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Abstract: In this article, we present research results about tools for supporting dynamic business 
processes. This research work has been conducted in a three-year cooperation between our 
department and an IT service provider for insurance companies. Our partner’s process 
management system (PMS) is rather aligned with static processes, whose structure is not changed 
at process run time. Therefore, we contribute an approach for obtaining dynamic process 
execution support based on this static PMS by automatically augmenting existent WS-BPEL 
process definitions and run time data. Dynamically changeable processes are presented to process 
participants as graphical models by a process model editor. This editor aids process participants 
with performing dynamic changes in as much as it is aware of explicit and implicit technical and 
professional process knowledge and detects violations against this knowledge in dynamically 
changed process instance models. We delineate how explicit process knowledge can be 
graphically modelled and exploited in automatic checks using OCL-constrained and integrated 
meta-models. Checks versus explicit knowledge are complemented by checks versus implicit 
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1 Introduction 

Work processes tend to be unpredictable. In the following, 
we stress this property by naming these processes dynamic 
processes. Dynamics can be found in nearly all processes, 
e.g., highly creative development processes but also 
business processes. These processes touch the interest of 
many stakeholders and are at the same time prone to error 
due to their inherent complexity. 

However, there is no common solution that provides 
best tool support for all scenarios of dynamics in processes. 
Even worse, many state of the art tools are rather agnostic of 

dynamics in processes or just provide little means to 
suitably support these processes (Weber et al., 2008). For 
this reason, there are many research projects in this area. 

1.1 Preceding works 

Our group deals with tool support for dynamic processes for 
about 15 years. In the past, we mainly focused on dynamic 
development processes, particularly in the domain of 
mechanical engineering (Eversheim et al., 1997) and 
chemical engineering (Nagl and Marquardt, 2008) and 
developed an adaptable and human-centred environment for 
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the management of design processes (AHEAD) (Heller et 
al., 2008). AHEAD particularly provides functionality to 
cope with evolving and distributed development processes. 

Though AHEAD is a working prototype, its dependency 
on diverse academic frameworks and run time environments 
impedes its application in industry. Moreover, AHEAD 
concentrates on the management of human-centred 
processes. With AHEAD, it is neither possible to execute 
automated process parts, e.g., activities which are executed 
automatically by some software system nor does AHEAD 
fit well into an existing process management tool 
infrastructure due to its incompliance to existing technical 
and process management standards. 

1.2 Transfer to industry 

In the past three years, we transferred concepts of AHEAD 
into industry. This transfer is two-fold: first, we realised  
the process management environment for engineering 
design processes (PROCEED) system, which constitutes  
an additional layer on top of the commercial chemical 
engineering tool ComosTM (Heer et al., 2008). 

Second and subject of this article, we have built a tool 
suite for dynamic business processes name DYPROTO on 
top of the commercial process run time environment WPS  
(IBM WebSphere Process Server v6.1). In the DYPROTO 
project, we cooperate with Generali Deutschland Informatik 
Services GmbH (GDIS), an information technology service 
provider for the Generali insurance group. Hence, in the 
DYPROTO project, we shift our focus from development 
processes to business process in the insurance domain. 

1.3 New challenges 

In the DYPROTO project, we faced several challenges 
which are thrilling from a research perspective. Three of 
these challenges are dealt with in Sections 2 to 4, which are 
positioned and related to each other as shown in Figure 1. 

First, WPS is a main building block in solutions of 
GDIS. Thus, DYPROTO had to be integrated with the  
WS-BPEL-engine WPS. There are numerous academic and 
some commercial process management system (PMS), 
which support dynamics changes to running processes to 
various degrees (Weber et al., 2008). Anyway, replacing the 
rather ‘static’ WPS by one of these is not an option for our 
partner due to the investments in WPS-based solutions 
which have already been made. So, we had to retrofit WPS 
with capabilities for dynamic changes. 

In order to conduct dynamic changes, process 
participants need to know the entire process structure. Thus, 
the respective process instance models, i.e., models of 
running processes have to be presented in an editable and 
graphical form. The same holds true for process models on 
higher layers of abstraction, e.g., process definition models, 
which precisely describe a certain process type, but also for 
process knowledge models which cover explicit knowledge 
about processes in a certain domain, e.g., the insurance 
domain. Thus, DYPROTO comprises a process model 
editor (PME), which can display process models of various 

kinds and supports the editing of these models. Furthermore, 
the dynamics layer enables dynamic changes but does  
not provide any means to preserve constraints, which are 
imposed on process models. Therefore, the PME provides 
constraint checking functionality. 

Figure 1 Challenges and paper structure 

 

We distinguish between the following constraints kinds 
which are supported by the PME: 
• Correctness constraints stem from technical necessities 

formulated in explicit rules. Many of these are  
well-known from compiler theory but also apply for 
process models, e.g., process variables have to be 
written (initialised) before being read. In the worst  
case, violations to correctness constraints lead to 
uncontrolled termination of the respective process 
instance. 

• Compliance constraints are defined by process 
knowledge models which specify explicit professional 
and domain specific process knowledge to which other 
process models must adhere. For example, process 
knowledge models might require that certain process 
activities depend on each other and require a certain 
precedence regarding their execution order. 

• Consistency refers to potential contradictions between 
process models. One can compare a process model  
to other similar process models in order to reveal 
inconsistencies, i.e., differences, between them with 
respect to the occurrences of certain activities and their 
execution order. Hence, consistency checks use implicit 
knowledge in other process models. 

In this article, we contribute diverse novel and 
prototypically implemented approaches which deal with the 
challenges mentioned above. The main concepts are not just 
valid in our specific project context but applicable for 
similar problems. We do not provide yet another paradigm 
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or formalism along with a prototype built from scratch that 
particularly capture dynamic process changes at process run 
time. Instead, in Section 2, we delineate how to overcome 
the insufficient flexibility of WPS by an additional 
dynamics layer that extends the unmodified WPS. Section 3 
describes how both correctness and compliance checks  
are uniformly realised via an integrative meta-modelling 
approach. In Section 4, we describe how consistency checks 
are formalised and computed based on implicit knowledge 
which is mined by exertion of graph grammars. 

Each of the main Sections 2 to 4 is ended with a 
discussion and a comparison to related works. A conclusion 
is given in Section 5. 

2 Flexibility for existing systems 

Whenever we talk about processes, we bear in mind some 
complex material or immaterial system which is changed in 
a certain way while time passes. This holds true, e.g., for 
operating system processes which alter data but also for 
work processes. For instance, in the insurance domain 
processes for issuing or renewing policies change legal 
states between the insurance company and the respective 
policy holders. Supporting work processes by PMS requires 
formal process models, which particularly describe the steps 
(activities) that have to be carried out during the respective 
processes and their sequencing. 

In order to be supported by a PMS, a process of a certain 
type (e.g., settlement of a claim due to rapture of a supply 
water pipe) has to be modelled in a business process 
modelling language of an appropriate precision. Such a 
model is usually called process definition (model). For 
every process case of the respective type a PMS holds 
process case specific data called process instance, which 
refers to a particular process definition. Basically, a process 
instance contains the execution state of activities as well as 
process data produced or consumed by the activities. 

Figure 2 depicts a simplified process definition of a 
claim settlement process in an insurance company. This 
process model serves as a running example throughout this 
article. In the figure, we use a graphical notation for  
the underlying process definition language WS-BPEL. We 
refrained from using BPMN as graphical notation due  
to existing mismatches between BPMN and WS-BPEL 
(Recker and Mendling, 2006). Instead, our notation is 
aligned with the commercial WS-BPEL editor IBM 
WebSphere Integration Developer (WID) v6.1TM and 
directly reflects the block-structure of WS-BPEL process 
definitions. Receive and reply activities mark the start and 
end of the process, respectively. The process consists of 
three phases: in the preparation phase, initial checks are 
conducted, which verify if the claim is actually covered by 
some contract between the policy holder and the insurance 
company and whether the policy holder has fallen behind in 
payment. These checks are done automatically ( ) but 
might yield an ambiguous result. In this case, they are also 
done manually ( ) by some insurance clerk. Since the  
 

activities are placed into a Flow-activity (big box) they can 
be executed in parallel. Yet, manual activities are executed 
after automatic ones which are defined using Links (arrows 
between activities). In the handling phase, documents that 
back the claim are checked for completeness and demanded 
in addition if necessary. The boxes headed with a  
represent Switch-activities, i.e., demand documents is 
executed if and only if activity documents complete yields 
no. If the situation is not clear on the basis of the 
documents, an external appraiser is commissioned, who 
returns an expertise, which must be incorporated into the 
internal process. If it turns out in the disbursement phase 
that the claim is eligible, the insurance company disburses 
the compensation. In any case, the policy holder is notified 
at the process’ end. 

Figure 2 Simplified model of an insurance process (see online 
version for colours) 
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2.1 Dynamics and flexibility 

Dynamics in processes can only be met in process 
management systems (PMSs) by flexibility. However, 
flexibility can be achieved in different ways. 

Build time flexibility is a property of the used process 
modelling language for process definition models and refers 
to the constructs a process modeller can use at process build 
time. For example, WS-BPEL provides constructs like Flow 
and Link for concurrency and Switch and While for 
optional and iterative activities, respectively. 

However, build time flexibility does not suffice for 
those types of processes where the set of reasonable activity 
sequences cannot be determined at process build time. By 
the term run time dynamics, we subsume all functions of a 
PMS that allow for changes in process instance models  
of running processes like adding additional activities, 
removing unnecessary activities or reiterating finished 
activities. 

With regard to the example process, an activity 
‘determine payee’ might be dynamically added, if the policy 
holder has no valid bank account. If the policy holder dies 
during the process and has no legal heirs, disbursement 
should not take place in any case and should therefore be 
dynamically removed. Moreover, expertises from an 
appraiser might be insufficient and require a repetition. The 
process definition of Figure 2 fails to support the cases 
mentioned above. 

