
Continuously Analyzing Finite, Message-Driven, Time-Synchronous Component &
Connector Systems During Architecture Evolution

Arvid Buttinga, Oliver Kautza,∗, Bernhard Rumpea, Andreas Wortmanna

aSoftware Engineering, RWTH Aachen University, Aachen, Germany, www.se-rwth.de

Abstract

Understanding the semantic differences of continuously evolving system architectures by semantic analyses facilitates engineers
during evolution analysis in understanding the impact of the syntactical changes between two architecture versions. To enable
effective semantic differencing usable in practice, this requires means to fully automatically check whether one version of a system
admits behaviors that are not possible in another version. Previous work produced very general system models for message-
driven time-synchronous (MDTS) systems that impede fully automated semantic differencing but very adequately describe such
systems from a black-box viewpoint abstracting from hidden internal component behavior. This paper presents a system model for
MDTS systems from a white-box viewpoint (assuming component implementation availability) and presents a sound and complete
method for semantic differencing of finite MDTS system architectures. This method relies on representing (sub-)architectures as
channel automata and a reduction from the semantic differencing problem for such automata to the language inclusion problem
for Büchi automata. The system model perfectly captures the logical basics of MDTS systems from a white-box viewpoint and
the method enables to fully automatically calculate semantic differences between two finite MDTS systems on push-button basis,
yields witnesses, and ultimately facilitates semantic evolution analysis of such systems.

Keywords: Component Software Engineering, Semantics, Automata, Refinement, Semantic Differencing, Evolution Analysis

1. Introduction

Component-based software engineering [30] promises im-
proving software development through reuse of independently
developed and validated off-the-shelf building blocks with sta-
ble interfaces. These building blocks usually are implemented
in general-purpose programming languages (GPLs), Hence,
they are subject to the conceptual gap between the problem do-
mains and solution domains of discourse, which arises from
addressing problem domain challenges with programming lan-
guage complexities [14].

Model-driven development (MDD) [44] aims at reducing this
gap by lifting domain-specific, abstract, models to primary de-
velopment artifacts. Such models can leverage domain-specific
vocabulary to be better comprehensible as well as more abstract
and hence are better suited towards analysis and transforma-
tion than GPL programs. Software engineering also applies
MDD to itself to facilitate addressing its challenges. Conse-
quently, modeling languages for various challenges in software
engineering, such as database manipulation languages, build
process description languages, and architecture description lan-
guages have been developed.

Architecture description languages (ADLs) [29] leverage the
potential of model-driven development [44] for the description

∗Corresponding author
Email addresses: butting@se-rwth.de (Arvid Butting),

kautz@se-rwth.de (Oliver Kautz), rumpe@se-rwth.de (Bernhard
Rumpe), wortmann@se-rwth.de (Andreas Wortmann)

of software architectures. In many domains, knowing the pre-
cise semantics of models is crucial due to safety concerns, but
current architecture modeling processes, such as MDA [31] do
not take these into account. Stepwise refinement [5, 6] is a
software engineering methodology for continuous architecture
modeling based on controlled evolution and progressive im-
provement of components: each subsequent version of a com-
ponent model must adhere to properties already proven for its
predecessors. To this effect, checking whether successor com-
ponent versions refine their predecessors in terms of observable
input/output behavior is crucial.

Similar to UML [32], the specific semantics of many ADL
details are encoded in their infrastructures and tools only.
Where fully detailed denotational or operational semantics are
available, such as with Focus [7], these are usually too complex
for fully automated refinement checking and typically require to
(partially) manually prove refinement between two component
versions. This impedes stepwise refinement so severely that it
becomes a “highly idealistic” [5] idea. However, enabling au-
tomatic stepwise refinement for software architecture models
would greatly facilitate development in domains where com-
ponent adherence to certain properties is crucial. With auto-
mated methods, manual proofs become redundant. This enables
users who are no experts in formal methods to prove or dis-
proof refinement between architecture versions. As program-
mers are rarely experts in formal methods, this opens the possi-
bility to apply stepwise refinement methodologies to a broader
user range. In case an architecture is no refinement of another,

Preprint submitted to Elsevier May 24, 2018

[BKRW18a] A. Butting, O. Kautz, B. Rumpe, A. Wortmann:
Continuously Analyzing Finite, Message-Driven, Time-Synchronous Component & Connector Systems During Architecture Evolution.
In: Journal of Systems and Software, 2018.
www.se-rwth.de/publications/

the method presented in this paper fully automatically calcu-
lates a behavior that is possible in the one architecture but not
in the other. This behavior serves as witness and is a concrete
disproof for refinement. Software engineers can use the witness
as evidence for efficiently identifying the syntactic elements in
the architecture’s implementation that cause non-refinement.

In [9], we identified a subset of the Focus [7] semantics for
time-synchronous, distributed, interactive systems that is pow-
erful enough to model complex and realistic systems and is
adaptable to enable fully automated refinement checking be-
tween components. Based on this, [9] describes an approach
to transform software component models into a variant of port
automata [16], compose these syntactically, and translate the
results into Büchi automata, where their refinement can be
checked through language inclusion [23]. This approach is re-
alized with the MontiArcAutomaton component & connector
ADL [35, 37] and the RABIT [2, 3] tool for fully automated
language inclusion checking between Büchi automata. It en-
ables modeling software architectures with powerful ADLs and
checking refinement on a push-button basis. To this effect, the
contributions of [9] are:

• A formulation of the semantics domain of time-
synchronous [7] stream processing functions (TSSPFs) in-
spired by the notion of stream processing function [36].

• A variant of port automata: time-synchronous port au-
tomata (TSPA) [16] with operational semantics based on
execution traces and denotational semantics based on sets
of TSSPFs.

• A semantically compositional syntactic composition oper-
ator for TSPAs: The semantics of the syntactic composi-
tion of two TSPAs is equal to the composition of the se-
mantics of the individual TSPAs.

• A transformation from finite TSPAs to Büchi automata.

• A proof showing the operational semantics of a finite
TSPA and the language accepted by the Büchi automaton
resulting from such a transformation coincide.

• The result that refinement checking and disproof genera-
tion in form of semantic difference witnesses for software
architectures where components can be mapped to finite
TSPAs can be reduced to language inclusion checking and
counterexample generation for Büchi automata.

• An implementation based on the MontiArcAutomaton
component & connector ADL [35, 37] and RABIT [2, 3].

In this paper, we enhance and extend the previous approach
to achieve practical efficiency improvements and technical en-
hancements of the underlying formal system model. To this
effect, this paper’s additional contributions are:

• Time-synchronous channel automata (TSCAs): an im-
proved variant of TSPAs that enables defining an asso-
ciative and commutative syntactic composition operator,
while retaining previous results regarding the relation be-
tween the system models and compositionality.

• The previous composition operator for TSPAs (cf. [9]) is
neither associative nor commutative. Using the commuta-
tivity and associativity of the TSCA composition operator
enables to define an intuitive notion of system architecture,
which is not possible with the TSPA composition operator.

• A method for trimming finite TSCAs to reduce complexity
of analyses.

• A method for composing finite TSCAs such that the com-
pound does not contain any unproductive states to mitigate
state explosions.

• The identification of a subclass of finite non-deterministic
TSCAs, which is a proper superset of deterministic
TSPAs, where semantic differencing is possible in poly-
nomial time.

• The insight that the Büchi automata resulting from trans-
forming TSCAs are always “weak” and therefore enable
the application of efficient algorithms enabling, for in-
stance, easy complementation or minimization.

• A notion of system architecture based on a white-box
viewpoint on message-driven time-synchronous (MDTS)
systems and the previously developed theory. The asso-
ciativity and commutativity of the composition operator
for TSCAs is important for the notion of system architec-
ture to be well defined. The system architecture definition
as introduced in this paper is not possible with TSPAs as
introduced in [9] because TSPAs do not have a commuta-
tive and associative composition operator.

• A method for mitigating the state explosion problem dur-
ing semantic differencing of finite system architectures,
which is especially useful during continuous architecting
when it comes to understanding the semantic differences
between two successor versions. The method not only re-
lies on trimming but also on iteratively applying refine-
ment checking to smaller sub-architectures.

• An extended evaluation including an additional example
and an improved composition method that combines com-
position with trimming.

This paper further contains many additional examples that
increase comprehensibility and illustrate this paper’s approach.
The resulting fully automatic analysis technique for compar-
isons of TSCAs greatly supports continuously evolving projects
where the overall architecture changes frequently. It also
greatly facilitates analyzing the semantic differences between
products of a product line architecture where the individual
products are syntactically only slightly different.

1.1. Paper Structure and Overview

Section 2 sketches the idea of stepwise refinement. To this
effect, it presents two architecture models, the elevator control
system presented and evaluated in [9] as well as a more compact
architecture serving as running example throughout this paper.

Subsequently, Section 3 presents the Focus subset used as
semantics domain from a black-box viewpoint (as functions).
This paper’s approach is applicable to finite systems where it
is possible to describe the system’s semantics with the system
model described in this section. It is argued that the system
model is adequate for describing architectures while abstracting
from hidden internal details, but hiding internal details hampers
automated analyses.

This motivates Section 4, which describes a new system
model that represents components from a white-box perspec-
tive (as automata). The automata model is compatible to the
function model of the previous section and explicitly captures
internal component details.

Afterwards, Section 5 presents automated semantic differ-
encing based on the latter system model (automata). We obtain
a more efficient semantic differencing method as described in
previous work. The compatibility of the system models ensures
the results equally apply to both semantic domains. However,
this paper’s approach is only applicable if component imple-
mentations are available and can be transformed to the automata
introduced in Section 4.

Section 6 presents the implementation of our approach with
MontiArcAutomaton and RABIT and evaluates its applicabil-
ity. Section 7 discusses observations and Section 8 highlights
related work before Section 9 concludes. The appendix de-
scribes examples used throughout the paper in more detail.

2. Examples

This section presents two example architectures for stepwise
refinement. The first example illustrates the benefits of our ap-
proach on an elevator control system (Section 2.1) as presented
in [9]. The second example describes a distributed Modulo-
8-Counter (Section 2.2), which is used as running example
throughout the remainder of this paper. While the former is
suited to comprehending the benefits of stepwise refinement in-
tuitively, the latter is compact enough to be discussed in details
in the remainder.

2.1. An Elevator Control System

Consider the model-driven development of an elevator con-
trol system (ECS) as presented in [42]. The ECS depicted
in Figure 1 comprises two hierarchically composed compo-
nents representing the three floors the elevator serves (compo-
nent Floors) and the elevator cabin (component Elevator).
Whenever a button on a floor (indicated, for example, by a mes-
sage on the incoming port btn1) is pressed, the ECS should ac-
tivate the light (by sending a message via outgoing port led1)
on the corresponding floor and instruct the elevator cabin to
visit that floor. The control logic of the elevator is modeled via
a statechart variant embedded into the Elevator’s subcom-
ponent Control. This component receives messages upon ar-
riving at a specific floor (e.g., via incoming port at1) and sends
messages to Door and Motor to operate its door and to move
between the floors. The latter two embed models of compact
action languages to describe their respective behavior.

For this version of the ECS, the software architects have
proven that certain properties hold (e.g., that it cannot produce
blocking situations). Now they aim to replace the Elevator
component with a smarter version that reacts only to elevator
requests on a floor if there is no such request yet. To this ef-
fect, the company employs stepwise refinement to avoid prov-
ing the properties of Elevator again for its successor version
SmartElevator. Therefore, the behavior descriptions of all
subcomponents are translated into TSCAs. For composed com-
ponents, the behavior descriptions of their subcomponents are
translated also and merged iteratively. This ultimately elimi-
nates all hierarchy levels but the last. The result of this trans-
formation is depicted in Figure 2, where the behavior descrip-
tions of all three subcomponents have been transformed accord-
ingly and merged into a single TSCA. The same is performed
for the improved SmartElevator component before both
are transformed into weak non-deterministic Büchi automata
as presented in Section 6.

Using this transformation reduces semantic component re-
finement to language inclusion on Büchi automata and can be
solved automatically, for instance, by using the tool RABIT.
Hence, with this infrastructure in place, the company now can
fully automated ensure whether the SmartElevator, and its
potential successors, actually refine their predecessors or re-
quire further adjustment. Where refinement is refuted, differ-
ence witnessing input/output pairs are produced. This automa-
tion of stepwise refinement can increase the pace of each refine-
ment step and, hence, overall development efficiency.

2.2. A Modulo-8 Counter
This example presents a modulo-8 counter inspired by the

model presented in [15] as demonstration of stepwise refine-
ment along the depth of composition layers. The modulo-8
counter outputs the binary representation of a number n be-
tween 0 and 7, which can be incremented ((n + 1) % 8) or
reseted (n = 0). The initial value of n is 0. The modulo-
8 counter is modeled as the MontiArcAutomaton component
Mod8Counter depicted in Figure 3 (a). The component has
two incoming ports and three outgoing ports of the data type
Boolean. In the initial definition, only the behavior of the outer-
most component Mod8Counter is specified. The valuations
of the outgoing ports x2, x1, and x0 are equal to the Boolean
representations of the variables in the binary representation of
n (i.e., n = x2 · 22 + x1 · 21 + x0 · 20). Upon receiving true via the
incoming port inc, the value of n is increased if the value on
port res is not equal to true, and on receipt of true via the port
res, the value of n is set to 0, regardless of the value received
on port inc.

To decouple parts of the functionality of the modulo-
8 counter, e.g., for individual testing, the behavior of the
Mod8Counter is structurally refined by introducing the two
subcomponents Controller and Counter, as depicted in
Figure 3 (b). The controller component is responsible to dele-
gate a reset of the counted value to the counter. This reset is trig-
gered either after receiving a message true on its incoming port
rIn or if the current counted value is 7 and the value should be
further increased. The counter component realizes the counting

ECS

Floors floors

btn1
Floor

f1led1

btn2
Floor

f2led2

req1

clr1

Elevator e

Control ctrl

Motor m

Door d

at1

at2

close

open

down

up

btn3
Floor

f3led3

clear

clr2clr3

at3

btn

btn

btn

req

req

req

req1

req2

req3

light

light

light

clr

clr

clr

req2

req3
DoorCMD

MotorCMD

«enum»

DoorCMD
«enum»

MotorCMD

UP

DOWN

STOP

subcomponent instances
of component type Floor

outgoing port mCmd
of type MotorCMD

hierarchically composed
component of type ECS

subcomponent of
component type Splitter

«enum»

Clear

F1

F2

F3

Splitter

sp

SC

mCmd

dCmd

OPEN

CLOSE

AL
...

AL
...

C&C
UML/P class diagram data

types for ports

component with embedded
statechart behavior model

Figure 1: The elevator control system ECS comprises subcomponents to manage serving elevation requests on up to three floors.

functionality, but is unable to reset a counted value from 7 to 0
after increasing. Using the method for refinement checking pre-
sented in this paper, it is possible to fully automatically check
whether the original version (atomic Mod8Counter) is equiv-
alent to its successor version (composed Mod8Counter).

Later, the behavior of the counter is refined in a further struc-
tural refinement step (cf. Figure 3 (c)) by introducing subcom-
ponents to the component Counter. The company reuses
these subcomponents from a different project. The behavior of
the component Counter is then defined by three counter bit
components pos0, pos1, and pos2, which all have the same
component behavior - denoted in MontiArcAutomaton by the
fact that they are of the same component type CBC. Each of
these can count a single bit component only. The MontiArc-
Automaton component CBC with an embedded automaton re-
alizing the component behavior is depicted in Figure 4. The
bit value can be increased (modulo 2) via a message true on
the incoming port i and reseted to f alse via a message true
on the incoming port r. The current value of the bit is output
via the outgoing port v, and the value of q is true iff, after in-
creasing, the bit value changes from true to f alse. Otherwise,
it emits f alse. Using our method, checking whether the new
architecture is semantically equivalent to any of the other two
architectures is possible within milliseconds.

At this point, another modeling expert notices that the design
of the mod-8 counter is too complex and can be simplified, as
the behavior of each CBC components already realizes the over-
flow of the modulo. Therefore, the expert proposes to model
the behavior as depicted in Figure 5. As it is not obvious if the

behaviors of Figure 3 (c) and Figure 5 are equivalent, the re-
finement check presented in this paper is employed and yields
sound and complete results within milliseconds.

3. A Semantics Domain for Components

This section introduces the semantics domain for compo-
nents based on the Focus framework [5, 7, 16, 36, 39] and reca-
pitulates the most important results from [9, 16], which underlie
the approach presented in this paper.

