
324 Int. J. Business Process Integration and Management, Vol. 5, No. 4, 2011

Copyright © 2011 Inderscience Enterprises Ltd.

DYPROTO – tools for dynamic business processes

René Wörzberger* and Thomas Heer
Informatics 3 – Software Engineering,
RWTH Aachen University,
Ahornstraße 55, D-52074 Aachen, Germany
E-mail: woerzberger@i3.informatik.rwth-aachen.de
E-mail: heer@i3.informatik.rwth-aachen.de
*Corresponding author

Abstract: In this article, we present research results about tools for supporting dynamic business
processes. This research work has been conducted in a three-year cooperation between our
department and an IT service provider for insurance companies. Our partner’s process
management system (PMS) is rather aligned with static processes, whose structure is not changed
at process run time. Therefore, we contribute an approach for obtaining dynamic process
execution support based on this static PMS by automatically augmenting existent WS-BPEL
process definitions and run time data. Dynamically changeable processes are presented to process
participants as graphical models by a process model editor. This editor aids process participants
with performing dynamic changes in as much as it is aware of explicit and implicit technical and
professional process knowledge and detects violations against this knowledge in dynamically
changed process instance models. We delineate how explicit process knowledge can be
graphically modelled and exploited in automatic checks using OCL-constrained and integrated
meta-models. Checks versus explicit knowledge are complemented by checks versus implicit
knowledge which is contained in other process definition and process instance models. These
checks include process similarity computations based on graph grammar formalisms and tools.

Keywords: dynamic business processes; tools; WS-BPEL; dynamics; graphical modelling;
process knowledge; object constraint language; OCL; meta-models; graph grammars; process
similarity.

Reference to this paper should be made as follows: Wörzberger, R. and Heer, T. (2011)
‘DYPROTO – tools for dynamic business processes’, Int. J. Business Process Integration and
Management, Vol. 5, No. 4, pp.324–343.

Biographical notes: René Wörzberger received his Doctoral degree in Informatics from RWTH
Aachen University in 2010. He took part in a three-year research cooperation between his
department and Generali Deutschland Informatik Services GmbH funded by the Deutsche
Forschungsgemeinschaft (DFG). His research focuses on tool support for dynamic business
processes. He particularly takes existing commercial PMS into account as well as manifold
constraints on process models.

Thomas Heer received his Diploma in Informatics from RWTH Aachen University in 2006.
Since then, he is a doctoral candidate and partakes in a three-year research cooperation
between his department and Comos Industry Solutions©, also funded by the Deutsche
Forschungsgemeinschaft (DFG). His research is in tool support for dynamic development
processes. Time and cost measurement as well as rights management for dynamic processes and
integration of heterogeneous PMSs are among his research interests.

1 Introduction

Work processes tend to be unpredictable. In the following,
we stress this property by naming these processes dynamic
processes. Dynamics can be found in nearly all processes,
e.g., highly creative development processes but also
business processes. These processes touch the interest of
many stakeholders and are at the same time prone to error
due to their inherent complexity.

However, there is no common solution that provides
best tool support for all scenarios of dynamics in processes.
Even worse, many state of the art tools are rather agnostic of

dynamics in processes or just provide little means to
suitably support these processes (Weber et al., 2008). For
this reason, there are many research projects in this area.

1.1 Preceding works

Our group deals with tool support for dynamic processes for
about 15 years. In the past, we mainly focused on dynamic
development processes, particularly in the domain of
mechanical engineering (Eversheim et al., 1997) and
chemical engineering (Nagl and Marquardt, 2008) and
developed an adaptable and human-centred environment for

[WH11] R. Wörzberger, T. Heer
DYPROTO – tools for dynamic business processes
In: International Journal of Business Process Integration and Management,
Vol. 5, No. 4, pp. 324-343. 2011.
www.se-rwth.de/publications

 DYPROTO – tools for dynamic business processes 325

the management of design processes (AHEAD) (Heller et
al., 2008). AHEAD particularly provides functionality to
cope with evolving and distributed development processes.

Though AHEAD is a working prototype, its dependency
on diverse academic frameworks and run time environments
impedes its application in industry. Moreover, AHEAD
concentrates on the management of human-centred
processes. With AHEAD, it is neither possible to execute
automated process parts, e.g., activities which are executed
automatically by some software system nor does AHEAD
fit well into an existing process management tool
infrastructure due to its incompliance to existing technical
and process management standards.

1.2 Transfer to industry

In the past three years, we transferred concepts of AHEAD
into industry. This transfer is two-fold: first, we realised
the process management environment for engineering
design processes (PROCEED) system, which constitutes
an additional layer on top of the commercial chemical
engineering tool ComosTM (Heer et al., 2008).

Second and subject of this article, we have built a tool
suite for dynamic business processes name DYPROTO on
top of the commercial process run time environment WPS
(IBM WebSphere Process Server v6.1). In the DYPROTO
project, we cooperate with Generali Deutschland Informatik
Services GmbH (GDIS), an information technology service
provider for the Generali insurance group. Hence, in the
DYPROTO project, we shift our focus from development
processes to business process in the insurance domain.

1.3 New challenges

In the DYPROTO project, we faced several challenges
which are thrilling from a research perspective. Three of
these challenges are dealt with in Sections 2 to 4, which are
positioned and related to each other as shown in Figure 1.

First, WPS is a main building block in solutions of
GDIS. Thus, DYPROTO had to be integrated with the
WS-BPEL-engine WPS. There are numerous academic and
some commercial process management system (PMS),
which support dynamics changes to running processes to
various degrees (Weber et al., 2008). Anyway, replacing the
rather ‘static’ WPS by one of these is not an option for our
partner due to the investments in WPS-based solutions
which have already been made. So, we had to retrofit WPS
with capabilities for dynamic changes.

In order to conduct dynamic changes, process
participants need to know the entire process structure. Thus,
the respective process instance models, i.e., models of
running processes have to be presented in an editable and
graphical form. The same holds true for process models on
higher layers of abstraction, e.g., process definition models,
which precisely describe a certain process type, but also for
process knowledge models which cover explicit knowledge
about processes in a certain domain, e.g., the insurance
domain. Thus, DYPROTO comprises a process model
editor (PME), which can display process models of various

kinds and supports the editing of these models. Furthermore,
the dynamics layer enables dynamic changes but does
not provide any means to preserve constraints, which are
imposed on process models. Therefore, the PME provides
constraint checking functionality.

Figure 1 Challenges and paper structure

We distinguish between the following constraints kinds
which are supported by the PME:
• Correctness constraints stem from technical necessities

formulated in explicit rules. Many of these are
well-known from compiler theory but also apply for
process models, e.g., process variables have to be
written (initialised) before being read. In the worst
case, violations to correctness constraints lead to
uncontrolled termination of the respective process
instance.

• Compliance constraints are defined by process
knowledge models which specify explicit professional
and domain specific process knowledge to which other
process models must adhere. For example, process
knowledge models might require that certain process
activities depend on each other and require a certain
precedence regarding their execution order.

• Consistency refers to potential contradictions between
process models. One can compare a process model
to other similar process models in order to reveal
inconsistencies, i.e., differences, between them with
respect to the occurrences of certain activities and their
execution order. Hence, consistency checks use implicit
knowledge in other process models.

In this article, we contribute diverse novel and
prototypically implemented approaches which deal with the
challenges mentioned above. The main concepts are not just
valid in our specific project context but applicable for
similar problems. We do not provide yet another paradigm

326 R. Wörzberger and T. Heer

or formalism along with a prototype built from scratch that
particularly capture dynamic process changes at process run
time. Instead, in Section 2, we delineate how to overcome
the insufficient flexibility of WPS by an additional
dynamics layer that extends the unmodified WPS. Section 3
describes how both correctness and compliance checks
are uniformly realised via an integrative meta-modelling
approach. In Section 4, we describe how consistency checks
are formalised and computed based on implicit knowledge
which is mined by exertion of graph grammars.

Each of the main Sections 2 to 4 is ended with a
discussion and a comparison to related works. A conclusion
is given in Section 5.

2 Flexibility for existing systems

Whenever we talk about processes, we bear in mind some
complex material or immaterial system which is changed in
a certain way while time passes. This holds true, e.g., for
operating system processes which alter data but also for
work processes. For instance, in the insurance domain
processes for issuing or renewing policies change legal
states between the insurance company and the respective
policy holders. Supporting work processes by PMS requires
formal process models, which particularly describe the steps
(activities) that have to be carried out during the respective
processes and their sequencing.

In order to be supported by a PMS, a process of a certain
type (e.g., settlement of a claim due to rapture of a supply
water pipe) has to be modelled in a business process
modelling language of an appropriate precision. Such a
model is usually called process definition (model). For
every process case of the respective type a PMS holds
process case specific data called process instance, which
refers to a particular process definition. Basically, a process
instance contains the execution state of activities as well as
process data produced or consumed by the activities.

Figure 2 depicts a simplified process definition of a
claim settlement process in an insurance company. This
process model serves as a running example throughout this
article. In the figure, we use a graphical notation for
the underlying process definition language WS-BPEL. We
refrained from using BPMN as graphical notation due
to existing mismatches between BPMN and WS-BPEL
(Recker and Mendling, 2006). Instead, our notation is
aligned with the commercial WS-BPEL editor IBM
WebSphere Integration Developer (WID) v6.1TM and
directly reflects the block-structure of WS-BPEL process
definitions. Receive and reply activities mark the start and
end of the process, respectively. The process consists of
three phases: in the preparation phase, initial checks are
conducted, which verify if the claim is actually covered by
some contract between the policy holder and the insurance
company and whether the policy holder has fallen behind in
payment. These checks are done automatically () but
might yield an ambiguous result. In this case, they are also
done manually () by some insurance clerk. Since the

activities are placed into a Flow-activity (big box) they can
be executed in parallel. Yet, manual activities are executed
after automatic ones which are defined using Links (arrows
between activities). In the handling phase, documents that
back the claim are checked for completeness and demanded
in addition if necessary. The boxes headed with a
represent Switch-activities, i.e., demand documents is
executed if and only if activity documents complete yields
no. If the situation is not clear on the basis of the
documents, an external appraiser is commissioned, who
returns an expertise, which must be incorporated into the
internal process. If it turns out in the disbursement phase
that the claim is eligible, the insurance company disburses
the compensation. In any case, the policy holder is notified
at the process’ end.