2.2 Retrofitting run time dynamics by simulation 

Each software system is either built from scratch or derived 
from an existing one. This also applies to PMS, which (are 
supposed to) support run time dynamics. For instance, the 
Aristaflow-BPM-Suite (Atkinson and Dadam, 2007) has 
been developed with the initial design goal to offer run  
time dynamics. However, existing PMS-solutions of our 
cooperation partner GDIS are based on commercial 
products, in particular on the IBM WebSphere Process 
Server v6.1TM (WPS). Since investments to this solution had 
to be saved, replacing WPS with a new PMS, which a-
priorly supports run time dynamics, was not an option. 
Instead, we pursued an a-posteriori approach, i.e., we 
retained WPS but extended it by a dynamics layer 
(Wörzberger et al., 2008a). Briefly speaking, this additional 
layer retrofits WPS with run time dynamics. 

Figure 3 depicts the coarse architecture of the dynamics 
layer in conjunction with the existing systems WPS and 
WID. Since the existing systems strictly distinguish  
between process definitions (process build time) and 
process instances (process run time) also the dynamics layer 
consists of two components: the WS-BPEL transformer 
(build time) and the dynamics component (run time). 

WID is a build time tool that supports process modellers 
to build process definitions in WS-BPEL, which can be 
deployed to the run time environment WPS. From an 
original process definition X, we just demand standard 
cases. Dynamics simulating structures, i.e., special Invoke-,  
 

Switch- and While-activities, for handling dynamic 
processes are then automatically added to the process 
definition X by an XSLT-based WS-BPEL transformer 
yielding an augmented process definition Xa. 

At run time, the instance data of the augmented 
processes is extended by a dynamics component which 
contains additional process variables that control the 
behaviour of the additional control flow activities. By 
default, these additional variables are set in a way that  
the augmented process behaves like the original one. 
However, these variables can be indirectly altered at run 
time by process participants via process instance model 
manipulations. This simulates the dynamic modification of 
the running process, e.g., by rerouting the control flow to a 
newly created process instance. Please note that of course 
the dynamics simulating structures are hidden from process 
participants to preserve the impression of a structural 
modification in the process instance model. 

Figure 3 Dynamics layer on top of WPS (see online version  
for colours) 

 

2.3 Dynamics patterns 

The realisation of the dynamics layer is aligned with 
patterns of modifications to process instance models. Three 
dynamics patterns are essential for run time dynamics: 
sequentially embedding activities into the control flow of a 
running process (dynamic adding), conversely detaching 
existing activities from a process (dynamic removing) and 
manipulation of the process’ control flow state to allow for 
repeated execution of activities which have already been 
carried out (dynamic reiteration). Dynamic adding and 
removing are included in the ‘adaptation patterns’ identified 
in the survey work of Weber et al. (2008). Together with 
dynamic reiteration, we think these patterns suffice for most 
necessities process participants might have at process run 
time. They deliberately do not match the possibilities a 
process modeller has at process build time, e.g., 
optimisation by parallelisation of activities. 
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Figure 4 Examples for dynamic adding and removing  
(see online version for colours) 

 

2.3.1 Dynamic adding 

Support for dynamic adding at run time is prepared by  
the WS-BPEL transformer at build time by adding 
additional activities to the augmented process definition Xa 
between sequential activities of the original process 
definition X. Since technically these additional activities are 
Invoke-activities of WS-BPEL, we call them dynamic 
adding invocations (DAI). At run time, DAIs serve as  
exit-points in an instance Xa.1 of Xa from which the control 
flow may be routed to a newly created instance Ya.1 of 
another (augmented) process definition Ya. At this point, Y 
and Ya must have been pre-modelled and generated, 
respectively, in order to be available in the pool of addable 
fragments. For each DAI, the dynamics component stores 
run time binding information. 

In the example of Figure 4, the DAI1 is set to route the 
control flow to a newly created process instance Ya.1. This 
simulates the addition of the activity determine payee just 
before disburse compensation, e.g., because the policy 
holder has no valid bank account. After Ya.1 is finished the 
control flow returns to Xa.1 and proceeds with DRD1. The 
other DAIs expose default behaviour, i.e., they do not have 
any effect at all. Wörzberger et al. (2008a) provide a more 
detailed description of dynamic adding. 

2.3.2 Dynamic removing 

Dynamic removing of activities is realised by additional 
Switch-activities, i.e., each Invoke-activity of the original 
process definition X is nested into a Switch-activity by the 
WS-BPEL transformer. We call this special Switch-activity 
a dynamic removing decision (DRD). Again, at run time, 
dedicated variables in the dynamics component control the 
behaviour of the DRDs. 

In the example of Figure 4, the process participant 
(insurance clerk) might learn during execution of determine 
payee that the policy holder has died and has no legal heirs. 
Thus, activity disburse compensation should not be 
executed irrespective of the claim’s eligibility. Furthermore, 
execution of notify policy holder is obsolete though less 
harmful (costly) than disburse compensation. Consequently, 
the process participant indirectly sets the DRD1 and DRD2 
of instance Xa.1 to yes. As a consequence, the nested 
activities are bypassed which simulates a dynamic removal 
of the activities. 

2.3.3 Dynamic reiteration 
Sometimes activities have to be reiterated, e.g., commission 
appraiser due to an insufficient expertise which is revealed 
during execution of incorporate expertise. For sake of 
brevity we left out an example for dynamic reiteration in 
Figure 4. In principle, dynamic reiteration is realised by a 
While-activity generated by the WS-BPEL transformer at 
build time, which surrounds the entire process. With regard 
to the example, at run time all activities succeeding 
incorporate expertise and preceding commission appraiser 
are temporarily removed by means of dynamic removing. 
This simulates a reiteration of both activities commission 
appraiser and incorporate expertise. 

2.4 Discussion 

The concepts of our approach were mainly driven by the 
constraints of our cooperation with GDIS that is we had to 
build upon WPS. That is why we did not realise run time 
dynamics with an entirely new PMS although this a-priory 
approach surely provides higher degrees of freedom with 
respect to implementation. Instead, our a-posteriori 
approach simulates run time dynamics with an additional 
dynamics layer on top of the unmodified WPS. Admittedly, 
this approach complicates the realisation concepts 
significantly and hampers the implementation. However,  
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building upon a commercial PMS also entails the benefit 
that the overall system inherits the functionality, run time 
efficiency and robustness of the underlying commercial 
PMS. 

The very last revision 7.0 of WPS entails some new 
features which pose a step towards process dynamics. These 
include the possibility for process modellers to specify the 
migration of a process instance to a new process definition 
at build time. Moreover, regions can be marked at build 
time via non-standard WS-BPEL-constructs that surround 
runtime changeable process parts. Thus, these new concepts 
complement our approach as they increase flexibility via 
additional work during process build time instead of 
dynamic changes at process runtime. 

In the description of dynamic adding, we neglected flow 
of process data that is input or output of activities in the 
process. If an activity with formal input parameters is added 
via dynamic adding, the process participant has to assign 
actual values to these parameters from local process 
variables. This is supported by a graphical data mapping 
tool. 

Although we realised our approach on top of WPS, its 
concepts and major parts of its implementation are 
independent of proprietary WPS-functions. Moreover, the 
WS-BPEL transformer is strictly WS-BPEL standard 
conformable, i.e., it does not introduce non-standard 
constructs. Porting to another WS-BPEL-engine would just 
require reimplementation of the interface between dynamics 
component and the respective PMS. Furthermore, concepts 
of the WS-BPEL transformer can be reused for transformers 
of XML-languages comparable to WS-BPEL like XPDL or 
BPML. 

2.5 Related work 

There are several works on flexible PMS, which we relate to 
our approach in the following. All other works share a 
common difference compared to ours: the respective 
prototypes are build from scratch independent of an existing 
static (commercial) PMS. To do so is appealing from a 
research point of view as these prototypes can be strongly 
aligned with existing formalisms. In comparison to other 
works, we do not provide a novel formalism for run time 
dynamics but a realisation strategy that a-posteriorly 
extends static PMS by run time dynamics. 

The common difference mentioned above particularly 
holds true for our predecessor project AHEAD, which is not 
based on any other (commercial) PMS and therefore lacks 
certain standard functionalities, e.g., interfacing with 
standard middlewares. Moreover, AHEAD rather focuses on 
the management of development processes which typically 
require continuous detailing and evolution of initially sparse 
process models instead of on-demand deviations which are 
typical for business processes. 

The ADEPT-approach by Reichert and Dadam (1998) 
founds on a newly developed, expressive language which is 
suitable for the modelling of process definitions and process 
instances. The semantics of this language is precisely  
 

defined via formal mappings to mathematical structures 
(Reichert, 2000). Run time dynamics are formalised in 
terms of these structures. Currently, concepts of ADEPT are 
transferred to a commercial PMS (ADEPT2) (Dadam and 
Reichert, 2009; Atkinson and Dadam, 2007). Yet, ADEPT2 
is implemented from scratch and not based on an existing 
PMS. 

The WIDE-project by Casati (1998) or the ‘pockets of 
flexibility’-approach by Sadiq et al. (2001) also provide 
support for run time dynamics. Again, the according 
prototypes are built independent of existing systems. 

Weber et al. (2008) provide a systematic comparison of 
some academic and commercial systems with regard to 
flexibility. According to their categorisation, our approach 
provides support for ‘serial insert process fragment’ and 
‘delete process fragment’. These basic patterns can be 
combined to ‘move’ and ‘swap process fragment’ like 
Weber et al. delineate. However, parallel and conditional 
insertion is not supported, yet. Implementing parallel 
dynamic adding is easy if parallelisation of an added 
activity A is restricted to a single activity B. Arbitrary 
positions for AND/OR-Splits and -Joins would require 
significant extensions to the WS-BPEL-transformer. 

3 Explicit process knowledge 

In the last section, we described an a-posteriori approach for 
extending an existing PMS with run time dynamics by an 
additional dynamics layer. With run time dynamics, process 
participants are able to add activities to, remove activities 
from or reiterate activities in running processes in order to 
handle cases which have not been modelled in the 
respective process definition. We concealed that although 
run time dynamics are essential for dynamic processes  
they induce new problems. Here, we distinguish between 
technical problems, which relate to violations of correctness 
constraints in process models and might cause breakdowns 
in PMS, and professional problems, which relate to 
compliance constraints enforcing laws or company specific 
quality standards. 