We interpret software architectures as networks of au-
tonomously acting components communicating in a time-
synchronous manner via directed, typed channels connecting
the components’ interfaces. A time-synchronous architecture
can be interpreted as a system where component computations
are performed concurrently and controlled by a global clock
that splits runtime into discrete and equidistant time units. In
every time unit, each component receives finitely many input
messages via its interfaces and outputs finitely many messages
to its environment. The computations of each component in
every time unit must terminate. To this end, components parti-
tion time slices into sequences of operations (e.g., assessing the
guard of an embedded automaton’s transition or assigning val-
ues according to its actions). Although these sequences of oper-
ations are untimed in the Focus sense, they are causally related.
The semantics of component behavior thus happens logically
in superdense time [28], which, following [26], distinguishes
between the discrete “time continuum” (global Focus time) and
“untimed causally-related actions” (a component behavior’s ac-
tions within the component’s time slice).

MAA2B

MAA2B

NBA

time-synchronous channel automata
to Büchi
automata

C&C

E*

SE*

Elevator*
TSCA

�

SmartElevator*

�

TSCA

Figure 2: The composed components Elevator and SmartElevator each are transformed into flat components with a single port automaton prior to being
transformed into Büchi automata and checked for language inclusion.

In the remainder, we denote by [X → Y] the set of all func-
tions from a set X to a set Y . For a function f ∈ [X → Y] and a
set Z ⊆ X, the restriction of f to Z is the function f |Z ∈ [Z → Y]
that satisfies f |Z(x) = f (x) for all x ∈ Z. Given two functions
f ∈ [X → A] and g ∈ [Y → B], the overriding union of f with
g is the function f + g ∈ [(X ∪ Y) → (A ∪ B)] that satisfies
(f + g)(x) = g(x) if x ∈ Y and (f + g)(x) = f (x) if x ∈ X \ Y for
all x ∈ X ∪ Y .

3.1. Streams, Messages, Types, and Communication Histories
The history of messages a component receives or sends via

an interface (e.g., channel) is formally described as a stream that
contains messages in order of their transmission. Let M be an
arbitrary alphabet. A stream over the set M is a finite or infinite
sequence of elements from M. Following [7, 39], we denote by

• M∗ the set of all finite streams over M,

• M∞ the set of all infinite streams over M,

• 〈〉 the empty stream, which is an element of M∗,

• ŝt the concatenation of two streams s and t such that
((M∗ ∪ M∞), ,̂ 〈〉) is a monoid. If s ∈ M∞ then ŝ t = s.

• v the prefix relation over streams, which is a partial order
defined by: ∀s, t ∈ (M∗ ∪ M∞) : s v t ⇔ ∃u : ŝ u = t,

• s.t the (t + 1)-st element of a stream s ∈ (M∗ ∪ M∞),

• s↓t the prefix of a stream s ∈ M∞ of length t ∈ N.

Example 1. The finite sequence f ib7 = 0, 1, 1, 2, 3, 5, 8 ∈ N∗

is a finite stream of natural numbers. It contains the first seven
Fibonacci numbers. The infinite stream of all Fibonacci num-
bers f ib ∈ N∞ is defined by f ib.0 = 0 ∧ f ib.1 = 1 ∧ ∀t ∈
N : t ≥ 2 ⇒ f ib.t = f ib.(t − 2) + f ib.(t − 1). By defini-
tion, we have f ib̂ f ib7 = f ib. Further, f ib7 v f ib because
the prefix of length 7 of f ib is equal to f ib7, i.e., f ib↓7= f ib7.
Thus, the first seven elements of f ib7 and f ib are equal, e.g.,
f ib7.0 = f ib.0 = 0 and f ib7.3 = f ib.3 = 2.

In the remainder, let M denote an arbitrary but fixed set of
data elements, such as messages, and let Type be a set of data
types such that each t ∈ Type satisfies t ⊆ M. Types facilitate
restricting the set of messages a component may emit or receive
via an interface. We assume a discrete model of time where
component computation is divided into discrete time units of
equal and finite duration. In each time unit each component re-
ceives at most one message via each incoming interface, may
perform finitely many state changes and emits at most one mes-
sage via each outgoing interface. We use the special symbol
ε ∈ M to denote the absence of a message during a time unit
and require ε ∈ t for each t ∈ Type.

A channel is an identifier for a communication link between
interface elements of components. In the following, we denote
by C a set of typed channel names. The function type ∈ [C →
Type] maps each channel in the set C to its type. Let B ⊆ C
be an arbitrary set of channel names. We model the history of
messages emitted via the channels in the set B as a communica-
tion history h ∈ BΩ, which is an element of the set BΩ defined
as follows: BΩ def

= {h ∈ [B → M∞] | ∀b ∈ B : h(b) ∈ type(b)∞}.
Let h ∈ BΩ be a communication history, H ⊆ BΩ a set of com-
munication histories, and t ∈ N a natural number. We lift the
operator ↓ to communication histories and sets of communi-
cation histories in a point-wise manner, i.e., b↓t∈ [B → M∗]
denotes the function that satisfies b↓t(i) = b(i)↓t for all i ∈ B
and H↓t

def
=
⋃

h∈H h↓t denotes the set resulting from applying the
operator to each element in H.

Example 2. Let c ∈ C be a channel of natural numbers.
Then, in each time unit, the channel c can be either assigned
a natural number or the empty message. Thus, type(c) =

N ∪ {ε} ∈ Type ⊆ M. The communication history that as-
signs the channel c the sequence of Fibonacci numbers is given
by h = {c 7→ f ib} ∈ cΩ where f ib is defined as in Exam-
ple 1. The stream containing all negative integers neg de-
fined by ∀t ∈ N : neg.t = −t is no valid assignment to
channel c because there exists a time unit t ∈ N such that
neg.t < type(c) = N ∪ {ε}, e.g., we have neg↓2= −1,−2.

Mod8Counter

res

inc

Mod8Counter

Controller

Counter

res

inc

rInres

inc

rOut

inc

Mod8Counter Counter

CBC

pos0r

i

q

CBC

pos1r

i

q

CBC

pos2r

i v

incinc v

v

q

Controller
resrInres rOut

inc

(a) initial specification

(b) first refinement

(c) second refinement

��

��

��

��

��

��

��

��

��
������

��

��

��

��

��

��

������

Figure 3: Graphical representation of the component Mod8Counter in MontiArcAutomaton syntax (a) in its initial specification and (b) after a first and (c) a
second structural refinement step. All ports are of data type Boolean.

CBC

r

i

q

v
ba

[i== ε && r== ε] /

{v=T, q= ε}

[i==ε||r==T]/

{v= ε, q= ε}

[r=T]/

{v= ε, q= ε}

[i==T && r== ε] /

{v=T, q= ε}

[i==T&&r== ε]/{v= ε, q=T}

Figure 4: Automaton model realizing the component behavior of CBC.

Mod8Counter

CBC

pos0r

i

q CBC

pos1r

i

q CBC

pos2r

i vres

inc v

v

q

��

��

��

Figure 5: Alternative model of the mod-8 counter, with the behavioral equiva-
lence to the model in Figure 3 (c) in question.

Thus, {c 7→ neg} < aΩ is no communication history. The func-
tion mapping the channel c to its first 7 elements is given by
h↓7= {c 7→ f ib7} where f ib7 is defined as in Example 1. Let
empty ∈ {c}Ω be defined by ∀t ∈ N : empty(c).t = ε denote the
communication history that always assigns the channel c to the
empty message. Then, {h, empty}↓7= {h↓7, empty↓7} = {{c 7→
f ib7}, {c 7→ ε, ε, ε, ε, ε, ε, ε}}.

3.2. Time-Synchronous Stream Processing Functions
We model the semantics of distributed interactive sys-

tems as sets of time-synchronous stream processing functions

(TSSPFs) [9]. The notion of TSSPFs is inspired by the notion
of timed SPFs [7, 16, 36, 39]. The major and crucial differ-
ence between the two notions is that TSSPFs process exactly
one message per channel per time unit, whereas SPFs process a
stream of messages per channel per time unit. The key idea is to
treat components as black-boxes having an observable behavior
characterized by the interactions on channels between systems
and subsystems while hiding internal implementation details. A
component is mapped to a set of functions describing the com-
ponent’s possible behaviors. Such a function maps communi-
cation histories over the set of input channels of a component to
communication histories over the set of the component’s output
channels. Thus, each function in the semantics of a component
with input channels I ⊆ C and output channels O ⊆ C is of the
form f ∈ [IΩ → OΩ]. However, such functions are not always
realizable in the sense that they can be implemented [7, 34]. In-
tuitively, the characterizing properties for realizability are cap-
tured by the notion of weak-causality: a component cannot
change messages it received or sent in the past and cannot react
to messages it receives in the future [7, 34, 36, 39]. Thus, the
output of a behavior describing function until time t must be
completely determined by its input until time t:

Definition 1 (Time-Synchronous Stream Processing Function).
Let I,O ⊆ C be two disjoint sets of input and output chan-
nels. A function f ∈ [IΩ → OΩ] is called (weakly causal)
time-synchronous stream processing function iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ f (i)↓t= f (i′)↓t.

We denote by [IΩ wc
−−→ OΩ] the set of all (weakly causal)

TSSPFs mapping input histories in IΩ to output histories in OΩ.

add
a

b

acc
cc b

Figure 6: Graphical representation of the TSSPFs add and acc.

Example 3. This example defines the stream processing func-
tion add that specifies the behavior of a component for adding
natural numbers. The interface of the TSSPF is graphically
illustrated on the left hand side of Figure 6. The input chan-
nels are I = {a, b} and the set of output channels is O = {c}.
The type of all channels is the type of natural numbers, i.e.,
type(a) = type(b) = type(c) = N ∪ {ε} ∈ Type ⊆ M. If the
function add receives natural numbers on both channels a and
b in a time unit t, then the function outputs the sum of the re-
ceived messages via the channel c in time unit t. Otherwise, if
the function receives the empty message ε on any of the input
channels in time unit t, then the function outputs ε in time unit t.
The function add ∈ [IΩ → OΩ] is formally defined by ∀i ∈ IΩ :

∀t ∈ N : (add(i))(c).t = .

i(a).t + i(b).t, if i(a).t, i(b).t ∈ N
ε, otherwise

The function add is weakly causal because its output in each
time unit is fully specified by its inputs in the same time unit,
i.e., in each time unit, the function’s output does not depend on
future input and the function does not change previously pro-
cessed messages. This is verifiable with a short proof by induc-
tion over the lengths of prefixes of communication histories.

The following example illustrates that the weak causality re-
quirement on TSSPFs is necessary.

Example 4. This example defines the function u (unrealizable)
over communication histories that is not weakly causal. We
define the function over Boolean messages. The function’s input
channel set is given by I = {in} and its output channel set is
given by O = {out}. The types of in and out are type(in) =

type(out) = {>,⊥, ε} ∈ Type ⊆ M where > represents the
value true and ⊥ represents the value f alse. In each time unit
t, the function u ∈ [IΩ → OΩ] outputs the value it receives in
time unit t + 1. It is formally defined by ∀i ∈ IΩ : ∀t ∈ N :
u(out).t = i(in).(t + 1). Obviously, the functionality described
by the function u cannot be implemented by a component: A
component implementing the function would be able to predict
its future input to determine its present output. This is formally
captured by weak-causality. To proof that the function u is not
weakly causal, we need to find two input channel histories i, i′ ∈
IΩ and a time unit t ∈ N such that i↓t= i′↓t ∧u(i)↓t, u(i′)↓t.
We choose i and i′ such that ∀t ∈ N : i(in).t = ⊥ and i′(in).0 =

⊥ ∧ ∀t ∈ N : t ≥ 1 ⇒ i′(in).t = >. Then, i↓1= {in 7→ ⊥} = i′↓1
and u(i)↓1= {out 7→ ⊥} and u(i′)↓1= {out 7→ >}. Thus, i↓1=

i′↓1 ∧u(i)↓1, u(i′)↓1.

A single TSSPF is well-suited to model the semantics of a
deterministic component. However, as a TSSPF maps each in-
put to exactly one output, TSSPFs are not general enough to
model the semantics of underspecified components where the

exact output to an input is not fully specified. We thus model
the semantics components as sets of TSSPFs:

Definition 2 (Component Semantics Describing). Let I,O ⊆ C
be two disjoint sets of channels. A set of TSSPFs F ⊆ [IΩ wc

−−→

OΩ] is called component semantics describing iff it satisfies
∀g ∈ [IΩ wc

−−→ OΩ] : ((∀i ∈ IΩ : ∃ f ∈ F : g(i) = f (i))⇒ g ∈ F).

The definition above makes the semantics domain of com-
ponents fully abstract [16, 17] in the sense of [19] and allows
to handle unbounded non-determinism [16]. Full abstraction
is achieved by the closeness property, which requires that each
TSSPF resulting from a combination of TSSPFs included in the
set F is also included in F. The closeness property is also im-
portant to make component semantics as little distinguishing as
possible. This is illustrated by the fact that two different arbi-
trary sets of TSSPFs may encode the same component behav-
iors. The reason for this is that one may find a TSSPF g < F that
is not included in a set of TSSPFs F, which can be interpreted as
a combination of different TSSPFs contained in F. It thus does
not induce a new behavior not already covered by a TSSPF in F
but, for instance, induces a semantic difference between a com-
ponent with semantics described by F and a component with
semantics described by F ∪ {g}. As a result the semantics of
two components that have the exact same observable behav-
iors may be considered unequal. Consequently, full abstraction
is not achieved. Thereby, the closeness property is necessary.
However, each arbitrary set of TSSPFs F ⊆ [IΩ wc

−−→ OΩ] can
be lifted to a component semantics describing set of TSSPFs
F def

= {g ∈ [IΩ wc
−−→ OΩ] | ∀i ∈ IΩ : ∃ f ∈ F : g(i) = f (i)} that

satisfies F ⊆ F and F = F.

3.2.1. Composition of TSSPFs
Composition is an important concept to achieve modularity.

Composing the semantics of the individual components of a
system leads to the semantics of the whole system. Compos-
ing arbitrary sets of TSSPFs can lead to realizability problems
in delay-free feedback loops where the input of a component in
time unit t depends on another component’s output in time unit
t and vice versa. Thus, composition is only defined for TSSPFs
where causality between inputs and outputs on channels con-
nected via a feedback loop is ensured. This is the case if one
of the TSSPFs participating in a composition is strongly causal
with respect to its channels connected by the composition. Intu-
itively, a TSSPFs f is strongly causal modulo the input channels
J and output channels P, if the function’s outputs on the chan-
nels in P until time unit t + 1 is not influenced by the function’s
inputs received on the channels in J after time unit t. Other than
with weak causality, this especially includes that the outputs do
not rely on the inputs received in the same time unit.

Definition 3 (Strongly Causal Modulo). Let f ∈ [IΩ wc
−−→ OΩ]

be a TSSPF and let J ⊆ I and P ⊆ O be two subsets of input and
output channels names. The TSSPF f is called strongly causal
modulo (J, P) iff ∀i, i′ ∈ IΩ : ∀t ∈ N :

((i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J)⇒ f (i)|P↓t+1= f (i′)|P↓t+1.

The following example illustrates that there are weakly
causal TSSPFs that are not strongly causal.

Example 5. The function add ∈ [IΩ wc
−−→ OΩ] as defined in

Example 3 and depicted in Figure 6 is not strongly causal mod-
ulo (I,O). This holds because the function’s output in a time
unit always depends on its present input. To formally show that
add is not strongly causal modulo (I,O), we need to find two
inputs i, i′ ∈ IΩ and a time unit t ∈ N such that i|I↓t= i′|I↓t

and add(i)|O↓t+1, add(i′)|O↓t+1. We chose i and i′ such that
∀t ∈ N : i(a).t = i(b).t = 1 and ∀t ∈ N : i′(a).t = 2∧ i′(b).t = 1.
Then, i|I↓0= {c 7→ 〈〉} = i′|I↓0 and add(i)|O↓1= {c 7→ 2} and
add(i′)|O↓1= {c 7→ 3}. Thus, i|I↓t= i′|I↓t and add(i)|O↓t+1,
add(i′)|O↓t+1, which we needed to show. Using the same coun-
terexample, it is possible to show that add is not strongly causal
with respect to ({a},O), either. Analogously, it can be shown
that add is not strongly causal modulo ({b},O).