Figure 2 Simplified model of an insurance process (see online
version for colours)

 DYPROTO – tools for dynamic business processes 327

2.1 Dynamics and flexibility

Dynamics in processes can only be met in process
management systems (PMSs) by flexibility. However,
flexibility can be achieved in different ways.

Build time flexibility is a property of the used process
modelling language for process definition models and refers
to the constructs a process modeller can use at process build
time. For example, WS-BPEL provides constructs like Flow
and Link for concurrency and Switch and While for
optional and iterative activities, respectively.

However, build time flexibility does not suffice for
those types of processes where the set of reasonable activity
sequences cannot be determined at process build time. By
the term run time dynamics, we subsume all functions of a
PMS that allow for changes in process instance models
of running processes like adding additional activities,
removing unnecessary activities or reiterating finished
activities.

With regard to the example process, an activity
‘determine payee’ might be dynamically added, if the policy
holder has no valid bank account. If the policy holder dies
during the process and has no legal heirs, disbursement
should not take place in any case and should therefore be
dynamically removed. Moreover, expertises from an
appraiser might be insufficient and require a repetition. The
process definition of Figure 2 fails to support the cases
mentioned above.

2.2 Retrofitting run time dynamics by simulation

Each software system is either built from scratch or derived
from an existing one. This also applies to PMS, which (are
supposed to) support run time dynamics. For instance, the
Aristaflow-BPM-Suite (Atkinson and Dadam, 2007) has
been developed with the initial design goal to offer run
time dynamics. However, existing PMS-solutions of our
cooperation partner GDIS are based on commercial
products, in particular on the IBM WebSphere Process
Server v6.1TM (WPS). Since investments to this solution had
to be saved, replacing WPS with a new PMS, which a-
priorly supports run time dynamics, was not an option.
Instead, we pursued an a-posteriori approach, i.e., we
retained WPS but extended it by a dynamics layer
(Wörzberger et al., 2008a). Briefly speaking, this additional
layer retrofits WPS with run time dynamics.

Figure 3 depicts the coarse architecture of the dynamics
layer in conjunction with the existing systems WPS and
WID. Since the existing systems strictly distinguish
between process definitions (process build time) and
process instances (process run time) also the dynamics layer
consists of two components: the WS-BPEL transformer
(build time) and the dynamics component (run time).

WID is a build time tool that supports process modellers
to build process definitions in WS-BPEL, which can be
deployed to the run time environment WPS. From an
original process definition X, we just demand standard
cases. Dynamics simulating structures, i.e., special Invoke-,

Switch- and While-activities, for handling dynamic
processes are then automatically added to the process
definition X by an XSLT-based WS-BPEL transformer
yielding an augmented process definition Xa.

At run time, the instance data of the augmented
processes is extended by a dynamics component which
contains additional process variables that control the
behaviour of the additional control flow activities. By
default, these additional variables are set in a way that
the augmented process behaves like the original one.
However, these variables can be indirectly altered at run
time by process participants via process instance model
manipulations. This simulates the dynamic modification of
the running process, e.g., by rerouting the control flow to a
newly created process instance. Please note that of course
the dynamics simulating structures are hidden from process
participants to preserve the impression of a structural
modification in the process instance model.

Figure 3 Dynamics layer on top of WPS (see online version
for colours)

2.3 Dynamics patterns

The realisation of the dynamics layer is aligned with
patterns of modifications to process instance models. Three
dynamics patterns are essential for run time dynamics:
sequentially embedding activities into the control flow of a
running process (dynamic adding), conversely detaching
existing activities from a process (dynamic removing) and
manipulation of the process’ control flow state to allow for
repeated execution of activities which have already been
carried out (dynamic reiteration). Dynamic adding and
removing are included in the ‘adaptation patterns’ identified
in the survey work of Weber et al. (2008). Together with
dynamic reiteration, we think these patterns suffice for most
necessities process participants might have at process run
time. They deliberately do not match the possibilities a
process modeller has at process build time, e.g.,
optimisation by parallelisation of activities.

328 R. Wörzberger and T. Heer

Figure 4 Examples for dynamic adding and removing
(see online version for colours)

2.3.1 Dynamic adding

Support for dynamic adding at run time is prepared by
the WS-BPEL transformer at build time by adding
additional activities to the augmented process definition Xa
between sequential activities of the original process
definition X. Since technically these additional activities are
Invoke-activities of WS-BPEL, we call them dynamic
adding invocations (DAI). At run time, DAIs serve as
exit-points in an instance Xa.1 of Xa from which the control
flow may be routed to a newly created instance Ya.1 of
another (augmented) process definition Ya. At this point, Y
and Ya must have been pre-modelled and generated,
respectively, in order to be available in the pool of addable
fragments. For each DAI, the dynamics component stores
run time binding information.

In the example of Figure 4, the DAI1 is set to route the
control flow to a newly created process instance Ya.1. This
simulates the addition of the activity determine payee just
before disburse compensation, e.g., because the policy
holder has no valid bank account. After Ya.1 is finished the
control flow returns to Xa.1 and proceeds with DRD1. The
other DAIs expose default behaviour, i.e., they do not have
any effect at all. Wörzberger et al. (2008a) provide a more
detailed description of dynamic adding.

2.3.2 Dynamic removing

Dynamic removing of activities is realised by additional
Switch-activities, i.e., each Invoke-activity of the original
process definition X is nested into a Switch-activity by the
WS-BPEL transformer. We call this special Switch-activity
a dynamic removing decision (DRD). Again, at run time,
dedicated variables in the dynamics component control the
behaviour of the DRDs.

In the example of Figure 4, the process participant
(insurance clerk) might learn during execution of determine
payee that the policy holder has died and has no legal heirs.
Thus, activity disburse compensation should not be
executed irrespective of the claim’s eligibility. Furthermore,
execution of notify policy holder is obsolete though less
harmful (costly) than disburse compensation. Consequently,
the process participant indirectly sets the DRD1 and DRD2
of instance Xa.1 to yes. As a consequence, the nested
activities are bypassed which simulates a dynamic removal
of the activities.

2.3.3 Dynamic reiteration
Sometimes activities have to be reiterated, e.g., commission
appraiser due to an insufficient expertise which is revealed
during execution of incorporate expertise. For sake of
brevity we left out an example for dynamic reiteration in
Figure 4. In principle, dynamic reiteration is realised by a
While-activity generated by the WS-BPEL transformer at
build time, which surrounds the entire process. With regard
to the example, at run time all activities succeeding
incorporate expertise and preceding commission appraiser
are temporarily removed by means of dynamic removing.
This simulates a reiteration of both activities commission
appraiser and incorporate expertise.

2.4 Discussion

The concepts of our approach were mainly driven by the
constraints of our cooperation with GDIS that is we had to
build upon WPS. That is why we did not realise run time
dynamics with an entirely new PMS although this a-priory
approach surely provides higher degrees of freedom with
respect to implementation. Instead, our a-posteriori
approach simulates run time dynamics with an additional
dynamics layer on top of the unmodified WPS. Admittedly,
this approach complicates the realisation concepts
significantly and hampers the implementation. However,

 DYPROTO – tools for dynamic business processes 329

building upon a commercial PMS also entails the benefit
that the overall system inherits the functionality, run time
efficiency and robustness of the underlying commercial
PMS.

The very last revision 7.0 of WPS entails some new
features which pose a step towards process dynamics. These
include the possibility for process modellers to specify the
migration of a process instance to a new process definition
at build time. Moreover, regions can be marked at build
time via non-standard WS-BPEL-constructs that surround
runtime changeable process parts. Thus, these new concepts
complement our approach as they increase flexibility via
additional work during process build time instead of
dynamic changes at process runtime.

In the description of dynamic adding, we neglected flow
of process data that is input or output of activities in the
process. If an activity with formal input parameters is added
via dynamic adding, the process participant has to assign
actual values to these parameters from local process
variables. This is supported by a graphical data mapping
tool.

Although we realised our approach on top of WPS, its
concepts and major parts of its implementation are
independent of proprietary WPS-functions. Moreover, the
WS-BPEL transformer is strictly WS-BPEL standard
conformable, i.e., it does not introduce non-standard
constructs. Porting to another WS-BPEL-engine would just
require reimplementation of the interface between dynamics
component and the respective PMS. Furthermore, concepts
of the WS-BPEL transformer can be reused for transformers
of XML-languages comparable to WS-BPEL like XPDL or
BPML.

2.5 Related work

There are several works on flexible PMS, which we relate to
our approach in the following. All other works share a
common difference compared to ours: the respective
prototypes are build from scratch independent of an existing
static (commercial) PMS. To do so is appealing from a
research point of view as these prototypes can be strongly
aligned with existing formalisms. In comparison to other
works, we do not provide a novel formalism for run time
dynamics but a realisation strategy that a-posteriorly
extends static PMS by run time dynamics.

The common difference mentioned above particularly
holds true for our predecessor project AHEAD, which is not
based on any other (commercial) PMS and therefore lacks
certain standard functionalities, e.g., interfacing with
standard middlewares. Moreover, AHEAD rather focuses on
the management of development processes which typically
require continuous detailing and evolution of initially sparse
process models instead of on-demand deviations which are
typical for business processes.