This section deals with concepts for a PME that helps 
process participants to avoid problems when conducting 
dynamic changes to a process. The PME is built-in a model 
driven fashion using rigid integrated meta-models and 
complex syntactic restrictions. We show that this approach 
is suitable both for detection of technical as well as 
professional problems. 

3.1 Process models 

Process models are useful for communicating information 
about processes among humans. They are essential for 
communicating information about processes between 
humans like process modellers or process participants and 
PMSs. As mentioned in Section 2, different kinds of process 
models are relevant in PMS and are described in the 
following. 
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Figure 5 Process instance model example with dynamic changes 
(see online version for colours) 

 

3.1.1 Process instance models 

Actual process cases are presented to the process 
participants by the PMS in the form of process instance 
models. Usually, these models are quite abstract as they just 
provide a tabular cutout of the process case containing the 
process case’s state, i.e., the states of the process’ activities. 
In PMS that provide run time dynamics, process participants 
also have to know about the whole process structure in order 
to perform dynamic changes. Hence, in these PMS, process 
cases are modelled best via graphical process instance 

models which reflect the process state but also the structure 
of a process. 

Figure 5 provides an example of a process instance 
model at a certain point in time during process execution. 
This modelled process instance was originally instantiated 
from the process definition of Figure 2 yet deviates from 
that definition due to some dynamic changes. Activities in 
this model posses state information, i.e., one of the states 
waiting, active or finished, which is displayed in boxes 
within the activities. The absence of a box denotes the state 
waiting. Obviously, the process has already advanced to 
activity incorporate documents. 

The process instance model in Figure 5 deviates from 
the process definition model of 2 in three cases: first, an 
activity check deceit has been added to the process. Second, 
notify policy holder has been removed from the process. In 
Subsection 3.2, we will see that these dynamic changes are 
problematic. 

3.1.2 Process definition models 

Process definition models model processes of a certain type. 
An example of a process definition model was already 
provided by Figure 2. The similarity between the shape of 
process instance models and process definition models is 
deliberate. Process instance models contain the control flow 
structure, e.g., switches, of the process which is associated 
with a process definition but also reflect the state of a 
certain process case. Conversely, one can consider a process 
definition model an abstraction of a concrete process case. 

3.1.3 Process knowledge models 

Though process definition models already provide an 
abstraction and thus can be used for arbitrarily many 
process cases, they are still bound to a certain process type, 
e.g., settlement of a car damage claim. Therefore, process 
definitions are unsuitable for expressing general process 
knowledge of some domain. Process type independent 
process knowledge requires more abstract kinds of models. 
For this purpose, we introduced graphical process 
knowledge models in our approach. These models specify 
the behavioural aspect of processes of some domain, i.e., 
they define which activities have to be mandatorily 
executed, have to be executed in a certain order or depend 
on each other. 

Figure 6 exemplifies a process knowledge model. The 
ellipses denote activity types which pose abstractions of 
activities in process definitions or process instances. In the 
following, we abbreviate ‘activity of activity type X’ with 
‘X-activity’. Activity types can be related to each other  
with relational constraint edges (solid arrows) in order to 
model structural knowledge about processes in a certain 
domain. Each edge is directed and defines a constraint for 
its source activity type. Conversely, a target activity  
type can satisfy the respective relational constraint. This 
knowledge particularly constrains processes with regard to 
the presence and order of activities as described in the next 
subsection. 
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Figure 6 Process knowledge model example 

 

3.2 Model constraints 

Process model changes and foremost dynamic changes via 
process instance models might result in problems and 
therefore need to follow constraints. In the following, we 
give examples for professional and technical problems with 
respect to the process instance model of Figure 5. 

3.2.1 Professional compliance constraints 

With (professional) compliance constraints we subsume  
all constraints that stem from laws, company specific 
regulations or just common sense. Using activity types A, B 
and relation constraint edges of a certain kind we can model 
a compliance constraints by patterns like ..

kind
n mA B⎯⎯⎯→  and 

0( , ) { },n m ∈ × ∪ ∗  where ∗ denotes infinity. The kinds 
are actually the following which will be described by means 
of the example in Figure 6: 

• Inclusion. Claim handling processes need to have 
exactly one notification-activity. No notification  
would leave the policy holder uninformed, twice or 
more (contradictory) notifications might confuse him. 
This is expressed by the includes-edge between the 
respective activity types and the multiplicity 1..1. 
Similarly, a claim handling process – considered just  
as a very complex activity – should have at most one 
disbursement-activity to avoid double compensation. 
The amount of check-activities in a claim handling 
process is unbounded according to the rightmost 
inclusion constraint. Thus, this includes-edge just 
stresses this unboundedness but could also be removed 
without side effects. 

In general, ..
includes

n mA B⎯⎯⎯⎯→  denotes that an A-process 

needs to include at least n and at most m B-activities 
which are executed in any case. 

• Existence. Disregarding a particular process, occurrence 
of certain activities requires occurrence of others.  
For example, a manual check-activity requires the 
existence of 1..*, i.e., at least one automatic check-
activity in order to prevent human mistakes. This 
constraint is modelled via the req_existence edge from 
manual check to automatic check. Generally, 

_
..

req existence
n mA B⎯⎯⎯⎯⎯⎯→  denotes that the existence of an A-

activity implies the existence of n to m B-activities in 
the same process. 

• Succedence/precedence. Some activities depend on 
each other and can only be reasonably executed in a 
certain order. For example, results of a third cannot be 
incorporated before the third is commissioned. By the 
succeeded_by-constraint in Figure 6, we require that a 
commission third-activity always has to be succeeded 
by at least one incorporate results in the control flow 
yet not necessarily directly. In general, 

_
..

succeeded by
n mA B⎯⎯⎯⎯⎯⎯→  implies that an A-activity is 

succeeded by at least n and at most m B-activities in the 
process. There is also an analogous constraint kind for 
precedence. 

• Direct succedence/precendence. A  
direct-succedence-constraint _ _

..
dir succeeded by

n mA B⎯⎯⎯⎯⎯⎯⎯→  is 

just a tightened succedence-constraint which requires 
that two activities are executed right after another in a 
certain order. For brevity, we left out an example for 
this constraint. Again, there is an analogous constraint 
kind for direct precendence. 

Obviously, 
_

..
req existence

n mA B⎯⎯⎯⎯⎯⎯→  

holds true if 
_

..
succeeded by

n mA B⎯⎯⎯⎯⎯⎯→  

applies, which holds true if 
_ _

..
dir succeeded by

n mA B⎯⎯⎯⎯⎯⎯⎯→  

holds true. These implications are analogous for precedence. 
Comparable to inheritance between classes in  

object-oriented programming, one activity type (subtype) 
can be a specialisation of another one (super type). This is 
modelled by a specialisation edge (dashed arrow). A 
specialised activity type transitively inherits all constraints 
of its super types, i.e., all outgoing relational constraints. 
Furthermore, an activity type also inherits incoming 
relational constraints and thus may substitute a super type to 
satisfy a relational constraint. 

In our approach, activity types can be referenced by 
activities or entire processes in process definition or 
instance models in order to give activities (processes) a 
meaning. The activities of Figure 5 are typed in this manner. 
From this information, it can be derived that two of the 
dynamic changes done via the instance model of the  
claim handling process of Figure 5 violate professional 
compliance constraints modelled in the process knowledge 
model of Figure 6. First, the removal of incorporate 
expertise after commission appraiser violates the 
succedence-constraint from commission third to incorporate 
results. Second, the removal of the notification-activity 
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contradicts the inclusion constraint from claim handling to 
notification. 

3.2.2 Formal semantics of compliance constraints 

Since the expressions in process knowledge models only 
refer to the existence and ordering of activities, their 
semantics can be formally defined. The lower right side of 
Figure 7 shows how this is done conceptually. We use  
the superset CTL* of linear temporal logic (LTL) and 
computational tree logic (CTL). 

Figure 7 Conceptual architecture for process model checks 

 

The semantics of CTL* formulas can be defined with 
respect to a formal structure. We define CTL*-semantics 
with regard to process transition system (PTS), i.e.,  
CTL*-formulas make statements about PTS. A PTS is a 
{ , }-structureR L  with universe .pS  Here, pS  denotes the 

set of all process states, where a process state is just a 
composite state containing all activity states. p p⊆ ×R S S  

is the binary and total transition relation between process 
states. : 2p →

APL S  maps process states to sets of atomic 

propositions .AP  In our case, atomic propositions are pairs, 
i.e., a= ×AP AT S  where AT  denotes the set of activity 
types and {Waiting, Active, Finished}a =S  possible activity 
states. With respect to a PTS, we can apply the usual  
CTL*-semantics definitions as provided (e.g., Clarke et al., 
1999). 

As depicted in Figure 7 process instance models are 
mapped to PTS. The semantics of process knowledge 
models can then be formally defined by mapping the 
language elements to CTL*-formulas. 

For instance, we can formally define the semantics of: 
_

1..
req existenceA B

∗
⎯⎯⎯⎯⎯⎯→  

by the CTL*-formula: 

( )( , Active) ( ,Finished)A B→A F F  

where boldface letters are path quantifiers and temporal 
operators. With regard to a process the CTL*-formula must 
be read as follows: “For all (A) process execution paths: if 
there is a state somewhere on the path (F) where an  

A-activity is executed, i.e. Active, then this implies that 
there must also be a state on the path (F) where a B-activity 
has been executed, i.e., is Finished”. Analogously, we can 
formally define the semantics of the other process model 
knowledge elements. Please note, that it is generally not 
possible to do this independently of a certain multiplicity 
like 1..∗ in the example above, i.e., one cannot define the 
semantics of _

.. ,req existence
n mA B⎯⎯⎯⎯⎯⎯→  in just one CTL*-formula 

independent of n..m. 

3.2.3 Technical correctness constraints 

Process models of a certain kind have to adhere to 
complicated syntactic correctness constraints which are 
independent of other models. Violations of these constraints 
usually lead to technical problems within the respective 
PMS like premature termination of a process instance or 
deadlocks. Hence, we call these constraints (technical) 
correctness constraints. 