The following example describes a strongly causal TSSPF:

Example 6 (Strongly Causal TSSPF). Consider the strongly
causal TSSPF acc ∈ [IΩ wc

−−→ OΩ] where I = {c} and O = {b}
and type(c) = type(b) = N∪ {ε}. The interface of the TSSPF is
graphically illustrated on the right hand side of Figure 6. The
TSSPF acc specifies the behavior of an accumulator compo-
nent. In each time unit, the component outputs the sum of the
values it received in the past. The component initially outputs
the message 0, which reflects that it has not received positive
integers, yet. When the component receives a positive integer
in a time unit, it outputs the sum of the received integer and
the value emitted in the current time unit in the next time unit.
When the accumulator receives the empty message ε, the accu-
mulated value remains unchanged. Thus, in the next time unit,
the component again emits the value that it emits in the current
time unit. Thus, the output of the function acc at time unit t + 1
only depends on its input up to and including time unit t. We
formally define the TSSPF acc by the following equation:

∀i ∈ IΩ : ∀t ∈ N : acc(i)(b).t =
0 if t = 0
acc(i)(b).(t − 1) + i(c).(t − 1) if t ≥ 1 ∧ i(c).(t − 1) ∈ N
acc(i)(b).(t − 1) if t ≥ 1 ∧ i(c).(t − 1) = ε

The function acc is strongly causal modulo (I,O) by defini-
tion. This can be formally proven by induction over the length
of prefixes of input communication histories:

t = 0: The property is satisfied because the TSSPF add al-
ways outputs the same initial value in time unit t = 0, indepen-
dent of its inputs in time unit t = 0.

Let n ∈ N. Assume for all t ≤ n and all i, i′ ∈ IΩ, it holds that
i|I↓t= i′|I↓t⇒ acc(i)|O↓t+1= acc(i′)|O↓t+1.

Let t = n + 1.
Let i, i′ ∈ IΩ such that i|I↓t= i′|I↓t.
We need to show acc(i)|O↓t+1= acc(i′)|O↓t+1.
Using the induction hypothesis: acc(i)|O↓t= acc(i′)|O↓t.
Therefore, especially acc(i)(b).(t − 1) = acc(i′)(b).(t − 1).
By assumption i|I↓t= i′|I↓t and thus i(c).(t− 1) = i′(c).(t− 1).

G⊆ ���
�
��
��
�	

F⊗G

F⊆ ���
�
��
��
�	 �� ∖ ��

�� ∩ ��

�� ∩ ��

�� ∖ ��

�� ∩ ��

�� ∖ ��

�� ∩ ��

�� ∖ ��

Figure 7: Graphical representation of the composition of two sets of TSSPFs.

As t = n + 1, we have that t ≥ 1.
If i(c).(t − 1) = i′(c).(t − 1) ∈ N, then the above implies
acc(i)(b).t = acc(i)(b).(t − 1) + i(c).(t − 1) =

acc(i′)(b).(t − 1) + i′(c).(t − 1)} = acc(i′)(b).t
Similarly, if i(c).(t − 1) = i′(c).(t − 1) = ε, then
acc(i)(b).t = acc(i)(b).(t−1) = acc(i′)(b).(t−1) = acc(i′)(b).t
We can conclude that acc(i)|O↓t+1= acc(i′)|O↓t+1.

A set of TSSPFs F is called strongly causal with respect to
(J, P) iff there exists a function f ∈ F that is strongly causal
with respect to (J, P). With this, the set of TSSPFs F is re-
quired to exhibit at least one realization that is strongly causal
with respect to (J, P). The causality complication is avoided,
if causality between the inputs and outputs on the connected
channels of at least one composition participant is guaranteed:

Definition 4 (Composable). Two sets of TSSPFs F1 ⊆ [IΩ
1

wc
−−→

OΩ
1] and F2 ⊆ [IΩ

2
wc
−−→ OΩ

2] are called composable iff F1 is
strongly causal with respect to (I1∩O2, I2∩O1) or F2 is strongly
causal modulo (I2 ∩ O1, I1 ∩ O2).

Example 7 (Composability). The TSSPFs add and acc are
described and formally defined in Example 3 and Example 6.
The interfaces of the TSSPFs are graphically presented in Fig-
ure 6. Let Add = {add} and Acc = {acc} denote the single-
ton sets containing the TSSPFs add and acc. The two sets
of TSSPFs are composable because, as shown in Example 6,
the TSSPF acc ∈ Acc is strongly causal modulo ({c}, {b}) =

(Iacc ∩ Oadd,Oacc ∩ Iadd).

Components communicate with each other via unidirected,
typed channels established by connectors connecting compo-
nent interfaces. Multiple components may read from the same
channel, whereas only one component is permitted to write
messages on a channel. This ensures that no merging of mes-
sages emitted from different components via the same channel
is necessary. Thus the output channels of the functions of two
sets of TSSPFs need to be disjoint to enable composition. The
output channels of the composition result are the output chan-
nels of both composition’s participants. The compound’s input
channels are exactly the input channels of both components that
are no output channels of any of the two components.

The composition of two sets of TSSPFs F and G is graphi-
cally illustrated in Figure 7. The input channels of F ⊗ G are

the input channels I1 \O2 of F that are no output channels of G
and the input channels I2 \ O1 of G that are no output channels
of F. The output channels of F ⊗G are all output channels of F
and G. The composition of two sets of TSSPFs yields a set of
TSSPFs:

Definition 5 (Composition). Let F1 ⊆ [IΩ
1

wc
−−→ OΩ

1] and

F2 ⊆ [IΩ
2

wc
−−→ OΩ

2] be two component semantics describing and
composable sets of TSSPFs with disjoint output channel sets
O1 ∩O2 = ∅. Let I = (I1 \O2)∪ (I2 \O1) and O = O1 ∪O2. The
composition F1 ⊗ F2 ⊆ [IΩ wc

−−→ OΩ] of F1 and F2 is defined by
F1 ⊗ F2

def
= { f | ∀i ∈ IΩ : ∃ f1 ∈ F1 : ∃ f2 ∈ F2 : f (i) = o + p,

where o = f1((i + p)|I1), p = f2((i + o)|I2)}

The composition operator is defined similar as in [16, 17, 39]
with the difference that we consider the time-synchronous sys-
tem model instead of the more general timed system model [7].

Example 8. The following demonstrates the composition of
sets of TSSPFs by example. Let Add = {add} and Acc = {acc}
be sets of TSSPFs as defined in Example 7. The sets Add and
Acc are composable (cf. Example 7). As both sets contain
a single TSSPF, the sets are component semantics describing
(cf. Definition 2). Further, the sets of output channels of the
sets’ TSSPFs are disjoint. Thus, the composition operator ⊗ is
applicable. Figure 8 graphically illustrates the result from com-
posing the two sets Add and Acc. The set of TSSPFs Add ⊗ Acc
contains the single TSSPF f ∈ [{a}Ω

wc
−−→ {b, c}Ω] that satis-

fies ∀i ∈ {a}Ω : f (i) = o + p where o = add((i + p)|Iadd) and
p = acc((i+o)|Iacc). Given an input i ∈ {a}Ω, iteratively comput-
ing the values of o, p, c, and b is possible because the TSSPF
acc is strongly casual. For instance, let i = {a 7→ 1, 1, ...} ∈ {a}Ω

denote the communication history that always assigns channel
a to 1, i.e., ∀t ∈ N : i(a).t = 1. The first output of acc via
channel b is by definition always 0 (cf. Example 6). With this,
we can compute that add outputs 1 = 0 + 1 via channel c in
time unit 0. This determines the output 1 of acc at time unit 1.
This again enables to determine that add outputs 2 = 1 + 1 via
channel c in time unit 1. This determines that acc outputs value
3 via channel b in time unit 2. Thus, add outputs 4 via channel
c in time unit 2. We can approximate the value of the TSSPF f
up to every fixed time unit t ∈ N for every fixed input i ∈ {a}Ω

by using the method sketched above.

The composition is well defined and results in a component
semantics describing set of TSSPFs. This is a consequence of
the requirement that one set of TSSPFs must be strongly causal
modulo its connected channels.

Theorem 1. If F1 and F2 are two component semantics de-
scribing and composable sets of TSSPFs with disjoint output
channel sets, then F1 ⊗ F2 is also component semantics de-
scribing.

Proof. Analogous to proof of Theorem 9 in [16] by replacing
the set the function f is chosen from with [IΩ wc

−−→ OΩ].

Adda

b

Acc

c

Add⊗Acc

c c

b b

a

Figure 8: Graphical representation of the composition of Add and Acc.

4. Time-Synchronous Channel Automata

A TSCA specifies the behavior (of parts) of an interactive
system and represents a component semantics describing set of
TSSPFs that is given by its semantics. We later use TSCAs
to model components. TSCAs as introduced in this paper are
based on our previous work on TSPAs [9] and are strongly
inspired by port automata [16], I/O∗ automata [36, 39], and
MAAts automata [34]. Port automata and I/O∗ automata con-
sume and produce time slices of arbitrary but finitely many
input messages in every transition step. In contrast, TSCAs,
TSPAs, and MAAts automata consume and produce at most one
message per input channel in each time slice. Given the set of
states and the channel types of an automaton are finite, MAAts

automata, TSPAs, and TSCAs are guaranteed to have finitely
many transitions. This is not the case for I/O∗ and port au-
tomata since both have to define a transition for each state and
each possible input communication history. Even if the type
of a channel is finite, the number of communication histories
(streams) of the channel’s type is infinite. I/O∗ automata and
MAAts automata enforce causality between input and output
histories by requiring initial outputs on all channels. In con-
trast, TSPAs and TSCAs do not require initial outputs. While
the syntax of MAAts and TSCAs models variables explicitly,
in TSPAs [9] variables have to be represented implicitly in the
state space. While MAAts automata distinguish between data
and control states (i.e., variables and (control) states), TSCAs
consist of data states (variables) only. This eliminates unneces-
sary complexity and notational clutter as control states can be
easily represented as data states. Some proofs of some theo-
rems presented in the following are analog to proofs that have
already been carried out in [9, 16]. In case we are stating an
analogous theorem, we refer to the appropriate corresponding
proof in [9, 16].

A TSCA consists of a set of states, an interface of input and
output channels, and transitions defining the TSCA’s behavior.
The interface is encoded by a channel signature.

Definition 6 (Channel Signature). Let I,O ⊆ C be two disjoint
sets of channel names. A channel signature is a tuple Σ = (I,O).
We denote by C(Σ) def

= I∪O the set of all channels in Σ. A channel
signature Σ is called finite iff C(Σ) and type(c) for all c ∈ C(Σ)
are finite.

A channel assignment maps channels to messages of the

channels’ types. Let B ⊆ C. A channel assignment is an el-
ement of the set B→ defined as B→ def

= {a ∈ [B → M] | ∀b ∈
B : a(b) ∈ type(b)}. Channel assignments are used as TSCA
transition labels.

Definition 7 (TSCA). A time-synchronous channel automaton
is a tuple A = (Σ, X, S , ι, δ) where:

• Σ = (I,O) is a channel signature,

• X ⊆ C is a set of variable symbols (internal channels),

• S ⊆ X→ is a set of states,

• ι ∈ S is the initial state,

• δ ⊆ S ×C(Σ)→ × S is the transition relation.

For convenience, we sometimes write s
θ
−→δ t instead of

(s, θ, t) ∈ δ and simply s
θ
−→ t if δ is clear from the context.

To avoid notational clutter, we often denote the components of
a TSCA A = (Σ, X, S , ι, δ) with Σ = (I,O) by ΣA

def
= Σ, XA

def
= X,

S A
def
= S , ιA

def
= ι, δA

def
= δ, IA

def
= I, and OA

def
= O. We also omit the

subscripts if they are clear from the context.

Example 9 (TSCA of the component CBC). The TSCA of the
component CBC is similar to the behavior automaton of the
CBC component, which is graphically depicted in Figure 4.
The channel signature comprises input and output channels.
States and transitions reflect states and transitions in the behav-
ior automaton, and the internal channel state reflects the cur-
rent state of the behavior automaton. We interpret the absence
of a message (“ε”) equal to the Boolean value “ f alse” and,
again, denote “>” as the Boolean value “true”. The TSCA
of the component CBC then can be formulated as TS CACBC =

(ΣCBC , XCBC , S CBC , ιCBC , δCBC) with

• channel signature ΣCBC = (ICBC ,OCBC) = ({i, r}, {v, q}),

• channel data types: type(i) = type(r) = type(v) =

type(q) = {>, ε},

• internal channel XCBC = {state} with type(state) = {0, 1},

• states S CBC = X→CBC = {a, b} with a = {state 7→ 0} and
b = {state 7→ 1},

• initial state ιCBC = a,

• and transition relation δCBC = {

{(a, θ, a) | (θ(i) = ε ∨ θ(r) = >) ∧ θ(v) = ε ∧ θ(q) = ε}
∪{(a, θ, b) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = > ∧ θ(q) = ε}
∪{(b, θ, b) | θ(i) = ε ∧ θ(r) = ε ∧ θ(v) = > ∧ θ(q) = ε}
∪{(b, θ, a) | θ(r) = > ∧ θ(v) = ε ∧ θ(q) = ε}
∪{(b, θ, a) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = ε ∧ θ(q) = >}}.

The reactions of a TSCA are defined by its transitions. In
each time unit, a TSCA performs one state change by executing
one transition enabled by its input and outputs one message on
each output channel. Let A be a TSCA. A is said to be reac-
tive iff ∀s ∈ S : ∀i ∈ I→ : ∃t ∈ S : ∃θ ∈ C(Σ)→ : (s, θ, t) ∈

δ∧ θ|I = i. A reactive TSCA is called component. Components
must not block their environments and must be able to react
to any possible well-typed input in any time unit. Therefore,
a component must define a reaction to every possible input for
each of its states. A is called finite iff Σ and S are finite. The
size of A, denoted |A|, is defined as the sum of the number of
its states and transitions, i.e., |A| = |S | + |δ|. A is called de-
terministic iff ∀s ∈ S : ∀i ∈ I→ : |{t ∈ S | ∃θ ∈ C(Σ)→ :
θ|I = i ∧ (s, θ, t) ∈ δ}| = 1. A is called I/O-deterministic iff
∀s ∈ S : ∀θ ∈ C(Σ)→ : |{t ∈ S | (s, θ, t) ∈ δ}| ≤ 1. Reactive
TSCAs are adequate models for components as they specify at
least one output for each input. The size of TSCAs is used for
measuring algorithmic complexities. Intuitively, if A is deter-
ministic, then for each state and each input, A only has at most
one choice for switching the state when processing the input. It
thus acts as a system part in a deterministic implementation. If
A is reactive and deterministic, then it has exactly one choice
for switching its state. In contrast, if A is I/O-deterministic,
for each state, the state A switches to when it reads an input
and produces an output can be uniquely identified by the in-
put/output pair. As shown in Section 5, semantic differencing
of I/O-deterministic TSCAs is possible in polynomial time in
the sizes of the automata.

Example 10 (TS CACBC is reactive and deterministic).
TS CACBC (cf. Example 9) is reactive because in both of its
states, there is an outgoing transition with a channel assign-
ment that has all input channels in its domain. In other words,
it defines an output for each possible state/input combination
and therefore it describes a component. TS CACBC is finite, be-
cause |S | and Σ are finite: The set of states S is finite since
|S | = 2. The channel signature Σ is finite because |C(Σ)| = 4
and ∀c ∈ C(Σ) : |type(c)| = |{>, ε}| = 2. TS CACBC is reactive
and deterministic because in both states and for each possible
input, there is exactly one state that the TSCA may change to.

The following theorem shows that determinism implies I/O-
determinism. The other direction, however, does not hold.

Theorem 2. Any deterministic TSCA is I/O-deterministic.

Proof. Let A = (Σ, X, S , ι, δ) with Σ = (I,O) be a deterministic
TSCA. Suppose towards a contradiction there exists a state s

and a channel valuation θ ∈ C(Σ)→ such that |{t ∈ S | s
θ
−→

t}| > 1. Thus, there exist u, v ∈ S such that u , v and s
θ
−→ u

and s
θ
−→ v. Let i = θ|I . Then, as u , v and s

θ
−→ u, it holds

that u, v ∈ {t ∈ S | ∃θ ∈ C(Σ)→ : θ|I = i ∧ s
θ
−→ t}. Thus,

|{t ∈ S | ∃θ ∈ C(Σ)→ : θ|I = i ∧ s
θ
−→ t}| ≥ 2, which contradicts

that A is deterministic.

With this, problems that are efficiently solvable for I/O-
deterministic TSCAs are at least as efficiently solvable for de-
terministic TSCAs.

4.1. Execution and Behavior Semantics of TSCAs
This section formalizes the intuitive descriptions of a TSCA’s

behavior. Further analyses on TSCAs will be based on the op-
erational semantics introduced in this section.

