasping / s = new Grasp(ImageProcessor.partPose());
13 // ...
14 }
15 }

Lst. 3. MontiArcAutomaton component model using an embedded Statechart model
to describe its behavior.

DSLs also enforces to introduce a new corresponding component type [18]. Nei-
ther supports language integration in a specialized, compact DSL.

The byADL infrastructure [4] resembles a workbench for ADLs. It supports
various language integration operations that enable great flexibility. However,
they are generic to a broad class of application scenarios and lack the structured
guidance of integration DSLs for specific purposes.

The π-ADL [19] enables to describe structure and behavior of a software
architecture based on the π-calculus. In this, it generally supports to add arbi-
trary behavior modeling capabilities on layers on top of its ADL. This, however,
ultimately yields a monolithic language aggregate where the individual com-
ponents can be hardly exchanged. Furthermore, it does not support black-box
composition of code generators for the individual behavior DSLs.

The Kermeta language workbench enables to mashup [12] meta-languages,
static semantics, and dynamic semantics to compose DSLs. This is a more general
form of composition and yields the same challenges than other general compo-
sition mechanisms in other language workbenches.

6 Discussion

On the one hand, the presented BCL is specific to its implementation with Monti-
ArcAutomaton and MontiCore, which is reflected in its concrete syntax. On the
other hand, where the integration context is sufficiently elaborated, applying
integration DSLs translates to other language workbenches as well. A benefit
of combining MontiCore with an internal integration DSL is in its agility: AST
classes and parsers generated for ADL and behavior DSLs can be reused without
requiring intermediate code generation to produce integrated AST classes and
parsers (cf. [11]). Also, no artifacts are produced from the integration model,
which is validated in the context of related MontiCore artifacts at design time.
Our notion of DSL embedding differs from the self-extension identified in [7] and
discussed in [11]. Where we advocate embedding of independent, external DSLs,
self-extension usually refers to internal DSLs that can easily extend their con-
crete syntax with new APIs. However, with the embedding of sufficient complex
DSLs (such as the Java DSL presented in [23]), self-extension can be realized



with embedding. The BCL relieves language engineers from detailed knowledge
about the MontiCore language composition mechanisms. The embedding of a
new behavior DSL takes place in a single BCL model, instead of registering DSL
infrastructure across scattered artifacts. Embedding is decoupled from the DSLs,
enabling to reuse behavior DSLs in different contexts.

7 Conclusion
We have presented a small DSL for the agile adaptation of C&C ADLs via em-
bedding of component behavior DSLs. It supports ADL developers in fitting
their ADL to the participating domain experts’ DSL requirements and supports
agile, post-hoc customization exploiting properties of the underlying MontiCore
language workbench as well as its internal DSL nature. In the future, similarly
elaborated language integration purposes might produce further specific integra-
tion DSLs (for instance, to easily integrate and exchange the data type descrip-
tion language an ADL operates on) for different purposes and on top of different
language workbenches. We believe that such specialized integration operations
can advance the application of model-driven development, where adaptation of
existing DSLs is crucial.
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