Correctness constraints require, e.g., that process 
variables have to be initialised by some activity before they 
can be read (cf. Wörzberger et al., 2008b) or that process 
variables should not be written by concurrent activities in 
order to avoid lost updates. Moreover, dynamic changes in 
process instance models should not introduce unreachable 
activities. This is the case in the process instance model of 
Figure 5. Here, check deceit has been added during 
execution of incorporate documents. Obviously, in this 
process instance model check deceit will never become 
Active. Since this problem stems from the control flow 
semantics of the process definition language but not from 
external process knowledge, we consider this an (internal) 
incorrectness of the model. Also, process knowledge  
models have to obey to correctness constraints, e.g., cyclic 
precedence or specialisation relationships have to be 
excluded to avoid unsatisfiable compliance constraints. 

3.3 Syntax checks of integrated process models 

Although we use temporal logics in order to formally define 
the semantics of process knowledge models we do not use 
the formulas in some model checker to detect the violation 
of process model constraints. Instead, violations of 
constraints are detected by checks of the process models’ 
static syntax. This is feasible since process definition 
models and process instance models specify the behaviour 
of a process (of a certain type). Hence, they cover all 
information necessary to do the constraint checks. The 
upper half of Figure 7 summarises the conceptual 
connections which are relevant in the following. 

Before we can formally define complex syntactic rules 
on process models, we need to formally define the basic 
syntax, i.e., language elements and their possible relations 
and compositions. Since we are dealing with graphical 
languages, we use simplified graphical class diagrams as 
meta-models for this task. Figure 8 depicts the relevant parts 
of these meta-models. The process knowledge meta-model 
basically consists of two meta-classes. It defines that 
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ActivityTypes can be connected by relational constraints 
(RelCon), whose attribute conKind ranges over the kinds 
described in Subsection 3.2 and the attributes lowerBound 
and upperBound constitute the multiplicity of a relational 
constraint. The process definition meta-model defines 
Activity, which can be either an AtomicActivity like 
Invoke or a ComplexActivity like a Flow or a Switch. 
In a Flow, two activities can be connected by a Link to 
restrict possible execution sequences. The process instance 
meta-model is not a meta-model on its own but extends  
the process definition meta-model by a meta-class 
ActivityInstance for incorporating activity states 
ranging over {Waiting, Active, Finished} in process 
instance models. Please note that an Activity can be 
associated with arbitrarily many ActivityInstances. 
This is reasonable because activities can be nested in 
Switch-or While-elements and thus be executed never, 
once or arbitrarily many times. 

Figure 8 Integrated process meta-model 

 

As depicted in Figure 8, the meta-models are not isolated 
but refer to each other. Process instance models are 
instances of the combined meta-model consisting of the 
process definition meta-model and the process instance 
meta-model. Furthermore, an Activity can be typed  
with an ActivityType by the reference typedAs. 
Consequently, a process instance model together with a 
process knowledge model containing its activity types form 
an integrated syntactic structure. 

Meta-models define the basic syntax, e.g., relations and 
compositions, of a graphical model. However, they are to 
inexpressive to capture more sophisticated syntactic 
constraints. Therefore, we cannot cover the model 
constraints of Subsection 3.2 just by means of the  
meta-models. Instead, we augment the meta-models by 
textual object constraint language (OCL v2.0)-expressions, 
which tighten the syntactic constraints on process models. 
In this way, correctness constraints can be formalised in 
OCL-expressions that refer to a single process meta-model. 
Compliance constraints can be expressed in OCL by 
expressions, which refer to the integrated meta-model. 

Hence, both sorts of constraints are handled by the same 
method. 

Listing 1 exemplifies a correctness constraint for a 
process knowledge model. This constraint valuates to false, 
if an ActivityType is an ancestor of itself with regard to 
specialisation. In Wörzberger et al. (2008b), we exemplify 
another correctness constraint in OCL which constraints 
process definition and instance models. 

Listing 2 provides an example of an OCL-expression 
that defines an invariant which holds true for an Activity 
if and only if the activity complies with the precedence 
relationship of its activity type. This expression uses  
the elsewhere defined OCL-definitions allAdjPrec, 
matchBounds and allSuccs. Briefly speaking, the 
expression compliesPrecedence navigates from an 
activity (self) to the activity type, collects via allAdjPrec 
all precedence relationships. Then it checks for all these 
relationships via matchBounds and allSuccs if the 
precedence relationships are satisfied in the process instance 
model of the checked activity. Wörzberger et al. (2008b) 
provides a more detailed description of this and other  
OCL-expressions. 

In summary, for the specification of correctness 
constraints as well as compliance constraints OCL-
expressions are used. However, while the OCL-expressions 
for correctness constraints each explicitly define a specific 
constraint, the OCL-expressions for compliance merely 
specify how process definition or instance models are to be 
checked against process knowledge models. 

Listing 1 Cylce-freeness correctness constraint for 
specialisation in process knowledge models 

context ActivityType 
inv cyclefreeSpecialization: 
 not self->closure(parent)->includes(self) 

Listing 2 Precedence compliance constraint for process 
instance and definition models 

context Activity 
inv compliesSuccedence: 
 self.typedAs.allAdjPrec->forAll(rcl | 
 rcl.matchBounds(self.allSuccs->select( 

 typedAs = rcl.target)->size() )) 

3.4 Implementation remarks 

Changes to process models are not directly propagated to 
the dynamics component (above WPS) but are at first local 
to the respective instance of the PME. After a model 
change, correctness and compliance checks are manually 
triggered by a process participant via an according menu 
item in the PME. 

Correctness violations are considered severe as they can 
cause technical failures in the run time environment. Thus, a 
change in a process instance model cannot be committed to 
the dynamics component a correctness violation have been 
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found. Detected compliance violations are tolerated since 
their violation might be intentional. Thus, changes in 
process instance models that just cause compliance 
violations can be committed to the dynamics component. 

Figure 9 depicts a screenshot of the PME. The entry in 
the Errors-section hints to a correctness violation in the 
process knowledge model, which is a cycle in the 
specialisation-hierarchy in this case. Please note that 
specialisation hierarchies are modelled in dedicated views 
(diagram on the right) separated from relational constraints 
(diagram on the top). The entries in the Warnings-section 
are compliance violations as discussed in Subsection 3.2. 
They refer to the diagram on the left, which depicts the 
process instance model of Figure 5. The entries in the  
Infos-section are discussed in 4.8. 

Figure 9 Screenshot of the PME (see online version for colours) 

 

Due to the syntax-based constraint checking approach, the 
PME, which actually checks compliance and correctness of 
process models, could be implemented in a model driven 
fashion. The PME is basically generated from the abstract 
syntax definition specified in eclipse modelling framework 
(EMF) meta-models and concrete syntax definition 
specified in graphical modelling framework (GMF)-models. 
Furthermore, we made use of the Eclipse OCL framework 
which provides an interpreter for our OCL-expressions. 
Details about the generation process are given by 
Wörzberger and Heer (2008). 

3.5 Discussion 

The purely syntax-based constraint checking approach 
exhibits some advantages and drawbacks. A drawback 
surely is the need for typing activities before they are 
properly recognised in compliance checks, i.e., compliance 
checks fail if activities are not properly typed or not typed at 

all. For example, if the activities with type automatic check 
in Figure 5 were untyped, a false compliance violation 
would be detected due to the req_existence-edge in the 
process knowledge model in Figure 6. Conversely, if 
activity commission appraiser was untyped, the compliance 
violation stemming from the succeeded_by-edge in the 
process knowledge model could not be found. 

The dilemma can be described as follows. On the one 
hand, the usage of domain specific activity types for process 
modelling still meets many obstacles in practice. These are 
among others the establishment and maintenance of a well 
understood and organisation-wide process knowledge 
model, and the possible over specification of process 
models where almost every activity has its own activity 
type. The problems even grow when process knowledge 
models not only cover the behavioural aspects but also 
organisational or data-related aspects. On the other hand, the 
definition of compliance rules for process models seems to 
be infeasible without relying on activity types. To the best 
knowledge of the authors there is no feasible approach for 
defining general compliance rules which apply to many 
different process models where the activities are only 
distinguished by their names. Relying on the comparison of 
activity names is a bad idea as there might be many 
synonyms (e.g., ‘invoice’, ‘invoicing’, and ‘billing) or 
homonyms and the like. Since the obstacles for the 
application of activity types for process modelling are hard 
but resolvable, but the abandonment of activity types makes 
compliance constraint modelling practically impossible, we 
decided to build our approach on typed activities. 

One of the main advantages is that the implementation 
can be done model-driven with frameworks mentioned  
in Subsection 3.4. First, handcrafted Java-code does  
not exceed one single Java-class that initialises the  
OCL-interpreter. Second, although the process definition 
and instance meta-models and therefore the OCL-
expressions are aligned to WS-BPEL, they can be easily 
adapted to other languages like BPMN without further  
Java-programming effort. Third, the process definition 
model meta-model also covers data flow, which is neglected 
in Figure 8 for sake of brevity. Wörzberger et al. (2008b) 
show how data flow can be utilised to formalise constraints 
like the one that process variables have to be initialised 
before being read. Fourth, OCL-expressions are always 
evaluated on a certain model element. Therefore, constraint 
checks yield not just a Boolean value but point to the 
respective element which is likely to be blamed. This is 
indicated by an error marker on the element in the PME. 
Admittedly, this does not work optimal in all situations, e.g., 
the violation of the correctness constraint in Listing 1 leads 
to an error marker on every ActivityType in the cycle. 
Fifth, OCL-expressions can be efficiently evaluated 
compared to other techniques like model checking. This is 
crucial for process instance models since time consuming 
checks due to changes to these models would impede 
efficient process execution. Sixth, the approach uniformly 
treats technical (intra-model) and professional (inter-model) 
constraints. 
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3.6 Related work 

Works that are related to correctness and compliance checks 
versus explicit process knowledge as presented in this 
section are from diverse fields. In the following, we group 
these works by terms presented in this section: correctness 
and compliance. 

