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Abstract

In modern systems engineering, domain experts increas-
ingly utilize models to de�ne domain-speci�c viewpoints
in a highly interdisciplinary context. Despite considerable
advances in developing model composition techniques, their
integration in a largely heterogeneous language landscape
still poses a challenge. Until now, composition in practice
mainly focuses on developing foundational language com-
ponents or applying language composition in smaller sce-
narios, while the application to extensive, heterogeneous
languages is still missing. In this paper, we report on our
experiences of composing sophisticated modeling languages
using di�erent techniques simultaneously in the context of
heterogeneous application areas such as assistive systems
and cyber-physical systems in the Internet of Things. We
apply state-of-the-art practices, show their realization, and
discuss which techniques are suitable for particular modeling
scenarios. Pushing model composition to the next level by in-
tegrating complex, heterogeneous languages is essential for
establishing modeling languages for highly interdisciplinary
development teams.

CCS Concepts: • Software and its engineering→Model-

driven software engineering;Domain speci�c languages.
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1 Introduction

Software and systems engineering faces an increasing level
of complexity as we have to handle the increasing complexity
of the world. Using modeling approaches has proven to be a
suitable approach to handle this complexity [86]. To create
models of reality for domains such as production [10, 32],
automotive [87], and medicine [77], to be used in, e.g., dig-
ital twins [36], for explainable cyber-physical systems [9],
or complex systems-of-systems, it is necessary to consider
a range of perspectives and viewpoints. This requirement
is commonly known as multi-viewpoint modeling, which
entails addressing di�erent properties of systems for the
diverse disciplines involved in an accessible fashion.

One approach to meeting the speci�c needs of particular
disciplines in their engineering e�orts is to use Domain-
Speci�c Languages (DSLs). Although such DSLs can be em-
ployed simultaneously for di�erent use cases, in practice,
they often cover only a single viewpoint if not further sup-
ported by tooling, such as projective approaches. As a result,
also considering that a single DSL often cannot suit every
use case alone, this requires combining several languages
to achieve a more holistic view of a system. To address this
issue, researchers have proposed various techniques, such
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as using multiple DSLs, developing a uni�ed language that
covers di�erent viewpoints such as UML or SysML, or using
language workbenches, which provide an integrated envi-
ronment for designing, implementing, and using DSLs.
It can be argued that the number of modeling languages

in di�erent domains is steadily increasing [15, 20, 59, 66]
which, next to maturity and evolution, raises the question
on how to integrate these languages—not only for coping
with the complexity of contemporary software systems that
consist of many heterogeneous parts, but also for the sake
of reuse [80]. Reuse in software engineering bene�ts, among
others, (i) quality by gradually accumulating error �xes; (ii)
productivity by decreasing the demand for new software;
and (iii) reliability by increasing the chance to �nd errors
through higher usage rates [78]. However, a key ingredient
for software reuse is the establishment of interoperability
between heterogeneous components, e.g., by means of mutu-
ally agreed interfaces. These reuse considerations also apply
to the DSLs and their related tooling. When integrating het-
erogeneous modeling languages, we aim to reuse both, the
languages or parts of the languages themselves as well as
the already developed or generated tools such as parsers,
pretty printers, or full generators. We study the integration
of heterogeneous modeling languages by leveraging di�er-
ent mechanisms for language composition. This allows us to
make independently developed languages reusable, achiev-
ing di�erent viewpoints at the model level for the distinct
application domains.
This experience report tackles the research question of

how to integrate di�erent modeling languages via established

language composition techniques achieving multi-viewpoint

modeling languages. In this paper, we elaborate on our experi-
ences from two case studies of complex, real-world, software-
intensive systems and show which language composition
methods are applied there. One is a language family for
model-driven development of IoT applications. The other
language family is used to support the model-driven engi-
neering of assistive systems and to use models at runtime
of the system. Additionally, we discuss the di�erent mech-
anisms for language composition used and detail our expe-
riences on which techniques were suitable for which cases
and whether they contribute to establishing multi-viewpoint
modeling. For our studies, we use the MontiCore language
workbench [45] as it comes with various composition tech-
niques.

Structure. Sec. 2 provides background information for our
approach. Sec. 3 discusses related work for the composi-
tion of modeling languages, language workbenches with
composition support, and modeling languages. In Sec. 4, we
introduce two use cases from complex, real-world, software-
intensive systems, namely to develop IoT systems and assis-
tive systems. Sec. 5 discusses the application of the di�erent

language composition approaches in our modeling scenar-
ios and their contribution to achieving a multi-viewpoint
modeling environment. The last section concludes.

2 Background

We provide relevant background on model-driven engineer-
ing as well as language composition mechanisms.

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [18] is a software engi-
neering paradigm that promotes the use of models as �rst-
class citizens in all or selected phases of the software engi-
neering process. In the sense of MDE, a model is a software
artifact that abstracts from certain details of a software sys-
tem, and can replace speci�c parts of the system for certain
purposes such as implementation, testing, or simulation.

Next to model application, MDE also systematizes model
construction, evolution, and maintenance. All of these activ-
ities require an unambiguous notion of model validity that
is commonly de�ned by the language in which a model is
expressed [18].

To this end, a modeling language consists of (i) an abstract
syntax that speci�es the essential information of models in-
dependent of their representation; (ii) a concrete syntax that
speci�es the user-facing representation of model elements;
and (iii) a semantic associating each model element with a
meaning [18, 44].

