
Development of Tool Extensions with MOFLON

Ingo Weisemöller, Felix Klar, and Andy Schürr

Fachgebiet Echtzeitsysteme
Technische Universität Darmstadt

D-64283 Darmstadt, Germany
{weisemoeller|klar|schuerr}@es.tu-darmstadt.de

Abstract. The increasing complexity of embedded systems is accom-
panied by an increasing number and complexity of models, modeling
languages and tools in the development process. This results in a need
for appropriate tool support at the metamodel level. Besides the neces-
sity to develop new languages and tools, there is also a large demand
for extensions to existing tools as well as for integration frameworks.
Such frameworks ensure consistency between data that is distributed
over several tools. In this chapter, we present MOFLON, a metamodel-
ing tool primarily focused on tool extension and integration. It adopts
several standards such as MOF 2.0 and JMI. It also supports story driven
modeling as a means of describing on-model transformations as well as
a combination of MOF QVT and triple graph grammars for model-to-
model transformations and integration. We present a typical application
of these features to tools used in the development of embedded systems.

1 Introduction

Because the number of software development processes, especially for embedded
systems, has rapidly increased recently, the number of modeling languages and
commercial off-the-shelf (COTS) modeling tools has increased as well. There-
fore, documents created with these modeling tools are also becoming harder to
manage and maintain. These documents and models may be difficult to under-
stand and to develop further. Therefore, modeling guidelines are a wide spread
approach to improve readability and maintainability of these documents. Such
guidelines may also enforce properties of the model that are necessarily required
for automatic processes, such as code generation. Data spread across several
documents may be redundant and needs to be kept consistent. These documents
are usually developed with different COTS tools. Most of such tools neither
provide proper interfaces to couple them with one another, and they do not pro-
vide a way to define domain specific rules for data consistency between several
documents. Thus, alignment and adjustment of this data is usually performed
manually, which results in considerable efforts and costs.

Since new tools are not usually an option in ongoing processes, tool exten-
sions are a more adequate way to enforce modeling guidelines and to ensure con-
sistency between several models. The metamodeling tool MOFLON is focused

[WKS10] I. Weisemöller, F. Klar, A. Schürr
Development of Tool Extensions with MOFLON
In: MBEERTS: Model-Based Engineering of Embedded Real-Time Systems, p. 337 - 343
International Dagstuhl Workshop
Dagstuhl Castle, Germany, LNCS 6100, Springer Berlin, October 2010
Note: The original publication is available at www.springerlink.com.
www.se-rwth.de/publications

on efficient development of such extensions. We use MOFLON to develop tool
adapters that comply to the Meta Object Facility (MOF) [1] and to the Java
Metadata Interface (JMI) [2], and thus provide standardized access to model
data. Based on these adapters,we use model transformations to describe rules for
analysis and semi-automatic repair of models according to guidelines. MOFLON
also allows to define model-to-model transformations and consistency rules in a
declarative notation based on MOF Query/View/Transformation (QVT) [3].

The remainder of this chapter is outlined as follows: In Section 2 we describe
the core features and briefly introduce the standards adopted by MOFLON.
Section 3 provides an overview of usage scenarios for MOFLON, and in Section 4
we give a short summary and present some ideas for future versions of MOFLON.

2 History and Overview of Features

The development of MOFLON began in 2002. Based on code generated by the
MOF Model Compiler (MOMoC) [4] from a simplified version of the MOF meta-
model, we developed a graphical editor as a plugin for the UML tool Fujaba [5].
Besides this editor, the graph transformation environment of Fujaba was reused
for model transformations. This step required a refactoring of the existing en-
vironment in order to make it work on an abstract metamodel interface, which
could be implemented by plugins. Having completed these steps successfully, we
released MOFLON 1.0 in December 2006.

More recent versions of MOFLON introduced an editor and code genera-
tor for model-to-model transformation rules based on triple graph grammars
(TGGs) (MOFLON 1.1, July 2007), a compiler for the Object Constraint Lan-
guage (OCL) [1] based on the Dresden OCL toolkit [6] (MOFLON 1.2, De-
cember 2007) and modularization concepts for model-to-model transformations
(MOFLON 1.3, December 2008).

2.1 MOF Editor and Code Generation for MOF models

MOFLON adopts the MOF 2.0 standard [1] by the Object Management Group
(OMG). MOF compliant metamodels describe the abstract syntax of modeling
languages in a notation based on UML class diagrams. MOFLON supports the
complete MOF (CMOF); in comparison to its subset essential MOF (EMOF),
which is, for instance, supported by the Eclipse Modeling Framework [7], CMOF
has much more sophisticated association and modularization concepts, which are
substantial for metamodeling in the large. Constraints can be added to meta-
models using the Object Constraint Language (OCL) [1] in MOFLON.

