
Dependency Management in Smart Homes

Daniel Retkowitz and Sven Kulle

Department of Computer Science 3 (Software Engineering)
RWTH Aachen University

Ahornstr. 55, 52074 Aachen, Germany
retkowitz@i3.informatik.rwth-aachen.de
svekul@i3.informatik.rwth-aachen.de

Abstract. In future smart homes functionality will be provided to the
inhabitants by software services decoupled from the underlying hardware
devices. While this will enhance flexibility and will allow to provide
cross-functionalities across multiple devices it will also lead to resource
conflicts. Future devices will provide basic functionalities which are used
by separate higher level services. Each person will use a number of different
services and each environment can be inhabited by multiple users at the
same time. All respective services have to be executed based on a limited
number of devices, which will result in resource conflicts. In this paper we
describe how we extended our existing dependency management approach
for smart home services with a mechanism for monitoring service bindings
and handling access control based on priority groups.

1 Introduction

Today computing is associated with desktop or laptop computers. Research in
the field of ubiquitous computing aims at integrating small computing devices
into almost anything that surrounds us in our everyday life. While being unaware
of the individual devices, users will be supported in different ways by software
services running on such devices. Smart Homes, or eHomes as we call them,
are smart environments based on the ubiquitous computing paradigm especially
focusing on home environments, e. g. private residential buildings.

Component-based software engineering allows to reuse existing software easily
and facilitates dynamic composition. These characteristics are especially impor-
tant for eHome systems. To make low-cost eHomes available to a broad market,
ready-made components are used that are composed dynamically according to
the user’s needs and the current context. Typically an underlying middleware
infrastructure is used to support the development of service components. By
making use of middleware technology, the service development effort can be
greatly reduced as the developers can focus on the services’ application logic in-
stead of implementing infrastructure functionality, e. g. life cycle and dependency
management, time and again for each service. This way service development is
simplified and development costs are reduced. In addition, more consistency is
gained by moving cross-functionality to the middleware layer.

[RK09] D. Retkowitz, S. Kulle 
Dependency Management in Smart Homes 
In: Twittie Senivongse, Rui Oliveira (eds.): Distributed Applications and Interoperable Systems, 
9th IFIP WG 6.1 International Conference (DAIS 2009), Lisbon, Portugal, volume 5523 of LNCS, 
pages 143-156. Springer-Verlag, 2009 
www.se-rwth.de/publications 



The idea of ubiquitous computing implies a separation of application func-
tionality and the devices used for realizing this functionality. Todays consumer
electronics are typically based on a tight coupling of functionality and hardware.
Either the functionality is directly implemented in hardware or it is implemented
as an embedded system, i. e. a specific software hardware composition. Ubiquitous
computing will lead to more general purpose devices and less highly integrated
devices incorporating very specific functionalities. Thereby the direct relationship
between functionality and the corresponding hardware used for its realization will
disappear. While this will lead to positive effects in general, it will nevertheless
create problems with respect to resource usage. Each eHome user can use a
number of different services and different users can share the same environment
within an eHome. The numerous services on the one hand and the limited number
of hardware devices on the other hand will result in a disproportion. Therefore
services usually will have to share the resources available in the respective envi-
ronments. But in general not all resources may be used by multiple services at
the same time. If e. g. a speaker system is used by lots of services at the same
time, the user would only hear a chaotic noise. On the other hand, if one service
exclusively uses the speaker system for a longer period of time, all other services
depending on the speaker system will be blocked and can only proceed after the
speaker system is released. This may not be reasonable in many cases.

To prevent such situations of resource conflicts a dynamic dependency man-
agement and resource allocation mechanism is needed to find a feasible trade-off
between getting exclusive usage access to devices and sharing resources with
other services. In this paper we will present our approach to tackle this issue and
we will describe how we manage the service bindings at runtime with respect to
concurrent use of resources. This approach is based on a fine-grained notion of
bindings and corresponding usage relations, which enables interleaved resource
access. Furthermore our approach includes a priority management mechanism for
service bindings, which is used to solve resource conflicts by prioritizing certain
services over others. This is especially useful in case of security related services.

The paper is structured as follows. In Section 2 we describe previous work
in our project that is used as basis for the dynamic dependency management
introduced in this paper. The following Section 3 constitutes the main part
of the paper in which we describe the extensions we made regarding binding
types, priorities, and the application of both at system runtime. In Section 4 we
explain the mechanisms used to implement the extensions. Furthermore we give
an overview on some related work in Section 5. Finally, in Section 6, we conclude
the paper with a summary and an outlook.