Language workbenches [29] denote IDEs that bundle tools
for modeling language construction, e.g., meta-grammars,
parser generators, and language composition facilities.
Examples of contemporary language workbenches include
MPS [70], Xtext [30], and MontiCore [45]. Due to its
mature support for a variety of language composition
mechanisms, we henceforth leverage MontiCore to study
the derivation of multi-viewpoint modeling languages by
language composition.
MontiCore is a language workbench [45] whose EBNF-

like [88] meta-grammar allows the speci�cation of gram-
mars for modeling languages with textual concrete syntaxes.
From a language grammar expressed in its meta-grammar,
MontiCore is able to generate (i) the implementation of the
corresponding abstract syntax in the form of a metamodel;
(ii) the parser infrastructure to instantiate the metamodel
from input �les adhering to the grammar; and (iii) additional
infrastructure for common concerns in modeling language
implementation such as context condition checking, sym-
bol table management, and template-based code generation.
With its generative approach, MontiCore e�ectively reduces
the e�ort in modeling language implementation. In addition,
and by contrast to other language workbenches, MontiCore’s
meta-grammar also provides constructs for modeling lan-
guage composition [13], thereby facilitating the integrated
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evolution of a modeling language from a single source arti-
fact, i.e., the language’s grammar.

Given its versatility, MontiCore is actively used to create
and maintain DSLs targeting heterogeneous domains such as
automotive [24], cloud services [27], Internet of Things [53],
robotics [1], and systems engineering [19].

2.2 Language Composition Mechanisms

For the e�cient engineering of modeling languages, Monti-
Core especially focuses on compositional language design.
To this end, MontiCore supports multiple language composi-
tion techniques and corresponding design patterns, enabling
combining multiple DSLs [26]. Furthermore, it provides an
extensive library of language components [12] serving as a
common foundation for building more sophisticated mod-
eling languages. Overall, MontiCore supports four di�erent
types of language composition realized either directly via
the language speci�cation, i.e., the grammar, or indirectly
via the symbol table infrastructure [14] of a language.

To explain the various composition techniques, we
consider a number of languages developed in MontiCore’s
ecosystem. The following language de�nitions are simpli�ed
versions for clarity reasons and space limitations. The
original sources are referenced accordingly.
First, we introduce a simple automata language. Such an

automaton gradually processes letters of an input alphabet.
A sequence of letters (i.e., a word) is accepted if there exists a
path to a �nal state. Otherwise, the word is rejected. Overall,
the automaton represents the set of words it accepts. Fig-
ure 1 contains the grammar of the automata language1. An
Automaton (l. 02) starts with the respective keyword, has
a name, and consists of multiple states and transitions (l. 03).
A State (also indicated via a corresponding keyword) has a
name (l. 05) and can be marked as «initial» or «final»
(l. 06). Finally, a Transition (l. 08) describes the change
from the source (src) to a target (tgt) state via an input
letter enclosed in an arrow-like syntactical structure.

grammar Automata extends MCBasics {

symbol scope Automaton = 

"automaton" Name "{" (State | Transition)* "}" ;

symbol State = "state" Name

(("<<" ["initial"] ">>") | ("<<" ["final"] ">>"))* ;

Transition = src:Name "-" input:Name ">" tgt:Name ";";

}

01
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07

08

09

MG

Figure 1. Simpli�ed version of MontiCore’s automaton
language1 for modeling non-hierarchical automata with
states and transitions.

The production rules of the automaton language employ
prede�ned constructs such as the Name token (cf. l. 03). This

1Automata language de�nition available at:
https://github.com/MontiCore/automaton

usage already indicates the �rst application of language ex-
tension as this respective token comes from the base gram-
mar MCBasics, which is extended by the automaton lan-
guage (l. 01), importing its productions.
The next DSL under consideration is the class diagram

language CD4Analysis used to describe data structures
consisting of classes and their attributes. Its context-free
grammar is depicted in Figure 2. Please note that the original
speci�cation2 is designed in a highly compositional fashion,
further modularizing the di�erent constituents. Thus, the
Class Diagram (CD) languages in this paper are simpli�ed
versions that roughly sketch the structure and are tailored
to explain the distinct composition techniques.
The root node of a class diagram model is the

CDCompilationUnit (l. 02). It consists of a pack-
age declaration and a set of import statements, two inherited
properties. It entails a CDDefinition, representing the
actual diagram (l. 03). The CDDefinition (l. 05) depicts
the start of the diagram via a corresponding keyword. It
has a name and comprises multiple elements contained in
curly brackets. These elements are speci�ed by the interface
nonterminal CDElement (l. 07). This interface can be
implemented by other nonterminals, thus serving as an
explicit extension point. In this grammar, the only element
implementing it is the CDClass (ll. 09-12) that has a name
and comprises multiple CDAttributes. In turn, these
attributes (l. 14) consist of a type and a corresponding name.

grammar CD4Analysis extends MCBasics, MCBasicTypes {

CDCompilationUnit = MCPackageDeclaration

MCImportStatement* CDDefinition;

CDDefinition = "classdiagram" Name "{" CDElement* "}";

interface CDElement;

symbol scope CDClass implements CDElement = 

"class" Name "{"

CDAttribute*

"}";

symbol CDAttribute = MCType Name;
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Figure 2. Simpli�ed version of MontiCore’s class diagram
language2 for modeling the data structure of a system via
classes and their attributes.

2.2.1 Language Inheritance. The �rst composition tech-
nique of MontiCore is language inheritance. Here, the con-
structs of an original language are adopted and extended or
modi�ed for a new use case. While the original language
remains unchanged, the new DSL incorporates concrete and
abstract syntax, as well as the generated tooling and its hand-
written extensions.

