
Model Engineering for Complex Systems

Jean Bézivin, Richard F. Paige, Uwe Aβmann, Bernhard Rumpe, Doug Schmidt

Complex systems are hard to define [1].

Nevertheless they are more and more frequently

encountered. Examples include a worldwide airline

traffic management system, a global telecommunication

or energy infrastructure or even the whole legacy

portfolio accumulated for more than thirty years in a

large insurance company. There are currently few

engineering methods and tools to deal with them in

practice. The purpose of this Dagstuhl Perspectives

Workshop on Model Engineering for Complex Systems

was to study the applicability of Model Driven

Engineering (MDE) to the development and

management of complex systems.

MDE is a software engineering field based on few

simple and sound principles. Its power stems from the

assumption of considering everything – engineering

artefacts, manipulations of artefacts – as a model [3].

Our intuition was that MDE may provide the right level

of abstraction to move the study of complex systems

from an informal goal to more concrete grounds. In

order to provide first evidence in support of this

intuition, the workshop studied different visions and

different approaches to the development and

management of different kinds of complex systems.

Challenges of Complex Systems

There are a number of examples of complex

biological, ecological or societal complex systems

discussed in the literature [5]. In the context of this

seminar, we were interested predominantly in

Computer Based Complex Systems (CBCS), i.e.

complex systems with a significant number of hardware

or software components [16]. These parts may be

processing elements (processors, programs, processes,

etc.) or data elements (memory, disks, repositories,

files, etc.) or any kind of composite elements (hardware

and software). One of the most important

characteristics of such a complex system is that it is

composed of a very large number of individual parts.

The interactions between these parts are not random

and they follow specific patterns. Very often these

relationships are informally characterized but in some

occasions they may be explicitly represented. In either

case they are quite important. By definition, a CBCS

may not be understood by one unique human operator.

On the contrary, many stakeholders will have different

views on the system. These stakeholders may play

different roles (architect, designer, implementer,

maintainer, manager, user, etc.)

A CBCS is constantly in evolution with a past

history, a present, and a future. This evolution is the

consequence of the various interactions between the

parts of the system. The evolution is permanent, i.e. the

CBCS usually never stops, even when some parts are

added, removed exchanged or under maintenance or

repair.

A CBCS has a structure (or static architecture) and a

dynamic behaviour. It is composed of elements that

may themselves be CBCSs (with structure and

behaviour) and no limit exists on this deep nesting. In

addition to structure and behaviour, a CBCS also has a

goal defining its purpose in the context in which it is

operating. As previously stated, this also applies to any

component of this system. Important information is

also the metadata associated to any component, but the

categories of metadata are quite diverse.

Another dimension of a CBCS is engineering

heterogeneity. Many components are hardware and

software elements produced in the last fifty years, with

different types of technologies. For example many

different hardware technologies, programming

languages, APIs, operating systems, database

organizations, network protocols, standards, or

normative specifications have been used. Furthermore

there may be a penalty to the use of any technology.

This is often called accidental complexity by Fred

Brooks [4], and it adds an artificial portion to the

essential complexity of the base problem. Managing

the accidental complexity accumulated by many layers

of technological legacy is an important challenge in the

management of CBCSs.

A CBCS is also often a distributed system, i.e. its

elements are located on many widely dispersed

physical locations.

An additional property of CBCS is emergence.

Emergence is the way complex systems and patterns

arise out of a multiplicity of relatively simple

[BPA+09] J. Bézivin, R. Paige, U. Aßmann, B. Rumpe, D. C. Schmidt
Dagstuhl Manifesto on Model Engineering for Complex Systems.
In: Informatik Spektrum. Band 31 (5), pg. 420-423, Springer Verlag Berlin, Okt. 2009
www.se-rwth.de/publications

interactions. Emergence is central to the theories

of integrative levels and of complex systems.

Emergence particularly makes engineering CBCS

challenging because the behaviour of the overall

system is difficult, if not impossible to predict from the

behaviour of the individual components and connectors

that make it up.

Requirements for Engineering of CBCS

Overall, the workshop identified the following

critical requirements for engineering of CBCS:

• Dealing with Size: Since such systems are

large, they should be constructed from multiple

different viewpoints. There was much

discussion at the workshop on the challenges of

integrating and reconciling different views (and

hence viewpoints) in the CBCS engineering

process.

• Dealing with Heterogeneity: An overall

engineering technology has to bridge different

technologies, even from different communities.

A particular challenge that was noted at the

workshop was the ability to be able to replace

CBCS elements at run-time, i.e., as the CBCS

was attempting to accomplish its goals. A novel

flavour of this kind of run-time adaptation was

the situation where the replacement is

heterogeneous, i.e., where software needs to be

replaced by hardware elements, and vice versa.

