
Correct and Sustainable Development Using
Model-based Engineering and Formal Methods

1st Hendrik Kausch
RWTH Aachen University

Aachen, Germany
kausch@se-rwth.de

2nd Mathias Pfeiffer
RWTH Aachen University

Aachen, Germany
mpfeiffer@se-rwth.de

3rd Deni Raco
RWTH Aachen University

Aachen, Germany
raco@se-rwth.de

4th Bernhard Rumpe
RWTH Aachen University

Aachen, Germany
rumpe@se-rwth.de

5th Andreas Schweiger
Airbus Defence and Space GmbH

Manching, Germany
andreas.schweiger@airbus.com

Abstract—Currently, the most wide-spread quality assurance
methods in industry are testing and manual reviews, but their
costs grow disproportionately with the system size and they
cannot achieve exhaustive coverage. To overcome these issues, a
model-based verification approach for analyzing cyber-physical
systems early in the development phase is presented. A semantics
is given to SysML v2 models by a mapping into a (theorem prover
encoding of a) data flow formalism. The creation of a SysML
profile supporting event-driven and state-based specifications, the
encoding of corresponding data flow structures in the theorem
prover Isabelle, and a code generator from SysML to Isabelle is
shown. The approach is evaluated by formally proving a selected
liveness property of a hierarchical system model from the avionics
domain. Since liveness properties can be negated only by infinite
data sequences and thus cannot be covered exhaustively by
testing, this case study suitably demonstrates the added value of
our methodology. Finally, this MBSE framework for early design
analysis can lead to an optimization of the architecture layout (i.e.
reducing the number of required avionics components), which
in turn can lead to the reduction of the avionics equipment
weight, and thus of the energy consumption, producing less CO2
emissions.

Index Terms—avionics, formal method, model checking, the-
orem proving, abstract interpretation, static analysis, SysML,
requirements, event-driven automata, non-determinism, under-
specification

I. INTRODUCTION

Rising automation during the operation of aircraft drives the
complexity of avionics systems. Nowadays, the latter account
for over 30 % of the overall aircraft development costs [1].
The effort is mainly generated by the strict safety (RTCA
DO-178C) and security (RTCA DO-326A) demands. These
are required by the certification authorities (EASA and FAA)
and cover the complete development process for both software
(RTCA DO-178C) and hardware (RTCA DO-254). The major
part of the avionics’ development costs is accounted for by
the verification phase [2].

RTCA DO-178C’s supplements enable the deployment of
formal (RTCA DO-333) and model-based methods (RTCA

The SpesML project is funded by the German Federal Ministry of Education
and Research.

DO-331). The combination of these enables a significant
reduction of development costs. Companies in aerospace have
successfully adopted formal methods for verifying properties
on the code level, using model checkers and abstract inter-
preters, e.g. for worst-case execution time analysis [3], [4],
which is also regulated by RTCA DO-333, or for replacing1

at least some of the testing effort [3].
However, the most used verification techniques still remain

testing2 and manual reviews. However, their costs grow dis-
proportionately with the system size [2]. Thus, testing won’t
be able to deliver exhaustive coverage.

A. Formal Methods

Formal methods tackle the deficits mentioned in section I
about testing. Well-known classes of formal methods for being
deployed in avionics development are:

• Theorem Proving:
– Most powerful, most expressive formal method tool.
– Requires expertise and continuous interaction to use

successfully.
• Model Checking:

– Less expressive than theorem provers.
– Mostly automated, but still requires expertise to use

successfully.
• Abstract Interpretation and Static Analysis:

– Least expressive, targeted to very specific artifacts.
– Requires some expertise to discharge false positives.

Theorem provers offer the highest assurance level and have
been used for verifying important properties, e.g. the safety
and security of the complete kernel of an OS [5]. Formalisms
such as Communicating Sequential Processes (CSP) ([6],
[7], as used in e.g. [8]), Calculus of Communicating Systems
(CCS) [9], π-calculus [10], or FOCUS [11], [12] assist this
process considerably, because they support non-determinism

1NB, that testing can never demonstrate the absence of issues, but only
their presence.

2Again, the statement in footnote 1 applies here.

[KPR+22] H. Kausch, M. Pfeiffer, D. Raco, B. Rumpe, A. Schweiger:
Correct and Sustainable Development Using Model-based Engineering and Formal Methods.
In: 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), IEEE, September 2022.
https://www.se-rwth.de/publications/

and underspecification, a notion of behavioral refinement,
time-sensitive specifications, and hierarchical decomposition.
In addition, theorem provers have an advantage (compared
to the model checking approach of CSP models in [8]) in
particular, when verifying software, since, despite some con-
siderable progress enabled by partial-order approaches [13],
model checkers suffer from the explosion of the state space,
whereas in theorem proving the complexity of proofs grows
only linearly with system complexity [14].

