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Complex systems are hard to define [1]. 

Nevertheless they are more and more frequently 

encountered. Examples include a worldwide airline 

traffic management system, a global telecommunication 

or energy infrastructure or even the whole legacy 

portfolio accumulated for more than thirty years in a 

large insurance company. There are currently few 

engineering methods and tools to deal with them in 

practice. The purpose of this Dagstuhl Perspectives 

Workshop on Model Engineering for Complex Systems 

was to study the applicability of Model Driven 

Engineering (MDE) to the development and 

management of complex systems. 

MDE is a software engineering field based on few 

simple and sound principles. Its power stems from the 

assumption of considering everything – engineering 

artefacts, manipulations of artefacts – as a model [3]. 

Our intuition was that MDE may provide the right level 

of abstraction to move the study of complex systems 

from an informal goal to more concrete grounds. In 

order to provide first evidence in support of this 

intuition, the workshop studied different visions and 

different approaches to the development and 

management of different kinds of complex systems.  

 

Challenges of Complex Systems 
 

There are a number of examples of complex 

biological, ecological or societal complex systems 

discussed in the literature [5]. In the context of this 

seminar, we were interested predominantly in 

Computer Based Complex Systems (CBCS), i.e. 

complex systems with a significant number of hardware 

or software components [16]. These parts may be 

processing elements (processors, programs, processes, 

etc.) or data elements (memory, disks, repositories, 

files, etc.) or any kind of composite elements (hardware 

and software). One of the most important 

characteristics of such a complex system is that it is 

composed of a very large number of individual parts. 

The interactions between these parts are not random 

and they follow specific patterns. Very often these 

relationships are informally characterized but in some 

occasions they may be explicitly represented. In either 

case they are quite important. By definition, a CBCS 

may not be understood by one unique human operator. 

On the contrary, many stakeholders will have different 

views on the system. These stakeholders may play 

different roles (architect, designer, implementer, 

maintainer, manager, user, etc.) 

A CBCS is constantly in evolution with a past 

history, a present, and a future. This evolution is the 

consequence of the various interactions between the 

parts of the system. The evolution is permanent, i.e. the 

CBCS usually never stops, even when some parts are 

added, removed exchanged or under maintenance or 

repair. 

A CBCS has a structure (or static architecture) and a 

dynamic behaviour. It is composed of elements that 

may themselves be CBCSs (with structure and 

behaviour) and no limit exists on this deep nesting. In 

addition to structure and behaviour, a CBCS also has a 

goal defining its purpose in the context in which it is 

operating. As previously stated, this also applies to any 

component of this system. Important information is 

also the metadata associated to any component, but the 

categories of metadata are quite diverse. 

Another dimension of a CBCS is engineering 

heterogeneity. Many components are hardware and 

software elements produced in the last fifty years, with 

different types of technologies. For example many 

different hardware technologies, programming 

languages, APIs, operating systems, database 

organizations, network protocols, standards, or 

normative specifications have been used. Furthermore 

there may be a penalty to the use of any technology. 

This is often called accidental complexity by Fred 

Brooks [4], and it adds an artificial portion to the 

essential complexity of the base problem. Managing 

the accidental complexity accumulated by many layers 

of technological legacy is an important challenge in the 

management of CBCSs. 

A CBCS is also often a distributed system, i.e. its 

elements are located on many widely dispersed 

physical locations.  

An additional property of CBCS is emergence. 

Emergence is the way complex systems and patterns 

arise out of a multiplicity of relatively simple 
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interactions. Emergence is central to the theories 

of integrative levels and of complex systems. 

Emergence particularly makes engineering CBCS 

challenging because the behaviour of the overall 

system is difficult, if not impossible to predict from the 

behaviour of the individual components and connectors 

that make it up. 

 

Requirements for Engineering of CBCS 
 

Overall, the workshop identified the following 

critical requirements for engineering of CBCS: 

• Dealing with Size: Since such systems are 

large, they should be constructed from multiple 

different viewpoints. There was much 

discussion at the workshop on the challenges of 

integrating and reconciling different views (and 

hence viewpoints) in the CBCS engineering 

process.  

• Dealing with Heterogeneity: An overall 

engineering technology has to bridge different 

technologies, even from different communities. 

A particular challenge that was noted at the 

workshop was the ability to be able to replace 

CBCS elements at run-time, i.e., as the CBCS 

was attempting to accomplish its goals. A novel 

flavour of this kind of run-time adaptation was 

the situation where the replacement is 

heterogeneous, i.e., where software needs to be 

replaced by hardware elements, and vice versa. 

• Dealing with Distribution: Many of the 

challenges associated with distribution are not 

new and restricted to CBCS or MDE, but are 

inherent issues. 

• Dealing with Dynamicity: Dynamicity 

combined with distribution poses particular 

challenges for development. There is the 

tension between dynamicity and criticality: it is 

inherently difficult to predict the behaviour of 

dynamic systems, yet predictability is essential 

in order to verify and validate a critical CBCS. 

There was some discussion on the use of 

contracts and lightweight static analysis for 

supporting critical CBCS development. 

• Dealing with Autonomy: CBCS exist that are 

constructed from autonomous individual 

components that are themselves capable of 

carrying out function and attempting to achieve 

goals. As discussed at the workshop, modeling 

may be well suited to building individual 

components that behave in a predictable way, 

but at the moment it is not clear how to 

integrate autonomous components using 

modeling in a disciplined and predictable way, 

so as to achieve system level goals. That being 

said, it was noted that this was not a specific 

difficulty with modeling: rather, it was one of 

the major challenges in building CBCS. 