2Compositional class diagram language de�nition available at:
https://github.com/MontiCore/cd4analysis
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Figure 3 shows an example of language inheritance by an
extended class diagram language. The inheritance relation
is indicated by the extends keyword (l. 01) followed
by the corresponding host language name that should
be adopted. As the overall structure of a class diagram
remains unchanged, we keep the starting nonterminal
CDCompilationUnit (l. 02). In addition to the adopted
constructs, we expand the language by modifying or
adding production rules for modeling elements. Thus, the
nonterminal CDClass is overwritten (ll. 04-08) to enable
basic method signatures in the class body in addition to
the already existing attributes. For these signatures, we
introduce the corresponding nonterminal CDMethod,
which describes the syntax of the element (ll. 10-11) and can
be referenced in other production rules. Besides modifying
the class contents, the extended language also introduces
interface de�nitions (ll. 13-16) and enumerations (ll. 18-23)
as new diagram elements.

grammar CD4Code extends CD4Analysis {

start CDCompilationUnit;

@Override

symbol scope CDClass implements CDElement = 

"class" Name "{"

(CDAttribute | CDMethod)*

"}" ;

symbol CDMethod = 

MCType Name "(" (argT:MCType argN:Name)* ")" ";";

symbol scope CDInterface implements CDElement = 

"interface" Name "{"

CDMethod*

"}" ;

symbol scope CDEnum implements CDElement = 

"enumeration" Name "{" 

(EnumLiteral || ",")*

"}" ;

symbol EnumLiteral = Name;

}
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Figure 3. Extended class diagram language2 including meth-
ods, interfaces, and enumerations. Application of language
inheritance with conservative extension.

2.2.2 Language Extension. Language extension is a spe-
ci�c, more restrictive form of language inheritance. This
technique also takes over all constituents of a host language.
The di�erence is that changes are only allowed in the form of
conservative extension. This means that only new elements
may be added to a language or existing elements may only
be modi�ed in an extending but non-restricting way. Thus,
valid models of the original language still remain valid in
the context of the extended variant.
In fact, the inheritance example in Figure 3 features only

conservative extensions. Adding further elements such as
CDInterface or CDEnum only extends the set of valid
sentences. Also, despite being overwritten, the altering of

CDClass remains conservative as it further introduces
methods inside a class without impacting the use of their
attributes (l. 07). Figure 3 also illustrates the bene�t of
languages being intentionally tailored for their extension (or
the drawbacks if not). Thus, while adding methods to classes
via overwriting the production is possible, it includes lots of
duplication in the production rules. This is a considerable
overhead for adding a single reference inside a production
rule. In contrast, adding CDInterface and CDEnum to
the overall diagram yields no overhead. The di�erence is
that the newly introduced nonterminals implement the
already existing interface nonterminal CDElement (cf.
Figure 2, l. 07) of the original language. This element is an
explicit extension point that supports inheriting languages
to weave new constituents into existing production rules.
In this case, the original CDDefinition (l. 05) references
the interface, allowing all incarnations as valid CD elements.
Thus, designing a language with extension in mind can
signi�cantly improve the engineering of further variants.

2.2.3 Language Embedding. Language embedding inte-
grates multiple DSL de�nitions, combining their production
rules in a single grammar, enabling integrated modeling via
their combined constituents. Therefore, this technique not
only collects the entirety of nonterminals of all included lan-
guages but automatically combines their usages concerning
shared interface de�nitions and usages. This is especially
useful for integrating default language components, such as
expressions, into an existing DSL. A language component is a
(possibly incomplete) de�nition comprising a grammar, cor-
responding generated and handwritten artifacts, as well as
an integration interface established via prede�ned extension
points. They constitute a decoupled set of reusable standard
productions explicitly tailored for embedding. Technically
in MontiCore, language embedding employs multiple inheri-
tance. Thus, embedding a language into another is as simple
as extending both in the grammar signature.

grammar MealyAutomata extends Automata, 

CommonExpressions, AssignmentExpressions {

MealyAutomaton = MCImportStatement* Automaton;

@Override

Transition = 

from:Name "-" input:Name "/"

output:Expression ">" to:Name ";" ;

}
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Figure 4. Language for modeling mealy automata, non-
conservatively inheriting from the automaton language and
embedding expressions.

Figure 4 contains an example of embedding expressions
into the already established automata language by extending
both de�nitions (ll. 01-02). Simultaneously, the new language
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adds the possibility to import other artifacts (l. 04) and ad-
vances the automaton to mealy machines (i.e., processing an
input and producing a corresponding response action). The
latter is achieved via overwriting the production rule of the
Transition (ll. 06-09) and further separating the input
from a newly established output expression, separated by
a slash. As this addition is not optional, the language is ex-
tended in a non-conservative way, i.e., original automaton
models are not valid anymore in this variant. Realizing the
output as an expression enables arbitrary terms of all embed-
ded languages, such as s1 - a / (x == 4+3) > s2,
indicating a state change from s1 to s2 on the input a and
triggering the action evaluation for the boolean expression
x == 4+3.

2.2.4 Language Aggregation. Language aggregation en-
ables integrating models of multiple DSLs while simulta-
neously keeping them as separate artifacts. In contrast to
embedding, the technique of aggregating languages only
loosely couples DSL de�nitions and makes them operable
in a common context. This inter-operationality is achieved
via MontiCore’s symbol table infrastructure, allowing cross-
referencing, even over multiple artifacts.

import games.Tennis.*;

automaton PingPong {

state NoGame <<initial>> <<final>>;

state Ping;

state Pong;

NoGame – start / strokes=0 > Ping;

Ping – returnBall / strokes++ > Pong;

Pong – returnBall / strokes++ > Ping;

Ping – missBall / p2_points+=strokes > NoGame;

Pong – missBall / p1_points+=strokes > NoGame;

}
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classdiagram games {

class Tennis {

int strokes;

int p1_points; 

int p2_points;

}

}
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CD

variable symbols of CD in 

the context of a PingPong

game automaton

Figure 5.Models of the extended automaton and CD DSLs
used in a shared context via language aggregation.