In FOCUS, distributed and interactive systems consist
of components exchanging messages through unidirectional
channels. The semantics of a component is a (set of) stream
processing functions. The most important reason that FOCUS
is used in this paper is due to the fact that refinement is fully
compositional [12], [15]. This means that after decomposing
a system, refining the components separately, and than com-
posing back, the new system will be a correct refinement
of the old one. Since the new system cannot exhibit new
(potentially unwanted) behaviors per construction, this leads
to cost savings for testing and integration efforts.

B. Paper Contribution

The contribution of this paper is updating and contin-
uing our previous projects (German Federal Ministry for
Economic Affairs and Climate Action ASSET-2 [16] and
German Federal Ministry of Education and Research SPES
series [17]–[20]) and works [14], [15], [21]–[24], where the
model-based verification of several safety-critical properties
is covered. In [14] we used a time-synchronous behavior
specification paradigm [15], [25], known to be well-suited
for hardware specification and verification [26], where model
checking techniques, unlike in software, can usually achieve
an excellent exhaustive coverage. Meanwhile, in software
applications such as telecommunications, transportation, and
business information systems, an event-driven paradigm is
much more common to build scalable distributed systems [27].
Hence, in this paper, event-driven automata are introduced
for capturing non-determinism and underspecification. Event-
driven automata are selected due to the following reasons:

• low-level requirements (LLRs) according to RTCA DO-
178C are defined such, that from these the software can
be developed without additional input.

• RTCA DO-333 requires models to be created such, that
there is enough abstraction regarding several implemen-
tation mechanisms.

• It turned out [24], [28], that automata provide an adequate
level of abstraction, which simplifies the formal verifica-
tion of the software’s properties in the next step of the
verification.

• The verified properties are guaranteed through the refine-
ment, i.e. through the addition of technical details.

• Avionics systems can be regarded as interactive systems,
which process input data coming from e.g. sensors or
users and generate output data for actuators or to be
displayed at the user interface. The processing of the

input is driven by events generated by the arrival of e.g.
sensor data or according to the user’s interaction.

Non-deterministic and underspecified automata are neces-
sary, because we want to develop the system from several
perspectives: At the beginning of the development process
(see section II-B) a high-level requirement (HLR) can be
defined using an underspecified and non-deterministic automa-
ton. The closer we get to the implementation in software
code, the less underspecified and the more deterministic the
specifying automata’s behavior needs to be expressed. This
approach enables an iterative refinement of the HLR, which
ends at the precise and correct LLR.

In order to cover all mentioned objectives, we extend our
previous work by the following key novel contributions:

• Event-driven modeling in SysML [29]
• Event-driven reasoning infrastructure [30]
• Semantical mapping from SysML to a data flow formal-

ism
• Evaluation in a use case from the aerospace domain

handling liveness properties

C. Paper Structure

The further structure of this paper is as follows: Section II
presents an avionics use case and the methodological ap-
proach. Requirements engineering is performed along RTCA
DO-178C and RTCA DO-333. Afterwards, our modular de-
velopment method for cyber-physical systems based on our
data flow formalism is described. Event-driven specifications
are presented and motivated. Section III presents the domain-
specific language used as frontend. A conceptual mapping to
the data flow formalism is presented to give semantics to the
frontend modeling language. The mapping is implemented by
a code generator, which maps from the frontend language
to an encoding of the data flow formalism in a theorem
prover. Architecture modeling and lower-level requirements
are demonstrated on the example of the avionics use case.
In section IV the theorem prover is presented. Core encodings
of the data flow formalism are introduced. These are used as
a reasoning foundation for proving a desired liveness property
of the use case, The proof, of which a high-level proof-
sketch is presented, reasons over infinite streams. This serves
for a verification of the low-level design against abstract
requirements, as well as an evaluation for our tool chain.
Finally, section V summarizes the results and presents an
outlook.