 

Model Driven Engineering (MDE) 
 

MDE considers models as first class citizens. A 

model is a representation of a system (relation repOf in 

Figure 1) and the nature of the model is defined by its 

metamodel. We say that a model conforms to its 

metamodel (relation c2 in  Figure 1)..  

 

 
Figure 1. The two basic relationships of MDE 

 

MDE is mainly built on top of these two basic 

relations of representation and conformance, like 

object technology was mainly based on the relations of 

instantiation and class inheritance. MDE may be 

implemented with the help of object technology (or any 

other like functional). However the basic paradigms of 

MDE are inherently different from those of object 

technology. 

Any system can be represented by a model. Then, 

we are able to give a homogeneous representation of a 

heterogeneous situation or phenomenon. 

Metamodels are used as filters to define matter of 

interest in the system (viewpoints). Used as a typing 

system, they provide precise semantics to artefacts and 

relations between these artefacts. This homogeneity of 

definition of metamodels and models give us the power 

to apply operations on them in a generic way. Model-

to-model transformations encode those operations. 

A system can be “filtered” by more than one 

metamodel. As a complex system can not be 

understood and managed from one single point of view, 

being able to have different representations of this 

system is of great interest. For instance, we can imagine 

having a model of the static structure of a software 

application and a model of its execution trace (method 

calls, etc.) Moreover, as those representations are of 

the same system, they bear some relations (weaving 

models).  
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MDE provides some principles and tools to manage 

complex systems. But it is not sufficient by itself. The 

distribution and the handling of numerous artefacts, 

representation of complex systems as composition of 

artefacts that may be complex themselves are not 

addressed directly by MDE.  

 

Applying MDE to CBCS 
 

Managing a CBCS means observing, understanding, 

and controlling it. However management may imply 

additional operations like designing it, constructing it, 

measuring it, managing it, maintaining it, and many 

more. So, which support can MDE bring to all these 

operations on CBCS? 

Learning from specific communities. Many 

participants noted that some of the challenges noted 

were inherent to system engineering in general 

(particularly issues of size and distribution, and to a 

lesser extent heterogeneity). They pointed out to 

investigate specific solutions to challenges of 

heterogeneity and dynamicity from other communities. 

For example, it was noted that the database community 

had well-defined principles and practices for handling 

heterogeneity in both databases and database 

management technology and that – at least 

conceptually – some of these ideas could be usefully 

applied to CBCS and integrated into state-of-the-art 

MDE technology as well. The debate on this issue 

seemed to focus on whether the MDE community 

understood how to efficiently model behaviour and 

semantics in a way that allowed their tooling to 

continue to be used. 

Modeling autonomy. A number of participants noted 

that one rich area for consideration in MDE for CBCS 

was in dealing with autonomous systems [11], [9]. 

Such systems – which may be self configuring, self 

healing, self optimizing – could apparently be at least 

partly addressed by current MDE techniques, but new 

ideas from the run-time systems management 

community (particularly for specifying “safe” or 

“acceptable” reconfigurations) were needed. On the 

other hand, several participants from the more 

traditional complex systems community noted that 

some of these kinds of systems were inherently 

challenging, if not impossible, to manage – e.g., bio-

inspired systems – and that hoping to capture all the 

parameters of a “safe” or “acceptable” reconfiguration 

would be exceptionally difficult. One proposal for 

dealing with this was to exploit simulation technology 

– something that MDE can be used to support – to help 

to predict different possible reconfigurations that might 

arise, and to use simulation data to help manage, 

control, or at least direct the path of reconfiguration. 

This appears to be a challenging, yet likely fruitful 

direction of future research. 

Bridging heterogeneous modelling spaces. At 

present, MDE in a modelling space is based on a 

specific, single metalanguage. Modeling complex 

systems with MDE, however, must deal with many 

different modeling spaces, also from different 

engineering sciences. That implies that an MDE for 

CBCS needs to bridge the gap between metalanguages, 

modelling approaches, and even modelling 

communities. 

Industrial needs. There was also discussion on 

industrial needs for MDE and CBCS. Participants 

discussed the benefits from having process support for 

MDE of CBCS (i.e., to support documenting and 

describing the engineering lifecycle), as well as 

challenges in integrating with legacy components and 

sub-systems. Technology for model understanding (or 

model "grokking") was presented that may help with 

this. Finally, the challenges of verification and 

validation of CBCS on an industrial scale were 

summarized and led to much debate that linked in to 

earlier discussions at the workshop on viewpoints and 

view integration [15,17]. The feeling was that 

individual verification technology (such as model 

checking, static analysis, or theorem proving) was 

insufficient and that integrated tool chains and 

workbenches for MDE were needed. Several examples 

of applying MDE to CBCS were discussed like 

megamodeling [2], [6], global traceability [8], model 

weaving [12], model merging [13], action semantics 

[14], etc. 

 

Conclusion 
 

The workshop has led to increased understanding of 

the fundamental characteristics of complex systems, the 

challenges of engineering them, the features for doing 

this that are currently offered by MDE, and several 

interesting future directions for research in MDE. 

Many participants noted that some of the challenges 

that were discussed had nothing to do with CBCS and 

MDE, but were simply challenges of building modern 

large-scale systems. However, it was acknowledged 

that MDE solutions for complex systems needed to 

address these challenges as well. 

 

This workshop initiated through efforts in the 

ModelPlex European Integrated project (2006-2009). 

You can find more information about the Perspectives 

Workshop at http://www.dagstuhl.de/08331. The full 



manifesto can be obtained at 

http://drops.dagstuhl.de/portals/08331.    
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