The ADEPT-approach by Reichert and Dadam (1998)
founds on a newly developed, expressive language which is
suitable for the modelling of process definitions and process
instances. The semantics of this language is precisely

defined via formal mappings to mathematical structures
(Reichert, 2000). Run time dynamics are formalised in
terms of these structures. Currently, concepts of ADEPT are
transferred to a commercial PMS (ADEPT2) (Dadam and
Reichert, 2009; Atkinson and Dadam, 2007). Yet, ADEPT2
is implemented from scratch and not based on an existing
PMS.

The WIDE-project by Casati (1998) or the ‘pockets of
flexibility’-approach by Sadiq et al. (2001) also provide
support for run time dynamics. Again, the according
prototypes are built independent of existing systems.

Weber et al. (2008) provide a systematic comparison of
some academic and commercial systems with regard to
flexibility. According to their categorisation, our approach
provides support for ‘serial insert process fragment’ and
‘delete process fragment’. These basic patterns can be
combined to ‘move’ and ‘swap process fragment’ like
Weber et al. delineate. However, parallel and conditional
insertion is not supported, yet. Implementing parallel
dynamic adding is easy if parallelisation of an added
activity A is restricted to a single activity B. Arbitrary
positions for AND/OR-Splits and -Joins would require
significant extensions to the WS-BPEL-transformer.

3 Explicit process knowledge

In the last section, we described an a-posteriori approach for
extending an existing PMS with run time dynamics by an
additional dynamics layer. With run time dynamics, process
participants are able to add activities to, remove activities
from or reiterate activities in running processes in order to
handle cases which have not been modelled in the
respective process definition. We concealed that although
run time dynamics are essential for dynamic processes
they induce new problems. Here, we distinguish between
technical problems, which relate to violations of correctness
constraints in process models and might cause breakdowns
in PMS, and professional problems, which relate to
compliance constraints enforcing laws or company specific
quality standards.

This section deals with concepts for a PME that helps
process participants to avoid problems when conducting
dynamic changes to a process. The PME is built-in a model
driven fashion using rigid integrated meta-models and
complex syntactic restrictions. We show that this approach
is suitable both for detection of technical as well as
professional problems.

3.1 Process models

Process models are useful for communicating information
about processes among humans. They are essential for
communicating information about processes between
humans like process modellers or process participants and
PMSs. As mentioned in Section 2, different kinds of process
models are relevant in PMS and are described in the
following.

330 R. Wörzberger and T. Heer

Figure 5 Process instance model example with dynamic changes
(see online version for colours)

3.1.1 Process instance models

Actual process cases are presented to the process
participants by the PMS in the form of process instance
models. Usually, these models are quite abstract as they just
provide a tabular cutout of the process case containing the
process case’s state, i.e., the states of the process’ activities.
In PMS that provide run time dynamics, process participants
also have to know about the whole process structure in order
to perform dynamic changes. Hence, in these PMS, process
cases are modelled best via graphical process instance

models which reflect the process state but also the structure
of a process.

Figure 5 provides an example of a process instance
model at a certain point in time during process execution.
This modelled process instance was originally instantiated
from the process definition of Figure 2 yet deviates from
that definition due to some dynamic changes. Activities in
this model posses state information, i.e., one of the states
waiting, active or finished, which is displayed in boxes
within the activities. The absence of a box denotes the state
waiting. Obviously, the process has already advanced to
activity incorporate documents.

The process instance model in Figure 5 deviates from
the process definition model of 2 in three cases: first, an
activity check deceit has been added to the process. Second,
notify policy holder has been removed from the process. In
Subsection 3.2, we will see that these dynamic changes are
problematic.

3.1.2 Process definition models

Process definition models model processes of a certain type.
An example of a process definition model was already
provided by Figure 2. The similarity between the shape of
process instance models and process definition models is
deliberate. Process instance models contain the control flow
structure, e.g., switches, of the process which is associated
with a process definition but also reflect the state of a
certain process case. Conversely, one can consider a process
definition model an abstraction of a concrete process case.

3.1.3 Process knowledge models

Though process definition models already provide an
abstraction and thus can be used for arbitrarily many
process cases, they are still bound to a certain process type,
e.g., settlement of a car damage claim. Therefore, process
definitions are unsuitable for expressing general process
knowledge of some domain. Process type independent
process knowledge requires more abstract kinds of models.
For this purpose, we introduced graphical process
knowledge models in our approach. These models specify
the behavioural aspect of processes of some domain, i.e.,
they define which activities have to be mandatorily
executed, have to be executed in a certain order or depend
on each other.

Figure 6 exemplifies a process knowledge model. The
ellipses denote activity types which pose abstractions of
activities in process definitions or process instances. In the
following, we abbreviate ‘activity of activity type X’ with
‘X-activity’. Activity types can be related to each other
with relational constraint edges (solid arrows) in order to
model structural knowledge about processes in a certain
domain. Each edge is directed and defines a constraint for
its source activity type. Conversely, a target activity
type can satisfy the respective relational constraint. This
knowledge particularly constrains processes with regard to
the presence and order of activities as described in the next
subsection.

 DYPROTO – tools for dynamic business processes 331

Figure 6 Process knowledge model example

3.2 Model constraints

Process model changes and foremost dynamic changes via
process instance models might result in problems and
therefore need to follow constraints. In the following, we
give examples for professional and technical problems with
respect to the process instance model of Figure 5.

3.2.1 Professional compliance constraints

With (professional) compliance constraints we subsume
all constraints that stem from laws, company specific
regulations or just common sense. Using activity types A, B
and relation constraint edges of a certain kind we can model
a compliance constraints by patterns like ..

kind
n mA B⎯⎯⎯→ and

0(,) { },n m ∈ × ∪ ∗ where ∗ denotes infinity. The kinds
are actually the following which will be described by means
of the example in Figure 6:

• Inclusion. Claim handling processes need to have
exactly one notification-activity. No notification
would leave the policy holder uninformed, twice or
more (contradictory) notifications might confuse him.
This is expressed by the includes-edge between the
respective activity types and the multiplicity 1..1.
Similarly, a claim handling process – considered just
as a very complex activity – should have at most one
disbursement-activity to avoid double compensation.
The amount of check-activities in a claim handling
process is unbounded according to the rightmost
inclusion constraint. Thus, this includes-edge just
stresses this unboundedness but could also be removed
without side effects.

In general, ..
includes

n mA B⎯⎯⎯⎯→ denotes that an A-process

needs to include at least n and at most m B-activities
which are executed in any case.

• Existence. Disregarding a particular process, occurrence
of certain activities requires occurrence of others.
For example, a manual check-activity requires the
existence of 1..*, i.e., at least one automatic check-
activity in order to prevent human mistakes. This
constraint is modelled via the req_existence edge from
manual check to automatic check. Generally,

_
..

req existence
n mA B⎯⎯⎯⎯⎯⎯→ denotes that the existence of an A-

activity implies the existence of n to m B-activities in
the same process.

• Succedence/precedence. Some activities depend on
each other and can only be reasonably executed in a
certain order. For example, results of a third cannot be
incorporated before the third is commissioned. By the
succeeded_by-constraint in Figure 6, we require that a
commission third-activity always has to be succeeded
by at least one incorporate results in the control flow
yet not necessarily directly. In general,

_
..

succeeded by
n mA B⎯⎯⎯⎯⎯⎯→ implies that an A-activity is

succeeded by at least n and at most m B-activities in the
process. There is also an analogous constraint kind for
precedence.

• Direct succedence/precendence. A
direct-succedence-constraint _ _

..
dir succeeded by

n mA B⎯⎯⎯⎯⎯⎯⎯→ is

just a tightened succedence-constraint which requires
that two activities are executed right after another in a
certain order. For brevity, we left out an example for
this constraint. Again, there is an analogous constraint
kind for direct precendence.

Obviously,
_

..
req existence

n mA B⎯⎯⎯⎯⎯⎯→

holds true if
_

..
succeeded by

n mA B⎯⎯⎯⎯⎯⎯→

applies, which holds true if
_ _

..
dir succeeded by

n mA B⎯⎯⎯⎯⎯⎯⎯→

holds true. These implications are analogous for precedence.
Comparable to inheritance between classes in

object-oriented programming, one activity type (subtype)
can be a specialisation of another one (super type). This is
modelled by a specialisation edge (dashed arrow). A
specialised activity type transitively inherits all constraints
of its super types, i.e., all outgoing relational constraints.
Furthermore, an activity type also inherits incoming
relational constraints and thus may substitute a super type to
satisfy a relational constraint.

In our approach, activity types can be referenced by
activities or entire processes in process definition or
instance models in order to give activities (processes) a
meaning. The activities of Figure 5 are typed in this manner.
From this information, it can be derived that two of the
dynamic changes done via the instance model of the
claim handling process of Figure 5 violate professional
compliance constraints modelled in the process knowledge
model of Figure 6. First, the removal of incorporate
expertise after commission appraiser violates the
succedence-constraint from commission third to incorporate
results. Second, the removal of the notification-activity

332 R. Wörzberger and T. Heer

contradicts the inclusion constraint from claim handling to
notification.

3.2.2 Formal semantics of compliance constraints

Since the expressions in process knowledge models only
refer to the existence and ordering of activities, their
semantics can be formally defined. The lower right side of
Figure 7 shows how this is done conceptually. We use
the superset CTL* of linear temporal logic (LTL) and
computational tree logic (CTL).

Figure 7 Conceptual architecture for process model checks

The semantics of CTL* formulas can be defined with
respect to a formal structure. We define CTL*-semantics
with regard to process transition system (PTS), i.e.,
CTL*-formulas make statements about PTS. A PTS is a
{ , }-structureR L with universe .pS Here, pS denotes the

set of all process states, where a process state is just a
composite state containing all activity states. p p⊆ ×R S S

is the binary and total transition relation between process
states. : 2p →

APL S maps process states to sets of atomic

propositions .AP In our case, atomic propositions are pairs,
i.e., a= ×AP AT S where AT denotes the set of activity
types and {Waiting, Active, Finished}a =S possible activity
states. With respect to a PTS, we can apply the usual
CTL*-semantics definitions as provided (e.g., Clarke et al.,
1999).