II. USE CASE AND METHODOLOGY

A. Use Case

As exemplary implementation used to evaluate the viability
of the methods developed in the joint collaboration between
the industrial and academic partners, the development of a
representative software functionality of Data Link Uplink Feed
(DLUF) (see fig. 1) is selected. In this system the users of a
wireless connection need to transfer data packets, which are
to be sent with a priority between 1 and 4 (1 denoting the
highest priority) to the communication computer Uplink. The

messages are received via the I/O element of the computer
and placed via a message router in queues (buffers) according
to their respective prioritization. These are then read from a
Capacity component. The data to be sent are selected from
the Capacity component taking into account their priority in
such a way, that messages of higher priority have precedence
over messages of lower priority. At the same time, the balance
of all priority classes has to be achieved, so that higher
prioritized messages do not completely rule out the forwarding
of messages of lower priority. The data packages, that are
viable to be transmitted within a transmission cycle, are
finally sent via the component DataLink. Figure 1 shows
the graphical overview of the architecture.

B. Requirements Engineering

The development of the system, as well as the verification
of refinement steps is carried out according to RTCA DO-
178C and RTCA DO-333 (see fig. 2) with respect to the safety
requirement level Design Assurance Level (DAL) A. The se-
lected system requirements in fig. 3 are used for demonstrating
the application of our approach. In particular, for SysReq2
(absence of starvation), an HLR is developed in a formal
language (see fig. 7). This HLR component specification has a
well-defined interface (input and output ports) and its behavior
is given by a formula in SysML v2 expressing the absence of
starvation.

We consider this particular requirement (in contrast to the
other SysReqs) to be critical enough to be formalized [4]. Live-
ness properties can only be violated by infinite input streams,
so their checking cannot be exhaustively achieved by testing.
We thus shall write down the non-starvation requirement as a
formal higher-level requirement. Then we will formally verify,
that the low-level design fulfills it, which means, that the
formal LLR is a correct refinement of the formal HLR. What
remains to be performed by manual review is validating that
the formalization (of informal SysReqs) was done correctly.
This is much less time-intensive, less complex, and less error-
prone when compared with an approach without the presented
formal verification.

The architecture and LLR (see fig. 1) are defined by
giving a white box decomposition of the component, where
all formulae (constraint-based specifications, see fig. 7) are
replaced by the composition of components, each of which
is behaviorally described by (potentially non-deterministic)
automata (see fig. 4). Finally, an executable model (e.g. of an
atomic component) is the representation of a component by a
deterministic automaton (which means the non-deterministic
automaton was refined, until it became deterministic). Then
the model’s execution can be achieved by enabling the user to
input a processing order (a user can load default schedulers,
or write their own) for (potentially) simultaneously incom-
ing events on this deterministic automaton. Schedulers for
executable models, generating source code in a high-level
language from the executable model, as well as the generation
of executable object code from the source code are not in the
scope of this paper.

C. SPES Methodology, FOCUS, and Event-driven Processing
The systematic design process as recommended by RTCA

DO-333 is taken into account in essence in ongoing research
activities like the SpesML project. The SPES methodology
[17] aims at bringing state-of-the-art model-based systems
engineering (MBSE) approaches to industry. One of it’s main
contributions is a well-founded and complete methodology for
developing and integrating distributed cyber-physical systems
(CPSs).

The SpesML project [20] unites academic and industry
partners in an effort to implement and extend the SPES
methodology in an industry-approved and -proven tool. The
systems modeling language of choice is SysML (v1) [31],
because of its wide-spread industry adoption. Our approach
is based on the latest version, SysML v2 [29], which is
currently under final review. It promises new possibilities,
including a textual representation, seamless integration and
transformatiom between graphical and textual representation,
and a clearer semantics for model elements.

FOCUS [11] serves as a mathematical underpinning of both
SPES and our approach. It allows to formally specify and
analyze systems [12]. Its key feature is the compositionality
of refinements, as explained in section I-A.

Compared to SpesML, we employ the modeling power of
event-driven systems. Event-driven modeling of reactions is
a more natural fit for typical distributed software systems,
especially in time-sensitive environments as they are found
in the avionics domain. Our framework models event-driven
behavior using state machines [4], that can immediately react
to single events like incoming transmissions. After receiving
such an input, the system can produce arbitrarily, but finitely
many outputs and/or simultaneously change its internal state.
Figure 4 shows such an event-driven behavior specification.

Section III will now introduce our revised (compare [14])
SysML v2 modeling language profile and adapted tooling for
highly automated formal verification of event-driven systems.