• Dealing with Distribution: Many of the

challenges associated with distribution are not

new and restricted to CBCS or MDE, but are

inherent issues.

• Dealing with Dynamicity: Dynamicity

combined with distribution poses particular

challenges for development. There is the

tension between dynamicity and criticality: it is

inherently difficult to predict the behaviour of

dynamic systems, yet predictability is essential

in order to verify and validate a critical CBCS.

There was some discussion on the use of

contracts and lightweight static analysis for

supporting critical CBCS development.

• Dealing with Autonomy: CBCS exist that are

constructed from autonomous individual

components that are themselves capable of

carrying out function and attempting to achieve

goals. As discussed at the workshop, modeling

may be well suited to building individual

components that behave in a predictable way,

but at the moment it is not clear how to

integrate autonomous components using

modeling in a disciplined and predictable way,

so as to achieve system level goals. That being

said, it was noted that this was not a specific

difficulty with modeling: rather, it was one of

the major challenges in building CBCS.

Model Driven Engineering (MDE)

MDE considers models as first class citizens. A

model is a representation of a system (relation repOf in

Figure 1) and the nature of the model is defined by its

metamodel. We say that a model conforms to its

metamodel (relation c2 in Figure 1)..

Figure 1. The two basic relationships of MDE

MDE is mainly built on top of these two basic

relations of representation and conformance, like

object technology was mainly based on the relations of

instantiation and class inheritance. MDE may be

implemented with the help of object technology (or any

other like functional). However the basic paradigms of

MDE are inherently different from those of object

technology.

Any system can be represented by a model. Then,

we are able to give a homogeneous representation of a

heterogeneous situation or phenomenon.

Metamodels are used as filters to define matter of

interest in the system (viewpoints). Used as a typing

system, they provide precise semantics to artefacts and

relations between these artefacts. This homogeneity of

definition of metamodels and models give us the power

to apply operations on them in a generic way. Model-

to-model transformations encode those operations.

A system can be “filtered” by more than one

metamodel. As a complex system can not be

understood and managed from one single point of view,

being able to have different representations of this

system is of great interest. For instance, we can imagine

having a model of the static structure of a software

application and a model of its execution trace (method

calls, etc.) Moreover, as those representations are of

the same system, they bear some relations (weaving

models).

S

repOff

M

MM

c2

MDE provides some principles and tools to manage

complex systems. But it is not sufficient by itself. The

distribution and the handling of numerous artefacts,

representation of complex systems as composition of

artefacts that may be complex themselves are not

addressed directly by MDE.

Applying MDE to CBCS

Managing a CBCS means observing, understanding,

and controlling it. However management may imply

additional operations like designing it, constructing it,

measuring it, managing it, maintaining it, and many

more. So, which support can MDE bring to all these

operations on CBCS?

Learning from specific communities. Many

participants noted that some of the challenges noted

were inherent to system engineering in general

(particularly issues of size and distribution, and to a

lesser extent heterogeneity). They pointed out to

investigate specific solutions to challenges of

heterogeneity and dynamicity from other communities.

For example, it was noted that the database community

had well-defined principles and practices for handling

heterogeneity in both databases and database

management technology and that – at least

conceptually – some of these ideas could be usefully

applied to CBCS and integrated into state-of-the-art

MDE technology as well. The debate on this issue

seemed to focus on whether the MDE community

understood how to efficiently model behaviour and

semantics in a way that allowed their tooling to

continue to be used.

Modeling autonomy. A number of participants noted

that one rich area for consideration in MDE for CBCS

was in dealing with autonomous systems [11], [9].

Such systems – which may be self configuring, self

healing, self optimizing – could apparently be at least

partly addressed by current MDE techniques, but new

ideas from the run-time systems management

community (particularly for specifying “safe” or

“acceptable” reconfigurations) were needed. On the

other hand, several participants from the more

traditional complex systems community noted that

some of these kinds of systems were inherently

challenging, if not impossible, to manage – e.g., bio-

inspired systems – and that hoping to capture all the

parameters of a “safe” or “acceptable” reconfiguration

would be exceptionally difficult. One proposal for

dealing with this was to exploit simulation technology

– something that MDE can be used to support – to help

to predict different possible reconfigurations that might

arise, and to use simulation data to help manage,

control, or at least direct the path of reconfiguration.

This appears to be a challenging, yet likely fruitful

direction of future research.

Bridging heterogeneous modelling spaces. At

present, MDE in a modelling space is based on a

specific, single metalanguage. Modeling complex

systems with MDE, however, must deal with many

different modeling spaces, also from different

engineering sciences. That implies that an MDE for

CBCS needs to bridge the gap between metalanguages,

modelling approaches, and even modelling

communities.