As depicted in Figure 7 process instance models are
mapped to PTS. The semantics of process knowledge
models can then be formally defined by mapping the
language elements to CTL*-formulas.

For instance, we can formally define the semantics of:
_

1..
req existenceA B

∗
⎯⎯⎯⎯⎯⎯→

by the CTL*-formula:

()(, Active) (,Finished)A B→A F F

where boldface letters are path quantifiers and temporal
operators. With regard to a process the CTL*-formula must
be read as follows: “For all (A) process execution paths: if
there is a state somewhere on the path (F) where an

A-activity is executed, i.e. Active, then this implies that
there must also be a state on the path (F) where a B-activity
has been executed, i.e., is Finished”. Analogously, we can
formally define the semantics of the other process model
knowledge elements. Please note, that it is generally not
possible to do this independently of a certain multiplicity
like 1..∗ in the example above, i.e., one cannot define the
semantics of _

.. ,req existence
n mA B⎯⎯⎯⎯⎯⎯→ in just one CTL*-formula

independent of n..m.

3.2.3 Technical correctness constraints

Process models of a certain kind have to adhere to
complicated syntactic correctness constraints which are
independent of other models. Violations of these constraints
usually lead to technical problems within the respective
PMS like premature termination of a process instance or
deadlocks. Hence, we call these constraints (technical)
correctness constraints.

Correctness constraints require, e.g., that process
variables have to be initialised by some activity before they
can be read (cf. Wörzberger et al., 2008b) or that process
variables should not be written by concurrent activities in
order to avoid lost updates. Moreover, dynamic changes in
process instance models should not introduce unreachable
activities. This is the case in the process instance model of
Figure 5. Here, check deceit has been added during
execution of incorporate documents. Obviously, in this
process instance model check deceit will never become
Active. Since this problem stems from the control flow
semantics of the process definition language but not from
external process knowledge, we consider this an (internal)
incorrectness of the model. Also, process knowledge
models have to obey to correctness constraints, e.g., cyclic
precedence or specialisation relationships have to be
excluded to avoid unsatisfiable compliance constraints.

3.3 Syntax checks of integrated process models

Although we use temporal logics in order to formally define
the semantics of process knowledge models we do not use
the formulas in some model checker to detect the violation
of process model constraints. Instead, violations of
constraints are detected by checks of the process models’
static syntax. This is feasible since process definition
models and process instance models specify the behaviour
of a process (of a certain type). Hence, they cover all
information necessary to do the constraint checks. The
upper half of Figure 7 summarises the conceptual
connections which are relevant in the following.

Before we can formally define complex syntactic rules
on process models, we need to formally define the basic
syntax, i.e., language elements and their possible relations
and compositions. Since we are dealing with graphical
languages, we use simplified graphical class diagrams as
meta-models for this task. Figure 8 depicts the relevant parts
of these meta-models. The process knowledge meta-model
basically consists of two meta-classes. It defines that

 DYPROTO – tools for dynamic business processes 333

ActivityTypes can be connected by relational constraints
(RelCon), whose attribute conKind ranges over the kinds
described in Subsection 3.2 and the attributes lowerBound
and upperBound constitute the multiplicity of a relational
constraint. The process definition meta-model defines
Activity, which can be either an AtomicActivity like
Invoke or a ComplexActivity like a Flow or a Switch.
In a Flow, two activities can be connected by a Link to
restrict possible execution sequences. The process instance
meta-model is not a meta-model on its own but extends
the process definition meta-model by a meta-class
ActivityInstance for incorporating activity states
ranging over {Waiting, Active, Finished} in process
instance models. Please note that an Activity can be
associated with arbitrarily many ActivityInstances.
This is reasonable because activities can be nested in
Switch-or While-elements and thus be executed never,
once or arbitrarily many times.

Figure 8 Integrated process meta-model

As depicted in Figure 8, the meta-models are not isolated
but refer to each other. Process instance models are
instances of the combined meta-model consisting of the
process definition meta-model and the process instance
meta-model. Furthermore, an Activity can be typed
with an ActivityType by the reference typedAs.
Consequently, a process instance model together with a
process knowledge model containing its activity types form
an integrated syntactic structure.

Meta-models define the basic syntax, e.g., relations and
compositions, of a graphical model. However, they are to
inexpressive to capture more sophisticated syntactic
constraints. Therefore, we cannot cover the model
constraints of Subsection 3.2 just by means of the
meta-models. Instead, we augment the meta-models by
textual object constraint language (OCL v2.0)-expressions,
which tighten the syntactic constraints on process models.
In this way, correctness constraints can be formalised in
OCL-expressions that refer to a single process meta-model.
Compliance constraints can be expressed in OCL by
expressions, which refer to the integrated meta-model.

Hence, both sorts of constraints are handled by the same
method.

Listing 1 exemplifies a correctness constraint for a
process knowledge model. This constraint valuates to false,
if an ActivityType is an ancestor of itself with regard to
specialisation. In Wörzberger et al. (2008b), we exemplify
another correctness constraint in OCL which constraints
process definition and instance models.

Listing 2 provides an example of an OCL-expression
that defines an invariant which holds true for an Activity
if and only if the activity complies with the precedence
relationship of its activity type. This expression uses
the elsewhere defined OCL-definitions allAdjPrec,
matchBounds and allSuccs. Briefly speaking, the
expression compliesPrecedence navigates from an
activity (self) to the activity type, collects via allAdjPrec
all precedence relationships. Then it checks for all these
relationships via matchBounds and allSuccs if the
precedence relationships are satisfied in the process instance
model of the checked activity. Wörzberger et al. (2008b)
provides a more detailed description of this and other
OCL-expressions.

In summary, for the specification of correctness
constraints as well as compliance constraints OCL-
expressions are used. However, while the OCL-expressions
for correctness constraints each explicitly define a specific
constraint, the OCL-expressions for compliance merely
specify how process definition or instance models are to be
checked against process knowledge models.

Listing 1 Cylce-freeness correctness constraint for
specialisation in process knowledge models

context ActivityType
inv cyclefreeSpecialization:
 not self->closure(parent)->includes(self)

Listing 2 Precedence compliance constraint for process
instance and definition models

context Activity
inv compliesSuccedence:
 self.typedAs.allAdjPrec->forAll(rcl |
 rcl.matchBounds(self.allSuccs->select(

 typedAs = rcl.target)->size()))

3.4 Implementation remarks

Changes to process models are not directly propagated to
the dynamics component (above WPS) but are at first local
to the respective instance of the PME. After a model
change, correctness and compliance checks are manually
triggered by a process participant via an according menu
item in the PME.

Correctness violations are considered severe as they can
cause technical failures in the run time environment. Thus, a
change in a process instance model cannot be committed to
the dynamics component a correctness violation have been

334 R. Wörzberger and T. Heer

found. Detected compliance violations are tolerated since
their violation might be intentional. Thus, changes in
process instance models that just cause compliance
violations can be committed to the dynamics component.

Figure 9 depicts a screenshot of the PME. The entry in
the Errors-section hints to a correctness violation in the
process knowledge model, which is a cycle in the
specialisation-hierarchy in this case. Please note that
specialisation hierarchies are modelled in dedicated views
(diagram on the right) separated from relational constraints
(diagram on the top). The entries in the Warnings-section
are compliance violations as discussed in Subsection 3.2.
They refer to the diagram on the left, which depicts the
process instance model of Figure 5. The entries in the
Infos-section are discussed in 4.8.

Figure 9 Screenshot of the PME (see online version for colours)

Due to the syntax-based constraint checking approach, the
PME, which actually checks compliance and correctness of
process models, could be implemented in a model driven
fashion. The PME is basically generated from the abstract
syntax definition specified in eclipse modelling framework
(EMF) meta-models and concrete syntax definition
specified in graphical modelling framework (GMF)-models.
Furthermore, we made use of the Eclipse OCL framework
which provides an interpreter for our OCL-expressions.
Details about the generation process are given by
Wörzberger and Heer (2008).

3.5 Discussion

The purely syntax-based constraint checking approach
exhibits some advantages and drawbacks. A drawback
surely is the need for typing activities before they are
properly recognised in compliance checks, i.e., compliance
checks fail if activities are not properly typed or not typed at

all. For example, if the activities with type automatic check
in Figure 5 were untyped, a false compliance violation
would be detected due to the req_existence-edge in the
process knowledge model in Figure 6. Conversely, if
activity commission appraiser was untyped, the compliance
violation stemming from the succeeded_by-edge in the
process knowledge model could not be found.

The dilemma can be described as follows. On the one
hand, the usage of domain specific activity types for process
modelling still meets many obstacles in practice. These are
among others the establishment and maintenance of a well
understood and organisation-wide process knowledge
model, and the possible over specification of process
models where almost every activity has its own activity
type. The problems even grow when process knowledge
models not only cover the behavioural aspects but also
organisational or data-related aspects. On the other hand, the
definition of compliance rules for process models seems to
be infeasible without relying on activity types. To the best
knowledge of the authors there is no feasible approach for
defining general compliance rules which apply to many
different process models where the activities are only
distinguished by their names. Relying on the comparison of
activity names is a bad idea as there might be many
synonyms (e.g., ‘invoice’, ‘invoicing’, and ‘billing) or
homonyms and the like. Since the obstacles for the
application of activity types for process modelling are hard
but resolvable, but the abandonment of activity types makes
compliance constraint modelling practically impossible, we
decided to build our approach on typed activities.