III. A SYSTEM MODELING LANGUAGE PROFILE AND THE
MAPPING TO A DATA FLOW SEMANTICS

A. SysML v2 and Code Generator
Working directly with theorem provers requires excessive

expertise. We therefore propose a model-driven approach
based on a SysML v2 profile. This is similar to SpesML [20],
where SysML v1 is used as a frontend to the SPES method-
ology [17]–[19]. Systems and subsystems are restricted to a
universal interface model: Systems are defined using part def-
initions (blocks in SysML v1). Part definitions communicate
only via ports. Behavior of systems is modeled using one of
three options: exhibited state definitions, asserted constraints,
or composition. Finally, we propose the addition of a refine-
ment relation.

SysML models are transformed automatically to their FO-
CUS representations, thereby giving a formal semantics to
the modeled system. This enables reasoning and deduction
over properties such as consistency between high- and low-
level specifications. Our previous publication [32] explains

Fig. 1. Graphical representation of the DLUF system in SysML v2 notation. Users send prioritized data packages via an I/O interface to a router. Here,
messages are prioritized into four levels and stored in queues (buffers). Messages are then forwarded according the remaining capacity of their particular
priority.

Fig. 2. Systematic design as recommended by RTCA DO-333.

Fig. 3. System requirements.

Fig. 4. Example of an event-driven system: The automaton can react to
events immediately upon their arrival by producing outputs (top: o = 5)
and/or changing its state (middle, 5 being inserted into the buffer). Actions
can be chosen depending on the conditions modeled as guards (top, i ̸= 5).

this transformation in great detail. The FOCUS representation
is embedded into Isabelle [30], an interactive theorem prover
originally developed at the University of Cambridge and the
Technical University of Munich. Isabelle enables machine-
supported and automated proof searches. It can also look for
counter examples and execute behavior specifications, i.e. run
simulations. Generally speaking, Isabelle allows the generation
and verification of machine-based formal proofs, without the
possibility of human error.

A novel contribution of this work are event-driven sys-
tems. To represent and transform event-driven behavior spec-
ifications, we extend our existing [14] FOCUS-compatible
state-based systems. Figure 5 gives an overview of key
concepts. State space and initial configurations are inher-
ited through an abstract Automaton. The newly intro-
duced EventAutomaton enables the representation of event-
triggered transitions by grouping them based on their input
event’s underlying channel. A textual SysML v2 model of an
event-driven system was already shown in [32].

We further implemented a user frontend in the form of a
Visual Studio Code (VSCode) [33] extension. The extension
handles all transformations and prover interactions to auto-
matically derive formal certificates or counter examples. The
verification state is indicated using green or red lights, as fig. 6
shows.

B. Safe Architecture and Low-level Requirements

In order to ensure safe LLRs, the consistency with the
system requirements needs to be checked. To narrow the gap

Fig. 5. Adapted intermediary representation of state-based systems compatible
with FOCUS compared to [14]: Event-driven automata group transitions based
on their input event’s underlying channel.

Fig. 6. The user frontend as VSCode extension showing syntax highlighting
of a textual SysML v2 model (right), model artifacts (top left), refinement
relations including their verification state (blue box in the middle left), as
well as underlying automatically generated Isabelle theories (bottom left).

between typically informal system requirements and LLRs,
formal HLRs are introduced. Our approach then allows for
automated formal verification of consistency between an HLR
and its LLR. This is done by proving the correctness of
the refinement between the two. Now only the consistency
between system requirements and HLRs needs to be checked,
e.g. through manual review.

Thus, to ensure non-starvation in our selected system re-
quirement, the absence thereof is encoded in fig. 7. The
part definition (keyword partdef) in combination with the
communication ports describes the black box specification,
i.e. the interface. There are 4 ports (cardinality 4 in square
brackets) in each direction (∼ indicates reversal of flow, the
default being outwards). The behavior is restricted (keyword
satisfy) to non-starving ones using a requirement (a type
of constraint, that allows nesting, in order to better structure
the desired properties). First, three assumptions (assumes)
are set. By quantifying over all inputs (∀i∈...), the length
of the observed time frame (length) is set to be infinite.
Then, it is assured, that each interval t (of type nat) contains
some messages (length() > 0). Lastly, all input values are
assumed to be below the given maximum capacity of the
buffers (maxCap). The HLR then requires, that each output
channel holds infinitely many messages (not including time
signals).