Considering again the extended automata language in Fig-
ure 4 introduced for language embedding, we can further
extend its usage aggregating class diagrams. The main idea
here is to combine a structural and a behavioral language.
Figure 5 presents the composition of two exemplary models,
preserving them as separate artifacts. At the top, we have
a simpli�ed automaton model of a customized PingPong
game featuring three states (top, ll. 03-05) and �ve transitions
for depicting the gameplay (top, ll. 07-11). The second model
is a class diagram de�ning a set of variables for counting the
strokes and the points of two respective players (bottom,
ll. 03-05). Furthermore, the automaton imports the class dia-
gram (top, l. 01), making all types and variables accessible.

Thus, the embedded expressions at the transitions can be
employed to reference the externally de�ned variables3, e.g.,
for incrementing the number of strokes when the ball is re-
turned (top, ll. 08-09) or assigning points to a player when
the other misses the ball (top, ll. 10-12). That way, the em-
bedded expressions are additionally employed to reference
symbols of other models, enabling a seamless composition
over multiple artifacts.

3 Related Work

This section presents work related to the composition of
modeling languages (Sect. 3.1), language workbenches with
composition support (Sect. 3.2), and families of modeling
languages derived by language composition (Sect. 3.3). For
a comprehensive overview of model view approaches, we
refer the readers to [11].

3.1 Composition Approaches

A straightforward approach to modeling language compo-
sition is the exploitation of inter-model references [89]. To
realize this approach, the referring modeling language must
integrate modeling concepts by which it can establish links
to instances of another modeling language’s concepts. On the
model-level, such links appear as references from elements
in the referring model to elements in the referenced model.
While this approach is versatile, e.g., it can be retro�tted into
the referring language without impacting the referred lan-
guage, it requires the user to comprehend models in di�erent
languages, scatters information across di�erent models, does
not enable directed alteration of elements in referred models,
and may result in invalid models when referred elements are
changed independently of the referring model.
A more sophisticated approach to reference-based lan-

guage composition is the conversion of technology-speci�c
language metamodels into more abstract representations.
This enables the speci�cation of correspondence relation-
ships between concepts from heterogeneous modeling lan-
guages [48]. These correspondence relationships may antici-
pate conversion rules between modeling concepts, thereby
making links between model elements actionable, e.g., to
base the validity of a correspondence relationship on the
concrete peculiarity of a referred model element. However,
the same drawbacks as for inter-model references apply.
Modeling language variability [41] constitutes an

approach to language composition when considering the
base modeling language as one language and the delta
sets of language concepts derived from activated base
language features as their own languages. While modeling
language variability can anticipate all possible language
compositions and provide exhaustive tooling from the

3We do not distinguish between type and instance level in this example for
simplicity reasons.
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beginning, composition is constrained to the supported
features of the base language.
A base language may also explicitly delegate the real-

ization of certain modeling concepts to independently de-
veloped languages that provide concrete support for such
concepts [35, 55]. This approach requires a priori reasoning
about compositionality by base language designers as well
as meta-languages or meta-operators that systematize the
delegation of modeling concept realization. Furthermore, it
may be necessary to add additional glue code for concept re-
alization in order to align the semantics of concept-realizing
languages with that of the corresponding base languages.

3.2 Language Workbenches with Composition

Support

Melange [21] is a language workbench that supports model-
�rst composition on the level of metamodel concepts in-
cluding their operational semantics. However, composition
of language artifacts besides metamodel implementations
is out of Melange’s scope. Similarly, MetaEdit+ [83] allows
language integration via references between metamodel con-
cepts. MPS [85] inherently exhibits support for model-�rst
composition because language de�nition is also model-�rst.
Concepts from the abstract syntax of a composed language
can thus embed, extend, or adapt concepts from the abstract
syntaxes of other languages, including related tooling like
code generators.
Xtext [8] is a language workbench with grammar-�rst

composition support, i.e., its meta language for grammar
speci�cation and subsequent metamodel derivation inte-
grates keywords for language composition. Speci�cally,
Xtext supports composition by importing the rules of an
independent language grammar into a composed grammar
and the derivation of new languages by leveraging the
rules of a base language as an initial, yet extensible, rule
set. Similarly to Xtext, Neverlang [16] is a grammar-�rst
language workbench, which provides a more �ne-grained,
but rather complex, support for language composition based
on language modules, roles, and role slicing for language
feature speci�cation.

3.3 Composed Modeling Language Families

Modeling language composition fosters the systematic cre-
ation of modeling language families, which constitute sets of
two or more integrated languages, to enable the application
of MDE to coherent parts of a problem domain.
Inter-model references (Sect. 3.1) represent a �exible

means of generic language creation because they can be used
to non-intrusively relate modeling languages, thus giving
rise to language families by enriching or constraining mod-
eling syntaxes and semantics. For example, reference-based
composition allows for (i) constraining modeling syntaxes or
model element peculiarities by linking metamodel concepts
with invariants expressed in another language [72, 82];

or (ii) making relationships between diverse parts of a
software architecture explicit, thereby fostering architecture
comprehension and reasoning [34, 74].