Definition 8 (Execution). Let A = (Σ, X, S , ι, δ) be a TSCA. An
execution σ of A is an infinite, alternating sequence of states
and channel assignments starting with the initial state ι:

σ = s0, θ0, s1, θ1, ... such that s0 = ι and ∀i ∈ N : si
θi
−→ si+1.

The set of all executions of A is denoted by execs(A).

Executions comprise the state changes and interactions per-
formed by a TPSA. Abstracting from state changes allows to
treat TSCAs as black boxes with hidden internal details. This
requires explicating the behavior of a TSCA.

Definition 9 (Behavior). Let A = (Σ, X, S , ι, δ) be a TSCA
with channel signature Σ = (I,O). The behavior of an ex-
ecution σ = s0, θ0, s1, θ1, ... of A is defined as the sequence
beh(σ) def

= θ0, θ1, ... containing only channel assignments. For
P ⊆ C(Σ), the restriction of beh(σ) to P is defined as beh(σ)|P

def
=

θ0|P, θ1|P, We denote by behs(A) def
=
⋃
σ∈execs(A) beh(σ) the set

of all behaviors of all executions of A. The named commu-
nication history hα induced by a behavior α ∈ behs(A) with
α = e0, e1, ... is defined as the function hα ∈ (I ∪O)Ω that satis-
fies hα(x).t = et(x) for all x ∈ I ∪ O and t ∈ N.

Given a TSCA A with ΣA = (I,O) and an input history i ∈ IΩ,
we denote the set of communication histories induced A with
input i by A[i] def

= {o ∈ OΩ | ∃α ∈ behs(A) : o = hα|O ∧ hα|I = i}.

Example 11 (Execution and behavior of TS CACBC). An exe-
cution of a TSCA is an infinite sequence in general. Let a, b,
θab, θba, θres, and θnop be given as follows:

• a = {state 7→ 0}, b = {state 7→ 1},

• θab = {i→ >, r 7→ ε, v 7→ >, q 7→ ε},

• θba = {i 7→ >, r 7→ ε, v 7→ >, q 7→ >},

• θres = {i 7→ >, r 7→ >, v 7→ ε, q 7→ ε}, and

• θnop = {i 7→ ε, r 7→ ε, v 7→ ε, q 7→ ε}.

An execution of the TS CACBC , for instance, is
e = a, θab, b, θba, a, θab, b, θres, a(, θnop, a)∞. Accord-
ingly, the behavior of this execution is given by
beh(e) = θab, θba, θab, θres(, θnop)∞. This behavior can be
restricted to include only a subset of the involved channels,
which is done by restricting the individual channel assign-
ments. For instance, the restriction e|{q} of e to {q} is given by
e|{q} = θab|{q}, θba|{q}, θab|{q}, θres|{q}(, θnop|{q})∞ = {q 7→ ε}, {q 7→
>}, {q 7→ ε}, {q 7→ ε}, {q 7→ ε}∞. The communication history he

induced by the behavior e maps the channel q, for instance, to
the stream he(q) = ε,>, ε, ε, ε∞.

If a state is not visited by any of the TSCA’s executions, then
it is not productive in the sense that it does not influence any
behavior. Thus, when analyzing the set of behaviors of a TSCA
it suffices to analyze only the TSCA’s reachable part that only
consists of states visited by at least one execution. A state is
reachable in a TSCA if there is an execution that visits it.

Definition 10 (Reachable). Let A = (Σ, X, S , ι, δ) be a TSCA
with channel signature Σ = (I,O). A state s ∈ S is called
reachable in A if there exists a finite alternating sequence of
states s0, θ1, s1, θ2, ..., θn, sn starting in the initial state s0 = ι

and ending in state s = sn such that si
θi+1
−−→ si+1 for all 0 ≤ i < n.

The set of all reachable states in A is denoted by reach(A).

Non-reachable states are redundant in the sense that they do
not affect a TSCA’s behavior.

Example 12 (Reachable states in TS CACBC). In TS CACBC ,
both states are reachable because reach(TS CACBC) = {a, b}.
The execution e depicted in Example 11 reaches both states of
the TSCA. To this effect, any prefix of e ending in state a and
any prefix of e ending in state b are valid finite alternating se-
quences of states and channel assignments. This shows that
both states are reachable.

Removing the unreachable states from a TSCA results in a
TSCA with exactly the same behaviors.

Theorem 3. Let A = (Σ, X, S , ι, δ) be a TSCA with channel
signature Σ = (I,O) and let R = reach(A) denote the reachable
states of A. Then, B def

= (Σ,R, ι, δ ∩ R × C(Σ)→ × R) is a TSCA
that satisfies behs(A) = behs(B).

Proof. Let A and B be given as above and let ∆ = δ ∩ R ×
C(Σ)→ × R denote the transitions of B.

behs(A) ⊆ behs(B): Let σ = s0, θ1, s1, θ2, s2... be an execu-

tion of A. Then, it holds that s0 = ι and ∀i ∈ N : si
θi+1
−−→δ si+1.

Now, let j ∈ N. As ∀i ∈ N : si
θi+1
−−→δ si+1 is satisfied, it espe-

cially holds that si
θi+1
−−→δ si+1 for each 0 ≤ i < j. Thus, the fi-

nite sequence s0, θ1, s1, θ2, s2, ..., θ j, s j satisfies si
θi+1
−−→δ si+1 for

all 0 ≤ i < j. From this, we can conclude that each state s j

where j ∈ N is reachable in A. As ∀i ∈ N : si ∈ R, we have
that ∀i ∈ N : (si, θi+1, si+1) ∈ R × C(Σ)→ × R. From this and
∀i ∈ (siθi+1, si+1) ∈ δ, we can conclude (siθi+1, si+1) ∈ ∆ =

δ ∩ R × C(Σ)→ × R, i.e., ∀i ∈ N : si
θi+1
−−→ si+1. From the

above we can conclude σ ∈ execs(B). All in all, we obtain
execs(A) ⊆ execs(B) and therefore behs(A) ⊆ behs(B).

behs(B) ⊆ behs(A): Let σ = s0, θ0, s1, θ1, ... be an execution

of A. Then, it holds that s0 = ι and ∀i ∈ N : si
θi
−→ si+1. As

R ⊆ S and ∆ ⊆ δ, we obtain ∀s, t ∈ R : ∀θ ∈ C(Σ)→ : s
θ
−→∆⇒

s
θ
−→δ t. Therefore, ∀i ∈ N : si

θi
−→∆ si+1 implies ∀i ∈ N :

si
θi
−→δ si+1. Thus, it holds that σ ∈ execs(A). We can conclude

execs(B) ⊆ execs(A) and therefore behs(B) ⊆ behs(A).

Algorithm 1 shows a procedure for removing the unreachable
states from any finite TSCA. The algorithm performs a depth-
first traversal on the input TSCA to only retain the input TSCA’s
states that are reachable from its initial state. While traversing
the automaton, the algorithm also adds the transitions originat-
ing from any reachable state to the resulting automaton. As any
state that is the target of any transition with a reachable source
state is also reachable, the transitions added in Algorithm 1 al-
ways connect reachable states. The operations push, pop, and

top denote the standard stack operations and the symbol ⊥ de-
notes the empty stack. The algorithm terminates because the
input TSCA is required to be finite and every state is visited at
most once.

Algorithm 1 Trimming a finite TSCA.
Input: Finite TSCA A = (Σ, X, S , ι, δ)
Output: TSCA containing only reachable parts of A

define R← {ι} as set /* reachable, visited states */

define U ← ⊥ as empty stack /* states to visit */

define δ′ ← ∅ as set
push(ι,U)
while U , ⊥ do

s← top(U)
δ′ ← δ′ ∪ {t ∈ δ | ∃θ ∈ C(Σ)→ : ∃r ∈ S : t = (s, θ, r)}
if {r ∈ S | ∃θ ∈ C(Σ)→ : (s, θ, r) ∈ δ} ⊆ R then

pop(U)
else

let s′ ∈ {r ∈ S | ∃θ ∈ C(Σ)→ : (s, θ, r) ∈ δ} \ R be
arbitrary
push(s′,U)
R← R ∪ {s′}

end if
end while
return (Σ,R, ι, δ′)

Removing the unreachable states from a component again
results in a component. Thus, the reactivity property is not lost
by removing unreachable states.

Theorem 4. Let A = (Σ, X, S , ι, δ) be a component with channel
signature Σ = (I,O) and let R = reach(A) denote the reachable
states of A. Then, B def

= (Σ,R, ι, δ∩R×C(Σ)→×R) is a component.

Proof. Let A and B be given as above and let ∆ = δ ∩ R ×
C(Σ)→ × R denote the transitions of B.

We need to show that B is reactive: Let r ∈ R be a state of
B. As r ∈ R is a reachable state in A, it clearly holds that each
target state of any transition in A with source state r is also an

element of R, i.e., ∀u ∈ S : (∃θ ∈ C(Σ)→ : s
θ
−→ u) ⇒ u ∈ R.

Thus, we have that {(s, θ, t) ∈ δ | s = r} ⊆ R × C(Σ)→ × R. As
further {(s, θ, t) ∈ δ | s = r} ⊆ δ, it holds that {(s, θ, t) ∈ δ | s =

r} ⊆ δ∩R×C(Σ)→ ×R. This is equivalent to ∀t ∈ S : r
θ
−→δ t ⇒

r
θ
−→∆ t. As A is reactive and each transition of A starting from

a reachable state r ∈ R is also a transition of B, we obtain that
B is also reactive.

Therefore, the resulting from trimming a component is again
an equivalent component that uses less space than the original.
This eases analyses of the original component’s behaviors.

4.2. Composition of TSCAs
As for TSSPFs, causality expresses the dependency between

the inputs and outputs of a TSCA. A TSCA’s output in time t
must be completely determined by its input until time t. Thus
it cannot change messages sent in the past and cannot predict
messages it receives in the future (cf. pulse-drivenness in [16]):

A

s

�	 	� ∈ {�, �}→}

a b

Figure 9: A strongly causal TSCA A that permits every possible output in reac-
tion to every possible input.

Definition 11 (Weakly Causal TSCA). A TSCA A with ΣA =

(I,O) is called weakly causal iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ A[i]↓t= A[i′]↓t.

Weak causality states that for every two inputs i, i′ having
a common prefix of length t and for every behavior α ∈ A[i]
there is a behavior β ∈ A[i′] having a common prefix of length
t with α. Similar as for TSSPFs, weak causality can lead to
composition complications, which are avoidable analogously.

Definition 12 (Strongly Causal Modulo). Let A be a TSCA with
channel signature ΣA = (I,O) and let J ⊆ I and P ⊆ O be two
sets of input and output channels of A. The TSCA A is called
strongly causal modulo (J, P) iff
∀i, i′ ∈ IΩ : ∀t ∈ N :

((i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J)⇒ (A[i]|P)↓t+1= (A[i′]|P)↓t+1.

Intuitively, a TSCA is strongly causal with respect to (J, P), if
its outputs on the channels in P until time t+1 are not influenced
by its inputs on the channels in J after time t.

Example 13 (Strongly Causal Modulo: TS CACBC). The TSCA
TS CACBC , for instance, is not strongly causal with respect to
({r}, {v}). This is simple to show by contradiction: Let in = {r 7→
>∞, i 7→ >∞} ∈ IΩ

CBC and in′ = {r 7→ ε∞, i 7→ >∞} ∈ IΩ
CBC

be two input histories. As (in|{r})↓0= (in′|{r})↓0= {r 7→ 〈〉}

and in|{i} = in′|{i} = {i 7→ >∞}, the premises of the implica-
tion in Definition 12 hold for the chosen input histories and
time t = 0. But as (TS CACBC[in]|{v})↓1= 〈{v 7→ ε}〉 and
(TS CACBC[in′]|{v})↓1= 〈{v 7→ >}〉, the conclusion is not sat-
isfied. Thus, the property stated in Definition 12 does not hold
and TS CACBC is not strongly causal modulo ({r}, {v}).

At first sight, it might seem that a TSCA is strongly causal
if, and only if, it always delays it’s outputs. However, delay-
ing of outputs is only a sufficient, not a necessary condition for
a TSCA to be strongly causal. This holds because a TSCA A
might simultaneously model a realization that is not strongly
causal and another realization that is strongly causal, i.e., a de-
terministic strongly causal component that only exhibits behav-
iors that are also possible in A. An example TSCA modeling
arbitrary behavior illustrates this situation:

Example 14 (Arbitrary Behavior is Strongly Causal). Let
a, b ∈ C be two channels over Boolean values, i.e., type(a) =

type(b) = {ε,⊥,>}. Further, let e ∈ C be a channel that
only permits the empty message, i.e., type(e) = {ε}. We de-
fine the reactive TSCA A as illustrated in Figure 9 that is
able to react with every possible output to every possible in-
put as follows: ΣA = ({a}, {b}), XA = e, S A = {s}, ιA = s,

δA = {(s, θ, s) | θ ∈ {a, b}→} where s = {e 7→ ε}. It is easy
to proof by induction that A is strongly causal modulo (IA,OA)
because A permits every possible output in reaction to every
possible input. Intuitively, this holds because when interpreting
A as specification, we can find a strongly causal implementa-
tion I (a reactive deterministic component) that implements A,
i.e., behs(I) ⊆ behs(A). An example for I is a TSCA that always
outputs ε via channel b, independent of the input on channel a.

TSCAs communicate with each other via their input and out-
put channels. Multiple automata may read from the same chan-
nel, whereas only one automaton is permitted to write messages
on a channel. Thus, no merging of messages on channels emit-
ted by different automata is necessary.

Definition 13 (Compatible Channel Signatures). Two channel
signatures ΣA = (IA,OA) and ΣB = (IB,OB) are called compat-
ible iff OA ∩ OB = ∅.

By composing two TSCAs, the output channels of one au-
tomaton are connected to the input channels with the same
name of the other automaton. The connected input channels
are hidden implicitly. The set of output channels of the new
automaton is the union of the sets of the output channels of the
two original TSCAs. The input channels of the new automaton
are the input channels of the two automata that do not share a
common name with the output channels of the other automaton.

Definition 14 (Composition of Signatures). The composition
of two channel signatures ΣA = (IA,OA) and ΣB = (IB,OB) is
defined as ΣA ⊗ ΣB

def
= (I,O) where I = (IA \OB)∪ (IB \OA) and

O = (OA ∪ OB).

The composition of two TSCAs should be a TSCA that rep-
resents the behaviors of the TSCAs when they run in parallel.
Therefore, we require the TSCAs participating in a composition
must not share any internal variables (states).

Definition 15 (Compatible TSCAs). Two TSCAs A and B are
called compatible iff ΣA and ΣB are compatible and XA∩XB = ∅.

Figure 10 illustrates the composition of two TSCAs A and
B. The input channels of the compound A ⊗ B is the union of
the input channels of A and B minus the union of the output
channels of both TSCAs. The output channels of A ⊗ B are
exactly the output channels of A and B. The composition of the
TSCAs’ states and transitions reflect the parallel execution of
both TSPAs. The following formally defines the composition
operator for TSCAs.

Definition 16 (Composition of TSCA). Let A and B be two
compatible TSCAs. The composition of A and B is defined as
the TSCA A ⊗ B def

= (Σ, X, S , ι, δ) where

• Σ = ΣA ⊗ ΣB,

• X = XA ∪ XB,

• S = {sA ∪ sB | sA ∈ S A ∧ sB ∈ S B}

• ι = ιA ∪ ιB

B

t

A⊗B

u

A

s

�� ∖ ��

�� ∩ ��

�� ∩ ��
�� ∖ ��

�� ∩ ��

�� ∖ ��

�� ∩ ��

�� ∖ ��

s	∪	t s ∪ u

A⊗B

��

�� ∖ ��

�� ∖ ��

��

Figure 10: Composition of two compatible TSCAs.

• δ = {(s, θ, t) ∈ S ×C(Σ)→ × S |

(s|S A , θ|C(ΣA), t|S A) ∈ δA ∧ (s|S B , θ|C(ΣB), t|S B) ∈ δB}

The union of the functions of S A and S B used in the definition
of S (cf. Definition 16) is well defined since the the functions’
domains XA and XB are disjoint.