The HLR is then refined to LLR specifications. In the
modelling frontend, this is done using the aforementioned

1 part def BufferWithCapacity {
2 port input: ∼Packets[4];
3 port output: Packets[4];
4
5 satisfy requirement ’non-starvation’ {
6 assumes ’infinitely long timeframe’ {
7 ∀i∈{1,2,3,4}. input[i].length() = ∞
8 }
9 assumes ’message in each interval’ {

10 ∀i ∈ {1,2,3,4}, ∀t:nat:
11 input[i].atTime(t).length() > 0
12 }
13 assumes ’size below max. capacity’ {
14 ∀i ∈ {1,2,3,4}:
15 ∀v ∈ input[i].values():
16 v < maxCap[i]
17 }
18 require ’infinitely many outputs’ {
19 ∀i ∈ {1,2,3,4}:
20 output[i].messages().length() = ∞
21 }
22 }
23 }

Fig. 7. HLR 2.1 non-starvation formally modeled in SysML v2 textual
representation.

refinement relation of section III-A. After automatic transfor-
mation to FOCUS and embedding to Isabelle, the refinement
can be checked in an automated and tool-supported way.
The correct refinement ensures, that all properties (e.g. non-
starvation) hold for the refined system (e.g. LLR). This ensures
a safe LLR.

IV. THEOREM PROVER ISABELLE

A. Core Encodings

General mathematical FOCUS definitions are specified in
the theorem prover Isabelle to serve as a semantical founda-
tion [22] for an automated transformation mapping SysML
v2 models to Isabelle theories. This is necessary, because a
formal analysis of systems without clear semantics is not pos-
sible [34]. This chapter shortly introduces slightly simplified
main structures in Isabelle.

The most important data type is the streams domain.
Streams are concatenations of messages over some alphabet
and describe the history of communication channels in a
system. With the keyword domain the stream data type in
Isabelle is defined matching the implementation of Haskell
lists. A chain-complete partial order (pcpo)3 with a smallest
element 4 [35] is automatically linked to the stream type. Thus,
according to [36], [37], a least fixed point exists and infinite
streams are approximated by their finite prefixes. This allows

3A domain(pcpo) is a partially ordered set in regards to a transitive,
reflexive, and anti-symmetric order relation (prefix relation for streams).
Stream a is a prefix of stream b, iff each element of a is at the same position
in b.

4The smallest element for streams is the empty stream, which is a prefix
of all streams.

defining semantics for components iteratively processing infi-
nite streams, e.g. event-driven automata. With the established
concept of lazy evaluation5 infinite streams are built into the
stream domain using constructors.

domain ’m stream = cons (head::"’m") (lazy
rest::"’a stream")

Events are either messages or passage of time denoted as
tick (

√
). Accordingly, an event in Isabelle is defined:

datatype ’m event = Event ’m |
√

With streams and events implemented in Isabelle, it is
immediately possible to work with event streams.
A component of a distributed system often communicates
with a multitude of other components over multiple input
and output channels. The interaction between components is
possible with composition, where the interfaces of different
components are connected according to their channel names.
Because a tuple representation for the communication history
of complete component interfaces obstructs a general com-
position operator formalization, another approach is needed.
The concept of bundling streams implemented in Isabelle
as functions mapping channels to communication histories is
suitable for composing arbitrary components. Channels allow
only messages specified by the component interface to flow,
e.g. boolean messages on one channel or integers on another.
Thus, a function mapping channel names to arbitrary streams
is not always a stream bundle. All messages sent in a channel
history must be allowed messages of that channel:

definition wellformed ::
"(’cs ⇒ M stream) ⇒ bool" where

"wellformed f = ∀channel. messagesOf(f channel
) ⊆ allowedOn channel"

With the pcpodef keyword, the type of stream bundles is
defined as all wellformed functions. Additionally, the complete
partial order is given automatically.

pcpodef ’channel bundle("(_Ω")
= "{f::(’channel ⇒ M stream). wellformed f}"

The definition also lifts the prefix order over streams point-
wise to stream bundles. The composition operator is not
only capable of sequential and parallel, but also of feedback
compositions6, and is implemented in [22].

A deterministic component processes input elements via its
input channels and maps them to outputs on output channels.
Using bundles as input and output interface abstractions, each
continuous function over bundles describes a deterministic
component and is called stream processing functions (SPFs)
in FOCUS.

type_synonym (’I,’O) spf = "’IΩ →’OΩ"

To be able to analyze systems even early on in the devel-
opment, components with different behavior implementation

5Evaluation strategy to only evaluate expressions, when their value is
required to progress [38].