When being based on a more abstract representation act-
ing as an intermediate language to bridge between heteroge-
neous language concepts, inter-model references also foster
independent evolution of composed languages and exten-
sibility of language families [79]. Similarly, they facilitate
the creation of modeling languages whose concepts are tai-
lored to domain expert concerns but map to other languages’
concepts of a di�erent domain, e.g., to generate executable
code [76].

Modeling language families derived from variability-based
language composition (Sect. 3.1) often consist of sibling lan-

guages, or sub-families of such siblings, that are immedi-
ate descendants of the base language. They can be auto-
matically derived by modelers and afterwards applied to
related, yet slightly di�erent problem sets, in the target do-
main [54, 57, 90].

4 Case Studies from Complex, Real-World,
Software-Intensive Systems

For a better understanding of the possible uses of the dif-
ferent language composition techniques, we describe two
speci�c case studies. Their size and complexity show, why
di�erent composition techniques are needed in practice.

4.1 IoT Systems

The Internet of Things connects objects with each other and
with the Internet. Applications of the IoT include both indus-
trial and consumer sectors and range from connected vehi-
cles (and �eet tracking), to Asset Tracking, to Smart Homes.
To do so, these objects are equipped with sensors and actua-
tors. As inherently distributed applications, the development
of IoT systems requires di�erent skills than the development
of classic software systems such as smartphone apps [81].
One way to manage the heterogeneity and complexity of IoT
solutions is to use model-driven techniques [28, 62, 67], as
they raise the level of abstraction.
MontiThings [53] is a language family for model-driven

development of IoT applications. MontiThings covers the
design, deployment [50], and analysis [51, 52] of the applica-
tions generated from the models. MontiThings aims to sim-
plify the complicated development of IoT applications and
abstract from the heterogeneity of IoT devices. To separate
concerns and not mix, e.g., technical details with high-level
business logic, MontiThings consists of a family of multiple
languages. The core of MontiThings is a component-and-
connector (CnC) architecture description language that is
used to describe the business logic of the applications. From
the models of this language, MontiThings generates the C++
code for distributed applications and the scripts to package
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Figure 6. An overview of languages integrated by the MontiThings language (adapted from [49]).

them in the containers. Shared infrastructure such as inter-
faces to message brokers or the serialization of messages is
provided by MontiThings. If the generated code does not
meet the user’s requirements, it is possible to supplement
or overwrite the code with handwritten code using Monti-
Core’s TOP mechanism. In addition to this main language,
other languages exist, e.g., for con�guring models for speci�c
hardware/software platforms or for de�ning tests.
The MontiThings language is composed of 46 grammars

of the MontiCore project reusing 4371 lines of grammar [49].
Particularly noteworthy is the fact that the combined lan-
guages are not just smaller subgrammars, but modeling lan-
guages in their own right. Figure 6 shows a reduced overview
of MontiThings’ grammar reuse. In doing so, MontiThings
uses several types of language composition: Language ex-
tension (and, thus, language inheritance), language embed-
ding, and language aggregation (cf. [42]). Most importantly,
MontiThings extends MontiArc [43]. MontiArc is a CnC ar-
chitecture description language for simulating distributed
systems. Consequently, MontiArc provides large parts of
the abstract and concrete syntax of MontiThings’ CnC lan-
guage. However, MontiThings’ generator is very di�erent
from MontiArc’s generator, because MontiThings is focused
on generating applications intended to be executed on real
IoT devices while MontiArc is focused on simulations. In
addition to the inherited language elements, MontiThings
extends MontiArc with numerous elements, e.g., for error
handling [53] to deal with often unreliable sensor input.

MontiThings’ type system is mainly based on MontiCore’s
Java-like type system. For primitive types, MontiThings
reuses MontiCore’s primitive types through language embed-
ding. Furthermore, MontiThings uses MontiCore’s SI unit

language via language embedding. This enables modelers
to use SI units like primitive types, e.g., de�ne a variable
of type km/h or °C. If two convertible but di�erent units
are calculated together (e.g., km/h and m/s), MontiThings
automatically ensures that the units are converted into the
same unit. More complex data structures can be de�ned in
class diagrams. The class diagrams are speci�ed in their own
�les. MontiThings can import the symbols de�ned in the
class diagrams via language aggregation. Using aggregation,
loose coupling and separation of concerns can be achieved,
resulting in isolated yet synchronized views between the
architectural models and their referenced types. Thus, the
CD4A language could simply be replaced by another data
type language as long as it conforms to MontiCore’s type
system. For example, if a class diagram de�nes a type Photo,
variables, ports, and other elements in MontiThings models
can use the type Photo if the artifact imports the corre-
sponding class diagram. Besides the type system for vari-
ables, MontiThings also reuses MontiArc’s type system for
specifying component types. Most parts of the type check
could be reused 1:1. Only in cases where the combination
of languages results in new cases that the type checks of
the individual languages cannot handle or languages deviate
from MontiCore’s defaults, individual manual adjustments
have to be made.