2 eHome Systems

Inhabitants of future smart home environments will use services from different
domains as comfort, entertainment, communication, security, health care, or time
and energy saving. To facilitate services in these areas a powerful infrastructure
is needed to support development and later execution of services. Important



challenges we addressed in previous work are handling the dynamics that occur in
smart environments and enabling adaptivity and interoperability of heterogeneous
services. In the following we give a brief description of our project and the
underlying system architecture.

2.1 System Architecture

In our prototype realization, we use the OSGi Service Platform as a component-
based service architecture for the implementation of eHome services [1]. In OSGi
software components are called bundles which are deployed onto a service platform.
OSGi provides different capabilities needed to build and run a component-based
software system. Most importantly OSGi offers a concept for modularization,
which is only supported insufficiently in pure Java. Furthermore it offers life-cycle
management, allowing to add or remove bundles at system runtime. A service
registry allows to find and use registered services from other bundles.

While OSGi offers these important capabilities it provides only limited support
for a dynamic and context-aware dependency management, which is needed
for services in the area of smart environments. For eHomes we need a more
sophisticated model to handle special requirements like which service instance is
assigned to which room and how many devices of a certain type are available in
a room and are ready to use. Furthermore the user requirements change often
and the eHome system has to be reconfigured accordingly. These characteristic
requirements affect the configuration process of such systems.

Our system is based on a three-layered architecture of eHome services. The
upper layer consists of so-called top-level services. These are application services
that provide their functionality directly to the user. To provide this functionality
they typically rely on driver or integrating services. Driver services build up the
bottom layer. They provide access and control of available hardware devices in
the eHome. Integrating services are used in an optional intermediate layer which
allows to provide different steps of abstraction to connect top-level services to
driver services.

2.2 Dynamic Dependency Management

Any service which requires a certain functionality needs a corresponding service
providing that functionality. This relationship between services constitutes a
dependency. At runtime, when service instances are created, these dependencies
have to be fulfilled to allow the execution of the service instances. Dependencies
are fulfilled by creating a binding between service instances. We call this process
configuration. The purpose of the configuration process is to create a service com-
position that matches the user requirements and the available device environment
on the one hand and tries to meet all service dependencies if possible on the
other hand. The service specification affects the dependencies to other services.
For each dependency the composition behavior can be influenced by so-called
binding policies. These policies define whether a dependency is to be fulfilled
automatically or manually and whether to bind as many services as possible



or to bind only the minimum requirements. Furthermore, binding constraints
impose restrictions on the service matching and thereby imply more specific
service dependencies. Binding constraints are defined in the service specification
for each required functionality. This way dependencies that relate to the current
context of the environment can be realized.

We developed a prototype tool called eHome Tool Suite to support dynamic
dependency management of eHome services as described above. Besides an editor
for service specification the eHome Tool Suite also comprises a graphical editor
for managing the runtime phase of the eHome system. Runtime management is
implemented according to the so-called SCD Process [2] which consists of the three
phases specification, configuration, and deployment. The specification can be
modified by the user at any time using the graphical editor, e. g. moving services
from one location to another or by manually adjusting service bindings. Based
on this and the selected services’ specifications the configuration of the system is
generated or adjusted by the dependency management system described above.
Finally the (modified) system configuration is deployed to the OSGi runtime
environment in the deployment phase. This includes loading the corresponding
bundles, creating service instances, and setting the service references according
to the configured bindings. In contrast to other approaches aiming at a fully
automatic system management, we provide the eHome Tool Suite as a means
to visualize the current system state and to apply manual modifications to this
state. In our view such means will be essential in future eHome systems to keep
the users in control of their environments.

2.3 Example Scenario

In the rest of this section we will describe an example scenario to illustrate the
problems evolving from the disproportion of used services and available resources.

Peter lives in an eHome. Lately he purchased a new web-enabled speaker
system, which allows to play different audio streams from a network resource.
The speakers are placed in the different rooms of Peter’s apartment. His new
speaker system is used by several of his services, e. g. the alarm service connected
to an intrusion detection system, a music service, a wake-up service and a TV
service. All those services now depend on the speaker system.