Industrial needs. There was also discussion on

industrial needs for MDE and CBCS. Participants

discussed the benefits from having process support for

MDE of CBCS (i.e., to support documenting and

describing the engineering lifecycle), as well as

challenges in integrating with legacy components and

sub-systems. Technology for model understanding (or

model "grokking") was presented that may help with

this. Finally, the challenges of verification and

validation of CBCS on an industrial scale were

summarized and led to much debate that linked in to

earlier discussions at the workshop on viewpoints and

view integration [15,17]. The feeling was that

individual verification technology (such as model

checking, static analysis, or theorem proving) was

insufficient and that integrated tool chains and

workbenches for MDE were needed. Several examples

of applying MDE to CBCS were discussed like

megamodeling [2], [6], global traceability [8], model

weaving [12], model merging [13], action semantics

[14], etc.

Conclusion

The workshop has led to increased understanding of

the fundamental characteristics of complex systems, the

challenges of engineering them, the features for doing

this that are currently offered by MDE, and several

interesting future directions for research in MDE.

Many participants noted that some of the challenges

that were discussed had nothing to do with CBCS and

MDE, but were simply challenges of building modern

large-scale systems. However, it was acknowledged

that MDE solutions for complex systems needed to

address these challenges as well.

This workshop initiated through efforts in the

ModelPlex European Integrated project (2006-2009).

You can find more information about the Perspectives

Workshop at http://www.dagstuhl.de/08331. The full

manifesto can be obtained at

http://drops.dagstuhl.de/portals/08331.

References

[1] Mikaël Barbero, Frédéric Jouault, Jean Bézivin: Model

Driven Management of Complex Systems: Implementing

the Macroscope’s Vision. Pp.277-286, 15th Annual IEEE

International Conference and Workshop on Engineering of

Computer Based Systems (ECBS 2008), 31 March - 4

April 2008, Belfast, Northern Ireland. IEEE Computer

Society 2008.

[2] Jean Bézivin, Frédéric Jouault, F, Patrick Valduriez: On

the Need for Megamodels. In: Proceedings of the

OOPSLA/GPCE: Best Practices for Model-Driven

Software Development workshop, 19th Annual ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications. 2004.

[3] Jean Bézivin: On the Unification Power of Models.

Software and System Modeling (SoSym) 4(2):171—188.

2005.

[4] Frederick P. Brooks: No Silver Bullet: Essence and

Accidents of Software Engineering. 1987.

[5] Joel De Rosnay: The macroscope, Harper & Row, New

York, 1979.

[6] Rick Salay et al: An Eclipse-Based Tool Framework for

Software Model Management, Eclipse Technology

Exchange Workshop at OOPSLA 2007, Montreal,

October 2008.

[7] Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack:

Detecting and Repairing Inconsistencies across

Heterogeneous Models. ICST 2008: 356-364.

[8] Alek Radjenovic, Richard F. Paige: The Role of

Dependency Links in Ensuring Architectural View

Consistency. WICSA 2008: 199-208.

[9] Régine Laleau, Fiona Polack: Using formal metamodels

to check consistency of functional views in information

systems specification. Information & Software

Technology 50(7-8): 797-814 (2008)

[10] Richard F. Paige, Phillip J. Brooke, Jonathan S. Ostroff:

Metamodel-based model conformance and multiview

consistency checking. ACM Trans. Softw. Eng. Methodol.

16(3): (2007).

[11] Andrew Weeks, Susan Stepney, Fiona Polack: Neutral

Emergence and Coarse Graining. ECAL 2007: 1131-1140.

[12] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del

Fabro, Marie-Pierre Gervais, Frédéric Jouault, Dimitrios

S. Kolovos, Ivan Kurtev, Richard F. Paige: A Canonical

Scheme for Model Composition. ECMDA-FA 2006: 346-

360.

[13] Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack:

Merging Models with the Epsilon Merging Language

(EML). MoDELS 2006: 215-229

[14] Richard F. Paige, Dimitrios S. Kolovos, Fiona Polack:

An action semantics for MOF 2.0. SAC 2006: 1304-1305.

[15] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, S.

Völkel: An Algebraic View on the Semantics of model

Composition. ECMDA-FA 2007, LNCS 4530: 99-113

[16] R. France, B. Rumpe: Model-Driven Development of

Complex Software: A Research Roadmap. Future of

Software Engineering 2007 at ICSE: 37-54, IEEE, May

2007.

[17] D. Harel, B. Rumpe: Meaningful Modeling: What's the

Semantics of "Semantics"? IEEE Computer: 37(10):64-

72, October 2004.