The behavior of MontiThings components can be de�ned
using four techniques:

1. Subcomponents
2. A Java-like language
3. Statecharts
4. Handwritten code (C++ or Python)
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The ability to instantiate and connect subcomponents is a
capability that the MontiThings language inherits fromMon-
tiArc. The Java-like behavior language is included in Mon-
tiThings through language embedding and is based onMonti-
Core’s MCCommonStatements. Statecharts are another way
of de�ning behavior. Similar to the MCCommonStatements,
they are included in MontiThings via language embedding.
The embedded languages are augmented with other Mon-
tiCore languages such as the OCL for writing boolean ex-
pressions. In this regard, MontiCore’s common foundation of
types and symbols reduces the e�ort of integrating languages.
By providing a common denominator for common symbol
types (functions, variables, etc.), languages can be reused
largely unchanged, reducing the need to write adapters. In-
tegrating OCL expressions only required us to include the
statements once for the whole language, while the concepts
applied to multiple locations within the language (e.g., both
Pre- and Postconditions, as well as within the statement lan-
guage). An alternative way of de�ning behavior is through
handwritten code. As always in MontiCore, generated code
can be overridden using MontiCore’s TOP mechanism. Be-
sides overriding generated classes using C++ code via the
TOP mechanism, MontiThings also has the ability to inte-
grate Python code for behavior. In this case, MontiThings
serializes data sent via ports using Google Protobuf4 and ex-
changes this information with a generated Python wrapper
that forwards the data to the handwritten code.
Besides its main language, MontiThings also includes a

separate language for con�guring components for speci�c
targets. This language acts as a tagging language (cf. [40]),
adding extra properties to components and ports. For exam-
ple, the con�guration language can be used to de�ne that
the code generator should treat a component as a single de-
ployment unit that includes all its subcomponents instead
of creating its subcomponents as independent services. This
can be used, e.g., to reduce communication overhead if a
component is expected to be deployed on the same device.
Furthermore, di�erent variants of a component for di�erent
target platforms can be de�ned. For example, if the gener-
ated code is expected to be deployed on an Arduino it might
require other handwritten code for accessing sensors than
code intended to be deployed on a Raspberry Pi.
Moreover, the MontiThings project landscape includes a

testing language inherited from MontiCore’s sequence dia-
grams. The testing language uses MontiCore’s resolving del-
egate mechanism to refer to symbols from the MontiThings
models under test. It enables users to de�ne white box test
cases using sequence diagrams that model the interaction
between a component’s subcomponents. It is of course also
possible to only de�ne in- and outputs of the test case to
de�ne a black box test. A code generator independent of

4Protobuf Documentation: h�ps://protobuf.dev/, Last accessed: 11.04.2023

MontiThings’ main code generator uses the sequence di-
agrams for C++ code transformations written against the
GoogleTest framework.

The con�guration and testing languages inherit fromMon-
tiThings and MontiArc, respectively. While language aggre-
gation over symbols would have led to a better separation
of languages, and external, exchangeable views, inheritance
avoided the development e�ort of importing the symbol table.
The disadvantages of this approach are the bad reusability
(because of high coupling) and the long compile time of the
tagging languages.

4.2 Assistive Systems

Assistive systems play an important role in ensuring safety
and supporting individuals in a variety of settings, including
work [61, 77, 91], driving [87], and daily life activities [5,
60, 64]. To be able to provide human behavior support, an
assistive system needs context information [63] as well as be-
havior data, e.g., via activity recognition systems [58], both
previously stored and real-time monitored [46]. After ana-
lyzing and reasoning about this information [3, 56], support
information is provided either in a situation a person needs
it or when she asks for it.
We have investigated which modeling languages are

needed to apply a model-driven approach for the engineer-
ing of assistive systems and which languages are needed
to use models at runtime [7]. We have used the assistive
system language family to develop assistive systems to
support processes in a smart kitchen as well as processes for
manual assembly in production.

For the model-driven approach, we use the MontiGem [2,
38] generator framework. MontiGem was developed to sup-
port the model-based engineering of web-based information
systems. It uses models in the CD4A language as input to
de�ne domain information in the data structures, models
in the GUI language [37] to de�ne user interfaces and OCL
to de�ne constraints for user input. Out of these languages,
it generates the backend, frontend, and database of a web
application, in this case, the core of an assistive system. Addi-
tionally, we have added hand-written components to handle
relevant information during runtime, e.g., to transform data
into runtime models, to reason about information, or to cre-
ate support information. The support information for end
users includes full sentences (in the �rst version in German)
as well as additional pictures and acoustic information for
each de�ned task.

To use models at runtime of the assistive system, we have
de�ned a language family for model-based assistive systems
(see Figure 7). This includes a ContextLanguage to de-
�ne concrete objects to be used in supported processes and a
TaskLanguage to describe the processes in a textual way.

As the set-up of assistive systems for a concrete loca-
tion and tasks is time-consuming, we have developed the
ContextLanguage. It allows us to de�ne what tools and
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Figure 7. Overview of the Language Family for Assistive Systems

objects to use in supported tasks and where they can be
found. More speci�cally, it allows de�ning objects in four
object groups: Machines, Storages, Utensils, and Items. These
groups describe the spatio-temporal and environmental con-
text of a task. As we aim to use this language during runtime,
these concepts also have to appear in the CD4A models as
part of the concepts describing the domain. Thus, the use
of the Context Language during the runtime of the assistive
system relies on the existence of certain classes in the CD4A
model. Figure 8 shows this relationship with an example.
The concepts Machine (ContextLanguage Grammar l.9) and
MachinePart (l.13) are de�ned in the CD4A model. As the
CD4A model is used as input for generating the assistive
system, we can use ContextLanguage models during run-
time and store their information via data access objects in
the backend into the database.

The ContextLanguage reuses the Java-like comments
and names (MCBasics) and Java-like number speci�cations
(MCJavaLiterals) provided by MontiCore through lan-
guage embedding. This not only allows the reuse of terms
like 2.2d but also the reuse of MontiCore’s type system, e.g.,
to check whether the range in a StepWiseComponent is
type safe (see Figure 9).