Coming home from work, Peter’s personal music service starts to play his
favorite music. While walking through his apartment the music service is following
automatically to his current location. After a while Peter wants to watch the
news on TV. Because of the music service which has bound all speakers in the
living room, he has to reconfigure his eHome manually. Peter stops the music
service and disconnects the service from the speakers in the living room where
the TV is located. After that he connects the TV service to the speakers. While
he is reconfiguring the system, he remembers an appointment with his boss the
next morning. So, he also configures his wake-up service to wake him up at 6.00
am. After watching the news and a boring movie he falls asleep in the living
room. He sleeps well because the TV service went into standby automatically.
In the morning Peter wakes up at 6.30 am, fortunately not yet too late. But



he asks himself why he did not hear the wake-up call. The reason is that the
wake-up service could not use the speakers in the living room. The speakers are
still in use by the TV service and therefore it was not possible for the eHome
system to reconfigure them to be used by the wake-up service. This problem also
applies to the alarm service which should always have access to all speakers in
the environment to be able to raise an alarm in case an intrusion is detected.

This example scenario shows that there are a lot of standard services we
assume in future eHomes which make use of common resources. Even more
services have to be taken into account if several users live in an eHome together.
In our example the wake-up service should be able to use the speakers if the
TV is in standby. Besides that, the alarm service should be active at all times
without requiring a constant manual reconfiguration of the system. It should
even get access to resources that are currently used by other services due to the
high security relevance.

3 Dependency Management

As we have seen in Section 2 the eHome prototype deals with common dynamic
situations, like the dynamic reconfiguration of a user’s music service to adapt
to his movement. The reason for the occurrence of resource conflicts lies in the
limited number of available resources. At some point, required resources will
be unavailable which will lead to conflicts. But services do not need required
resources during their entire runtime. If services would share resources efficiently
during the time they are unused a lot of conflicts could be avoided. Based on this
idea we present a solution to address this problem in the following.

3.1 Different Binding Types

The service developer enriches each service with a specification consisting of
functional and non-functional meta-data, e. g. the service dependencies. This
information is required for the (re-)configuration of an eHome system. Figure 1
illustrates the specification and configuration of the music service scenario and a
wake-up service. On the left hand side the specification is shown. Both services
require the functionality Audio Output provided by the speaker driver service.
On the right hand side both services are installed in the living room. The music
service is not usable and marked as invalid due to unavailable speakers. On the
contrary the wake-up service is valid and can be used. Furthermore the wake-up
service can use the speakers and the corresponding bindings respectively at any
point in time until it gets undeployed. One resulting problem is the permanent
locking of the speakers even though the wake-up service uses them only for a few
minutes per day, e. g. in the morning when the user wants to be wakened. This
problem does not only apply to the wake-up service. Most services do not use
their assigned resources permanently. Nevertheless services cannot use resources
bound by other services whether they are actually in use at the moment or not.



Since this is not a preferable solution, we extended our existing dynamic
binding concept to allow a shared resource usage. Instead of only having bindings
reserving resources permanently, we suggest an additional type of bindings which
only locks a resource during the time it is actually using it. Bindings, allowing
the shared use of resources are called concurrent bindings while bindings, only
allowing the exclusive use of resources are called exclusive bindings. The extended
dynamic binding concept is based on three main ideas:

1. Every resource which is to be bound concurrently gets bound to the service for
shared resource access, no matter if it is already used by some other services.
This is a substantial difference to exclusive bindings because in that case
resources are only bound if the resource is still available. Depending on the
cardinality of a provided functionality, a service is no longer available if other
exclusively bound services already consume all the provided functionalities
or the resource is bound concurrently and is used at the moment.

2. At runtime each concurrent binding has to be monitored. Each provided
service functionality is limited in its availability, so resources cannot be used
through arbitrary many concurrent bindings. Therefore if a service actually
tries to use a concurrent binding the service framework must examine whether
it is currently available or not. The binding check is performed by a so-called
interceptor component.

3. Services trying to use a concurrently bound resource which is currently
unavailable get notified about the failed use attempt. The service is notified
again as soon as the resource becomes available again.

The three concepts mentioned above are implemented by the two newly introduced
binding types. Exclusive bindings grant an independent and permanent access to
the resource. But if no providing service is available no binding can be established.
In that case the corresponding service is invalid if the binding is not specified as
optional. In Figure 1 this applies to the music service which is invalid and cannot
be used. Concurrent bindings always can be established but are not permanently
usable, therefore each single attempt to use a concurrent binding is monitored
and can either proceed or fail.