3.6.1 Correctness 

There are plenty of works aiming at preserving correctness 
of process models. Most of them deal with correctness of 
process definition models, i.e., with correctness at design 
time. For example, Mendling and van der Aalst (2007) use 
graph reduction techniques to verify correctness of  
event-driven process chains-models (EPC) for generic 
process models. Since the reduction works just on the 
syntactic structure of the process model, the computational 
complexity surely is comparable with our checks. 

Verbeek et al. (2001) describe the process definition 
analyser Woflan. Woflan works on the Petri net class  
WF-nets. Thus, other languages have to be mapped on this 
language in order to be analysed. This can be done for  
WS-BPEL as sketched by Verbeek and van der Aalst 
(2005). WF-nets are then analysed for certain correctness 
properties by Woflan based on a certain representation of 
their state space. This approach is exhaustive yet 
computationally expensive. 

The verification of correctness of distributed WS-BPEL 
processes is presented by Bianculli et al. (2007) and Gravel 
et al. (2007). In these works, WS-BPEL processes are 
translated to an input language for a model checker. 
Similarly, Koehler et al. (2002) map process models to 
finite state automatons (FTAs) and use a model checker to 
verify, e.g., the termination of a process. We neither apply 
model checking nor consider correctness of distributed 
process models so far. 

Reichert and Dadam (1998) formalise numerous 
transformations by calculi on ADEPT control flow graphs – 
comparable to our process instance models – which realise 
dynamics patterns. These transformations are correctness 
preserving, i.e., applying a transformation like dynamic 
adding to a control flow graph again yields a correct graph. 
In contrast to that, our PME allows for flaws in the process 
models but marks them and prohibits their propagation to 
the WPS if necessary. 

3.6.2 Compliance 

Preceding works of our group in the AHEAD-project also 
dealt with compliance of process models (Schleicher, 2002). 
We continued some of the basic ideas, e.g., the interrelation 
of different process model layers. Yet, we had to 
significantly adapt and extend the concepts in order to 
account for industry standards like WS-BPEL and to avoid 
some limitations like the necessity for recompilation of the 
AHEAD-prototype after changes in the process knowledge 
models. 

Ly et al. (2008) provide a set of major requirements for 
compliance checking process models. Parts of these are 
actually satisfied by our approach: We provide a user 
friendly yet formal language (req. 1). ‘Constraint 
organisation’ (req. 2) is at best partially fulfilled as process 
knowledge models are stored and versioned in flat files. We 
just support implementation independent constraints (half of 
req. 3). ‘Support for life time compliance’ (req. 4) is 
partially given since during checks we treat process 
definition models just like process instance models being at 
the very beginning of execution. Conflicting changes in 
definitions and instances are not treated (req. 5). The check 
feedback is intelligible (req. 6) to some extend as it contains 
violation details. Compliance constraints are naively 
overridable (req. 7) by ignoring found violations. 
Traceability (req. 8) of compliance checks (persistent 
logging) is not implemented. 

Process models in the DECLARE project by Pesic et al. 
(2007) resemble our process knowledge models with regard 
to the level of abstraction. However, DECLARE pursues a 
completely different approach since the ‘declarative’ 
process models are interpreted and directly used for process 
execution support whereas our process knowledge models 
just impose compliance constraints onto executable and 
executing models. Although the DECLARE-approach is 
appealing inasmuch as DECLARE-models provide much 
flexibility by design, we had to account for the rather 
imperative paradigm of WS-BPEL due to our project 
constraints. 

Governatori et al. (2006) demonstrate a way to formalise 
the compliance relationship between BPMN process models 
and natural language business contracts. The latter are 
mapped to derivation rules of formal contract logic (FCL) 
the former to FCL-sequences. Then, compliance is 
equivalent to derivability of sequences in the FCL-calculus. 
This approach focuses multilateral process models with 
time-related escalations, which we have not dealt with so 
far. 

Rozinat and van der Aalst (2008) show that there is also 
a compliance relationship between process instance data and 
a process definition model. This sort of compliance runs the 
risk of being violated in situations where a process 
definition model does not control a process from the very 
beginning. However, this does not apply for our project 
setting. 

Interestingly, there are several groups that use model 
checking methods in order to check compliance. Förster  
et al. (2007) model process knowledge in a model similar to 
ours. These models are translated to LTL-formulas. LTL 
formulas are then evaluated on transition systems which 
represent the state space of a process definition model. 
Work of Awad et al. (2008) is similar to that, yet, they 
target BPMN-models instead of UML activity diagrams and 
use a variant of LTL. Compliance checking of WS-BPEL 
process definitions via model checking is presented by Liu 
et al. (2007). Again, the process knowledge models are 
translated to LTL and a transition system is generated from 
a WS-BPEL process definition. 
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In summary, our approach differs from related 
approaches insofar as we uniformly address correctness  
and compliance checks with one syntax-based method. 
Certainly, generating and querying a process model’s state 
space allows for detection of even very subtle errors which 
is beyond the capabilities of our approach. However, we pay 
this price to gain computational efficiency which is crucial 
particularly when checking process instance models during 
process execution. Adaptation to other process modelling 
languages causes effort either way: one has to adapt the 
meta-models and OCL-constraints in our case or the 
transformers to LTL and generators of transition system in 
the approaches mentioned above. 

4 Implicit process knowledge 

Process knowledge models allow for explicit modelling of 
professional process constraints which can be utilised  
for compliance checking process definition and instance 
models. It is a downside of these explicit models that they 
cause extra work and might be incomplete. At the same 
time, process definition models and process instance models 
of running or finished processes themselves implicitly 
contain process knowledge and are available anyway. 
Therefore, we complement the checks of a testee, i.e., a 
modified process instance model versus explicit process 
knowledge (as described in Section 3) by checks versus 
implicit knowledge derived from other process definition 
and instance models. Since checks versus implicit 
knowledge refer to potential contradictions, i.e., 
inconsistencies of models of the same kind, we name these 
checks consistency checks. 

In this section, we describe how differences between a 
testee process model and a certain set of other process 
models can be detected and compactly presented to a 
participant working on the former. Here, differences 
between process models refer to (dis-)similar behaviour 
rather than to syntactic, i.e., structural similarity since even 
structurally dissimilar process models might exhibit similar 
behaviour as recognised (e.g., by van der Aalst et al., 2006). 
First, we describe the structure of the knowledge base Mkb, 
i.e., the set of available process models excluding process 
knowledge models, which are not regarded in this section. 
Second, we define for a testee a subset of the available 
process models containing those models (testers) which are 
sufficiently similar to the testee. This is necessary since a 
detailed analysis of two process models cannot yield 
meaningful results if the process models are not similar to 
some degree, i.e., are ‘apples and oranges’. Third, we 
describe how differences between the testee and the models 
of this set are detected and compactly presented to the 
process participant/modeller who is working on the testee. 

4.1 Structure of the implicit-knowledge base 

The knowledge base for compliance checks is explicitly 
modelled, i.e., it consists of process knowledge models with  
 

dedicated syntax and semantics (cf. Subsection 3.1). In 
contrast, the knowledge base for consistency checks Mkb 
consists of different kinds of models. As depicted in  
Figure 10, it is composed of the three technical model 
classes explained below. Please note that in this figure the 
activity labels just contain abbreviations of the respective 
activity type in order to keep the figure clear. Furthermore, 
the regions bounded by the dotted lines in the example 
models p1 to p3 just denote process model parts 1p̂  to 3ˆ .p  
We will use these less complex models in the next 
subsections for sake of simplicity. 

• Process definition models carry implicit knowledge 
about which activities are to be carried out for a certain 
process type. Normally, they do not narrow processes 
to a single possible sequence of activities but contain 
information about which activities are to be executed 
alternatively, sequentially or in parallel. 

• Models of finished process instances represent process 
traces. We consider a process trace a time-related 
succession of activity finishing events in the past.  
One process trace reflects in which sequence steps of a 
single process case have been carried out. For example, 
in Figure 10 the depicted instance of flight cancellation 
settlement represents a past process. Hence, all 
activities are in state Finished. 

• Models of running process instances constitute a 
mixture of the above mentioned model kinds. On the 
one hand, they have a determined past like finished 
process instances, i.e., a partial process trace of past 
activity events. Since process instance models 
essentially are process definition models plus activity 
states, on the other hand, the running process instance 
models have not a fully determined future which is 
modelled by a partial process definition within the 
instances. For example, the instance of pipe water 
damage settlement running instance has proceeded to  
i-activity. For this running instance (a certain order of), 
the finished activities constitute the partial process 
trace. The structure in the lower half contains a partial 
process definition representing the remaining future of 
this instance for which it is not determined if, e.g., a 
disbursement takes place or not. Many domains – in 
particular the insurance domain – have many long 
running processes; this mixture class can therefore not 
be neglected. 

Figure 10 suggests that each process instance is in line with 
a process definition. However, please recall that models of 
process instances might be structurally different from any of 
the process definition models due to dynamic changes. This 
is the case for the running instance of Figure 10 where a  
p-activity has been dynamically added. Neither the past 
process trace of a process instance model nor the potential 
futures might therefore be covered by a process definition 
model. 
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Figure 10 Process model classes with implicit knowledge  
(see online version for colours) 

 

4.2 Process trace sets 

Each process model is associated with a process trace set 
containing exactly those process traces which the respective 
process model can produce. Like for compliance checking 
we refer to activity types instead of names. Furthermore, we 
refer to activity type names by one letter abbreviations in 
the following, e.g., query holder is abbreviated with q (cf. 
Figure 10). So, a process trace of a process model is 
represented by an activity type name sequence. 

Definition 1: (Process trace set). Let M be the set of all 
possible process models, T the set of all activity types and 
T* the set of all finite activity type name sequences. The 
process trace set is a mapping: 

*: 2Tc M →  

which maps a process model to the set of all process traces 
possible in that model. 

Due to the complex semantics of the process models the 
formal definition of the mapping c is also complex and thus 
omitted here. 