The code generated from metamodels by MOFLON complies to the JMI
standard by Sun. This defines tailored interfaces, which are specific to the re-
spective metamodel, and reflective interfaces, which provide generic access to
model and metamodel data. Our mapping from MOF 2.0 to JMI is an extension
of the JMI mapping for MOF 1.4 defined by the OMG. Because JMI does not
describe an event mechanism, MOFLON metamodels implement the interface of
Netbeans’ metadata repository (MDR) [8] for events.

2.2 Additional Frontends

Besides the graphical MOF editor, MOFLON provides import modules for sev-
eral other frontends. UML models can be imported from Rational Rose or Sparx
Systems Enterprise Architect. For Enterprise Architect, there is also a plugin [9]
that introduces MOF diagrams, provides a toolbox for editing MOF models,
and performs checks on these models to ensure they can be imported and used
for code generation in MOFLON. The import from UML tools is based on the
XML Metadata Interchange (XMI) standard. Because many tools have their own
extensions to or interpretations of XMI, one can run XSL Transformations on
the XMI data before the import. This results in low efforts to develop import
modules for further tools. Currently, we are also working on a textual frontend.

2.3 Model Transformations

Since one of our core areas of application is model analysis and repair, MOFLON
can be used to describe rules and constraints for this. We make extensive use of
OCL constraints, pattern matching and model transformations for model anal-
ysis and repair. MOFLON uses the transformation engine provided by Fujaba,
with a set of code generation templates that has been adopted to MOF and JMI.

Model transformations in MOFLON are described in story diagrams [10],
which are a combination of UML activity diagrams and an adopted version
of collaboration diagrams. The control flow of a transformation is specified in
an activity diagram. Inside each activity, pattern matching and replacement is
described in an extended collaboration diagram. Chapter 14 of this book gives
an example of model transformations with MOFLON.

2.4 Triple Graph Grammar Editor

Model-to-model transformations can be specified using the MOFLON triple
graph grammar editor. TGGs [11] are a formal transformation language that al-
lows to relate model elements with each other. TGGs specify bidirectional model-
to-model transformations in a declarative manner. TGG rules can be translated
into operational transformation rules. These can be used to perform forward
and backward transformations as well as consistency checks on related models.
TGGs are closely related to the model transformation standard QVT [12]. How-
ever, since QVT is not based on a formal foundation and, therefore, also suffers
from a lack of precision, we decided to base our transformation implementation
on TGGs, which have formally and precisely defined semantics.

3 Usage Scenarios

Extensions to COTS tools, which we develop with MOFLON, typically perform
analysis and repair tasks on single models, or they keep data across several tools
consistent. A combination of both kinds of extensions is possible.

Code-
Fragment

MATLAB
ObjectsAPI AdapterMATLAB

Model

MATLAB Meta
Model (MOF)

SDM Graph
Transformation

Code-
Fragment
Analysis
Results

Model Analyser

OCL
Constraints

Model
Transformer

ModellDOORS
Model API Adapter DOORS

Objects

Model
Integrator

Model Analyser

Code-
Fragment
Analysis
Results

Model
Transformer

Integration
Rules (TGG)

DOORS Meta
Model (MOF)

SDM Graph
Transformation

OCL
Constraints

Fig. 1. Integration Scenario Including Model Analysis and Repair

Figure 1 provides an overview of such a combination. It shows the integration
of the requirements engineering tool DOORS with the systems modeling envi-
ronment MATLAB/Simulink. Adapters provide standardized interfaces to the
data in each tool, i.e. the adapter provides JMI compliant objects to all other
components. This is, for instance, required for the model transformation rules to
work properly. For both the DOORS and the MATLAB data, there is a model
analyzer and transformer, which take OCL constraints and model transforma-
tion rules as input and apply them to the models. Moreover, there is a model
integrator, which applies TGG rules to keep data between the tools consistent.

3.1 Tool Adapters

The code generated by MOFLON for model transformations requires a JMI
compliant metamodel to run. In order to perform analysis and repair actions
on models in tools, we need a JMI compliant interface to this data. We use
MOFLON to describe the API and data structure of the tool in a metamodel,
and to generate the interfaces and a substantial part of the adapter implemen-
tation with a customized set of templates. As an example, Figure 14.2 shows the
metamodel of the modeling and simulation tool MATLAB/Simulink.

Since adapters use calls to the proprietary tool API, a part of it needs to
be written manually. An evaluation based on the MATLAB/Simulink adapter
has shown that about 95% of the adapter (measured in lines of code) can be
generated. This includes the interfaces and most of the implementation of the
reflective methods, whereas calls to the tool API must be implemented man-
ually. Further increment of this percentage will be possible, if some API calls
like setting attribute values in model elements are generated with tool specific
templates.