As mentioned above concurrently bound resources are locked temporarily
depending on the actual use by other services. One important question is how to
determine the time frame a concurrent binding is used. An idea coming first to
mind is that the use of a binding begins with a call of a method and ends when
the execution of the method is finished. But regarding the music service as an
example, this would imply that after pressing the play button the bound speakers
become instantly available to other services. This is because the music service is
calling control operations on other services and resources. In case of the speaker
system the music service would pass certain parameters like the URL of a music
streaming resource. Most top-level services have a controlling character like the
music service. This means the actual playback of the music does not involve the
controlling service itself and the time period during which the binding is actually
used by a method call is very small. In most cases the resource is required for a



Specification Configuration

Music Service

Living Room

Wake-Up Service

Speaker 1

Music Service Wake-Up Service

Speaker Service

Audio
Output

requires 1..n requires 1..n

provides 1

Service, Device

Function

uses

Fig. 1. Exemplary specification and configuration of eHome services

much longer period of time. In case of the music service pushing the button is
only a point in time but playing the song is not.

To overcome these difficulties, the dynamic binding concept has been extended
to include a session concept. An active session indicates that the concurrent
binding is used and therefore the availability of the resource is limited for other
services. On the contrary, an inactive session indicates that the concurrent binding
is not used and therefore the resource is available to other services. In previous
work we introduced a concept allowing to map service functionalities onto a
domain-specific ontology to enable semantic matching and service adaptation
[3]. This concept is further used for semantical tagging of methods and in this
context we use it for begin session and end session annotations. This way the
service developer can express that with pressing the play button a session begins
and the speakers are used by the music service until the user presses the stop
button and the session ends. If the user pauses the music or changes the track
then the session status remains unchanged. This also means that a resource can
only be used if the session is already active or some method is called which starts
a session. If the user e. g. pushes the next track button while no music is played
there is no active session and nothing will happen.

Figure 2 shows a runtime configuration of three eHome services based on
the extended dynamic binding concept. For the time being all three services
have bound speakers and are therefore valid. The wake-up service is bound
concurrently to the third speaker and also uses this speaker at the moment.
All three speakers are bound to the music service but only speakers one and
two are used by the service since the third speaker is already occupied by the
wake-up service. The alarm service is also valid and has bound all speakers in the
environment. At the moment the service does not need the resources, therefore
the respective sessions are not active. However, with this concept problems may
still arise. Some types of services, e. g. affecting the users’ safety as the alarm



Music Service

Living Room

Wake-Up Service

Speaker 1 Speaker 2

Concurrent Binding, Active Session 

Concurrent Binding, Inactive Session

Speaker 3

Alarm Service

Service, Device

Fig. 2. Runtime configuration based on the extended dynamic binding concept

service in our example scenario, are not executable under certain circumstances.
Figure 2 shows a configuration where the alarm service could not access any
speaker at all which is not acceptable in an intrusion situation when the alarm
service needs to access the speakers to raise an alarm signal. Therefore we use a
simple but effective priority concept for concurrent bindings.

3.2 Priority Concept

The priority concept is based on a ranking of the installed eHome services. If
required this ranking can be used to determine which service is allowed to use a
shared resource. In Figure 2 the alarm service should have the highest priority
so that the service can use all the speakers if needed. It is not reasonable to
assign a priority number to each eHome service at development time. eHomes
are dynamic systems and at specification time it is not known which services are
installed later on that have to share common resources at runtime. Therefore no
ranking can be specified beforehand. Instead we have to regard the specification
of a function and the respective providing and requiring services in the service
setup of a specific eHome system. At runtime the user can create an individual
ranking and assign to each providing functionality of a service a corresponding
priority list consisting of the installed services requiring this specific functionality.
This is shown at the top of Figure 3. The leftmost service has the highest priority
and the rightmost service has the smallest one. For practical reasons the services
can be arranged in priority groups. Services within the same group also have the
same priority. This means it is not determined which service is of higher priority
and thus cannot withdraw resources from other services of the same group. If
a service cannot use a required resource the priority list can be revised, e. g. to
assign a higher priority group to this service. If a resource is withdrawn from a
service due to a higher priority of some other service then a notification about



Speaker Service

Music Service Wake-Up Service

Audio
Output

Cell Phone Service

Alarm Service TV Service

provides provides

requires

requiresrequires

requires

Music ServiceWake-Up ServiceAlarm Service TV Service

Group A Group B Group C

Fig. 3. Connection between services, functions, and priorities

the withdrawn resource is sent and the corresponding session is closed. When a
required resource becomes available again a waiting service is notified again to
be able to rebind the resource.