Further reusable parts relevant to theContextLanguage
were moved to new language components: The �rst version
of the Article language component included a set
of German de�nite articles. The Direction language
component includes a set of phrases used to de�ne directions
relative to a certain place, e.g., left, in front of, or in the
middle. To help write a more intuitive model, our languages
use numbers in combination with units such as 3 l

for three liters, e.g., to appropriately indicate quantities
in a cooking recipe. The MontiCore SIUnit language
�ts most of our needs for the most common SI and SI-
derived units [68]. Additionally, the ContextLanguage

Figure 8. Relationship ContextLanguage grammar con-
cepts and CD4A model concepts

Figure 9. Extent of the ContextLanguage grammar em-
bedding a MontiCore component grammar

needed to de�ne its own set of Units, e.g., °Celsius
instead of °C or EL (common German word describing a
spoon full of an ingredient). Here, the Unit component
language inherits from MontiCore’s SIUnit language
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adding more informal units and removing others, e.g., m3.
The ContextLanguage embeds these three language
components. The concepts in these language components
are needed later on to assemble correct German sentences
based on model information.
In the generated assistive system, we want to inform the

user by providing crucial information needed for the next
task. In MontiGem, the web interface is modeled using the
GUILanguage v1 which we will use to model user inter-
faces. Models of this language refer to the data types de-
�ned in the corresponding domain model (CD4Analysis)
to specify data access in the running system. OCL expres-
sions constrain the domain model. The MontiGem frame-
work is then responsible for generating infrastructure for
data transfer and validators for each constraint. In our assis-
tive system, we use one generic GUILanguage v1 model
which presents all necessary information to the user for one
step of behavior. This model is accompanied by others for
domain-speci�c presentation tasks, e.g., providing overviews,
or allowing to change settings.
The TaskLanguage can be used to model human be-

havior tasks in sequential order. It is especially designed to
be as user-friendly as possible with not only a task order
but also a natural description of how to perform those. The
core elements of such a sequential order are Find tasks
to instantiate a �ndable item, Placing, Filling and
Setting tasks to alter items, as well as Waiting and
Moving tasks to give an order directly to the user. Here, we
again embed MCBasics to use common names and com-
ments, MCJavaLiterals for Java-like number usage. The
SIUnit language is again used on multiple occasions, for
which we restrict the usage in one place to only allow time
units like s or h.
As, e.g., recipes or manuals, describe tasks in sequen-

tial order, we have assumed that it is su�cient if the
TaskLanguage supports behavior sequences. But more
complex processes might require a lot of waiting where
other tasks can be done in parallel or might require a
(valid) reordering based on personal preferences. Modeling
languages like UML activity diagrams or the BPMN
standard [69] also allow specifying the parallel ordering of
tasks/activities. Since the BPMN also speci�cally targets
human interaction, we will inherit from the textual version
of the BPMN standard [25] in the next version of the
language, TaskLanguage v2. This allows us to specify
more real-world suitable task ordering. For this, we will
only allow user tasks (removing, e.g., sending or service
tasks) and extend them by the task types identi�ed in the
TaskLanguage. We will also need to additionally embed
MCJavaLiterals and SIUnit to �t our user-friendly
notation. With these steps, we achieve a new language
suitable for our needs. Models of the TaskLanguage v2

could then stand for themselves or can be used to generate
multiple valid TaskLanguage models. In the generated

assistive system, we could reuse a standardized work�ow
engine to manage our task de�nitions. To ensure backward
compatibility, modeling in TaskLanguage (v1) could
then be a starting point for a transformation in a sequential
TaskLanguage v2 model.

5 Discussion

For our investigation, we have considered the notion of view-
point in its broadest sense, i.e., as a conceptual means for
the model-based description and reasoning about di�erent
concerns pertaining to a software system. Our consider-
ation of the notion is thus consistent with other publica-
tions in the MDE area [6, 17, 33, 39, 65, 75], and speci�cally
with those at the intersection of MDE and software architec-
ture [22, 23, 31, 47, 71, 73]. Recently, Multi-Paradigm Model-
ing (MPM), which has its roots in simulation [84], has been
discovered to greatly bene�t the MDE-based development
of cyber-physical systems as it enables to model and sub-
sequently process heterogeneous parts of the system with
the most appropriate MDE formalisms and work�ows [4].
Hence, we perceive multi-viewpoint modeling and MPM to
constitute two sides of the same coin, both aiming to tackle
complex system design, development, and operation by the
integration of heterogeneous modeling languages. These lan-
guages’ application eventually results in models that can be
analyzed and processed leveraging well-understood MDE
techniques such as quality analysis, model transformation,
code generation, and simulation [18].
Constructing sophisticated modeling languages and lan-

guage families in heterogeneous domain use cases delivered
a comprehensive set of observations, which composition
technique is applicable in particular scenarios. Overall, we
summarize our experiences from the two presented case
studies into seven potential language engineering scenarios,
depicted in Table 1. Please note that the table only re�ects the
conceptual composition technique and not its implementa-
tion. That is, while in MontiCore, extension and inheritance
are methodically di�erent executions of the same mecha-
nism, or embedding always incorporates inheritance as well,
they are distinguished concerning their assessment.