One of the main advantages is that the implementation
can be done model-driven with frameworks mentioned
in Subsection 3.4. First, handcrafted Java-code does
not exceed one single Java-class that initialises the
OCL-interpreter. Second, although the process definition
and instance meta-models and therefore the OCL-
expressions are aligned to WS-BPEL, they can be easily
adapted to other languages like BPMN without further
Java-programming effort. Third, the process definition
model meta-model also covers data flow, which is neglected
in Figure 8 for sake of brevity. Wörzberger et al. (2008b)
show how data flow can be utilised to formalise constraints
like the one that process variables have to be initialised
before being read. Fourth, OCL-expressions are always
evaluated on a certain model element. Therefore, constraint
checks yield not just a Boolean value but point to the
respective element which is likely to be blamed. This is
indicated by an error marker on the element in the PME.
Admittedly, this does not work optimal in all situations, e.g.,
the violation of the correctness constraint in Listing 1 leads
to an error marker on every ActivityType in the cycle.
Fifth, OCL-expressions can be efficiently evaluated
compared to other techniques like model checking. This is
crucial for process instance models since time consuming
checks due to changes to these models would impede
efficient process execution. Sixth, the approach uniformly
treats technical (intra-model) and professional (inter-model)
constraints.

 DYPROTO – tools for dynamic business processes 335

3.6 Related work

Works that are related to correctness and compliance checks
versus explicit process knowledge as presented in this
section are from diverse fields. In the following, we group
these works by terms presented in this section: correctness
and compliance.

3.6.1 Correctness

There are plenty of works aiming at preserving correctness
of process models. Most of them deal with correctness of
process definition models, i.e., with correctness at design
time. For example, Mendling and van der Aalst (2007) use
graph reduction techniques to verify correctness of
event-driven process chains-models (EPC) for generic
process models. Since the reduction works just on the
syntactic structure of the process model, the computational
complexity surely is comparable with our checks.

Verbeek et al. (2001) describe the process definition
analyser Woflan. Woflan works on the Petri net class
WF-nets. Thus, other languages have to be mapped on this
language in order to be analysed. This can be done for
WS-BPEL as sketched by Verbeek and van der Aalst
(2005). WF-nets are then analysed for certain correctness
properties by Woflan based on a certain representation of
their state space. This approach is exhaustive yet
computationally expensive.

The verification of correctness of distributed WS-BPEL
processes is presented by Bianculli et al. (2007) and Gravel
et al. (2007). In these works, WS-BPEL processes are
translated to an input language for a model checker.
Similarly, Koehler et al. (2002) map process models to
finite state automatons (FTAs) and use a model checker to
verify, e.g., the termination of a process. We neither apply
model checking nor consider correctness of distributed
process models so far.

Reichert and Dadam (1998) formalise numerous
transformations by calculi on ADEPT control flow graphs –
comparable to our process instance models – which realise
dynamics patterns. These transformations are correctness
preserving, i.e., applying a transformation like dynamic
adding to a control flow graph again yields a correct graph.
In contrast to that, our PME allows for flaws in the process
models but marks them and prohibits their propagation to
the WPS if necessary.

3.6.2 Compliance

Preceding works of our group in the AHEAD-project also
dealt with compliance of process models (Schleicher, 2002).
We continued some of the basic ideas, e.g., the interrelation
of different process model layers. Yet, we had to
significantly adapt and extend the concepts in order to
account for industry standards like WS-BPEL and to avoid
some limitations like the necessity for recompilation of the
AHEAD-prototype after changes in the process knowledge
models.

Ly et al. (2008) provide a set of major requirements for
compliance checking process models. Parts of these are
actually satisfied by our approach: We provide a user
friendly yet formal language (req. 1). ‘Constraint
organisation’ (req. 2) is at best partially fulfilled as process
knowledge models are stored and versioned in flat files. We
just support implementation independent constraints (half of
req. 3). ‘Support for life time compliance’ (req. 4) is
partially given since during checks we treat process
definition models just like process instance models being at
the very beginning of execution. Conflicting changes in
definitions and instances are not treated (req. 5). The check
feedback is intelligible (req. 6) to some extend as it contains
violation details. Compliance constraints are naively
overridable (req. 7) by ignoring found violations.
Traceability (req. 8) of compliance checks (persistent
logging) is not implemented.

Process models in the DECLARE project by Pesic et al.
(2007) resemble our process knowledge models with regard
to the level of abstraction. However, DECLARE pursues a
completely different approach since the ‘declarative’
process models are interpreted and directly used for process
execution support whereas our process knowledge models
just impose compliance constraints onto executable and
executing models. Although the DECLARE-approach is
appealing inasmuch as DECLARE-models provide much
flexibility by design, we had to account for the rather
imperative paradigm of WS-BPEL due to our project
constraints.

Governatori et al. (2006) demonstrate a way to formalise
the compliance relationship between BPMN process models
and natural language business contracts. The latter are
mapped to derivation rules of formal contract logic (FCL)
the former to FCL-sequences. Then, compliance is
equivalent to derivability of sequences in the FCL-calculus.
This approach focuses multilateral process models with
time-related escalations, which we have not dealt with so
far.

Rozinat and van der Aalst (2008) show that there is also
a compliance relationship between process instance data and
a process definition model. This sort of compliance runs the
risk of being violated in situations where a process
definition model does not control a process from the very
beginning. However, this does not apply for our project
setting.

Interestingly, there are several groups that use model
checking methods in order to check compliance. Förster
et al. (2007) model process knowledge in a model similar to
ours. These models are translated to LTL-formulas. LTL
formulas are then evaluated on transition systems which
represent the state space of a process definition model.
Work of Awad et al. (2008) is similar to that, yet, they
target BPMN-models instead of UML activity diagrams and
use a variant of LTL. Compliance checking of WS-BPEL
process definitions via model checking is presented by Liu
et al. (2007). Again, the process knowledge models are
translated to LTL and a transition system is generated from
a WS-BPEL process definition.

336 R. Wörzberger and T. Heer

In summary, our approach differs from related
approaches insofar as we uniformly address correctness
and compliance checks with one syntax-based method.
Certainly, generating and querying a process model’s state
space allows for detection of even very subtle errors which
is beyond the capabilities of our approach. However, we pay
this price to gain computational efficiency which is crucial
particularly when checking process instance models during
process execution. Adaptation to other process modelling
languages causes effort either way: one has to adapt the
meta-models and OCL-constraints in our case or the
transformers to LTL and generators of transition system in
the approaches mentioned above.

4 Implicit process knowledge

Process knowledge models allow for explicit modelling of
professional process constraints which can be utilised
for compliance checking process definition and instance
models. It is a downside of these explicit models that they
cause extra work and might be incomplete. At the same
time, process definition models and process instance models
of running or finished processes themselves implicitly
contain process knowledge and are available anyway.
Therefore, we complement the checks of a testee, i.e., a
modified process instance model versus explicit process
knowledge (as described in Section 3) by checks versus
implicit knowledge derived from other process definition
and instance models. Since checks versus implicit
knowledge refer to potential contradictions, i.e.,
inconsistencies of models of the same kind, we name these
checks consistency checks.

In this section, we describe how differences between a
testee process model and a certain set of other process
models can be detected and compactly presented to a
participant working on the former. Here, differences
between process models refer to (dis-)similar behaviour
rather than to syntactic, i.e., structural similarity since even
structurally dissimilar process models might exhibit similar
behaviour as recognised (e.g., by van der Aalst et al., 2006).
First, we describe the structure of the knowledge base Mkb,
i.e., the set of available process models excluding process
knowledge models, which are not regarded in this section.
Second, we define for a testee a subset of the available
process models containing those models (testers) which are
sufficiently similar to the testee. This is necessary since a
detailed analysis of two process models cannot yield
meaningful results if the process models are not similar to
some degree, i.e., are ‘apples and oranges’. Third, we
describe how differences between the testee and the models
of this set are detected and compactly presented to the
process participant/modeller who is working on the testee.

4.1 Structure of the implicit-knowledge base

The knowledge base for compliance checks is explicitly
modelled, i.e., it consists of process knowledge models with

dedicated syntax and semantics (cf. Subsection 3.1). In
contrast, the knowledge base for consistency checks Mkb
consists of different kinds of models. As depicted in
Figure 10, it is composed of the three technical model
classes explained below. Please note that in this figure the
activity labels just contain abbreviations of the respective
activity type in order to keep the figure clear. Furthermore,
the regions bounded by the dotted lines in the example
models p1 to p3 just denote process model parts 1p̂ to 3ˆ .p
We will use these less complex models in the next
subsections for sake of simplicity.

• Process definition models carry implicit knowledge
about which activities are to be carried out for a certain
process type. Normally, they do not narrow processes
to a single possible sequence of activities but contain
information about which activities are to be executed
alternatively, sequentially or in parallel.

• Models of finished process instances represent process
traces. We consider a process trace a time-related
succession of activity finishing events in the past.
One process trace reflects in which sequence steps of a
single process case have been carried out. For example,
in Figure 10 the depicted instance of flight cancellation
settlement represents a past process. Hence, all
activities are in state Finished.

• Models of running process instances constitute a
mixture of the above mentioned model kinds. On the
one hand, they have a determined past like finished
process instances, i.e., a partial process trace of past
activity events. Since process instance models
essentially are process definition models plus activity
states, on the other hand, the running process instance
models have not a fully determined future which is
modelled by a partial process definition within the
instances. For example, the instance of pipe water
damage settlement running instance has proceeded to
i-activity. For this running instance (a certain order of),
the finished activities constitute the partial process
trace. The structure in the lower half contains a partial
process definition representing the remaining future of
this instance for which it is not determined if, e.g., a
disbursement takes place or not. Many domains – in
particular the insurance domain – have many long
running processes; this mixture class can therefore not
be neglected.

Figure 10 suggests that each process instance is in line with
a process definition. However, please recall that models of
process instances might be structurally different from any of
the process definition models due to dynamic changes. This
is the case for the running instance of Figure 10 where a
p-activity has been dynamically added. Neither the past
process trace of a process instance model nor the potential
futures might therefore be covered by a process definition
model.