Example 15 (Composition of two instances of TS CACBC).
This example describes the composition of the TSCAs of the
components pos0 and pos1 as depicted in Figure 3 (c). In
MontiArcAutomaton, port names of different components may
be equal and connectors establish channels between connected
ports. In contrast, TSCAs communicate via shared channels.
With this, a connector between two MontiArcAutomaton com-
ponents describes a channel in the TSCA that formally de-
scribes the composed component’s behaviors. Thus, the port
names of the MontiArcAutomaton components have to be ad-
justed to achieve compatibility on TSCA level. We denote the
TSCA of pos0 by CBC0 and the TSCA of pos1 by CBC1. The
two TSCAs as well as their compound are depicted in Figure 11.

They are defined by CBC0 = ((I0,O0), S 0, X0, ι0, δ0) and
CBC1 = ((I1,O1), S 1, X1, ι1, δ1) with

• input channels I0 = {i, r} and I1 = {q0, r} where type(c) =

{ε,>} for all c ∈ I0 ∪ I1,

• output channels O0 = {x0, q0} and O1 = {q1, x1} where
type(c) = {ε,>} for all c ∈ O0 ∪ O1,

• internal channels X0 = {state0} and X1 = {state1} where
type(state0) = type(state1) = {0, 1},

• states S 0 = {s0, s1} and S 1 = {t0, t1} where si = {state0 7→

i} and ti = {state1 7→ i} for all i ∈ {0, 1},

• initial states ι0 = s0 and ι1 = t0,

CBC�⊗CBC�

��, �

� � 	
, �

�� �� �

	� 	� 	�

CBC�

�� ��

�� ∪ �� �� ∪ �� �� ∪ �� �� ∪ ��

��
�
, ��

	�
�

��
�

	�
�
, ��

��

��

	

�

CBC�

�� ��

��
�
, ��

	�
�

��
�

	�
�
, ��

��

��

��

�

	

�

��

��

��

��

CBC�⊗CBC�

	

�

��

��

��

��

represents a set of transition labels

Figure 11: Composition of two CBC instances.

• transition relations as depicted in the top part of Figure 11
where the transition labels of CBC0 are defined as:

n0
0 = {i 7→ ε, r 7→ ε, x0 7→ ε, q0 7→ ε},

n0
1 = {i 7→ ε, r 7→ ε, x0 7→ >, q0 7→ ε},

i00 = {i 7→ >, r 7→ ε, x0 7→ >, q0 7→ ε},

i01 = {i 7→ >, r 7→ ε, x0 7→ ε, q0 7→ >},

r0 = {θ ∈ (I0 ∪ O0)→ | θ(r) = > ∧ θ(x0) = ε ∧ θ(q0) = ε},

and the transition labels of CBC1 are defined as:

n1
0 = {q0 7→ ε, r 7→ ε, x1 7→ ε, q1 7→ ε},

n1
1 = {q0 7→ ε, r 7→ ε, x1 7→ >, q1 7→ ε},

i10 = {q0 7→ >, r 7→ ε, x1 7→ >, q1 7→ ε},

i11 = {q0 7→ >, r 7→ ε, x1 7→ ε, q1 7→ >},

r1 = {θ ∈ (I0 ∪ O0)→ | θ(r) = > ∧ θ(x1) = ε ∧ θ(q1) = ε}.

The TSCAs CBC0 and CBC1 are compatible because
the channel signatures are compatible (O0 ∩ O1 = ∅)
and the internal channels are pairwise disjoint
X0 ∩ X1 = {state0} ∩ {state1} = ∅.

The composed TSCA CBC0 ⊗ CBC1 is depicted in the lower
part of Figure 11 and is formally given by CBC0 ⊗ CBC1 =

(Σ, X, S , ι, δ) with

• the channel signature Σ = Σ0⊗Σ1 = ({i, r}, {q0, x0, q1, x1}),

• internal channels X = {{state0}, {state1}},

• states S = {s00, s01, s10, s11}, where
s00 = {{state0 7→ 0}, {state1 7→ 0}},
s01 = {{state0 7→ 0}, {state1 7→ 1}},
s10 = {{state0 7→ 1}, {state1 7→ 0}}, and
s11 = {{state0 7→ 1}, {state1 7→ 1}}

• the initial state ι = s00, and

• the transition relation as depicted in the bottom part
of Figure 11 where the transition labels of CBC0 ⊗ CBC1
are defined as:

i0 = {i 7→ >, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ ε, q1 7→ ε},

i1 = {i 7→ >, r 7→ ε, x0 7→ ε, q0 7→ >, x1 7→ >, q1 7→ ε},

i2 = {i 7→ >, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ >, q1 7→ ε},

i3 = {i 7→ >, r 7→ ε, x0 7→ ε, q0 7→ >, x1 7→ ε, q1 7→ >},

n0 = {i 7→ ε, r 7→ ε, x0 7→ ε, q0 7→ ε, x1 7→ ε, q1 7→ ε},

n1 = {i 7→ ε, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ ε, q1 7→ ε},

n2 = {i 7→ ε, r 7→ ε, x0 7→ ε, q0 7→ ε, x1 7→ >, q1 7→ ε},

n3 = {i 7→ ε, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ >, q1 7→ ε},

r = {θ | θ(r) = > ∧ θ(q0) = θ(q1) = θ(x0) = θ(x1) = ε}.

The result of this composition of two CBC components, i.e.,
two mod-2 counters, is a mod-4 counter. In this composed
TSCA, all four states are reachable.

Components can block each other if they simultaneously re-
quire an input emitted by the other component to produce the
next output. Composing such components results in a TSCA
that is not reactive and therefore no component. However, there
is a sufficient condition ensuring the resulting transition relation
is reactive and the compound is a component.

Definition 17 (Composability of TSCAs). Two components A
and B are called composable iff

• A and B are compatible and

• A is strongly causal with respect to (IA ∩ OB, IB ∩ OA) or
B is strongly causal with respect to (IB ∩ OA, IA ∩ OB).

Example 16 (Composability of TS CACBC). As shown in Ex-
ample 15, the TS CA0 of pos0 and the TS CA1 of pos1 are
compatible. To show composability between these, it is to show
that TS CA0 is strongly causal modulo (I0 ∩ O1, I1 ∩ O0). This
holds because I0 ∩O1 = ∅ and I1 ∩O0 = {q0}: It is not possible
that the messages emitted via an output channel of CBC1 influ-
ence the behavior of CBC0 because no output channel of CBC1
is an input channel of CBC0.

The following theorem states that composing two compos-
able components always results in a well-formed component.

Theorem 5. If A and B are composable components, then the
reachable part of A ⊗ B is a component.

Proof. Analogous to proof of Theorem 3 in [16] by replacing
the set the function i is chosen from with I→.

Example 17 (The composition of two TS CACBC is a com-
ponent). Example 16 shows that the TSCAs CBC0 of pos0
and the CBC1 of pos1 are composable. Further, Example 10
proves that CBC0 and CBC1 are reactive, i.e., describe compo-
nents. With Theorem 5, the composition of TS CA0 and TS CA1
is a component as it can be seen in Example 15.

The composition operator further is commutative and asso-
ciative. This guarantees the component resulting from compos-
ing several components is independent of the order in which
the components are composed. Section 5.4 defines a notion of
system architecture, which is well-defined because of the asso-
ciativity and commutativity of the TSCA composition operator.

Theorem 6. If A, B, and C are three pairwise compatible
TSCAs, then the following holds:

1. A ⊗ B and C are compatible,

2. A ⊗ B = B ⊗ A, and

3. (A ⊗ B) ⊗C = A ⊗ (B ⊗C).

Proof. Let A, B, and C be three pairwise compatible TPSAs.
A ⊗ B and C are compatible: As A, B, and C are pairwise

compatible, it holds that XA ∩ XB = XA ∩ XC = XB ∩ XC = ∅.
Thus, XA⊗B∩XC = (XA∪XB)∩XC = (XA∩XC)∪ (XB∩XC) = ∅.
As A, B, and C are pairwise compatible, it holds that ΣA, ΣB, and
ΣC are pairwise compatible and therefore OA∩OB = OA∩OC =

OB∩OC = ∅. Thus, it holds that OA⊗B∩OC = (OA∪OB)∩OC =

(OA ∩ OC) ∪ (OB ∩ OC) = ∅. As XA⊗B ∩ XC = OA⊗B ∩ OC = ∅,
A ⊗ B and C are compatible.

A ⊗ B = B ⊗ A: The set operations used in the definitions
are all commutative. Commutativity for each part of the tuple
follows directly by applying the sets’ definitions.

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C): Let D = (A ⊗ B) ⊗ C and let
E = A ⊗ (B ⊗ C). As A, B, and C are all pairwise compatible,
it holds by (1.) that A ⊗ B and C as well as A and B ⊗ C are
compatible. The composition operator is therefore applicable
for constructing D and E. Applying the operator, we obtain:

• ΣD = ΣA⊗B ⊗ ΣC

= ((IA \ OB) ∪ (IB \ OA),OA∪B) ⊗ ΣC

= (((IA\OB)∪(IB\OA))\OC∪IC \(OA∪OB),OA∪OB∪OC)
= (IA \ (OB ∪OC)∪ IB \ (OA ∪OC)∪ IC \ (OA ∪OB),OA ∪

OB ∪ OC)
= (IA \ (OB∪OC)∪ (IB \OC ∪ IC \OB) \OA,OA∪OB∪OC)
= ΣA ⊗ ((IB \OC) ∪ (IC \OB),OB ∪OC) = ΣA ⊗ (ΣB ⊗ ΣC)
= ΣE ,

• XD = XA ∪ XB ∪ XC = XE ,

• S D = {sA ∪ sB ∪ sC | sA ∈ S A ∧ sB ∈ S B ∧ sC ∈ S C} = S E ,

• ιD = ιA ∪ ιB ∪ ιC = ιE ,

• δD = {(s, θ, t) | (s|S A⊗B , θ|C(ΣA⊗B), t|S A⊗B) ∈ δA⊗B ∧

(s|S C , θ|C(ΣC), tS C) ∈ δC}

= {(s, θ, t) | (s|S A , θ|C(ΣA), tS A) ∈ δA ∧ (s|S B , θ|C(ΣB), tS B) ∈
δB ∧ (s|S C , θ|C(ΣC), tS C) ∈ δC}

= {(s, θ, t) | (s|S B⊗C , θ|C(ΣB⊗C), t|S B⊗C) ∈ δB⊗C ∧

(s|S A , θ|C(ΣA), tS A) ∈ δA} = δE .

There exists a “neutral element” with respect to the compo-
sition operator. We will use this TSCA to lift the composition
operator to arbitrary finite sets of TSCAs.

Definition 18 (Neutral TSCA). The neutral TSCA is defined as
the TSCA N where ΣN = (∅, ∅), XN = ∅, S N = {∅}, ιN = ∅, and
δN = {(∅, ∅, ∅)}. The neutral TSCA has no channels and no vari-
ables. Its sole and initial state is the empty channel valuation
v ∈ ∅→ = [∅ → M] = {∅}. It consists of one transition looping
from the initial state to itself with the empty channel valuation.

It is possible to compose the neutral TSCA with any other
TSCA. It is the neutral element with respect to composition.

Theorem 7. Let A be an arbitrary TSCA. Then, the TSCA A and
the neutral TSCA N are compatible and A ⊗ N = A = N ⊗ A.

Proof. Let A be an arbitrary TSCA. It holds that OA ∩ ON =

OA ∩ ∅ = ∅. Thus ΣA and ΣN are compatible. As further XA ∩

XN = XA∩∅ = ∅, we can conclude that A and N are compatible.
The composition of A and N is A ⊗ N = (Σ, X, S , ι, δ) where
Σ = ((IA \ ∅) ∪ (∅ \ OA),OA ∪ ∅) = (IA,OA), X = XA ∪ ∅ =

XA, S = {sA ∪ sB | sA ∈ S A ∧ sB ∈ {∅}} = S A, ι = ιA ∪

∅ = ιA, δ = {(s, θ, t) | s|S A

θ|C(ΣA)
−−−−→δA t|S A ∧ s|{∅}

θ|∅
−−→δN t|{∅}}. As

s|{∅}
θ|∅
−−→δN t|{∅} holds for each θ ∈ C(Σ)→, the above is equal

to {(s, θ, t) | s|S A

θ|C(ΣA)
−−−−→δA t|S A } = δA. Hence, A ⊗ N = A. By

commutativity of ⊗ (cf. Theorem 6), we obtain A = N ⊗ A.

Theorem 6 guarantees that the TSCA resulting from com-
posing several pairwise compatible TSCAs is independent of
the order in which the TSCAs are composed. Theorem 7 shows
that the neutral TSCA is a neutral element with respect to TSCA
composition. We therefore lift the TSCA composition operator
to the unique function

⊗
that takes a finite set of pairwise com-

patible TSCAs as input and outputs their composition under the
operator ⊗ as usual, i.e.,

⊗
satisfies

⊗
∅ = N and

⊗
{c} = c

for all TSCAs c and
⊗

(A ∪ B) = (
⊗

A) ⊗ (
⊗

B) for all all fi-
nite sets of TSCAs A and B such that A∩ B = ∅ and the TSCAs
in A ∪ B are pairwise compatible. The operator is well-defined
because of the properties stated in Theorem 6 and Theorem 7.

Naively applying the construction given in Definition 16 may
cause the compound to consist of many unreachable states.
Theorem 3 revealed that unreachable states can be safely re-
moved from a TSCA without changing its behaviors. Unreach-
able states thus do not contribute to a TSCA’s behavior. To defer
a state explosion that occurs when composing several TSCAs
with each other, adding unreachable states to TSCAs during a
composition procedure should be avoided. Algorithm 2 depicts

an algorithm that takes two finite and composable TSCAs as in-
put and outputs the trimmed TSCAs’ compound. The algorithm
performs a breadth-first search starting in the initial state of the
compound. For each state determined as reachable, the algo-
rithm calculates all transitions possible in the compound origi-
nating from the reachable state and checks whether the transi-
tions’ target has not been visited. In case the latter is true, the
algorithm adds the state not yet visited to the set of states that
are still to visit and proceeds as above.

Algorithm 2 Joined composition and trimming of finite TSCAs
Input: Two Finite and compatible TSCAs A and B
Output: Trimmed composition of A and B

define ι = ιA ∪ ιB as tuple /* initial state */

define δ← ∅ as set /* transitions */

define R← ∅ as set /* visited states */

define U ← ⊥ as empty stack /* states to visit */

push(ι,U)
while U , ⊥ do

s← top(U)
pop(U)
R← R ∪ {s}
for all (u1, θ1, v1) ∈ {t ∈ δA | ∃u : ∃θ : (s|A, θ, u) = t} do

for all (u2, θ2, v2) ∈ {t ∈ δB | ∃u : ∃θ : (s|B, θ, u) = t} do
if θ1|C(Σ1)∩C(Σ2) = θ2|C(Σ1)∩C(Σ2) then

define θ ← θ1 + θ2 as channel valuation
δ← δ ∪ {(s, θ, v1 ∪ v2)}
if (v1 ∪ v2) < R then

push(v1 ∪ v2,U)
end if

end if
end for

end for
end while
return (Σ1 ⊗ Σ2,R, ι, δ)

Composition preserves I/O-determinism. This fact is im-
portant, because the size of the compound from composing
several TSCAs is exponential in the number of the composed
TSCAs. Thus, using the fact greatly reduces the complexity
of determining whether a compound is I/O-deterministic if all
the composition’s participants are already I/O-deterministic.
Section 5 describes the importance of I/O-determinism in de-
tail: I/O-deterministic TSCAs induce a special structure when
transforming them to Büchi automata, i.e., the Büchi automata
are always deterministic and weak, which enables to apply a
simple complementation procedure.

Theorem 8. If A and B are two I/O-deterministic and compat-
ible TSCAs, then A ⊗ B is an I/O-deterministic TSCA.

Proof. Let A and B be two I/O-deterministic and composable
TSCAs. Let A ⊗ B = (Σ, X, S , ι, δ) denote the composition of
A and B where Σ = ΣA ⊗ ΣB = (I,O). We need to show that
A ⊗ B is I/O-deterministic. Suppose towards a contradiction
that A ⊗ B is not I/O-deterministic. Then there exists a state
s ∈ S ⊆ X→ = (XA ∪ XB)→ and a channel valuation θ ∈ C(Σ)→

such that |{t ∈ S | s
θ
−→δ t}| > 1. This guarantees there exist

t, t′ ∈ S with t|XA ∈ S A and t|XB ∈ S B and t′|XA ∈ S A and

t′|XB ∈ S B such that t , t′ and s
θ
−→δ t and s

θ
−→δ t′. By definition

of composition for TSCAs we have that the following holds:

s|XA

θ|C(ΣA)
−−−−→δA t|XA and s|XA

θ|C(ΣA)
−−−−→δA t′|XA and s|XB

θ|C(ΣB)
−−−−→δB t|XB

and s|XB

θ|C(ΣB)
−−−−→δB t′|XB . Since t , t′, it holds that t|XA , t′|XA or

t|XB , t′|XB . The case t|XA , t′|XA stands in contradiction to the
assumption that A is I/O-deterministic, as this would imply |{t ∈

S A | s|XA

θ|C(ΣA)
−−−−→ t}| ≥ 2. Similarly, the case t|XB , t′|XB stands in

contradiction to the assumption that B is I/O-deterministic.