Adapting a single, already existing language to a use case
(S1) requires only inheriting from that language. Applying
modi�cations to the original can either be achieved by con-
servative extension or via inheritance. The latter also allows
for overriding or restricting productions, which, in some
cases, might be necessary. However, this leads to the orig-
inal models not being valid in the context of the modi�ed
language anymore. If original models must be retained (S2),
only conservative extension is applicable. Overall, these com-
position techniques are the easiest to apply since constructs
are directly adopted from an existing language. In the case of
extension, engineers must further methodically care to keep
all modi�cations genuinely conservative. To facilitate this,
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Table 1. Suitability assessment of the investigated language composition techniques concerning di�erent modeling scenarios
(• = suitable, ⊙ = partially suitable, ◦ = not suitable)

Scenario / Use Case Inheritance Extension Embedding Aggregation

(S1)Modifying a language, tailoring it to a speci�c use case • ⊙ ◦ ◦

(S2) Extending a language to a use case while maintaining the
integrity of the original models

⊙ • ◦ ◦

(S3) Combining multiple language components into a model-
ing language

◦ ◦ • ◦

(S4) Combining modeling languages into a language family ◦ ◦ • •

(S5) Constructing huge languages with di�erent constituents ◦ ◦ • •

(S6) Constructing a language or language family with hetero-
geneous parts for interdisciplinary use

◦ ◦ ⊙ •

(S7)Modularization of model artifacts ◦ ◦ ◦ •

MontiCore provides a warning when this is not the case. As
these scenarios only relate to a single DSL, embedding or
aggregation are unsuitable.

For scenarios that involve employing multiple languages
or language components, single inheritance (and extension,
respectively) is not applicable. Evolving DSLs and tailor-
ing them towards more sophisticated applications usually
implies including various modeling techniques. Language
embedding combines the constituents of multiple languages
into a single one, connecting the di�erent constructs. This is
especially e�ective when the integrated DSLs share common
interfaces, enabling the automatic embedding with nearly
no glue code necessary. Thus, although requiring intricate
knowledge of the involved components, embedding can still
be facile when prepared well. For integrating (potentially
incomplete) language components (S3), e.g., MontiThings
comprising various literals, statements, and expressions, lan-
guage embedding is the only applicable technique. As ag-
gregation establishes a loose coupling only, this technique
does not complete the components into a fully functional
DSL. On the other hand, when integrating already functional
languages into a family (S4), both embedding and aggrega-
tion might be applicable. The choice mainly depends on the
respective modeling goal. An integrated view can be support-
ive in scenarios where the same domain experts create all
aspects of models (e.g., in the context language of assistive
systems). On the other hand, splitting dependent constructs
of a large language (S5) into separate artifacts (which is au-
tomatically achieved by language aggregation) supports the
organization and structuring of larger modeling projects.
While opting for language aggregation over embedding

can positively impact structuring, this e�ect becomes even
more apparent for interdisciplinary modeling teams working
together on a product (S6). Here, the composed yet separated
artifacts represent di�erent domain-speci�c views of the
system under development. This way, domain experts can
contribute without getting distracted by the information of
other modeling views. This observation results from both

case studies as they employ class diagrams as separated
artifacts for delivering type information. Finally, language
aggregation for modularizing modeling artifacts (S7) is, even
while not always necessary, a technique that language engi-
neers should consider to foster a suitable modeling project
structure and avoid model cluttering.
While all composition techniques are essential, the gen-

eral impression is that the more sophisticated a language
becomes, the more likely it is to apply a more elaborate ap-
proach. Therefore, minor DSL modi�cations usually employ
inheritance or extension and keep the scope within a single
domain or use case. Furthermore, reusing multiple concepts
requires embedding constituents of di�erent languages ap-
propriately. Reasons such as structuring logical units of big
models into artifacts or engineering whole language fam-
ilies incorporating multiple viewpoints of heterogeneous
domains, both following the notion of separation of con-
cerns, require language aggregation.
With this in mind, language aggregation is also the only

composition technique natively supporting multi-viewpoint
modeling. One of the main challenges in multi-viewpoint
modeling is maintaining consistency between the individual
views [11]. Aggregation automatically ful�lls this require-
ment as models are organized in di�erent artifacts. Thus,
each artifact represents a separate, integrated view of the
overall system automatically synchronized with other do-
main models’ elements.

As usual for experience reports, our observations are sub-
ject to threats of validity, especially concerning generalizabil-
ity. We have conducted our case studies in the technological
space of MontiCore and are therefore tied to its capabili-
ties and restrictions. However, we intentionally have cho-
sen this ecosystem as it is speci�cally tailored for language
composition, and the proposed composition techniques are
state-of-the-art. Additionally, the presented approaches can
conceptually, at least partially, be found in other frameworks
as well, such as MPS or Xtext. This mitigates the threat to
generalizability.
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6 Conclusion

In this paper, we studied the composition of heterogeneous
modeling languages which were originally developed inde-
pendently but yet address di�erent concerns in the same
domain. While our investigation shows that the composi-
tion of such languages is both sensible and feasible, we also
found that their composition requires di�erent techniques
whose application depends on a language’s use case in the
envisioned composition.
In total, we considered four composition techniques,

namely inheritance, extension, embedding, and aggregation,
and employed them to derive integrated, non-trivial
language families for two distinct case studies concerning
the engineering of cyber-physical systems for IoT and
assistive systems. As a result, these language families are
not only practically applicable for the integrated modeling
of di�erent viewpoints on systems of the mentioned kinds
but also enabled us to assess the suitability of the afore-
mentioned composition techniques. In this context, a major
�nding is that embedding and aggregation are indispensable
for the composition of modeling language families, and
even complement each other in a natural fashion. Finally,
language aggregation automatically supports establishing
di�erent viewpoints on the model level for interdisciplinary
modeling tasks, making it a considerable technique for
realizing multi-viewpoint modeling scenarios.
Further evolvement of the language families, e.g., to in-

clude DSLs for describing requirements or goals, and the
development of language families for other domains will
provide additional examples to evaluate the composition
techniques.
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