 DYPROTO – tools for dynamic business processes 337

Figure 10 Process model classes with implicit knowledge
(see online version for colours)

4.2 Process trace sets

Each process model is associated with a process trace set
containing exactly those process traces which the respective
process model can produce. Like for compliance checking
we refer to activity types instead of names. Furthermore, we
refer to activity type names by one letter abbreviations in
the following, e.g., query holder is abbreviated with q (cf.
Figure 10). So, a process trace of a process model is
represented by an activity type name sequence.

Definition 1: (Process trace set). Let M be the set of all
possible process models, T the set of all activity types and
T* the set of all finite activity type name sequences. The
process trace set is a mapping:

*: 2Tc M →

which maps a process model to the set of all process traces
possible in that model.

Due to the complex semantics of the process models the
formal definition of the mapping c is also complex and thus
omitted here.

For example, with regard to the process models of
Figure 10 the following holds: c(p1) = {<qiaadn>}, i.e., this
process model trivially just has exactly one process
trace. Furthermore, c(p2) = {<aamqinp>, <aamqitinp>,
<aamqitidnp>, <aamqidnp>} where the common prefix
<aamqi> is the determined past of the respective
process. We cannot write out the process traces of p3 since
| c(p3) | = 280. Note that the examples are quite simple in as

much the process models’ Flows do neither contain
complicated link structures nor While-elements.

4.3 Bilateral process model dissimilarity

The bilateral process model dissimilarity between process
models is pivotal for our approach.

Definition 2: (Bilateral process model dissimilarity). The
bilateral process model dissimilarity is a function:

(){ }0 ()
()

,: ; (,) min ,
p

q

p q
t c p
t c q

t td M M p q l
∈
∈

× →

where l is the Levenshtein-distance (Levenshtein, 1966)
between two process traces.

Particularly, (,) 0 () () 0,d p q c p c q= ⇔ ∩ ≠ / i.e., iff there is
at least one common process trace covered by both process
models p and q.

The bilateral process model dissimilarity d is vital for
the definition of the t-similar process model set of a process
model p.

Definition 3: (t-similar process model set). The t-similar
process model set Mt(p) is defined by:

{ }() : | (,) .t kbM p q M d p q t= ∈ ≤

This set contains all process models q whose dissimilarity to
p is not higher than a threshold t. Regarding a testee p and
an appropriately low t, the set Mt(p) contains sufficiently
similar process models which are relevant for further
analysis.

4.4 Graph grammars and transition systems

The previous subsections raise the question how d can be
computed. A naive implementation of d(p, q) might look
like this:

1 generate c(p) and c(q)

2 find a (tp, tq) ∈ c(p) × c(q) with minimal l(tp, tq).

This is inappropriate for three reasons: first, c(p) and c(q)
have to be generated, which is particularly difficult for
process models containing complex link structures and
impossible for process models containing loops since these
have possibly infinite process traces sets. Second, a direct
implementation is computationally inefficient because
there are | c(p) | ⋅ | c(q) | Levenshtein-distances to be
computed. Third, we need to analyse similar process traces
later on in order to provide the user with constructive
hints.

In the sequel, we present a graph grammar-based
computation of d which is efficient and whose intermediate
results can be used for later analysis. The coarse procedure
is depicted in Figure 11. First, two process models p (testee)
and q (tester) are combined to a single graph which contains
the abstract syntax of both process models. This combined
graph is repeatedly and automatically modified according to

338 R. Wörzberger and T. Heer

possible execution steps in the process models. From that
we obtain a transition system, wherein states are (modified)
graphs and transitions are applied modifications. Since
certain modifications hint to dissimilarity, we assign cost to
these transitions and search for the cost of the shortest path
in the transitions system. Then, this cost is the value of
d(p, q) and we can decide if q ∈ Mt(p). If this is the case, the
shortest paths are further analysed in order to generate a
consistency report for p.

In the following, we give a short and informal
description of graph grammars. This description is aligned
with the formal definition of Rensink (2008).

A graph grammar is a pair (,),=G R I where R is a
set of production rules and I is an initial graph. Graph
grammars are similar to common formal string grammars
yet they operate on graphs instead of sequential structures.
Thus, a production rule r∈R is similar to a rewriting rule
in string grammars. It has a left hand side and a right hand
side, which are both graphs. The left hand side constitutes a
graph pattern that has been found in a graph s in order to
apply r. If r is applicable, the matched subgraph in s is
replaced by the graph defined by the right hand side of r
yielding a graph s′. Like the start symbol in a string
grammar, the initial graph I can be successively rewritten
as long as there are applicable production rules.

Figure 11 Computation of bilateral process model dissimilarity d
(see online version for colours)

A graph grammar has an associated graph transition system
(GTS). A GTS is similar to derivation structures of string
grammars. Its states are graphs; particularly its initial state
s1 is the initial graph .I Its transitions correspond to
production rule applications insofar as a state s has a
transition for each rule application. In GTS transitions are
therefore labelled with the name of the respective

production rule. Please note that a certain rule r can have
several matches in a certain graph. Thus, a state s might
have several transitions labelled with the name of r each of
which leads to a different state s′.

4.5 GTS for synchronous process executions

Due to space limitations we cannot provide a tutorial for the
precise syntax and semantics of graph production rules as
provided (e.g., Heckel, 2006). Instead, we exemplify
applications of graph production rules by following paths in
a GTS as depicted in Figure 12.

In this figure, the state graphs are drawn in the same
way as the process models in the figures before. Please note
that this is just a matter of concrete syntax representation.
For brevity, the example is restricted to the comparison of
the process models 2p̂ and 3p̂ delimited by the dotted
bounding boxes in Figure 10. Furthermore, Figure 12 just
shows some of those paths which lead to an end state. Even
these paths are not complete as we leave out some
intermediate states.

The transition system is divided into two phases. States
s1 to s2 are part of the preparation phase. On the path from
s1 to s2 activities with the same type in different processes
are ‘paired’. Newly introduced pair-edges (dashed lines)
mark the activity pairs. Pairing is not just done for atomic
Invoke-activities but also for composite activities, which
have exactly the same substructure, e.g., the Switch
containing the activity d. Furthermore, if the process models
have n and m activities of the same type, the pairing yields
n ⋅ m pairs for this type.

Beginning with state s2 simultaneous execution of the
processes is simulated (execution phase). In the figure,
finished activities are flagged with an F, active activities
with an A and waiting activities not at all. In order to better
distinguish unreachable activities, e.g., those that are
on a dead path in a switch, we have also a mark D for that
state.

Each execution step is a transition in the GTS and
therefore conducted via application of a certain graph
production rule. These rules take care of the control flow
definition of the process models. For example, in the
transition from s7 to s8 the activity d is set from active to
finished.

Processes with similarities allow for simultaneous
finishing of paired active activities. For example, there is
one active n-activity in each of both processes in state s9 and
both are finished in the transition to state s10. The
corresponding production rule is called sf (simultaneous
finishing). Being member of a pair is necessary but not
sufficient for an activity for being simultaneously finished.
For example, in the left hand process the p-activity must be
finished before n can be set to active due to the process’
control flow definition. In the transition from s3 to s4, p is
therefore finished non-simultaneously, and again in the
transition from s5 to s6. The corresponding production rule is
named nfs (non-simultaneous finishing).

 DYPROTO – tools for dynamic business processes 339

Figure 12 Cutout of GTS (see online version for colours)

4.6 Shortest path computation

The end states of the GTS are those states, where both
processes are finished, i.e., all activities are either finished
or dead. The purpose of the simultaneous process
executions is to compute how many nsf-transitions are
visited to reach an end state in the GTS.

Each end state can usually be reached on several
different paths. Many of them contain unnecessary
nsf-transitions. Thus, we assign cost 1 to each nsf-transition
and then do a shortest path search from the start state to one
of the end states that is the path with the lowest cost. In the
example, we have to traverse at least two bad transitions –
one for the finishing of the left hand p-activity and one for
the right hand.

The shortest paths in the GTS are the source for further
analysis. The accumulated cost of a shortest path is the
bilateral process model dissimilarity d of the respective
process models, e.g., 2 3ˆ ˆ(,) 2d p p = as well as d(p2, p3) = 2.

Comparing p2 with p1 yields d(p2, p1) = 3. For sake of
simplicity, let the knowledge base be Mkb = {p1, p2, p3} and
p2 be the testee; then M2(p2) = {p2, p3} (the testee is trivially
included).

4.7 GTS path analysis

In order to provide detailed information concerning the
differences between a testee p and relevant testers in Mt(p)
the shortest paths in the respective GTSs are to be analysed.
In a GTS, labels of nsf-transitions contain information about
the match of the respective production rule, i.e., about
what is changed in the transition. In particular, a bad
nsf-transition contains the activity type of the activity that
had to be finished non-simultaneously. In the shortest path
of Figure 12, both bad transitions are labelled with nfs(p),
i.e., a p-activity has to be finished non-simultaneously
twice – once in each process. On another shortest path
which is not depicted in the figure, there are two nfs(n)
transitions. Patterns in shortest paths like the one described
indicate that activities are badly positioned. For example, in
p2 the p-activity is badly positioned with regard to the
n-activity compared to process model p3. Such patterns can
be automatically detected and enlisted in a consistency
report.

The size of a consistency report depends on the size of
Mt(p) and on the number of shortest paths in each bilateral
process model dissimilarity check. A process participant
might therefore be overburdened with details about
differences between the testee and the (numerous) testers.
For that reason we follow a simple strategy to consolidate
the consistency report. In dynamically modified process
instance models, the consistency report can be aligned with
the changed process part. For example, in the GTS
of 2p̂ and 3p̂ there is also a shortest path with two
nfs(n)-transitions instead of nfs(p)-transitions. This path is
omitted in the figure for sake of readability. The (depicted)
shortest path with two nfs(p) and the (omitted) shortest path
with two nfs(n) are complementary since the n-activity and
the p-activity are badly positioned against each other.
Assume that p has been dynamically added. Then, it is
reasonable to put the blame on p and leave out the
complementary shortest paths containing nfs(n) in the
consistency report.