4 Implementation

This section briefly describes the implementation of the extended dynamic binding
concept. As mentioned before an interceptor component is used to monitor
concurrent bindings at runtime. This component consists of two parts: The first
part is responsible for detecting the actual use of a binding. The second part
deals with access control, session handling, and the priority management.

Resources get accessed through method calls, e. g. playMusic() for the
music service. After such a call is detected the eHome framework must decide
whether the method call should be allowed or rejected. As explained above the
use of a dynamic binding depends on the resource’s actual usability. This check
is related to the second part of the interceptor. According to the interceptor’s
result the method call can proceed or is rejected. In the second case, the service
needs to be notified about the invalid access to be able to react correctly. For
that purpose we use Java’s exception mechanism. Similar to other frameworks
like e. g. iPOJO [4] the eHome services mostly implement pure application logic.
In general the service developer does not need to know much about the eHome
framework to be able to develop services. In this case the developer must only
be aware of the fact that some binding may not be usable and an exception is
thrown. But this is a general requirement anyway in ubiquitous computing and
especially eHome systems. Due to the dynamics in such environments, required
resources may not be available or accessible at all times.

To monitor concurrent bindings we use aspect-oriented programming [5]. In our
case the aspect-oriented language AspectJ is used, which is a seamless extension
of the Java programming language. AspectJ enables a clean modularization



1 pointcut functionMethods(EhService usedSrv) : target(usedSrv)
&& call(public * ehome.interfaces.*.*(..));

2
3 Object around(EhService usedSrv) throws

BindingUnusableException : functionMethods(usedSrv) {
4 ...
5 String rString = interceptor.intercept(usingSrv, usedSrv,

methodSig, interfaceName);
6
7 if (...) { // if binding usage is allowed
8 ...
9 proceed(usedSrv);

10 }
11
12 int hashCode = Integer.valueOf((rString.split(";")[1]));
13 throw new BindingUnusableException(usingSrv.toString()+", "

+usedSrv.toString(), hashCode);
14 }

Listing 1.1. Aspect intercepting service communication

of cross-cutting concerns such as error checking, logging, monitoring etc. We
use especially the load-time weaving mechanism of AspectJ to implement the
interception mechanism. This feature enables code injection into bundles that
are already loaded and running.

In line 1 of Listing 1.1 the pointcut functionMethods is defined, which is
responsible for the method call detection. Each call of a method within the
ehome.interfaces package will be intercepted. These calls correspond to using
a service binding. Pointcuts only match specific points in the control flow of
a program, which are called join points. To actually inject code or implement
cross-cutting concerns an advice is used. If a join point is reached corresponding
advices are executed. AspectJ supports different kinds of advices. Line 3 shows an
around advice which interrupts execution at respective join points and executes
the advice instead of the original method call. The given parameter usedSrv is
the service which requests to use the binding. In line 5 the interceptor component
checks if the service usingSrv is allowed to use the binding. If access is granted,
line 9 redirects to the original method call. Otherwise the around advice throws
an exception in line 13 to notify the calling service about the invalid access.

The second part of the interceptor component is called from within the advice
discussed above and is modeled as a Fujaba story diagram. Fujaba is a UML-based
development tool which allows to generate Java code from UML diagrams [6].
Besides the data model so called story diagrams, which are a combination of
UML activity and collaboration diagrams, are used to model the application
logic. This way executable Java code can be directly generated from the model.
Since the whole story diagram modeling the interceptor component is quite



START

Concurrent
Binding?

Proceed STOP

Close
Session?

Binding
Usable?

Close Session

STOP

Active 
Session?

New Session STOP

Open
Session?