Example 18 (The composition of two TS CACBC instances is
I/O-deterministic). Theorem 8 guarantees that the composi-
tion of CBC0 and CBC1 as depicted in Example 15 is I/O-
deterministic, because CBC0 and CBC1 are I/O-deterministic
and compatible. We will now reconsider this according to the
proof of Theorem 8. If CBC0⊗CBC1 was not I/O-deterministic,
the composition would have to have two transitions with the
same channel valuation from a single state s to at least two
other states t and t′ (with t , t′). The fact that t and t′ are
different implies that the restrictions of t and t′ to the inter-
nal variables of CBC0 are different or the restrictions to the
internal variables of CBC1 are different. Therefore, in CBC0
or CBC1 there must be a transition from one source state to at
least two different target states that have the same channel val-
uation. This is a contraction to the assumption that both CBC0
and CBC1 are I/O-deterministic.

The behaviors of a compound A ⊗ B are all behaviors over
C(ΣA⊗B) that are possible in A when restricted to the channels
of A and possible in B when restricted to the channels of B.
Section 5.4 later uses this fact in Theorem 18 to show that re-
finement of TSCAs is compatible with composition. This is an
important property, which enables independent development of
different system parts. The following formalizes this property.

Theorem 9. Let A and B be two compatible TSCAs and let
C def

= A ⊗ B. It holds that behs(C) = {α ∈ C(ΣC)∞ | α|C(ΣA) ∈

behs(A) ∧ α|C(ΣB) ∈ behs(B)}.

Proof. Let A, B, and C be given as above.
⊆: Let α ∈ behs(C) and let σ = s0, θ1, s1, θ2, s2, ... be an ex-

ecution of C such that beh(σ) = α. By definition of execution

its holds that s j−1
θ j
−→δC s j for all j > 0 and s0 = ιC . By defi-

nition of composition it holds that s j−1|XA

θ j |C(ΣA)
−−−−−→δA s j|C(ΣA) and

s j−1|XB

θ j |C(ΣB)
−−−−−→δB s j|C(ΣB) for all j > 0.

Further it holds that s0|XA = ιC |XA = (ιA ∪ ιB)|XA = ιA
and s0|XB = ιC |XB = (ιA ∪ ιB)|XB = ιB because
ιA and ιB are disjoint. We can conclude σA

def
=

s0|XA , θ1|C(ΣA), s1|XA , θ2|C(ΣA), s0|XA , ... ∈ execs(A) is an execu-
tion of A and σB

def
= s0|XB , θ1|C(ΣB), s1|XB , θ2|C(ΣB), s0|XB , ... ∈

execs(B) is an execution of B. This implies beh(σA) =

θ1|C(ΣA), θ2|C(ΣA), ... ∈ behs(A) is a behavior of A and beh(σB) =

θ1|C(ΣB), θ2|C(ΣB), ... ∈ behs(B) is a behavior of B. We can ob-
serve that beh(σA) = beh(σ)|C(ΣA) = α|C(ΣA) and beh(σB) =

beh(σ)|C(ΣB) = α|C(ΣB). Thus, α|C(ΣA) ∈ behs(A) and α|C(ΣB) ∈

behs(B).
⊇: Let α = θ1, θ2, ... ∈ C(ΣC)∞ such that α|C(ΣA) ∈ behs(A)

and α|C(ΣB) ∈ behs(B). Let σA = sA
0 , θ

A
1 , s

A
1 , θ

A
2 , s

A
2 , ... be an

execution of A such that beh(σA) = α|C(ΣA) and let σB =

sB
0 , θ

B
1 , s

B
1 , θ

B
2 , s

B
2 , ... be an execution of B such that beh(σB) =

α|C(ΣB). By definition of execution it holds that sA
j−1

θA
j
−→ sA

j and

sB
j−1

θB
j
−→ sB

j for all j > 0. As θA
i = θi|C(ΣA) and θB

i = θi|C(ΣB)

for all j > 0, it holds that sA
j−1

θ j |C(ΣA)
−−−−−→ sA

j and sB
j−1

θ j |C(ΣB)
−−−−−→ sB

j
for all j > 0. Using the definition of TSCA composition,
we obtain ((sA

j−1 ∪ sB
j−1), θ j, (sA

j ∪ sB
j)) ∈ δC for all j > 0.

As additionally ιC = ιA ∪ ιB = sA
0 ∪ sB

0 , it holds that σ def
=

(sA
0 ∪ sB

0), θ1, (sA
1 ∪ sB

1), θ2, (sA
2 ∪ sB

2), ... ∈ execs(C) is an ex-
ecution of C. Observing that beh(σ) = α, we can conclude
α ∈ behs(C).

Hiding is an important concept to achieve modularity. The
channels present in the compound resulting from the compo-
sition of several other TSCAs is always the union of the out-
put channels of the composed TSCAs. For specifying software
architectures, it is often necessary to hide several output chan-
nels to the environment. This is, for example, useful to hide
unnecessary information not relevant to the architecture’s en-
vironment or to explicitly hide “secret” information. Hidden
channels become internal channels of the compound. For ex-
ample, the bottom architecture depicted in Figure 3 illustrates
this: the output channel q of component pos2 is not part of the
interface of component Mod8Counter. It is hidden from the
environment, i.e., the TSCA representing the Mod8Counter
is restricted to the output channels x0, x1, and x2.

Definition 19 (TSCA Channel Restriction). Let A be a TSCA
and let O ⊆ OA be a set of output channels of A. The re-
striction of A to the channels in O is defined as the TSCA
A�O = (Σ, XA, S A, ιA, δ) where Σ = (IA,O) and δ = {(s, θ, t) ∈
S A ×C(Σ)→ × S A | ∃(u, θ′, v) ∈ δA : u = s ∧ v = t ∧ θ′|C(Σ) = θ}.

The set of output channels in A�O is restricted to the channels
in O. A�O has the same input channels, internal variables, and
states as A. The TSCA A�O contains a transition for each tran-
sition of A where the transition’s channel valuation is restricted
to the channels present in A�O.

Example 19 (Restriction of CBC0). Example 15 describes
the TSCA CBC0 = ((I0,O0), S 0, X0, ι0, δ0). The restriction
CBC0�{x0} of CBC0 to the set of its output channels {o}
is depicted in Figure 12. It is defined as CBC0�{x0} =

(Σ, S 0, X0, ι0, δ) where Σ = ({i, r}, {x0}) with transition relation
δ as depicted in Figure 12. Each individual transition label is
restricted to the channels of I0 ∪ {x0} = {i, r} ∪ {x0}.

4.3. TSSPF semantics of TSCAs

This section defines the semantics of TSCAs by sets of
TSSPFs and reveals an important relation between the compo-
sition operators: the semantics of the syntactic composition of

CBC� ↾ ����

�� �	
��

�

�
 ↦
, � ↦
, �� ↦
�,

 ↦
, � ↦ �, �� ↦
 ,

�
 ↦ �, � ↦ �, �� ↦
�

�
 ↦ �, � ↦
, �� ↦ ��

 ↦ �, � ↦
, �� ↦
 ,

 ↦
, � ↦ �, �� ↦
 ,

�
 ↦ �, � ↦ �, �� ↦
�

�
 ↦
, � ↦
, �� ↦ ��

Figure 12: Graphical representation of the TSCA CBC0�{x0}.

two TSCAs A and B is equal to the composition of the seman-
tics of the individual automata.

Definition 20 (TSSPF Semantics of a TSCA). The TSSPF se-
mantics JAK of a TSCA A = (Σ, X, S , ι, δ) with channel signature
Σ = (I,O) is defined as follows:

JAK def
= { f ∈ [IΩ wc

−−→ OΩ] |
∀i ∈ IΩ : ∃α ∈ behs(A) : i = hα|I ∧ f (i) = hα|O}

Example 20 (TSSPF Semantics of CBC0). The TSSPF se-
mantics JCBC0K of the TSCA CBC0 = ((I0,O0), S 0, X0, ι0, δ0)
(cf. Example 15) contains a single function f because CBC0
is a deterministic component. For example, the function f
maps the input communication history hI ∈ IΩ

0 that satisfies
h(i).t = h(r).t = ε for all t ∈ N to the output channel history
hO ∈ OΩ

0 that satisfies hO(x0).t = hO(q0).t = ε for all i ∈ N.
This holds because there exists a behavior α ∈ behs(CBC0)
(with execution looping in the initial state forever), which sat-
isfies α.t(i) = α.t(r) = α.t(x0) = α.t(q0) = ε for all t ∈ N.

For each behavior of a component, the semantics contain a
function that maps inputs to outputs as encoded by the history
induced by the behavior. Thus, no behavior is lost in the seman-
tic mapping.

Theorem 10. Let A be a component. For each α ∈ behs(A)
there is a function f ∈ JAK such that f (hα|I) = hα|O.

Proof. Analogous to proof of Theorem 11 in [16] by replacing
the definition of maximality with ∀i ∈ IΩ : i ∈ S |I .

The semantics of components are well-formed, i.e., compo-
nents specify component semantics describing sets of TSSPFs.

Theorem 11. The semantics JAK of a component A is compo-
nent semantics describing.

Proof. Analogous to proof of Theorem 12 in [16] by replacing
the set the function f is chosen from with [IΩ wc

−−→ OΩ].

The semantics of the composition of two components is equal
to the composition of their individual semantics:

Theorem 12. For two composable components A and B with
compatible signatures the following holds: JA⊗BK = JAK⊗JBK.

Proof. Analogous to proof of Theorem 13 in [16] by replacing
the applications of J·K for PAs and ⊗ for SPFs by applications
of the corresponding definitions for TSCAs and TSSPFs.

An important implication of the theorem is that we can first
syntactically compose the individual automata of an architec-
ture and then perform analysis on the semantics of the automa-
ton encoding the behavior of the whole system. This gives
another basis for analysis that does not necessarily require to
compose the semantics of the individual components of a sys-
tem as, for example, done in [38]. The next sections introduce
a method for semantic differencing of TSCAs and additionally
shows that semantic differencing for finite I/O-deterministic
TSCAs is possible in polynomial time. This paper further de-
fines a notion of system architecture based on TSCAs. After-
wards, we introduce a method for mitigating the state explosion
problem during semantic differencing of finite system architec-
tures. In our previous work [9], we only considered semantic
differencing for TSPAs in general and we did not introduce the
notion of I/O-determinism. It is straightforward to transfer the
results to TSCAs. The definition of system architecture as in-
troduced in this paper is not possible with TSPAs as introduced
in [9] because TSPAs do not have a commutative and associa-
tive composition operator.

5. Semantic Differencing of Component Behavior: From
TSCAs to BAs

After introducing the notations for Büchi Automata (BAs)
used in this paper, this section presents a theorem stating that
there is a non-deterministic BA for each finite TSCA that ac-
cepts exactly the behaviors of the TSCA. Afterwards, we show
that refinement checking and semantic difference witness gen-
eration for finite TSCAs can be reduced to language inclusion
checking and counterexample generation for non-deterministic
BAs. For finite I/O-deterministic TSCAs, semantic differenc-
ing can even be reduced to language inclusion checking for de-
terministic BAs, which is possible in polynomial time in the
sizes of the automata.

5.1. Büchi Automata

Büchi Automata [3, 8] are a variant of finite automata that are
acceptors for infinite words and thus induce languages consist-
ing of infinite words. They are well known and much used in
model checking. Infinite words over an alphabet Π are infinite
sequences of symbols in Π.

Definition 21 (Büchi Automaton). A BA is a tuple (Π,
Q, I, F, δ) where Π is a finite alphabet, Q is a finite set of states,
I ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states,
and δ ⊆ Q × Π × Q is the transition relation.

For convenience we again sometimes write s
σ
−→δ t instead of

t ∈ δ(s, σ) and simply s
σ
−→ t if δ is clear from the context. Let

B = (Π,Q, I, F, δ) be a BA. The size ofB, denoted |B| is defined
as the number of states and transitions in B, i.e., |B| = |Q| + |δ|.
A run of B on a word w = σ1, σ2... ∈ Π∞ starting in a state

�� ��

�, �

�

�

	, �

BA

�� ��

�, �

�

�

	, �

BA
̅

Π ∖ {�, �, �} Π ∖ {�, �, 	}

� Π

Figure 13: Two Büchi automata A and A. The automaton A accepts the com-
plementary language of A.

q0 ∈ Q is an infinite sequence q0, q1, ... such that q j−1
σ j
−−→δ q j

for all j > 0. A run q0, q1, ... is accepting if q0 ∈ I and qi ∈ F
for infinitely many i > 0. The accepted language ofB is defined
as L(B) def

= {w ∈ Π∞ | there exists an accepting run for w in B}.
The BA B is called deterministic iff |I| ≤ 1 and ∀q ∈ Q : ∀σ ∈
Π : |{t ∈ S | s

σ
−→ t}| ≤ 1. B is called total iff |I| = 1 and

∀q ∈ Q : ∀σ ∈ Π : |δ(q, σ)| = 1. A BA B = (Π,Q, I, F, δ)
is called weak iff for all pairs of states p, q ∈ Q belonging
to the same strongly connected component it holds that p is
accepting iff q is accepting. Deterministic weak BAs can be
minimized in polynomial time [27]. This enables to efficiently
minimize intermediate BA representations of an architecture to
mitigate a state explosion during composition. In the general
case, the minimization problem is PSPACE-complete for non-
deterministic BAs [4, 21] and NP-complete for deterministic
BAs [41]. Checking language inclusion between two arbitrary
non-deterministic Büchi automata is PSPACE-complete [23],
though decidable, in general. Although the computational com-
plexity is large, several approaches for checking language in-
clusion and counterexample (diff witness) generation have been
implemented and produce promising results in practice [3].
Checking language inclusion L(A) ⊆ L(B) is typically done
in three steps by proving that there are no words inL(A), which
are not included in L(B):

1. Construct a complementary automaton B of B that accepts
exactly the words not accepted by B, i.e., L(B) = Π∞ \ B.

2. Construct a Büchi automaton C that accepts exactly the
words accepted by A and B, i.e., L(C) = L(A) ∩ L(B).

3. Check whether L(C) = ∅, which is possible by examining
whether C contains a reachable final state that is part of a
cycle.

The computational hardness of checking language inclusion
arises from constructing the BA B that might be exponentially
larger than the BA B in the general case [24, 40]. However, in
case B is deterministic, the BA B can be constructed in polyno-
mial time in the size of B [25].

Example 21 (Büchi Automata). Figure 13 depicts two BAs A
and A. The BA A is formally defined by A = (Π,Q, I, F, δ) where

• Π = {a, b, c, d, e},

• Q = {t0, t1, s},

• I = {t0},

• F = {t0, t1}, and

• δ = {(t0, a, t0), (t0, b, t0), (t0, c, t1),

(t1, d, t1), (t1, e, t0), (t1, b, t0)}.

The automaton A is defined analogously. The BA A accepts
exactly the complementary language of A, i.e., it holds that
L(A) = Π∞ \ L(A). Both automata are deterministic and weak.

In the next section, we present a translation from finite
TSCAs to BAs and thereby reduce semantic differencing and
refinement checking for finite TSCAs to the language inclu-
sion problem for Büchi automata. We show that the translation
transforms a rather large subclass of TSCAs to BAs that can be
complemented in polynomial time in the sizes of the resulting
BAs. The subclass contains all finite I/O-deterministic TSCAs.

5.2. From TSCAs to BAs
In model-driven development, models are the primary engi-

neering artifacts, i.e., engineers (manually) create finite models
to describe parts of the system under development. Hence, we
consider semantic differencing and refinement checking for ar-
chitectures where the individual components have a finite state
space, communicate over finitely many communication chan-
nels, and where the types of messages emitted via component
interfaces are finite. There exists a non-deterministic BA for
each finite TSCA that accepts exactly the TSCA’s behaviors.