4.8 Implementation remarks

Graph grammars gave rise to an entire research field. There
are several mature tools for the definition of production
rules and their execution [cf. comparison in Fuss et al.
(2007)]. From these tools we chose GROOVE (Rensink,
2003) for the following reasons: first, GROOVE particularly
targets checking properties of systems with graph-structured
states which suits our need as we can graphically represent a
process state (process instance model). Second, GROOVE
provides functions for explicit GTS-generation. Third,
quantifiers in production rules are available which helps to
reduce the state space of the GTS. Forth, there a few

340 R. Wörzberger and T. Heer

technical dependencies coming along with GROOVE; thus,
it can be easily integrated with our PME.

Essentially, GROOVE is a model checking tool.
Unfortunately, it therefore also suffers from the well-known
state space explosion problem, which is intrinsic to all
model checking approaches [Baier and Katoen (2008),
Section 2.3]. This problem has to be accounted for at design
time of the production rules. Luckily, the state space can be
drastically reduced by a control automaton defined in
GROOVE which imposes an additional scheduling of
production rules and the application of quantified subrules.
Despite focusing the behaviour (process trace set) of process
models, we can therefore optimise by exploiting the
structural identities of composite activities. For instance,
composite paired activities with equal substructures can be
simultaneously finished in one step without executing their
internal substructure. This is legitimate since identical (sub-)
structures always exhibit the same behaviour. For instance,
this is applicable for the Flow-activity at the beginning of
process models p2 and p3 during their simultaneous
execution.

In the screenshot of the PME (cf. Figure 9), the list
entries in the Infos-section at the very bottom constitute the
consistency report for the process model 2p̂ (diagram in the
centre). For example, it states that 2p̂ differs from 1p̂ in the
execution order of activity types p and n and exclusively has
a p-activity.

4.9 Discussion

The strengths of the graph grammar approach are the
following: first, we can avoid the explicit computation of
the process trace set c(p) for a process model p. Instead,
process traces are indirectly generated during simultaneous
execution of the process models. Due to the mentioned
optimisation, unnecessary dissimilar process traces are
avoided, which drastically reduces time complexity
compared to the naive implementation. Second, the
production rules take into account the (partial) process
traces of running or finished process instances. This is
achieved, e.g., by ruling out a simultaneous finishing if one
activity in the respective pair is already determined to be
unreachable (dead).

The approach presented in this section bears a problem
which is still to be solved. In spite of the optimisations in
the graph grammar, combinations of processes which have
many activity types in common but exhibit a completely
different behaviour due to different control flow definitions
still lead to too big GTS. For the time being, we cancel the
GTS-generation at a certain threshold for generated states.
Fortunately, these cases just imply a decline of the
consistency check result quality yet do not render the entire
result useless. Nonetheless, we plan to alleviate this problem
by utilising a mixture of incomplete GTS-generation
strategies and settle for locally shortest paths. Moreover,
checking each model against each other model in the
knowledge base requires | Mkb |2 checks, which of course is
too much for knowledge bases of realistic sizes. In future

work, we will deal with this problem by pre-filtering
potential testers.

4.10 Related work

There are plenty of works dealing with similarity of process
models. They differ in several regards from each other and
our work: first, the notion of similarity is different, i.e.,
whether processes must have partial or full process traces in
common, whether they have to have the same process
traces, or if they even have to be bisimilar. Our similarity
notion is deliberately weak since we consider processes
similar (d = 0) if they just share at least one common
process trace. Second, the evaluation of a similarity
computing function is considered to be either qualitative
(similar or not) or quantitative (degree of similarity). Our
approach is qualitative as we use the degree of similarity for
determining the testers which are further analysed. Third,
the approaches differ much in how they actually compute a
similarity function, even in what is taken as input for
computation. Some approaches consider differences in the
syntactic structure of the compared process models others
regard the respective behaviour, i.e., the process traces.
Particularly, this property contributes to the novelty of our
approach. We mainly regard the behaviour but use structural
identities for optimisation. To our best knowledge, there is
no other approach pursuing the same strategy, particularly
no one that employs graph grammars. Nonetheless, related
literature provides many ideas which we consider worth for
adoption.

Research on process similarity can profit from works on
string language similarity since both processes and string
languages can be defined by FTA. This is studied by
Wombacher and Rozie (2006). The authors point out the
limitations of approaches which merely consider the graph
structure of FTAs.

This limitation is targeted in the approach of Li et al.
(2008b), which is sensitive for semantics of control flow
activities. Here, the edit distance between ADEPT process
models of Reichert and Dadam (1998) is measured for
quantitative similarity computation. This is done by
determining the minimal number of correctness preserving
high level edit operations (insert, delete, and move) which
are necessary to transform process models into each other.
In Li et al. (2008a), the authors show how this can be used
to derive a reference model with an aggregated minimal
distance to variants in a given set. We particularly consider
ordering conflicts detection based on order matrices
interesting as it indirectly resembles our GTS-path analyses
yet refers to the process structure.

Küster et al. (2008) provide an approach for displaying
and semi-automatically resolving differences in the
syntactic structure of process definition model versions.
This particularly includes computation of the hierarchical
composition structure in (flat) graphically structured process
models before searching for equal (composite) fragments
between two process models. This part of their work is
interesting for us as we could adopt it to find more complex
pairs in the preparation phase described in Subsection 4.6.

 DYPROTO – tools for dynamic business processes 341

In van der Aalst et al. (2006), the authors refrain from
comparing process models directly but take (simulated)
process traces of at least one model as input for quantitative
similarity computation on Petri nets. Of course, the
strengths of this approach can be applied if representative
process traces are present or can be generated.

There is also a connection between our work and
process (change) mining since consistency checks rely on
information mined from existing process models. However,
approaches and frameworks like ProM for process mining
(van Dongen et al., 2005) rather use existing process traces
for deriving process definition models from scratch instead
of supporting the editing of existing process instance models
by mining other process models. Process change mining as
presented by Günther et al. (2006) mines logged dynamic
change operations in order to improve the quality of process
definition models which is not in our focus.

5 Conclusions

In this article, we presented results of the DYPROTO
project, a three-year research cooperation between our
group and the GDIS GmbH. The goal of this work was to
provide support for dynamic business processes in the
insurance domain.

It was clear from the very beginning that these dynamic
processes require functionality we name ‘run time
dynamics’, which supports dynamic modification of process
instance models, i.e., models of running processes. Run time
dynamics at least have to include dynamic adding of
unpredicted activities, dynamic removing of unnecessary
activities or dynamic reiteration of (previously executed)
activities. We had to build upon our partner’s existing
PMS WPS (along with the process definition language
WS-BPEL) since our prototypes should not change let alone
replace WPS but should non-invasively extend it. Driven by
these requirements we learned that direct manipulation of a
process instance model’s structure is dispensable for
implementation of run time dynamics. Instead, one can
simulate direct manipulation by an automatic augmentation
of process definition models by additional control
flow structures, e.g., additional Invoke-, Switch- and
While-activities. These additional activities are hidden from
process participants but used at process run time to carry out
a dynamic change, e.g., by rerouting the control flow to
another newly created process instance in order to
simulate dynamic adding. Our approach does not rely on
any WPS-specifics and is thus applicable for other
WS-BPEL-engines. Furthermore, the approach is aligned
with dynamics patterns, e.g., dynamic adding. Support for
each pattern can be realised or disabled depending on the
needs of process participants and on the dynamics patterns
which are already natively implemented by direct process
structure manipulation in the particular PMS. Essentially,
we can state: Appropriate support for dynamic business
processes can also be achieved with static PMS.

Process models are not supposed to be edited in an
arbitrary way but have to adhere to correctness constraints,
e.g., process variables have to be initialised before being
read, and compliance constraints modelled in explicit
graphical process knowledge models, e.g., commission of
expertises requires its later incorporation. In the worst case,
violations of these constraints lead to technical problems
(exceptional process instance termination) or professional
problems (conflicts with company specific or legal
regulations). We discovered that many of these constraints
can be efficiently checked by analysing the syntactic
structure of the respective process models. This works in
particular for a dynamically modified process instance
model. We make use of the OCL, and define
OCL-expressions which refer to integrated process meta-
models. Through this, checks for correctness and
compliance constraints can be uniformly realised since in
both cases we check one (complex) syntactic structure for
certain properties.

Explicit process knowledge models bear the immanent
downside that their maintenance causes extra work and that
they might be incomplete. However, process knowledge is
also implicitly contained in existing process definition and
instance models. In order to utilise this knowledge, we first
have to filter out those process models (testers) which are
sufficiently similar to a checked process model (testee).
Then, consistency between the testee and testers can be
reasonably analysed yielding differences between process
models with regard to executed activities and their
execution order. In order to abstract from the process
model structure (control flow definition) and to avoid
computational difficulties, we made use of the graph
grammar tool GROOVE.

Acknowledgements

This research project was part of the Transfer Center 61
funded by the Deutsche Forschungsgemeinschaft. We thank
Prof. Dr.-Ing. M. Nagl for his valuable academic input for
our work, our project partners K. Wolf, Dr. S. Bühne, and
H. Wessels for fruitful discussions about insurance
processes and our students N. Ehses, T. Kurpick, A. Fischer,
and T. Lake for their contributions to the prototypes.

References
Atkinson, C. and Dadam, P. (2007) ‘AristaFlow:

Komponentenbasierte Anwendungsentwicklung,
Prozesskomposition mittels Plug & Play und adaptive
Prozessausführung’, in doIT-Forschungstag 2007.

Awad, A., Decker, G. and Weske, M. (2008) ‘Efficient compliance
checking using BPMN-Q and temporal logic’, in Dumas, M.,
Reichert, M. and Shan, M-C. (Eds.): 6th International
Conference on Business Process Management (BPM) 2008,
LNCS, Vol. 5240, pp.326–341, Springer.