STOP

Priorities

Determine
Binding

Proceed

Proceed

no yes

no

yes

no

yes

yes yes

no

no

Fig. 4. Evaluation of intercepted service communication

complex, we will discuss a simplified view depicted in Figure 4. The interception
process consists of four important steps. First the binding in question must be
determined. The interception process only continues if the binding is a concurrent
one, otherwise it returns with proceed which means the original method call will
be executed by the around advice. The next steps depend on the state of the
session and the binding’s current usability. If the session is already established
(cf. diamond Active Session? ) then the method call is valid and can be allowed to
execute. But before that, the interceptor checks if the session is to be closed. Like
explained in Section 3 it is possible to semantically annotate methods with an
end session tag. This annotation is read by the interceptor. If a service requests
to use a resource and the session is not active then the interceptor must check
if a session is to be opened (cf. diamond Open Session? ). If this is not the
case the around advice rejects the method call. Otherwise a usability check is
performed (cf. diamond Binding Usable? ). The interceptor counts the active
sessions and exclusive bindings to determine if a binding can be used. If no more
active sessions are allowed, service priorities are taken into account to check if
some active session has to be withdrawn from a service with lower priority. If
the binding is still not usable the method call will be rejected. Otherwise a new
session is opened and the method call is executed.

5 Related Work

In service-oriented architectures, applications are composed from several ser-
vices which often appear or disappear dynamically. Dependency management is
therefore a key aspect and a lot of research is going on in this field.



A number of approaches are based on the OSGi Service Platform which
provides its own dependency management. Dependencies between bundles and
dependencies between services are handled differently in OSGi. The first ones are
package dependencies and are related to the OSGi module layer. The bundle de-
veloper specifies these dependencies in the bundle manifest. The OSGi framework
resolves these bundle dependencies and only if all constraints are satisfied the
bundle can be loaded. Service dependencies on the other hand are related to the
service layer. An OSGi service is a normal Java object registered at the service
registry under one or more Java interfaces. In general, a service can use the service
registry to search for required services registered by some other bundle. But this
type of dependency management does not support automatic resolution. Services
have to manage their dependencies themselves. A service developer always has to
bear in mind that a service may suddenly become unavailable. A popular method
to handle this situation is to use a service tracker. Such a service tracker provides
information on the current state of a required service.

Since release 4 of the OSGi Service Platform, the Declarative Services specifi-
cation is available which evolved from the ServiceBinder project [7]. It separates
two important responsibilities: Implementing the application logic on the one
hand and dependency management on the other hand. Declarative Services allow
service developers to focus on implementing application logic while dependency
management is outsourced into a special framework bundle. The information
needed for managing services is provided by a specification, stored in an XML
file inside the respective bundles. Similar to our approach bundles get enriched
with meta-data descriptors of their provided and required functionalities. Two of
the key features defining the runtime configuration are: cardinality and binding
policy. Cardinalities are used to express optionality or aggregation. The binding
policy can either be static or dynamic. Static bindings cannot change at runtime
which implies that the required instance is guaranteed to be present whereas
dynamic bindings imply that the required service can change or leave. In contrast
to that, our dependency management allows to bind services depending on the
current context, e. g. bind only services within the living room. Also the user has
to be in control of the binding process. Systems where users have no possibility
to intervene will not be accepted. Further on, OSGi does not provide a priority
concept, which is needed in the domain of eHomes as we have shown above.

In [4] Escoffier et al. propose a service-oriented component model to simplify
OSGi application development. Like with Declarative Services the application
logic is separated from the non-functional requirements. In iPOJO each service is
encapsulated inside a container, which is used to inject non-functional require-
ments to manage e. g. bindings to other services or the service lifecycle. Each
container is composed by handlers managing these non-functional requirements.
The dependency handler controls service discovery, service tracking, and service
bindings. If a required mandatory service becomes available, the appropriate
handler directly injects the needed objects. On the other hand if a mandatory
service disappears and the requirement cannot be resolved otherwise, the respec-
tive depending services become invalid. Since iPOJO employs a decentralized



composition approach, each container has its own dependency manager. Thus
no global view is available and features like our resource management based on
priority groups cannot be supported.

In [8] the authors describe an approach called COMITY for runtime conflict
detection in pervasive computing environments, which is based on the PCOM
component model. The presented approach analyzes the effects that pervasive
applications will take on the environments they are executed in and how this will
affect other applications and users. The proposed system consists of a conflict
manager component which is connected to a database that stores a context
model representing the current state of the environment. A second database
stores so-called conflict specifications which determine what kind of situations
are considered to be conflicting. Based on this the conflict manager can detect
conflicting situations at runtime. In contrast to our approach COMITY does
not primarily focus on conflicts regarding resource usage but rather on conflicts
resulting from different user interests, e. g. one user is having a conversation on
his cell phone while another user is listening to some music. We do not address
these conflicts as we believe they will require manual resolution by the users in
most real-life scenarios. For this reason we focus on concurrent use of resources.