6A composition with feedback is determined by a fixed-point calculation.

possibilities must be part of the semantics domain. A set of
SPFs, where each SPF is one implementation possibility, is
called stream processing specification (SPS). Since compo-
nents represented by multiple SPFs have different possible
behavior, they are underspecified.

type_synonym (’I,’O) sps = "(’I,’O) spf set"

An event-driven component processes each input event
individually. For the behavior description the structure of an
event-driven automaton is added. The step wise evaluation is
described by transitions mapping an input event to possible
next states and output events with regards to the current state.
Since an event-driven component starts in a state and can
produce initial output, a set of possible initial configurations is
another essential part of the automaton. The transition function
as well as initial configurations are able to represent different
possibilities to capture a component’s underspecification. The
state space and input and output alphabet are parameters for
the Automaton type in Isabelle:

record (’state,’message,’outchannel)
Automaton =
transitions::"’state ⇒ ’message ⇒ ((’state ×

’outchannelΩ) set)"
configurations::"(’state × ’outchannelΩ) set"

A semantical mapping, mapping event-driven automata to SPS
was implemented according to [39] and fully embeds the
automaton type in the existing FOCUS framework in Isabelle.

The core encodings are extended by additional functions
over bundles, SPFs, and SPSs. Functions needed to formulate
theorems proving this paper’s system requirements are:

• timeSlice t s, obtaining all ordered messages starting at
time t until time t+ 1

• values s, obtaining all messages of the communication
history s

• #P s, returning the number of occurrences of messages
fulfilling predicate P in s7

•
⊗

, the composition operator lifted to SPS’.
Implementation details, other functions, and general theorems
are introduced in [22].

B. Property Verification

In order to ensure, that even low priority messages are trans-
mitted again and again, we formally verify a non-starvation
property for the system. It confirms, that always receiving
messages of a specific priority implies transmitting messages
of that priority infinitely often. The proof of such a property
over a composed system is, due to the unique compositionality
property of FOCUS, reduced to proving properties for its sub-
components. In other words, the correctness of a composed
system is the direct result of the correctness of its components.
Complex formal verification over systems can be divided and
conquered in many smaller steps with automation possibilities.
In this case, the non-starvation property is traced back to a non-
starvation property of the buffer and the capacity components.

7For a tautology P , the function #P returns the length of the stream.

The following properties are formulated and proven in
Isabelle for the buffer components:

1. If each input time slice contains packages, so does each
output time slice.

theorem assumes "bufferi ∈ BufferSPSi"
and "∀time. timeSlice time packetsi ̸= ϵ"
and "outputi = bufferi(packetsi,confirmsi)"
shows "∀time. timeSlice time outputi ̸= ϵ"

2. All output packages were received input packages.

theorem assumes ” b u f f e r i ∈ BufferSPS i ”
and ” o u t p u t i = b u f f e r i (p a c k e t s i , c o n f i r m s i) ”
shows ” v a l u e s o u t p u t ⊆ v a l u e s i n p u t ”

Together with the following property for the capacity com-
ponents

If each input time slice contains packages and the package
sizes are smaller or equal to the maximal capacity, infinitely
many messages are transmitted.

theorem assumes "capacityi ∈ CapacitySPSi"
and "∀time. timeSlice time packetsi ̸= ϵ"
and "∀message ∈ values packetsi. size message

≤ maxCapacityi"
and "(outputi,confirmsi) = capacityi(packetsi)"
shows "#packets (outputi) = ∞"

they immediately imply the non-starvation property for the
composed system:

If each input time slice of a priority contains packages
and the package sizes are smaller or equal to the maximum
capacity of that priority, infinitely many packages of that
priority are transmitted.

theorem
assumes "transmiti ∈ (BufferSPSi

⊗
Capacityi)"

and "∀time. timeSlice time packetsi ̸= ϵ"
and "∀message ∈ values packetsi. size message

≤ maxCappacityi"
and "(outputi) = transmiti(packetsi)"
shows "#packets (outputi) = ∞"

The non-starvation property holds for each priority. The
continuous transmission of packages is ensured.

V. CONCLUSION

The methodology demonstrated in this paper consists of
a model-based verification framework enabling event-driven
system specifications and reasoning. It enables a verified
design and a correct refinement of safety-critical systems.
The designer can either directly specify the system using
a logic language such as Isabelle, or using an architecture
description language such as SysML as a user-friendly way
for describing the interface, behavior, and interaction between
components. The system model and any desired properties
can then be translated to equivalent specifications in a the-
orem prover. FOCUS as semantical foundation stands out
due to the compositionality of refinements. This means that
after decomposing the system, refining the subcomponents
separately e.g. until an implementation, and then composing
back, the new system is a correct refinement of the old one

and no further integration tests are needed. This can lead to
the replacement of a considerable amount of manual tests
and reviews. This also helps with requirements demanding
properties being true always or never, which generally cannot
be fully verified by testing. Note however, that certain sets of
tests and reviews can only be supplemented by this approach,
but not completely replaced. In particular, the following checks
have to be performed manually:

• The formalization of the requirements is correct (i.e. the
correct transformation from informal to formal models).