For example, with regard to the process models of 
Figure 10 the following holds: c(p1) = {<qiaadn>}, i.e., this 
process model trivially just has exactly one process  
trace. Furthermore, c(p2) = {<aamqinp>, <aamqitinp>, 
<aamqitidnp>, <aamqidnp>} where the common prefix 
<aamqi> is the determined past of the respective  
process. We cannot write out the process traces of p3 since  
| c(p3) | = 280. Note that the examples are quite simple in as 

much the process models’ Flows do neither contain 
complicated link structures nor While-elements. 

4.3 Bilateral process model dissimilarity 

The bilateral process model dissimilarity between process 
models is pivotal for our approach. 

Definition 2: (Bilateral process model dissimilarity). The 
bilateral process model dissimilarity is a function: 
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q
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where l is the Levenshtein-distance (Levenshtein, 1966) 
between two process traces. 

Particularly, ( , ) 0 ( ) ( ) 0,d p q c p c q= ⇔ ∩ ≠ /  i.e., iff there is 
at least one common process trace covered by both process 
models p and q. 

The bilateral process model dissimilarity d is vital for 
the definition of the t-similar process model set of a process 
model p. 

Definition 3: (t-similar process model set). The t-similar 
process model set Mt(p) is defined by: 

{ }( ) : | ( , ) .t kbM p q M d p q t= ∈ ≤  

This set contains all process models q whose dissimilarity to 
p is not higher than a threshold t. Regarding a testee p and 
an appropriately low t, the set Mt(p) contains sufficiently 
similar process models which are relevant for further 
analysis. 

4.4 Graph grammars and transition systems 

The previous subsections raise the question how d can be 
computed. A naive implementation of d(p, q) might look 
like this: 

1 generate c(p) and c(q) 

2 find a (tp, tq) ∈ c(p) × c(q) with minimal l(tp, tq). 

This is inappropriate for three reasons: first, c(p) and c(q) 
have to be generated, which is particularly difficult for 
process models containing complex link structures and 
impossible for process models containing loops since these 
have possibly infinite process traces sets. Second, a direct 
implementation is computationally inefficient because  
there are | c(p) | ⋅ | c(q) | Levenshtein-distances to be 
computed. Third, we need to analyse similar process traces 
later on in order to provide the user with constructive  
hints. 

In the sequel, we present a graph grammar-based 
computation of d which is efficient and whose intermediate 
results can be used for later analysis. The coarse procedure 
is depicted in Figure 11. First, two process models p (testee) 
and q (tester) are combined to a single graph which contains 
the abstract syntax of both process models. This combined 
graph is repeatedly and automatically modified according to 
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possible execution steps in the process models. From that 
we obtain a transition system, wherein states are (modified) 
graphs and transitions are applied modifications. Since 
certain modifications hint to dissimilarity, we assign cost to 
these transitions and search for the cost of the shortest path 
in the transitions system. Then, this cost is the value of  
d(p, q) and we can decide if q ∈ Mt(p). If this is the case, the 
shortest paths are further analysed in order to generate a 
consistency report for p. 

In the following, we give a short and informal 
description of graph grammars. This description is aligned 
with the formal definition of Rensink (2008). 

A graph grammar is a pair ( , ),=G R I  where R  is a 
set of production rules and I  is an initial graph. Graph 
grammars are similar to common formal string grammars 
yet they operate on graphs instead of sequential structures. 
Thus, a production rule r∈R  is similar to a rewriting rule 
in string grammars. It has a left hand side and a right hand 
side, which are both graphs. The left hand side constitutes a 
graph pattern that has been found in a graph s in order to 
apply r. If r is applicable, the matched subgraph in s is 
replaced by the graph defined by the right hand side of r 
yielding a graph s′. Like the start symbol in a string 
grammar, the initial graph I  can be successively rewritten 
as long as there are applicable production rules. 

Figure 11 Computation of bilateral process model dissimilarity d 
(see online version for colours) 

 

A graph grammar has an associated graph transition system 
(GTS). A GTS is similar to derivation structures of string 
grammars. Its states are graphs; particularly its initial state 
s1 is the initial graph .I  Its transitions correspond to 
production rule applications insofar as a state s has a 
transition for each rule application. In GTS transitions are 
therefore labelled with the name of the respective  
 

production rule. Please note that a certain rule r can have  
several matches in a certain graph. Thus, a state s might 
have several transitions labelled with the name of r each of 
which leads to a different state s′. 

4.5 GTS for synchronous process executions 

Due to space limitations we cannot provide a tutorial for the 
precise syntax and semantics of graph production rules as 
provided (e.g., Heckel, 2006). Instead, we exemplify 
applications of graph production rules by following paths in 
a GTS as depicted in Figure 12. 

In this figure, the state graphs are drawn in the same 
way as the process models in the figures before. Please note 
that this is just a matter of concrete syntax representation. 
For brevity, the example is restricted to the comparison of  
the process models 2p̂  and 3p̂  delimited by the dotted 
bounding boxes in Figure 10. Furthermore, Figure 12 just 
shows some of those paths which lead to an end state. Even 
these paths are not complete as we leave out some 
intermediate states. 

The transition system is divided into two phases. States 
s1 to s2 are part of the preparation phase. On the path from 
s1 to s2 activities with the same type in different processes 
are ‘paired’. Newly introduced pair-edges (dashed lines) 
mark the activity pairs. Pairing is not just done for atomic 
Invoke-activities but also for composite activities, which 
have exactly the same substructure, e.g., the Switch 
containing the activity d. Furthermore, if the process models 
have n and m activities of the same type, the pairing yields  
n ⋅ m pairs for this type. 

Beginning with state s2 simultaneous execution of the 
processes is simulated (execution phase). In the figure, 
finished activities are flagged with an F, active activities 
with an A and waiting activities not at all. In order to better 
distinguish unreachable activities, e.g., those that are  
on a dead path in a switch, we have also a mark D for that 
state. 

Each execution step is a transition in the GTS and 
therefore conducted via application of a certain graph 
production rule. These rules take care of the control flow 
definition of the process models. For example, in the 
transition from s7 to s8 the activity d is set from active to 
finished. 

Processes with similarities allow for simultaneous 
finishing of paired active activities. For example, there is 
one active n-activity in each of both processes in state s9 and 
both are finished in the transition to state s10. The 
corresponding production rule is called sf (simultaneous 
finishing). Being member of a pair is necessary but not 
sufficient for an activity for being simultaneously finished. 
For example, in the left hand process the p-activity must be 
finished before n can be set to active due to the process’ 
control flow definition. In the transition from s3 to s4, p is 
therefore finished non-simultaneously, and again in the 
transition from s5 to s6. The corresponding production rule is 
named nfs (non-simultaneous finishing). 
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Figure 12 Cutout of GTS (see online version for colours) 

 

4.6 Shortest path computation 

The end states of the GTS are those states, where both 
processes are finished, i.e., all activities are either finished 
or dead. The purpose of the simultaneous process 
executions is to compute how many nsf-transitions are 
visited to reach an end state in the GTS. 

Each end state can usually be reached on several 
different paths. Many of them contain unnecessary  
nsf-transitions. Thus, we assign cost 1 to each nsf-transition 
and then do a shortest path search from the start state to one 
of the end states that is the path with the lowest cost. In the 
example, we have to traverse at least two bad transitions – 
one for the finishing of the left hand p-activity and one for 
the right hand. 

The shortest paths in the GTS are the source for further 
analysis. The accumulated cost of a shortest path is the 
bilateral process model dissimilarity d of the respective 
process models, e.g., 2 3ˆ ˆ( , ) 2d p p =  as well as d(p2, p3) = 2. 

Comparing p2 with p1 yields d(p2, p1) = 3. For sake of 
simplicity, let the knowledge base be Mkb = {p1, p2, p3} and 
p2 be the testee; then M2(p2) = {p2, p3} (the testee is trivially 
included). 

4.7 GTS path analysis 

In order to provide detailed information concerning the 
differences between a testee p and relevant testers in Mt(p) 
the shortest paths in the respective GTSs are to be analysed. 
In a GTS, labels of nsf-transitions contain information about 
the match of the respective production rule, i.e., about  
what is changed in the transition. In particular, a bad  
nsf-transition contains the activity type of the activity that 
had to be finished non-simultaneously. In the shortest path 
of Figure 12, both bad transitions are labelled with nfs(p), 
i.e., a p-activity has to be finished non-simultaneously  
twice – once in each process. On another shortest path 
which is not depicted in the figure, there are two nfs(n) 
transitions. Patterns in shortest paths like the one described 
indicate that activities are badly positioned. For example, in 
p2 the p-activity is badly positioned with regard to the  
n-activity compared to process model p3. Such patterns can 
be automatically detected and enlisted in a consistency 
report. 

The size of a consistency report depends on the size of 
Mt(p) and on the number of shortest paths in each bilateral 
process model dissimilarity check. A process participant 
might therefore be overburdened with details about 
differences between the testee and the (numerous) testers. 
For that reason we follow a simple strategy to consolidate 
the consistency report. In dynamically modified process 
instance models, the consistency report can be aligned with 
the changed process part. For example, in the GTS  
of 2p̂  and 3p̂  there is also a shortest path with two  
nfs(n)-transitions instead of nfs(p)-transitions. This path is 
omitted in the figure for sake of readability. The (depicted) 
shortest path with two nfs(p) and the (omitted) shortest path 
with two nfs(n) are complementary since the n-activity and 
the p-activity are badly positioned against each other. 
Assume that p has been dynamically added. Then, it is 
reasonable to put the blame on p and leave out the 
complementary shortest paths containing nfs(n) in the 
consistency report. 

4.8 Implementation remarks 

Graph grammars gave rise to an entire research field. There 
are several mature tools for the definition of production 
rules and their execution [cf. comparison in Fuss et al. 
(2007)]. From these tools we chose GROOVE (Rensink, 
2003) for the following reasons: first, GROOVE particularly 
targets checking properties of systems with graph-structured 
states which suits our need as we can graphically represent a 
process state (process instance model). Second, GROOVE 
provides functions for explicit GTS-generation. Third, 
quantifiers in production rules are available which helps to 
reduce the state space of the GTS. Forth, there a few 
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technical dependencies coming along with GROOVE; thus, 
it can be easily integrated with our PME. 