3.2 Model Analysis and Repair

With the JMI compliant tool adapter, one can perform model analyses and
repairs, which are implemented by means of OCL constraints and model trans-
formations. Minor repairs may be performed automatically, but more complex
actions require a user to choose one of several possible repair actions. Analy-
ses and repairs with MOFLON, especially on MATLAB/Simulink models are
discussed in detail in chapter 14 of this book.

3.3 Integration Framework

Integration rules specified in the TGG editor can be translated to operational
graph analysis and transformation rules by MOFLON. Figure 2 provides a more
detailed view of the integration between DOORS and MATLAB/Simulink mod-
els.

A
da

pt
at

io
n

C
od

e

G
en

er
at

ed

R
ep

os
ito

ry

A
da

pt
at

io
n

C
od

e

G
en

er
at

ed

R
ep

os
ito

ry

 DOORS

DOORS
Repository

DOORS
Model

DOORS
Model*

Matlab/
Simulink

ML/SL
Repository

ML/SL
Model

ML/SL
Model*

Generated
Repository

(TGG)

Correspondence
Links

l:Link b:Subsystem* b:Subsystema:FObject*a:FObject

DOORS Adapter ML/SL Adapter

Integration Framework

Fig. 2. Integration between DOORS and MATLAB/Simulink [13]

Access to the tool repositories is provided by the JMI adapters. The inte-
gration framework applies the TGG rules to the models. For instance, it may
ensure that for every use case in DOORS, which is specified in a so called formal
object (FObject in the figure), a corresponding subsystem must implement this
use case in the MATLAB/Simulink model.

4 Conclusions and Future Work

The metamodeling tool MOFLON is designed for the rapid development of tool
extensions rather than for developing tools from scratch. It includes editors and
code generators for MOF compliant metamodels, OCL constraints, endogenous
and exogenous transformations. Typical areas of application are model analysis
and repair as well as model-to-model consistency checking and integration.

Future versions of MOFLON will provide enhanced possibilities to use com-
mercial or open source tools for metamodel and transformation editing as well as
more sophisticated modularization concepts for metamodeling in the large [14].

Acknowledgments

We would like to thank Tobias Rötschke, Alexander Königs and Carsten Ame-
lunxen, who have initiated the MOFLON project and contributed a lot to it.

References

1. OMG, Inc.: Catalog of OMG Modeling and Metadata Specifications (Nov 2008)
http://www.omg.org/technology/documents/modeling spec catalog.htm.

2. Dirckze, R.: Java Metadata Interface (JMI) Specification, v1.0 (June 2002)
3. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-

Compliant Metamodeling Framework with Graph Transformations. In Rensink,
A., Warmer, J., eds.: Model Driven Architecture - Foundations and Applications:
2nd European Conference. Volume 4066 of LNCS., Springer Verlag (2006) 361–375

4. Bichler, L.: Tool Support for Generating Implementations of MOF-based Modeling
Languages. In: Proceedings of The Third OOPSLA Workshop on Domain-Specific
Modeling. (2003)

5. Zündorf, A.: Rigorous Object Oriented Software Develop-
ment. University of Paderborn (2002) http://www.se.eecs.uni-
kassel.de/fileadmin/se/publications/Zuen02.pdf.

6. Loecher, S., Ocke, S.: A Metamodel-Based OCL-Compiler for UML and MOF.
Electr. Notes Theor. Comput. Sci. 102 (2004) 43–61

7. The Eclipse Foundation: Eclipse Modeling – EMF – Home (2008)
http://www.eclipse.org/modeling/emf/.

8. netbeans.org: Metadata Repository (MDR) Project Home (2008)
http://mdr.netbeans.org/.

9. Patzina, S.: Anpassung eines UML-Modellierungswerkzeuges für die Metamodel-
lierung domänenspezifischer Sprachen. Master’s thesis, TU Darmstadt (2008)

10. Amelunxen, C., Rötschke, T., Schürr, A.: Graph Transformations with MOF 2.0.
In Giese, H., Zündorf, A., eds.: Proc. 3rd International Fujaba Days 2005. Volume
tr-ri-05-259., Universität Paderborn (9 2005) 25–31

11. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In
Tinhofer, G., ed.: WG’94 20th Int. Workshop on Graph-Theoretic Concepts in
Computer Science. Volume 903 of LNCS., Springer Verlag (1994) 151–163

12. Königs, A.: Model Integration and Transformation - A Triple Graph Grammar-
based QVT Implementation. PhD thesis, Technische Universität Darmstadt (2009)

13. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based
Tool Integration with MOFLON. In: 30th International Conference on Software
Engineering, ACM Press (2008) 807–810 Formal Research Demonstration.

14. Weisemöller, I., Schürr, A.: Formal Definition of MOF 2.0 Metamodel Components
and Composition. In Czarnecki, K., ed.: MoDELS 2008. Volume 5301 of Lecture
Notes in Computer Science (LNCS)., Heidelberg, Springer Verlag (2008) 386–400