Baier, C. and Katoen, J-P. (2008) Principles of Model Checking,
MIT Press.

342 R. Wörzberger and T. Heer

Bianculli, D., Ghezzi, C. and Spoletini, P. (2007) ‘A model
checking approach to verify BPEL4WS workflows’, in IEEE
International Conference on Service-Oriented Computing
and Applications (SOCA) 2007, IEEE Computer Society,
pp.13–20.

Casati, F. (1998) ‘Models, semantics, and formal methods for the
design of workflows and their exceptions’, PhD thesis,
Politecnico di Milano.

Clarke, E.M., Grumberg, O. and Peled, D.A. (1999) Model
Checking, The MIT Press.

Dadam, P. and Reichert, M. (2009) ‘The adept project: a decade of
research and development for robust and flexible process
support’, Computer Science – Research and Development,
Vol. 23, No. 2, pp.81–97.

Eversheim, W., Michaeli, W., Nagl, M., Spaniol, O., Weck, M.
and Westfechtel, B. (1997) ‘SUKITS: Management von
Entwicklungsprozessen im Maschinenbau’,
Softwaretechnik-Trends, p.17.

Förster, A., Engels, G., Schattkowsky, T. and Straeten, R.V.D.
(2007) ‘Verification of business process quality constraints
based on visual process patterns’, in First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering
(TASE) 2007, IEEE Computer Society, pp.197–208.

Fuss, C., Mosler, C., Ranger, U. and Schultchen, E. (2007) ‘The
jury is still out: a comparison of Agg, Fujaba, and progress’,
ECEASST, Vol. 6.

Governatori, G., Milosevic, Z. and Sadiq, S.W. (2006)
‘Compliance checking between business processes and
business contracts’, in Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC), IEEE
Computer Society, pp.221–232.

Gravel, A., Fu, X. and Su, J. (2007) ‘An analysis tool for execution
of BPEL services’, in CEC/EEE, IEEE Computer Society,
pp.429–432.

Günther, C.W., Rinderle, S.B., Reichert, M.U. and
van der Aalst, W.M.P. (2006) ‘Change mining in adaptive
process management systems’, in 14th International
Conference on Cooperative Information Systems
(CoopIS‘06), LNCS, Vol. 4275, pp.309–326, Springer,
Montpellier, France.

Heckel, R. (2006) ‘Graph transformation in a nutshell’, Electr.
Notes Theor. Comput. Sci., Vol. 148, No. 1, pp.187–198.

Heer, T., Briem, C., and Wörzberger, R. (2008) ‘Work-flows
in dynamic development processes’, in Ardagna, D.,
Mecella, M. and Yang, J. (Eds.): Business Process
Management Workshops, Lecture Notes in Business
Information Processing, Vol. 17, pp.266–277, Springer.

Heller, M., Jäger, D., Krapp, C.-A., Nagl, M., Schleicher, A.,
Westfechtel, B. and Wörzberger, R. (2008) An Adaptive and
Reactive Management System for Project Coordination, in
Nagl, M. and Marquardt, W. (Eds.): pp.300–366.

Koehler, J., Tirenni, G. and Kumaran, S. (2002) ‘From business
process model to consistent implementation: a case for formal
verification methods’, in 6th International Enterprise
Distributed Object Computing Conference (EDOC), IEEE
Computer Society.

Küster, J.M., Gerth, C., Förster, A. and Engels, G. (2008)
‘Detecting and resolving process model differences in the
absence of a change log’, in Dumas, M., Reichert, M. and
Shan, M-C. (Eds.): BPM, Lecture Notes in Computer Science,
Vol. 5240, pp.244–260, Springer.

Levenshtein, V.I. (1966) ‘Binary codes capable of correcting
deletions, insertions and reversals’, Soviet Physics Doklady,
Vol. 10, No. 8, pp.707–710.

Li, C., Reichert, M. and Wombacher, A. (2008a) ‘Discovering
reference process models by mining process variants’, in
ICWS, IEEE Computer Society, pp.45–53.

Li, C., Reichert, M. and Wombacher, A. (2008b) ‘On measuring
process model similarity based on high-level change
operations’, in Li, Q., Spaccapietra, S., Yu, E. and Olivé, A.
(Eds.): 27th International Conference on Conceptual
Modeling (ER), LNCS, Vol. 5231, pp.248–264, Springer.

Liu, Y., Müller, S. and Xu, K. (2007) ‘A static
compliance-checking framework for business process
models’, IBM Systems Journal, Vol. 46, No. 2, pp.335–362.

Ly, L.T., Göser, K., Rinderle-Ma, S. and Dadam, P. (2008)
‘Compliance of semantic constraints – a requirements
analysis for process management systems’, in Proc. 1st Int’l
Workshop on Governance, Risk and Compliance –
Applications in Inf. Sys. (GRCIS‘08).

Mendling, J. and van der Aalst, W.M.P. (2007) ‘Formalization and
verification of EPCs with or-joins based on state and context’,
in Krogstie, J., Opdahl, A.L. and Sindre, G. (Eds.): 19th
International Conference on Advanced Information Systems
Engineering (CAiSE), LNCS, Vol. 4495, pp.439–453,
Springer.

Nagl, M. and Marquardt, W. (Eds.) (2008) ‘Collaborative and
distributed chemical engineering’, From Understanding to
Substantial Design Process Support – Results of the
IMPROVE Project, LNCS, Vol. 4970, Springer.

Pesic, M., Schonenberg, M. and Aalst, W. (2007) ‘Declare: full
support for loosely-structured processes’, in EDOC ‘07: 11th
IEEE International Enterprise Distributed Object Computing
Conference (EDOC), IEEE Computer Society.

Recker, J. and Mendling, J. (2006) ‘On the translation between
BPMN and BPEL: conceptual mismatch between process
modeling languages’, in The 18th International Conference
on Advanced Information Systems Engineering – Proceedings
of Workshops and Doctoral Consortium.

Reichert, M. (2000) ‘Dynamische ablaufänderungen in
workflow-management-systemen’, PhD thesis, University of
Ulm.

Reichert, M. and Dadam, P. (1998) ‘ADEPTflex-supporting
dynamic changes of workflows without loosing control’,
Journal of Intelligent Information Systems, Vol. 10, No. 2,
pp.93–129.

Rensink, A. (2003) ‘The GROOVE simulator: a tool for state
space generation’, in Pfaltz, J.L., Nagl, M. and Böhlen, B.
(Eds.): Second Workshop on Applications of Graph
Transformations with Industrial Relevance (AGTIVE), LNCS,
Vol. 3062, pp.479–485, Springer.

Rensink, A. (2008) ‘Explicit state model checking for graph
grammars’, in Degano, P., Nicola, R.D. and Meseguer, J.
(Eds.): Concurrency, Graphs and Models, LNCS, Vol. 5065,
pp.114–132, Springer.

Rozinat, A. and van der Aalst, W.M.P. (2008) ‘Conformance
checking of processes based on monitoring real behavior’, Inf.
Syst., Vol. 33, No. 1, pp.64–95.

Sadiq, S.W., Sadiq, W. and Orlowska, M.E. (2001) ‘Pockets of
flexibility in workflow specification’, in 20th Int. Conf. on
Conceptual Modeling (ER) 2001, Lecture Notes in Computer
Science, Vol. 2224, pp.513–526, Springer.

 DYPROTO – tools for dynamic business processes 343

Schleicher, A. (2002) ‘Management of development processes: an
evolutionary approach’, PhD thesis, RWTH Aachen
University.

van der Aalst, W.M.P., de Medeiros, A.K.A. and
Weijters, A.J.M.M. (2006) ‘Process equivalence: comparing
two process models based on observed behavior’, in
Dustdar, S., Fiadeiro, J.L. and Sheth, A.P. (Eds.): Business
Process Management, LNCS, Vol. 4102, pp.129–144,
Springer.

van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.,
Weijters, A.J.M.M. and van der Aalst, W.M.P. (2005) ‘The
ProM framework: a new era in process mining tool support’,
in ICATPN, LNCS, No. 3536, pp.444–454, Springer.

Verbeek, H. and van der Aalst, W. (2005) ‘Analyzing BPEL
processes using Petri nets’, in Second International Workshop
on Applications of Petri Nets to Coordination, pp.59–78.

Verbeek, H.M.W., Basten, T. and van der Aalst, W.M.P. (2001)
‘Diagnosing workflow processes using Woflan’, The
Computer Journal, Vol. 44, No. 4, pp.246–279.

Weber, B., Reichert, M. and Rinderle-Ma, S. (2008) ‘Change
patterns and change support features – enhancing flexibility in
process-aware information systems’, Data Knowl. Eng.,
Vol. 66, No. 3, pp.438–466.

Wombacher, A. and Rozie, M. (2006) ‘Evaluation of work-flow
similarity measures in service discovery’, in Schoop, M.,
Huemer, C., Rebstock, M. and Bichler, M. (Eds.): Conference
on Service Oriented Electronic Commerce, LNI, Vol. 80,
pp.51–71, GI.

Wörzberger, R. and Heer, T. (2008) ‘Process model editing
support using eclipse modeling project tools’, in Friese, P.,
Zambrovski, S. and Zimmermann, F. (Eds.): Second
Workshop on MDSD Today, Lecture Notes in Informatics,
Shaker Verlag.

Wörzberger, R., Ehses, N. and Heer, T. (2008a) ‘Adding support
for dynamics patterns to static business process management
systems’, in Pautasso, C. and Tante, É. (Eds.): Software
Composition, LNCS, Vol. 4954, pp.84–91, Springer.

Wörzberger, R., Kurpick, T. and Heer, T. (2008b) ‘Checking
correctness and compliance of integrated process models’, in
Negru, V., Jebelean, T., Petcu, D. and Zaharie, D. (Eds.):
SYNASC 2008, IEEE Computer Society, pp.576–583.