Essentially, GROOVE is a model checking tool. 
Unfortunately, it therefore also suffers from the well-known 
state space explosion problem, which is intrinsic to all 
model checking approaches [Baier and Katoen (2008), 
Section 2.3]. This problem has to be accounted for at design 
time of the production rules. Luckily, the state space can be 
drastically reduced by a control automaton defined in 
GROOVE which imposes an additional scheduling of 
production rules and the application of quantified subrules. 
Despite focusing the behaviour (process trace set) of process 
models, we can therefore optimise by exploiting the 
structural identities of composite activities. For instance, 
composite paired activities with equal substructures can be 
simultaneously finished in one step without executing their 
internal substructure. This is legitimate since identical (sub-) 
structures always exhibit the same behaviour. For instance, 
this is applicable for the Flow-activity at the beginning of 
process models p2 and p3 during their simultaneous 
execution. 

In the screenshot of the PME (cf. Figure 9), the list 
entries in the Infos-section at the very bottom constitute the 
consistency report for the process model 2p̂  (diagram in the 
centre). For example, it states that 2p̂  differs from 1p̂  in the 
execution order of activity types p and n and exclusively has 
a p-activity. 

4.9 Discussion 

The strengths of the graph grammar approach are the 
following: first, we can avoid the explicit computation of 
the process trace set c(p) for a process model p. Instead, 
process traces are indirectly generated during simultaneous 
execution of the process models. Due to the mentioned 
optimisation, unnecessary dissimilar process traces are 
avoided, which drastically reduces time complexity 
compared to the naive implementation. Second, the 
production rules take into account the (partial) process 
traces of running or finished process instances. This is 
achieved, e.g., by ruling out a simultaneous finishing if one 
activity in the respective pair is already determined to be 
unreachable (dead). 

The approach presented in this section bears a problem 
which is still to be solved. In spite of the optimisations in 
the graph grammar, combinations of processes which have 
many activity types in common but exhibit a completely 
different behaviour due to different control flow definitions 
still lead to too big GTS. For the time being, we cancel the 
GTS-generation at a certain threshold for generated states. 
Fortunately, these cases just imply a decline of the 
consistency check result quality yet do not render the entire 
result useless. Nonetheless, we plan to alleviate this problem 
by utilising a mixture of incomplete GTS-generation 
strategies and settle for locally shortest paths. Moreover, 
checking each model against each other model in the 
knowledge base requires | Mkb |2 checks, which of course is 
too much for knowledge bases of realistic sizes. In future 

work, we will deal with this problem by pre-filtering 
potential testers. 

4.10 Related work 

There are plenty of works dealing with similarity of process 
models. They differ in several regards from each other and 
our work: first, the notion of similarity is different, i.e., 
whether processes must have partial or full process traces in 
common, whether they have to have the same process 
traces, or if they even have to be bisimilar. Our similarity 
notion is deliberately weak since we consider processes 
similar (d = 0) if they just share at least one common 
process trace. Second, the evaluation of a similarity 
computing function is considered to be either qualitative 
(similar or not) or quantitative (degree of similarity). Our 
approach is qualitative as we use the degree of similarity for 
determining the testers which are further analysed. Third, 
the approaches differ much in how they actually compute a 
similarity function, even in what is taken as input for 
computation. Some approaches consider differences in the 
syntactic structure of the compared process models others 
regard the respective behaviour, i.e., the process traces. 
Particularly, this property contributes to the novelty of our 
approach. We mainly regard the behaviour but use structural 
identities for optimisation. To our best knowledge, there is 
no other approach pursuing the same strategy, particularly 
no one that employs graph grammars. Nonetheless, related 
literature provides many ideas which we consider worth for 
adoption. 

Research on process similarity can profit from works on 
string language similarity since both processes and string 
languages can be defined by FTA. This is studied by 
Wombacher and Rozie (2006). The authors point out the 
limitations of approaches which merely consider the graph 
structure of FTAs. 

This limitation is targeted in the approach of Li et al. 
(2008b), which is sensitive for semantics of control flow 
activities. Here, the edit distance between ADEPT process 
models of Reichert and Dadam (1998) is measured for 
quantitative similarity computation. This is done by 
determining the minimal number of correctness preserving 
high level edit operations (insert, delete, and move) which 
are necessary to transform process models into each other. 
In Li et al. (2008a), the authors show how this can be used 
to derive a reference model with an aggregated minimal 
distance to variants in a given set. We particularly consider 
ordering conflicts detection based on order matrices 
interesting as it indirectly resembles our GTS-path analyses 
yet refers to the process structure. 

Küster et al. (2008) provide an approach for displaying 
and semi-automatically resolving differences in the 
syntactic structure of process definition model versions. 
This particularly includes computation of the hierarchical 
composition structure in (flat) graphically structured process 
models before searching for equal (composite) fragments 
between two process models. This part of their work is 
interesting for us as we could adopt it to find more complex 
pairs in the preparation phase described in Subsection 4.6. 
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In van der Aalst et al. (2006), the authors refrain from 
comparing process models directly but take (simulated) 
process traces of at least one model as input for quantitative 
similarity computation on Petri nets. Of course, the 
strengths of this approach can be applied if representative 
process traces are present or can be generated. 

There is also a connection between our work and 
process (change) mining since consistency checks rely on 
information mined from existing process models. However, 
approaches and frameworks like ProM for process mining 
(van Dongen et al., 2005) rather use existing process traces 
for deriving process definition models from scratch instead 
of supporting the editing of existing process instance models 
by mining other process models. Process change mining as 
presented by Günther et al. (2006) mines logged dynamic 
change operations in order to improve the quality of process 
definition models which is not in our focus. 

5 Conclusions 

In this article, we presented results of the DYPROTO 
project, a three-year research cooperation between our 
group and the GDIS GmbH. The goal of this work was to 
provide support for dynamic business processes in the 
insurance domain. 

It was clear from the very beginning that these dynamic 
processes require functionality we name ‘run time 
dynamics’, which supports dynamic modification of process 
instance models, i.e., models of running processes. Run time 
dynamics at least have to include dynamic adding of 
unpredicted activities, dynamic removing of unnecessary 
activities or dynamic reiteration of (previously executed) 
activities. We had to build upon our partner’s existing  
PMS WPS (along with the process definition language  
WS-BPEL) since our prototypes should not change let alone 
replace WPS but should non-invasively extend it. Driven by 
these requirements we learned that direct manipulation of a 
process instance model’s structure is dispensable for 
implementation of run time dynamics. Instead, one can 
simulate direct manipulation by an automatic augmentation 
of process definition models by additional control  
flow structures, e.g., additional Invoke-, Switch- and 
While-activities. These additional activities are hidden from 
process participants but used at process run time to carry out 
a dynamic change, e.g., by rerouting the control flow to 
another newly created process instance in order to  
simulate dynamic adding. Our approach does not rely on 
any WPS-specifics and is thus applicable for other  
WS-BPEL-engines. Furthermore, the approach is aligned 
with dynamics patterns, e.g., dynamic adding. Support for 
each pattern can be realised or disabled depending on the 
needs of process participants and on the dynamics patterns 
which are already natively implemented by direct process 
structure manipulation in the particular PMS. Essentially, 
we can state: Appropriate support for dynamic business 
processes can also be achieved with static PMS. 

 

Process models are not supposed to be edited in an 
arbitrary way but have to adhere to correctness constraints, 
e.g., process variables have to be initialised before being 
read, and compliance constraints modelled in explicit 
graphical process knowledge models, e.g., commission of 
expertises requires its later incorporation. In the worst case, 
violations of these constraints lead to technical problems 
(exceptional process instance termination) or professional 
problems (conflicts with company specific or legal 
regulations). We discovered that many of these constraints 
can be efficiently checked by analysing the syntactic 
structure of the respective process models. This works in 
particular for a dynamically modified process instance 
model. We make use of the OCL, and define  
OCL-expressions which refer to integrated process meta-
models. Through this, checks for correctness and 
compliance constraints can be uniformly realised since in 
both cases we check one (complex) syntactic structure for 
certain properties. 

Explicit process knowledge models bear the immanent 
downside that their maintenance causes extra work and that 
they might be incomplete. However, process knowledge is 
also implicitly contained in existing process definition and 
instance models. In order to utilise this knowledge, we first 
have to filter out those process models (testers) which are 
sufficiently similar to a checked process model (testee). 
Then, consistency between the testee and testers can be 
reasonably analysed yielding differences between process 
models with regard to executed activities and their 
execution order. In order to abstract from the process  
model structure (control flow definition) and to avoid 
computational difficulties, we made use of the graph 
grammar tool GROOVE. 

Acknowledgements 

This research project was part of the Transfer Center 61 
funded by the Deutsche Forschungsgemeinschaft. We thank 
Prof. Dr.-Ing. M. Nagl for his valuable academic input for 
our work, our project partners K. Wolf, Dr. S. Bühne, and 
H. Wessels for fruitful discussions about insurance 
processes and our students N. Ehses, T. Kurpick, A. Fischer, 
and T. Lake for their contributions to the prototypes. 

References 
Atkinson, C. and Dadam, P. (2007) ‘AristaFlow: 

Komponentenbasierte Anwendungsentwicklung, 
Prozesskomposition mittels Plug & Play und adaptive 
Prozessausführung’, in doIT-Forschungstag 2007. 

Awad, A., Decker, G. and Weske, M. (2008) ‘Efficient compliance 
checking using BPMN-Q and temporal logic’, in Dumas, M., 
Reichert, M. and Shan, M-C. (Eds.): 6th International 
Conference on Business Process Management (BPM) 2008, 
LNCS, Vol. 5240, pp.326–341, Springer. 

Baier, C. and Katoen, J-P. (2008) Principles of Model Checking, 
MIT Press. 



342 R. Wörzberger and T. Heer  

Bianculli, D., Ghezzi, C. and Spoletini, P. (2007) ‘A model 
checking approach to verify BPEL4WS workflows’, in IEEE 
International Conference on Service-Oriented Computing  
and Applications (SOCA) 2007, IEEE Computer Society, 
pp.13–20. 