• The methodology is justified and appropriate.
• Requirements and software architecture are compatible

with the target computer (unless the target environment
is formally modeled).

• The requirements are complete.
• There is no unidentified dead or disabled code.
In general, we observe an increasing maturity and feasi-

bility in the application of formal methods in safety-critical
systems, as it is possible by following the RTCA DO-333
standard, which can help to replace or complement many
tests. Note, that the formal specification might create some
additional effort, when considering the overall benefits over
testing. However, they usually overcompensate later signifi-
cantly, since technical flaws at the beginning may result in
highly expensive corrections of deficits identified later in the
development process, and the later the errors are corrected, the
more costly they are to correct. Finally, analyzing the design at
early stages in the development process can help to optimize
the architecture layout of avionics systems, leading to weight
reduction, less energy consumption, and less CO2 emissions.

REFERENCES

[1] B. Annighoefer, M. Halle, A. Schweiger, M. Reich, C. Watkins,
S. van der Leest, S. Harwarth, and P. Deiber, “Challenges and ways
forward for avionics platforms and their development in 2019,” in 38th
Digital Avionics System Conference (DASC), 2019.

[2] A. Brahmi, D. Delmas, M. H. Essoussi, F. Randimbivololona, A. Atki,
and T. Marie, “Formalise to automate: deployment of a safe and cost-
efficient process for avionics software,” in 9th European Congress on
Embedded Real Time Software and Systems (ERTS 2018), (Toulouse,
France), Jan. 2018.

[3] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing
or formal verification: Do-178c alternatives and industrial experience,”
IEEE Software, vol. 30, no. 3, pp. 50–57, 2013.

[4] U. Schopp, A. Schweiger, M. Reich, T. Chuprina, L. Lucio, and
H. Bruning, “Requirements-based code model checking,” in 2020 IEEE
Workshop on Formal Requirements (FORMREQ), (Los Alamitos, CA,
USA), pp. 21–27, IEEE Computer Society, sep 2020.

[5] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an os micro-
kernel,” ACM Trans. Comput. Syst., vol. 32, Feb. 2014.

[6] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[7] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall
International, 1985.

[8] T. Murray and G. Lowe, “On refinement-closed security properties
and nondeterministic compositions,” Electr. Notes Theor. Comput. Sci.,
vol. 250, pp. 49–68, 09 2009.

[9] R. Milner, A Calculus of Communicating Systems. Berlin, Heidelberg:
Springer-Verlag, 1982.

[10] J. Parrow, “An introduction to the pi-calculus,” 2001.
[11] M. Broy and K. Stølen, Specification and development of interactive

systems: Focus on streams, interfaces, and Refinement. New York:
Springer, 2001.

[12] M. Broy and B. Rumpe, “Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung.,” Informatik Spek-
trum, vol. 30, no. 1, pp. 3–18, 2007.

[13] J. Esparza and K. Heljanko, “Unfoldings - a partial-order approach to
model checking,” in Monographs in Theoretical Computer Science. An
EATCS Series, 2008.

[14] H. Kausch, M. Pfeiffer, D. Raco, and B. Rumpe, “Model-Based Design
of Correct Safety-Critical Systems using Dataflow Languages on the Ex-
ample of SysML Architecture and Behavior Diagrams,” in Proceedings
of the Software Engineering 2021 Satellite Events (S. Götz, L. Linsbauer,
I. Schaefer, and A. Wortmann, eds.), vol. 2814, CEUR, February 2021.

[15] H. Kausch, M. Pfeiffer, D. Raco, and B. Rumpe, “Montibelle - toolbox
for a model-based development and verification of distributed critical
systems for compliance with functional safety,” in AIAA Scitech 2020
Forum, p. 0671, January 2020.

[16] M. Reich, A. Schweiger, J. Lorenz, and U. Margull, “Experience report
on reuse in avionics,” in IBS Workshop Micro Air Vehicle Technologie
– Konzepte und Anwendungen 2019 (W. Hardt, ed.), vol. 9, pp. 28–35,
TUDpress THELEM Universitätsverlag GmbH und Co. KG, 2020.

[17] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, eds., Model-Based
Engineering of Embedded Systems. Heidelberg: Springer Berlin, 2012.

[18] K. Pohl, H. Hönninger, H. Daembkes, and M. Broy, eds., Advanced
Model-Based Engineering of Embedded Systems. Basel: Springer Cham,
2016.