In previous work at our department an approach to rule-based conflict detec-
tion has been developed [9]. The authors give a classification of conflict types
that are assumed to arise in pervasive environments. The conflict detection
mechanism assumes that each resource in the system is specified in form of an
ω-automaton describing its behavior. Furthermore only top-level services with a
rule-based implementation can be considered in this approach. Together with a
set of rules which formalize the different conflict types a monitor component can
detect conflicting situations at runtime. This approach is similar to COMITY
but it is based on a different infrastructure. It requires services to provide a
semantic specification describing their behavior and it forces top-level services
to be realized in a rule-based approach. In our approach we do not impose such
strong requirements on service development. We do not require a behavioral
service specification, instead only the session tags have to be applied during
service development. Besides that top-level services can be implemented in Java
without requiring further code modifications. This way service developers can
focus on the core task of implementing application logic.

6 Summary and Outlook

In this paper we described our approach to support dependency management
for eHome systems dealing specifically with the resource constraints arising in
ubiquitous computing scenarios. The general idea of our solution is to monitor
and manage service communication based on the current state of the system
configuration. All this is realized with minimal impact on the service implemen-
tation, so that the service development process is not affected unnecessarily. We
introduced a session concept based on tagging service methods. Together with
the interception of service communication this information is used to manage the



utilization of bindings at runtime. In addition to that we allow to define priority
groups at runtime to allow an automatic resolution of conflicts.

There are several issues which are to be addressed in future work. One question
is how to simplify the definition of priority groups to support automatic conflict
resolution. In real-world systems a simple but useful mechanism for solving
conflicts manually at runtime is needed. This might be necessary either because
the preset priority values are not sufficient to solve the conflict automatically or
because the conflict is not due to a resource conflict but results from interference
of service effects that cannot be handled automatically. At some point these
kind of conflicts will require user interaction. Thus there is need for easy to
manage tool support and an intuitive mechanism of interaction with the eHome.
Otherwise users will be annoyed by lots of requests from the system that make
everyday life rather complicated than more comfortable.

References

1. The OSGi Alliance: OSGi Service Platform Core Specification. http://www.osgi.
org/Specifications/HomePage\#Release4 (April 2007) Release 4.1.

2. Retkowitz, D., Stegelmann, M.: Dynamic Adaptability for Smart Environments.
In Meier, R., Terzis, S., eds.: Distributed Applications and Interoperable Systems,
8th IFIP WG 6.1 International Conference (DAIS 2008). Volume 5053 of LNCS.,
Springer (2008) 154–167

3. Retkowitz, D., Pienkos, M.: Ontology-based Configuration of Adaptive Smart Homes.
In Täıani, F., Cerqueira, R., eds.: Proceedings of the 7th Workshop on Reflective and
Adaptive Middleware (ARM’08) held at the 9th International Middleware Conference,
ACM (2008) 11–16

4. Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an Extensible Service-Oriented Com-
ponent Framework. IEEE International Conference on Services Computing (SCC
2007) (July 2007) 474–481

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: European Conference on Object-
Oriented Programming (ECOOP). Volume 1241 of LNCS., Springer (June 1997)

6. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In Engels, G., Rozenberg,
G., eds.: Proceedings of the 6th International Workshop on Theory and Application
of Graph Transformation (TAGT), Paderborn, Germany. LNCS, Springer (November
1998) 296–309

7. Cervantes, H., Hall, R.S.: Automating Service Dependency Management in a Service-
Oriented Component Model. In Crnkovic, I., Schmidt, H., Stafford, J., Wallnau,
K., eds.: Proceedings of the 6th ICSE Workshop on Component-Based Software
Engineering (CBSE6). (May 2003) 379–382

8. Tuttlies, V., Schiele, G., Becker, C.: COMITY – Conflict Avoidance in Pervasive
Computing Environments. In Meersman, R., Tari, Z., Herrero, P., eds.: Proceedings
of the 2nd International Workshop on Pervasive Systems (PerSys ’07). Volume 4806
of LNCS., Springer (2007) 763–772

9. Armac, I., Kirchhof, M., Manolescu, L.: Modeling and Analysis of Functionality in
eHome Systems: Dynamic Rule-based Conflict Detection. In: Proceedings of the 13th

Annual IEEE International Symposium and Workshop on Engineering of Computer
Based Systems (ECBS’06), Washington, DC, USA, IEEE (2006) 219–228