The BA associated to a finite TSCA A = (Σ, X, S , ι, δ) with
Σ = (I,O) is defined as ba(A) def

= (C(Σ)→, S , {ι}, S , δ). As the
TSCA A is finite, the sets S , I, O, and δ are finite. As therefore
C(Σ)→ is finite, ba(A) is a well-defined BA. The size of ba(A)
is equal to the size of A. The following theorem shows that the
language accepted by ba(A) and the behaviors of A coincide.

Theorem 13. For any finite TSCA A, it holds that behs(A) =

L(ba(A)).

Proof. Let A = (Σ, X, S , ι, δ) be a finite TSCA with channel
signature Σ = (I,O). Further let ba(A) = (C(Σ)→, S , {ι}, S , δ) be
the BA associated to A.
⊆: Let s0, θ1, s1, θ2, s2, ... ∈ execs(A) be an execution of A.

By definition of execution s j−1
θ j
−→ s j for all j > 0 and s0 = ι.

Thus, s0, s1, s2, ... is a run of B on the word θ1, θ2, Since
all states s ∈ S are accepting, the run is accepting. Thus,
beh(s0, θ1, s1, θ2, s2, ...) = θ1, θ2, ... ∈ L(B).
⊇: Assume that σ = σ1, σ2, σ3, ... ∈ L(B) and let

q0, q1, q2, ... be an accepting run of B on σ. By definition of

run we have q j−1
σ j
−−→ q j for all j > 0. Thus τ = q0, θ1, q1, θ2, ...

is an execution of A. Therefore, by definition of behavior we
have that beh(τ) = σ1, σ2, ... ∈ behs(A) is a behavior of A.

Example 22. The BA ba(CBC0) associated to the finite TSCA
CBC0 (cf. Example 15) is equal to the BA A depicted in Fig-
ure 13 when assuming a = n0

0, b = r0, c = i00, d = n0
1, e = i01.

The following reveals a sufficient condition that guarantees
the translation of a TSCA to its associated BA yields a deter-
ministic BA. As language inclusion checking for deterministic
BAs is possible in polynomial time [25], we obtain a method
for efficiently determining if the set of behaviors of a TSCA is
a subset of the behaviors of another I/O-deterministic TSCA.

Theorem 14. The associated BA ba(A) of each finite and I/O-
deterministic TSCA A is deterministic.

Proof. Let A = (Σ, X, S , ι, δ) be a finite and I/O-deterministic
TSCA and let ba(A) = (C(Σ)→, S , {ι}, S , δ) be the BA associated
to A. The BA ba(A) has a unique initial state. As the TSCA A
is I/O-deterministic, it holds that ∀s ∈ S : ∀θ ∈ C(Σ)→ : |{t ∈
S | (s, θ, t)}| ≤ 1. This implies that ba(A) is deterministic.

Example 23 (The ba(TS CACBC) is deterministic). Example 10
shows that TS CACBC is finite. Thus, the TSPAs state space S is
also finite. TS CACBC is I/O-deterministic, i.e., there is at most
one state that the TSCA can change to, from a given source state
and a given channel assignment. This follows from the fact that
the TSCA is deterministic, which has been shown in Example 10
and the application of Theorem 2. According to the definition of
BAs, a BA is deterministic if it has at most one initial state and
for each state and for each input word, there is at most one state
that the BA can change to. The BA ba(TS CACBC) has a single
initial state and for each input, i.e., each channel assignment,
there is only one transition from each state, because TS CACBC

is deterministic. With this (and the proof of Theorem 14), the
constructed BA ba(TS CACBC) is deterministic.

There exist non-deterministic BAs for which no determin-
istic BAs exist that accepts the same language. On the other
hand, for each non-deterministic weak BA, there exists a de-
terministic weak BA that accepts the same language [27]. The
translation from TSCAs to BAs always yields weak BAs, which
can be determinized and minimized. Further, each determinis-
tic and complete weak BA can be complemented in polynomial
time by exchanging the automaton’s sets of accepting and non-
accepting states.

Theorem 15. The associated BA ba(A) of each finite TSCA A
is weak.

Proof. Let A = (Σ, X, S , ι, δ) be a finite and I/O-deterministic
TSCA and let ba(A) = (C(Σ)→, S , {ι}, S , δ) be the BA associ-
ated to A. As every state in ba(A) is accepting, it especially
holds that each strongly connected component in ba(A) solely
contains accepting states. This implies that ba(A) is weak.

5.3. Semantic Differencing for Component Behavior
The semantics of components are defined as sets of TSSPFs.

Each function f ∈ JcK \ Jc′K in the semantics of one component
c that is no member of the semantics of another component c′

is a representative for the difference between the components’
semantics. However, such a representative defines an output
for each possible component input, even if the semantic differ-
ence is only given by a single input/output pair. Thus, such a
TSSPF does not effectively reveal the differences between the

component semantics. In contrast, the exact input/output pairs
for which there is a function in the semantics of one component
that maps the input to the output and for which there is no func-
tion in the semantics of the other component mapping the input
to the output clearly reveals a difference. If two components
have different interfaces, i.e., they read and write from and to
different channels, each input/output pair of the first component
indicates a difference to the semantics of the other component.
However, if the components have channels of the same types
one can easily avoid this problem by channel renaming and hid-
ing [5]. Thus, we define the semantic difference for components
having the same interfaces, only.

Definition 22 (Diff Witness). Let F1, F2 ⊆ [IΩ wc
−−→ OΩ]

be two sets of TSSPFs. A diff witness distinguishing F1
from F2 is a communication history w ∈ (I ∪ O)Ω satisfying
∃ f1 ∈ F1 : f1(w|I) = w|O ∧ ∀ f2 ∈ F2 : f2(w|I) , w|O.

We denote by ∆(F1, F2) the set of all diff witnesses dis-
tinguishing F1 from F2.

A set of diff witnesses may be finite but is typically infinite
and can thus not be completely enumerated.

Example 24 (Diff Witness). This example presents a diff wit-
ness between the TS CACBC = (ΣCBC , XCBC , S CBC , ιCBC , δCBC)
and a modified version of it. The modified version
TS CAmod = (ΣCBC , XCBC , S CBC , ιCBC , δmod) has the same inter-
face as TS CACBC and a similar behavior – the only difference
is that it does not emit > on the outgoing channel q if the state
changes from b to a after an increase of the counted value. More
technically, δmod = (δCBC \ δba) ∪ δba′ , where
δba = {(b, θ, a) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = ε ∧ θ(q) = >} and
δba′ = {(b, θ, a) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = ε ∧ θ(q) = ε}

Let in = {r 7→ 〈ε∞〉, i 7→ 〈>,>, ε∞〉} ∈ IΩ be an input history
over the common interface of TS CACBC and TS CAmod. The
input history describes two increase steps that change the state
of the TSCA from a to b, back to a, and then remains in state a.
For all h ∈ TS CACBC[in|{q}] and h′ ∈ TS CAmod[in|{q}], it holds
that h.1 = >, whereas h′.1 = ε. Therefore, for the given input
history, the TSCAs produce different output histories.

We consider architectures where the whole system behavior
can be mapped to a TSCA. The following theorem reveals the
relation between the differences of the behaviors and of the se-
mantics of TSCAs.

Theorem 16. Let A1 = (Σ, S 1, ι1, δ1) and A2 = (Σ, S 2, ι2, δ2)
with Σ = (I,O) be two TSCAs and let w ∈ (I ∪ O)Ω be a com-
munication history. The following holds: w ∈ ∆(JA1K, JA2K) ⇔
∃α ∈ behs(A1) : w = hα ∧ α < behs(A2).

Proof. Let A1, A2, and w be given as above.
⇒: Assume w ∈ ∆(JA1K, JA2K) is a diff witness. By defini-

tion of ∆, we have that there is a function f1 ∈ JA1K such that
f1(w|I) = w|O and f (w|I) , w|O for all f ∈ JA2K. In the fol-
lowing let f1 be such a function that satisfies the above. By
definition of J·K we have that ∀i ∈ IΩ : ∃α ∈ behs(A1) :
i = hα|I ∧ f1(i) = hα|O. When substituting w|I for i, we get

that ∃α ∈ behs(A1) : w|I = hα|I ∧ f1(w|I) = hα|O. Since
f1(w|I) = w|O we can substitute w|O for f1(w|I) and obtain
∃α ∈ behs(A1) : w|I = hα|I ∧ w|O = hα|O, which is equivalent
to ∃α ∈ behs(A1) : w = hα. In the following, let such an α with
w = hα be given. It remains to show α < behs(A2). Towards
a contradiction we assume α ∈ behs(A2). By Theorem 10 we
get there is a function g ∈ JA2K such that g(hα|I) = hα|O. By
definition of α we have w = hα and thus g(w|I) = w|O. But
since w ∈ ∆(JA1K, JA2K), it holds that ∀ f ∈ JA2K : f (w|I) , w|O.
Substituting g for f yields a contradiction.
⇐: Assume there is an α ∈ behs(A1) such that w = hα and

α < behs(A2). Using Theorem 10 we get there is a function
f ∈ JA1K such that f (hα|I) = hα|O. By definition of w we have
that w = hα and thus obtain by substitution that f (w|I) = w|O.
Thus there is a function f ∈ JA1K such that f (w|I) = w|O. It
remains to show that g(w|I) , w|O for all g ∈ JA2K. Towards a
contradiction we assume that there is a function g ∈ JA2K such
that g(w|I) = w|O. By definition of J·K we get that ∀i ∈ IΩ :
∃β ∈ behs(A2) : i = hβ|I ∧ g(i) = hβ|O. Substituting w|I for i
we obtain ∃β ∈ behs(A2) : w|I = hβ|I ∧ g(w|I) = hβ|O. Since
by assumption w|I = hα|I and g(w|I) = w|O by definition of g,
this is equivalent to ∃β ∈ behs(A2) : hα|I = hβ|I ∧ w|O = hβ|O.
By assumption we have w = hα and thus obtain via substitution
∃β ∈ behs(A2) : hα|I = hβ|I ∧ hα|O = hβ|O, which is equivalent
to ∃β ∈ behs(A2) : hα = hβ. Using the definitions of hα and hβ,
this is equivalent to ∃β ∈ behs(A2) : α = β, which is equivalent
to α ∈ behs(A2) and contradicts the assumption.

In the previous section, we presented a translation from fi-
nite TSCAs to BAs. Each word accepted by a BA resulting
from such a translation corresponds to a behavior of the in-
put TSCA. Existing algorithms for checking language inclu-
sion and counterexample generation for BAs can thus be used
for refinement checking and diff witness generation of architec-
tures as defined above: Given two TSCAs A1 and A2 we use
the translation defined in Section 5.2 to obtain two Büchi au-
tomata ba(A1) and ba(A2) such that L(ba(A1)) = behs(A1) and
L(ba(A2)) = behs(A2). Using Theorem 16 and Theorem 13 we
can transform a word accepted by ba(A1) that is not accepted
by ba(A2) to a corresponding diff witness that semantically dis-
tinguishes the automata A1 and A2. If A2 is I/O-deterministic,
the BA ba(A2) is deterministic and weak and can thus be easily
complemented in polynomial time in the size of B2, which is
equal to the size of A2. Then, inclusion checking is possible in
polynomial time in the sizes of ba(A1) and ba(A2).

5.4. Mitigating the State Explosion Problem When Applying
Semantic Differencing to System Architectures

This section summarizes practical performance improve-
ments to mitigate a state explosion during semantic differencing
of system architectures consisting of multiple TSCAs. We first
define an abstract notion of system architecture (SA) inspired
by [33]. While [33] considers a black-box view on SAs, in this
paper we assume a white-box view where component imple-
mentations are available. A SA consists of an interface observ-
able by the system’s environment given by a channel signature

and of finitely many components represented by TSCAs that
are connected via their channels.

Definition 23 (System Architecture). A system architecture is
a tuple S = (Σ,C) where:

• Σ = (I,O) is a channel signature,

• C is a finite non-empty set of pairwise compatible compo-
nents,

• the channels of S exist in the composition of the TSCAs’
channel signatures, i.e., I = J and O ⊆ P where (J, P) =⊗

c∈C Σc denotes the composition of the channel signa-
tures of all TSCAs in C, and

• (
⊗

C)�O is a component.

S is called finite iff Σ is finite and each c ∈ C is finite.

The channel signature Σ defines the SA’s external interface.
The set C consists of the SA’s components. The channels en-
coded by the channel signature Σ are required to exist in the
compound resulting from composing the SA’s components. The
last condition stating that (

⊗
C)�O must be a component is the

most abstract well-formedness rule guaranteeing the result from
composing the architecture’s components is a component itself.
More restricting well-formedness rules implying that (

⊗
C)�O

is a component are also possible to describe more restricted SA
subclasses. One example is to require each component c ∈ C
to be strongly causal with respect to all its channels. Another,
more relaxed, example is to require each component c ∈ C to
be composable with each possible intermediate composition re-
sult
⊗

D for each D ⊆ C \ {c}. We omit the proofs showing
that these two examples imply that (

⊗
C)�O is a component.

Each individual TSCA participating in a SA is interpreted as
an atomic component, i.e., is not considered to have any sub-
components. As the TSCAs’ channel signatures must be pair-
wise compatible, multiple components may read from the same
channel whereas only one component is permitted to write on
a channel. The input channels of a SA are equal to the input
channels of the TSCA resulting from the subcomponents’ com-
position. The set of output channels must be a subset of the
output of the TSCA resulting from the composition. With this,
output channels not specified by the architecture are hidden to
the environment.

Example 25 (System architecture of the Mod8Counter).
This example presents the system architecture of the alternative
representation of the Mod8Counter, depicted in Figure 5, as
composition of the TSCAs of its subcomponents pos0, pos1,
and pos2. The system architecture is S Mod8b = (Σ,C) with

• the channel signature ΣMod8 = ({inc, res}, {x0, x1, x2}) and

• the set of components
C = {TS CApos0,TS CApos1,TS CApos2}.

The input channel set of S Mod8b is equal to the input channel
set of the composition of the three TSCAs. The output chan-
nel set of S Mod8b is a subset of the output channel set of the

composition of the TSCAs in C. The output channel set of the
composition of the TSCAs in C is {x0, q0, x1, q1, x2, q2}. Chan-
nels included in the set of output channels of the composition
that are no elements of the set of output channels of the sys-
tem architecture S Mod8b are hidden. The composition

⊗
C is a

component, as shown in Example 17. Intuitively, the restriction
of this composition to the output channels O is also a compo-
nent, because the restriction of output channels does not influ-
ence the TSCA’s reactiveness. The system architecture is finite,
because all c ∈ C are finite (cf. Example 10) and ΣMod8 is finite.

A system architecture’s TSCA semantics is the result from
restricting the channels of the compound resulting from com-
posing the SA’s components to the channels specified by the
SA’s interface. The behavior and TSSPF semantics are given
by the behavior and TSSPF semantics of the TSCA semantics.

Definition 24 (TSCA, Behavior, and TSSPF Semantics of
SAs). Let S = (Σ,C) with Σ = (I,O) be a SA. The TSCA se-
mantics of S is defined as tspa(S) = (

⊗
C)�O. The behavior

semantics of S is defined as behs(S) def
= behs(tspa(S)). The

TSSPF semantics of S is defined as Jtspa(S)K.

Composing SAs with each other is also possible as the TSCA
semantics of a SA can be interpreted as a component, again.

In continuous architecting and especially in combination
with agile software development methodologies, requirements
typically change during system development. In case additional
requirements are added or existing requirements are strength-
ened, underspecification in component behavior models typi-
cally needs to be restricted to adapt the current specification or
implementation to match the additional requirements. The be-
havior of the system under development is said to be refined.

Definition 25 (Refinement). A TSCA A is called (behavior)
refinement of a TSCA B, denoted A � B, iff ΣA = ΣB and
behs(A) ⊆ behs(B).

Refinement is lifted to SAs: A SA S is called refinement of
a SA S ′, denoted S � S ′, iff tspa(S) � tspa(S ′). As a refine-
ment exhibits less behaviors as the original system, there cannot
exist a diff witness distinguishing the refined system from the
original one.

Theorem 17. Let A and B be two TSCAs. If A � B, then
∆(JAK, JBK) = ∅.

Proof. Let A and B be two TSCAs such that A � B. Thus, it
holds that behs(A) ⊆ behs(B). Suppose towards a contradiction
there exists a diff witness w ∈ ∆(JAK, JBK) , ∅. Using Theo-
rem 16, this implies there exists α ∈ behs(A) such that w = hα
and α < behs(B). This contradicts behs(A) ⊆ behs(B).