[19] W. Böhm, M. Broy, C. Klein, K. Pohl, B. Rumpe, and S. Schröck, eds.,
Model-Based Engineering of Collaborative Embedded Systems. Basel:
Springer Cham, 2021.

[20] Official SpesML Project Site https://spesml.github.io.
[21] J. Ringert and B. Rumpe, “A little synopsis on streams, stream process-

ing functions, and state-based stream processing,” Int. J. Software and
Informatics, vol. 5, pp. 29–53, 01 2011.

[22] J. C. Bürger, H. Kausch, D. Raco, J. O. Ringert, B. Rumpe, S. Stüber,
and M. Wiartalla, “Towards an Isabelle Theory for distributed, interactive
systems - the untimed case,” Tech. Rep. AIB-2020-02, RWTH Aachen
University, March 2020.

[23] H. Kausch, M. Pfeiffer, D. Raco, and B. Rumpe, “An Approach for
Logic-based Knowledge Representation and Automated Reasoning over
Underspecification and Refinement in Safety-Critical Cyber-Physical
Systems,” in Combined Proceedings of the Workshops at Software
Engineering 2020 (R. Hebig and R. Heinrich, eds.), vol. 2581, CEUR
Workshop Proceedings, February 2020.

[24] S. Kriebel, D. Raco, B. Rumpe, and S. Stüber, “Model-Based Engineer-
ing for Avionics: Will Specification and Formal Verification e.g. Based
on Broy’s Streams Become Feasible?,” in Proceedings of the Workshops
of the Software Engineering Conference. Workshop on Avionics Systems
and Software Engineering (AvioSE’19) (S. Krusche, K. Schneider,
M. Kuhrmann, R. Heinrich, R. Jung, M. Konersmann, E. Schmieders,
S. Helke, I. Schaefer, A. Vogelsang, B. Annighöfer, A. Schweiger,
M. Reich, and A. van Hoorn, eds.), vol. 2308 of CEUR Workshop
Proceedings, pp. 87–94, CEUR Workshop Proceedings, February 2019.

[25] R. Grosu and B. Rumpe, “Concurrent timed port automata,” arXiv
preprint arXiv:1411.6027, 2014.

[26] J. He and K. J. Turner, Specification and Verification of Synchronous
Hardware using LOTOS, pp. 295–312. Boston, MA: Springer US, 1999.

[27] S. Kounev, C. Rathfelder, and B. Klatt, “Modeling of event-based
communication in component-based architectures: State-of-the-art and
future directions,” vol. 295, 03 2012.

[28] U. Schöpp, A. Schweiger, M. Reich, T. Chuprina, L. Lúcio, and
H. Brüning, “Requirements-based code model checking,” in 2020 IEEE
Workshop on Formal Requirements (FORMREQ), pp. 21–27, 2020.

[29] SysML v2 Submission Team, “OMG Systems Modeling Language
(SysML),” tech. rep., Aug. 2021.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A proof
assistant for Higher-Order Logic, vol. 2283 of Lecture notes in artificial
intelligence. Berlin [etc.]: Springer, 2002.

[31] Object Management Group, “SysML Specification Version 1.0 (2006-
05-03),” August 2006. http://www.omg.org/docs/ptc/06-05-04.pdf.

[32] H. Kausch, J. Michael, M. Pfeiffer, D. Raco, B. Rumpe, and
A. Schweiger, “Model-Based Development and Logical AI for Secure
and Safe Avionics Systems: A Verification Framework for SysML
Behavior Specifications,” in Aerospace Europe Conference 2021 (AEC
2021), Council of European Aerospace Societies (CEAS), November
2021.

[33] Microsoft https://code.visualstudio.com/.

[34] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics
of “Semantics“?,” Computer, vol. 37, no. 10, pp. 64–72, 2004.

[35] B. C. Huffman, HOLCF ’11: A definitional domain theory for verifying
functional programs. [Portland, Or.]: Portland State University, 2012.

[36] R. P. Agarwal, M. Meehan, and D. O’regan, Fixed point theory and
applications, vol. 141. Cambridge university press, 2001.

[37] A. Granas and J. Dugundji, Fixed point theory, vol. 14. Springer, 2003.
[38] P. Hudak, “Conception, evolution, and application of functional pro-

gramming languages,” ACM Computing Surveys (CSUR), vol. 21, no. 3,
pp. 359–411, 1989.

[39] B. Rumpe, Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Doktorarbeit, Technische Universität München, 1996.