Casati, F. (1998) ‘Models, semantics, and formal methods for the 
design of workflows and their exceptions’, PhD thesis, 
Politecnico di Milano. 

Clarke, E.M., Grumberg, O. and Peled, D.A. (1999) Model 
Checking, The MIT Press. 

Dadam, P. and Reichert, M. (2009) ‘The adept project: a decade of 
research and development for robust and flexible process 
support’, Computer Science – Research and Development, 
Vol. 23, No. 2, pp.81–97. 

Eversheim, W., Michaeli, W., Nagl, M., Spaniol, O., Weck, M. 
and Westfechtel, B. (1997) ‘SUKITS: Management von 
Entwicklungsprozessen im Maschinenbau’,  
Softwaretechnik-Trends, p.17. 

Förster, A., Engels, G., Schattkowsky, T. and Straeten, R.V.D. 
(2007) ‘Verification of business process quality constraints 
based on visual process patterns’, in First Joint IEEE/IFIP 
Symposium on Theoretical Aspects of Software Engineering 
(TASE) 2007, IEEE Computer Society, pp.197–208. 

Fuss, C., Mosler, C., Ranger, U. and Schultchen, E. (2007) ‘The 
jury is still out: a comparison of Agg, Fujaba, and progress’, 
ECEASST, Vol. 6. 

Governatori, G., Milosevic, Z. and Sadiq, S.W. (2006) 
‘Compliance checking between business processes and 
business contracts’, in Tenth IEEE International Enterprise 
Distributed Object Computing Conference (EDOC), IEEE 
Computer Society, pp.221–232. 

Gravel, A., Fu, X. and Su, J. (2007) ‘An analysis tool for execution 
of BPEL services’, in CEC/EEE, IEEE Computer Society, 
pp.429–432. 

Günther, C.W., Rinderle, S.B., Reichert, M.U. and  
van der Aalst, W.M.P. (2006) ‘Change mining in adaptive 
process management systems’, in 14th International 
Conference on Cooperative Information Systems 
(CoopIS‘06), LNCS, Vol. 4275, pp.309–326, Springer, 
Montpellier, France. 

Heckel, R. (2006) ‘Graph transformation in a nutshell’, Electr. 
Notes Theor. Comput. Sci., Vol. 148, No. 1, pp.187–198. 

Heer, T., Briem, C., and Wörzberger, R. (2008) ‘Work-flows  
in dynamic development processes’, in Ardagna, D.,  
Mecella, M. and Yang, J. (Eds.): Business Process 
Management Workshops, Lecture Notes in Business 
Information Processing, Vol. 17, pp.266–277, Springer. 

Heller, M., Jäger, D., Krapp, C.-A., Nagl, M., Schleicher, A., 
Westfechtel, B. and Wörzberger, R. (2008) An Adaptive and 
Reactive Management System for Project Coordination, in 
Nagl, M. and Marquardt, W. (Eds.): pp.300–366. 

Koehler, J., Tirenni, G. and Kumaran, S. (2002) ‘From business 
process model to consistent implementation: a case for formal 
verification methods’, in 6th International Enterprise 
Distributed Object Computing Conference (EDOC), IEEE 
Computer Society. 

Küster, J.M., Gerth, C., Förster, A. and Engels, G. (2008) 
‘Detecting and resolving process model differences in the 
absence of a change log’, in Dumas, M., Reichert, M. and 
Shan, M-C. (Eds.): BPM, Lecture Notes in Computer Science, 
Vol. 5240, pp.244–260, Springer. 

Levenshtein, V.I. (1966) ‘Binary codes capable of correcting 
deletions, insertions and reversals’, Soviet Physics Doklady, 
Vol. 10, No. 8, pp.707–710. 

Li, C., Reichert, M. and Wombacher, A. (2008a) ‘Discovering 
reference process models by mining process variants’, in 
ICWS, IEEE Computer Society, pp.45–53. 

Li, C., Reichert, M. and Wombacher, A. (2008b) ‘On measuring 
process model similarity based on high-level change 
operations’, in Li, Q., Spaccapietra, S., Yu, E. and Olivé, A. 
(Eds.): 27th International Conference on Conceptual 
Modeling (ER), LNCS, Vol. 5231, pp.248–264, Springer. 

Liu, Y., Müller, S. and Xu, K. (2007) ‘A static  
compliance-checking framework for business process 
models’, IBM Systems Journal, Vol. 46, No. 2, pp.335–362. 

Ly, L.T., Göser, K., Rinderle-Ma, S. and Dadam, P. (2008) 
‘Compliance of semantic constraints – a requirements 
analysis for process management systems’, in Proc. 1st Int’l 
Workshop on Governance, Risk and Compliance – 
Applications in Inf. Sys. (GRCIS‘08). 

Mendling, J. and van der Aalst, W.M.P. (2007) ‘Formalization and 
verification of EPCs with or-joins based on state and context’, 
in Krogstie, J., Opdahl, A.L. and Sindre, G. (Eds.): 19th 
International Conference on Advanced Information Systems 
Engineering (CAiSE), LNCS, Vol. 4495, pp.439–453, 
Springer. 

Nagl, M. and Marquardt, W. (Eds.) (2008) ‘Collaborative and 
distributed chemical engineering’, From Understanding to 
Substantial Design Process Support – Results of the 
IMPROVE Project, LNCS, Vol. 4970, Springer. 

Pesic, M., Schonenberg, M. and Aalst, W. (2007) ‘Declare: full 
support for loosely-structured processes’, in EDOC ‘07: 11th 
IEEE International Enterprise Distributed Object Computing 
Conference (EDOC), IEEE Computer Society. 

Recker, J. and Mendling, J. (2006) ‘On the translation between 
BPMN and BPEL: conceptual mismatch between process 
modeling languages’, in The 18th International Conference 
on Advanced Information Systems Engineering – Proceedings 
of Workshops and Doctoral Consortium. 

Reichert, M. (2000) ‘Dynamische ablaufänderungen in  
workflow-management-systemen’, PhD thesis, University of 
Ulm. 

Reichert, M. and Dadam, P. (1998) ‘ADEPTflex-supporting 
dynamic changes of workflows without loosing control’, 
Journal of Intelligent Information Systems, Vol. 10, No. 2, 
pp.93–129. 

Rensink, A. (2003) ‘The GROOVE simulator: a tool for state 
space generation’, in Pfaltz, J.L., Nagl, M. and Böhlen, B. 
(Eds.): Second Workshop on Applications of Graph 
Transformations with Industrial Relevance (AGTIVE), LNCS, 
Vol. 3062, pp.479–485, Springer. 

Rensink, A. (2008) ‘Explicit state model checking for graph 
grammars’, in Degano, P., Nicola, R.D. and Meseguer, J. 
(Eds.): Concurrency, Graphs and Models, LNCS, Vol. 5065, 
pp.114–132, Springer. 

Rozinat, A. and van der Aalst, W.M.P. (2008) ‘Conformance 
checking of processes based on monitoring real behavior’, Inf. 
Syst., Vol. 33, No. 1, pp.64–95. 

Sadiq, S.W., Sadiq, W. and Orlowska, M.E. (2001) ‘Pockets of 
flexibility in workflow specification’, in 20th Int. Conf. on 
Conceptual Modeling (ER) 2001, Lecture Notes in Computer 
Science, Vol. 2224, pp.513–526, Springer. 



 DYPROTO – tools for dynamic business processes 343 

Schleicher, A. (2002) ‘Management of development processes: an 
evolutionary approach’, PhD thesis, RWTH Aachen 
University. 

van der Aalst, W.M.P., de Medeiros, A.K.A. and  
Weijters, A.J.M.M. (2006) ‘Process equivalence: comparing 
two process models based on observed behavior’, in  
Dustdar, S., Fiadeiro, J.L. and Sheth, A.P. (Eds.): Business 
Process Management, LNCS, Vol. 4102, pp.129–144, 
Springer. 

van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., 
Weijters, A.J.M.M. and van der Aalst, W.M.P. (2005) ‘The 
ProM framework: a new era in process mining tool support’, 
in ICATPN, LNCS, No. 3536, pp.444–454, Springer. 

Verbeek, H. and van der Aalst, W. (2005) ‘Analyzing BPEL 
processes using Petri nets’, in Second International Workshop 
on Applications of Petri Nets to Coordination, pp.59–78. 

Verbeek, H.M.W., Basten, T. and van der Aalst, W.M.P. (2001) 
‘Diagnosing workflow processes using Woflan’, The 
Computer Journal, Vol. 44, No. 4, pp.246–279. 

Weber, B., Reichert, M. and Rinderle-Ma, S. (2008) ‘Change 
patterns and change support features – enhancing flexibility in 
process-aware information systems’, Data Knowl. Eng.,  
Vol. 66, No. 3, pp.438–466. 

Wombacher, A. and Rozie, M. (2006) ‘Evaluation of work-flow 
similarity measures in service discovery’, in Schoop, M., 
Huemer, C., Rebstock, M. and Bichler, M. (Eds.): Conference 
on Service Oriented Electronic Commerce, LNI, Vol. 80, 
pp.51–71, GI. 

Wörzberger, R. and Heer, T. (2008) ‘Process model editing 
support using eclipse modeling project tools’, in Friese, P., 
Zambrovski, S. and Zimmermann, F. (Eds.): Second 
Workshop on MDSD Today, Lecture Notes in Informatics, 
Shaker Verlag. 

Wörzberger, R., Ehses, N. and Heer, T. (2008a) ‘Adding support 
for dynamics patterns to static business process management 
systems’, in Pautasso, C. and Tante, É. (Eds.): Software 
Composition, LNCS, Vol. 4954, pp.84–91, Springer. 

Wörzberger, R., Kurpick, T. and Heer, T. (2008b) ‘Checking 
correctness and compliance of integrated process models’, in 
Negru, V., Jebelean, T., Petcu, D. and Zaharie, D. (Eds.): 
SYNASC 2008, IEEE Computer Society, pp.576–583. 