Example 26 (Refinement of the Mod8Counter system
architecture). Consider the system architectures of the
Mod8Counter as depicted in Figure 3 (a) with the TSCA
specified in Appendix B and the system architecture as depicted
in Figure 5. In the following, we will refer to the first as the
system architecture S and to the latter as the system architec-
ture S ′. First, we will investigate if S ′ � S by showing that

tspa(S ′) � tspa(S). Therefore, it must hold that ΣS ′ = ΣS

and behs(tspa(S ′)) ⊆ behs(tspa(S)). The first is satisfied,
because both system architectures have the same channel sig-
nature ΣS ′ = ΣS = ({inc, res}, {x0, x1, x2}). Further, it holds
that tspa(S ′) = (

⊗
CS ′)�OS ′ = (TS CApos0 ⊗ TS CApos1 ⊗

TS CApos2)�OS ′ and tspa(S) = (
⊗

CS)�OS = TS CAMod8a.
The result of TS CApos0 ⊗ TS CApos1 ⊗ TS CApos1 has been ex-
plained in Example 25. Due to the channel restriction, we
have tspa(S ′) = tspa(S) and therefore, behs(tspa(S ′)) =

behs(tspa(S)) holds.

Behavior refinement is reflexive and transitive. More impor-
tantly, it is compatible with composition:

Theorem 18. Let A, B, and C be TSCAs such that A and C
are compatible and B and C are compatible. If A � B, then
A ⊗C � B ⊗C.

Proof. Let A, B, and C be given as above such that A �

B. Let α ∈ behs(A ⊗ C). Using Theorem 9, this implies
α|C(ΣA) ∈ behs(A) and α|C(ΣC) ∈ behs(C). As A � B, it holds
that behs(A) ⊆ behs(B). Thus, as α|C(ΣA) ∈ behs(A) and
behs(A) ⊆ behs(B), we obtain α|C(ΣA) ∈ behs(B). In summary,
it holds that α|C(ΣA) ∈ behs(B) and α|C(ΣC) ∈ behs(C). Using
Theorem 9, this implies α ∈ behs(B ⊗C).

Refinement is also preserved by TSCA restriction.

Theorem 19. Let A and B be TSCAs and let O ⊆ OB. If A � B,
then A�O � B�O.

Proof. Let A and B be TSCAs and let O ⊆ ΣB. Assume A � B.
By definition A � B it holds that ΣA = ΣB. Let I def

= IA = IB.
Let A′ def

= A�O denote the restriction of A and let B′ def
= B�O

denote the restriction of B. As ΣA = ΣB, it especially holds
that ΣA′ = ΣB′ . Let σ = s0, θ1, s1, θ2, s2, ... ∈ execs(A′) be
an execution of A. By definition of execution, it holds that

s j−1
θ j
−→δA′ s j for all j > 0. By definition of TSCA restric-

tion, we have that s j−1
θ j
−→δA′ s j is equivalent to ∃(sA

j−1, θ
A
j , s

A
j) ∈

δA : sA
j−1 = s j−1 ∧ sA

j = s j ∧ θ
A
j |I∪O = θ j for each j > 0.

Let such θA
j with θA

j |(I∪O) = θ j be given for each j > 0. As

s j−1

θA
j
−→δA s j for each j > 0, it holds by definition of execu-

tion that σA
def
= s0, θ

A
1 , s1, θ

A
2 , s2, ... ∈ execs(A) is an execution

of A. As A � B, it holds that beh(σA) ∈ behs(B). There-
fore, there exists an execution σB ∈ execs(B) of B such that
beh(σB) = beh(σA). Hence, there exist sB

0 , s
B
1 , s

B
2 ... ∈ S B

such that σB = sB
0 , θ

A
1 , s

B
1 , θ

A
2 , s

B
2 , ... ∈ execs(B). This is by

definition of execution equivalent to (sB
j−1, θ

A
j , s

B
j) ∈ δB for

each j > 0. Using the TSCA restriction definition, this im-
plies (sB

j−1, θ
A
j |(I∪O), sB

j) ∈ δB′ for each j > 0. Thus, τ def
=

sB
0 , θ

A
1 |(I∪O), sB

1 , θ
A
2 |(I∪O), sB

2 , ... ∈ execs(B′) is an execution of
B′. As by definition θA

j |(I∪O) = θ j for each j > 0, we obtain
beh(τ) = θ0, θ1, θ2, ... ∈ behs(B′). Observing that τ = σ and
beh(τ) ∈ behs(B′), we obtain beh(σ) ∈ behs(B′). We can con-
clude that for each execution σ ∈ execs(A′) there exists an ex-
ecution τ ∈ execs(B′) such that beh(σ) = beh(τ). Hence by
definition of behaviors, behs(A′) ⊆ behs(B′).

Changing a SA to a successor version for adapting to evolved
requirements often only requires to adapt the implementations
of a proper subset of the SA’s components without changing
the architecture’s topology, i.e., the SA’s interface is left un-
changed and components neither need to be added nor removed
but some component implementations are changed. In this case,
it is often not strictly necessary to check whether the TSCA cor-
responding to the new SA is a refinement of the TSCA corre-
sponding to the original architecture. It suffices to show that the
composition of the evolved sub-architecture with any common
subsystem of the original and the evolved SA is a refinement of
the composition of the original sub-architecture with the same
common subsystem:

Theorem 20. Let S A = (Σ,CA) and S B = (Σ,CB) be two SAs
having the same channel signature Σ. If there exists a set of
components S ub ⊆ (CA ∩CB) such that

⊗
((CA \CB)∪ S ub) �⊗

((CB \CA) ∪ S ub), then S A � S B.

Proof. Let S A = (Σ,CA) and S B = (Σ,CB) be two syntactically
conform SAs with channel signature Σ = (I,O). Suppose there
exists a set of components S ub ⊆ CA ∩ CB such that

⊗
((CA \

CB) ∪ S ub) � ((CB \ CA) ∪ S ub). Let C = ((CA \ CB) ∪ S ub)
and let C′ = ((CB \CA) ∪ S ub).

In the following we show that (
⊗

C) and (
⊗

CA \C) as well
as
⊗

C′ and
⊗

CB \ C′ are compatible, which shows that the
corresponding compositions are well-defined: As S A is a SA,
the components in CA are all pairwise compatible. Thus, the
components in C ⊆ CA and the components in CA \ C ⊆ CA

are also pairwise compatible. Therefore, (
⊗

C) and (
⊗

CA \

C) are well-defined. As it holds that CA = C ∪ (CA \ C) and
C ∩ (CA \ C) = ∅, applying the first part of Theorem 6 at most
|C| times, we obtain that (

⊗
C) and c are compatible for each

c ∈ CA \ C. As all components in CA are pairwise compatible
and each component c ∈ CA is compatible to (

⊗
C), applying

the first part of Theorem 6 at most |CA \C| times, we obtain that
(
⊗

C) and (
⊗

CA \ C) are compatible. A similar argument
shows that

⊗
C′ and

⊗
CB \C′ are compatible.

In the following we show that CA\C = CB\C′, which enables
to apply Theorem 18: It holds that CA \ C = CA \ ((CA \ CB) ∪
S ub) = (CA \ (CA \ CB)) \ S ub = ((CA \ CA) ∪ (CA ∩ CB)) \
S ub = (CA ∩ CB) \ S ub. Using a similar argument, we obtain
CB \ C′ = CB \ ((CB \ CA) ∪ S ub) = (CB \ (CB \ CA)) \ S ub =

((CB \ CB) ∪ (CB ∩ CA)) \ S ub = (CB ∩ CA) \ S ub. We can
conclude CA \C = CB \C′.

Having shown the compatibility and CA \ C = CB \ C′ and
since by assumption

⊗
C �

⊗
C′, Theorem 18 guarantees

(
⊗

C) ⊗ (
⊗

CA \ C) � (
⊗

C′) ⊗ (
⊗

CB \ C′). It holds that
C ∩ (CA \ C) = ∅ = C′ ∩ (CB \ C′) and that all components in
C ∪ (CA \ C) = CA and in C′ ∪ (CB \ C′) = CB are pairwise
compatible. Thus, by definition of

⊗
, the above is equivalent

to
⊗

CA �
⊗

CB. Since Theorem 19 guarantees that hiding
preserves refinement, this implies (

⊗
CA)|O � (

⊗
CB)|O. This

is by definition of refinement equivalent to S A � S B.

Nevertheless, it might be the case that no such subsystem as
described in Theorem 20 exists. Thus, in the worst case, the
complete TSCAs for both architectures have to be considered.

However, we believe in practice this rarely occurs. The above
leads to the following algorithm for mitigating the state explo-
sion problem during semantic differencing of finite system ar-
chitectures:

Algorithm 3 Mitigating the state explosion problem during re-
finement checking of system architectures.
Input: Two finite SAs S A = (ΣA,CA) and S B = (ΣB,CB).
Output: Yes, if S A � S B, and w ∈ ∆(JS AK, JS BK), otherwise.

define C =
⊗

(CA \CB) as TSCA
define C′ =

⊗
(CB \CA) as TSCA

for all S ⊆ CA ∩CB in increasing size do
if behs(S ⊗C) ⊆ behs(S ⊗C′) then

return Yes /* Composition without hiding */

end if
end for
if behs(S A) ⊆ behs(S B) then

return Yes /* Composition with hiding */

else
return w ∈ ∆(JS AK, JS BK)

end if

In case the if-condition in the for-loop is satisfied, Theo-
rem 20 guarantees the refinement relation holds. In case the
condition is not satisfied for any S ⊆ CA ∩ CB, it has to be
checked whether the complete SA S A refines the SA S B. The
difference between comparing

⊗
CA with

⊗
CB and tspa(S A)

with tspa(S B) is that the former comparison does not consider
hiding of internal channels, while the latter does. For the be-
havior inclusion checks and diff witness generation, existing
algorithms for language inclusion checking between BAs may
be used (cf. Section 5.1 and Section 5.3).

Example 27 (Application of Algorithm 3). Consider the sys-
tem architectures of the Mod8Counter as depicted in Fig-
ure 3 (c) and the system architecture as depicted in Figure 5.
We denote to the first one as S A and to the second one as S B.
The goal is to determine whether S B � S A holds. Applying se-
mantic differencing checking to these two system architectures
reveals they refine each other. Both also refine the initial spec-
ification for the Mod8Counter as explained in Appendix B.
More details on the evaluation regarding refinement checking
between the three architectures are given in Section 6.3.

6. Implementation and Evaluation

This section recapitulates the MontiArcAutomaton ADL [35,
37], presents the application of refinement checking to its mod-
els and evaluates our approach.

6.1. The MontiArcAutomaton ADL

The MontiArcAutomaton ADL [35, 37] comprises the mod-
eling elements common to many popular component & con-
nector ADLs [29], i.e., hierarchical components with interfaces
of typed, directed ports and unidirectional connectors (typed
FIFO channels) exchanging messages between these ports. The

components are black-boxes and either atomic or composed:
atomic components yield behavior descriptions in form of em-
bedded automata (following the I/Oω [39] paradigm) or in form
of Java implementations. Such automata and Java implemen-
tations are transformable to TSCAs for semantic differencing.
The behavior of composed components solely emerges from the
interaction of their subcomponents. Composing the TSCAs be-
longing to a composed component’s subcomponent implemen-
tations results in a TSCA modeling the composed component’s
behavior. With this, semantic differencing of composed compo-
nents is possible. Components are scheduled by a global clock
and perform cycles of

• reading all messages on incoming ports;

• computing behavior (which might entail invoking subcom-
ponents)

• producing a single message to each outgoing port.

Each computation consumes a time slice, i.e., the output for
messages received at the global clock’s i-th tick is processed
at its i+1-th tick earliest. All MontiArcAutomaton compo-
nents are thereby strongly causal. The MontiArcAutomaton
ADL also distinguishes between component types and their
instances, supports component type inheritance, generic type
parameters for components (e.g., to be used with generic port
types), and constructor-like configuration of these instances.

component Elevator {

port in Bool req1, in Bool at1,

// ... further ports ...

out Bool open, out Bool close,

out Clear clear;

component Control ctrl; // named

component Motor m; // subcomponent

component Door d; // instances

connect req1 -> control.req1;

// ... further connectors ...

connect control.clear -> clear;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

Figure 14: Textual representation of the component Elevator.

The MontiArcAutomaton ADL is a textual modeling lan-
guage implemented with the MontiCore [22] language work-
bench. The textual representation of the composed component
type Elevator is illustrated in Figure 14. It begins with the
keyword “component”, followed by the component type’s name
and a body delimited by curly brackets (l. 1). The body contains
an interface of typed ports (ll. 2-5), declares three subcompo-
nents (ll. 7-9), and multiple connectors (ll. 11-13). The subcom-
ponent declarations reference component types imported from
artifacts (such as Control).

6.2. Semantic Differencing of MontiArcAutomaton Compo-
nents

The implementation comprises a translation from MontiArc-
Automaton architectures to semantically equivalent TSCAs.

TSCAs are only handled internally as representatives for sets of
TSSPFs modeling component semantics and are not explicitly
modeled by component developers. Each atomic component
directly translates to a TSCA. The TSCA of a composed com-
ponent is computed by composing the TSCAs of its subcompo-
nents according to the architectural configuration defined by the
composed component’s connectors. A composed component’s
TSCA is either constructed using the composition operator’s
definition (cf Definition 16) or using Algorithm 2 to directly
compute the trimmed TSCA of the compound. The implemen-
tation further consists of a translation from TSCAs to BAs and
generators that produce models in the “BA format”, which is
the input format of the tool RABIT [3]. In case a BA does not
refine another BA, RABIT provides a counterexample serving
as a concrete disproof for refinement. The counterexamples are
translated back to diff witnesses, which technically are finite
prefixes of behaviors of one component that are no behaviors of
another component. An engineer can use the witness to either
manually inspect the component implementation for the syn-
tactic reasons causing the semantic difference, or create a unit
test where the component is provided the input encoded by the
witness. When executing the unit test, the engineer may em-
ploy the usual debugging techniques provided by all common
integrated development environments to identify the compo-
nent implementation’s elements causing the diff witness. Using
the tool chain described above enables automated refinement
checking and diff witness generation for MontiArcAutomaton
architectures and ultimately supports engineers in detected the
semantic differences between component implementations.

6.3. Semantic Differencing Evaluation
We evaluated the approach to semantic differencing with six

MontiArcAutomaton architectures previously used for evalua-
tion in [9, 38] and the modulo-8 counter architectures used as
running example throughout this paper. We specifically chose
the first six architectures for evaluation since the approach pre-
sented in [38] failed for some specifications, which we con-
sidered to be challenging, and to enable comparability. The
architectures were slightly modified for this evaluation to re-
solve technical MontiArcAutomaton version compatibility is-
sues. The example models as well as the BAs resulting from the
translations are available online [1]. This paper extends the pre-
vious evaluation of [9] with the modulo-8 counter architecture
that is used as running example. Further, the previous evalua-
tion [9] always naively composes TSCAs using the definition of
the composition operator (cf. Definition 16). This paper extends
this evaluation by further applying the advanced composition
method that simultaneous trims the compound while compos-
ing the composition’s participants (cf. Algorithm 2). We reused
the completion strategies [38] for completing the automata im-
plementations of the architectures’ atomic components.

The first architecture is given by an implementation of an ele-
vator control system (ECS) (cf. Section 2). It comprises 3 com-
posed and 5 atomic components. The second example consists
of four variants of a mobile robot. We only report on the evalu-
ation of the most challenging variant. This variant comprises 4
components in total whereof 3 components are atomic. Another

Table 1: Time for refinement checking and diff witness calculation.
∆(J·K, J·K) ∆(J·K,Chaos) ∆(Chaos, J·K)

Naive

Floors 62ms 536ms 885ms

Elevator 83ms 2510ms 5927ms

ECS 461ms 7124ms 15339ms

SensorReading 62ms 753ms 1401ms

Controller 12ms 17ms 19ms

Pumpstation 120ms 321ms 570ms

MobileRobot 61ms 67ms 85ms

Mod8Counter 14ms 17ms 15ms

Trim

Floors 69ms 560ms 914ms

Elevator 39ms 2525ms 5927ms

ECS 94ms 9263ms 15850ms

SensorReading 57ms 787ms 1390ms

Controller 11ms 13ms 16ms

Pumpstation 112ms 326ms 543ms

MobileRobot 23ms 57ms 76ms

architecture implements a pump station consisting of 3 com-
posed and 10 atomic components. The modulo-8 counter spec-
ification is completely defined in Figure B.16. The result from
executing the refinement checks presents in this paper slightly
differ from the results presented in [9] because we repeated the
evaluation of the pre-existing examples to enable comparabil-
ity between the two different composition method variants. We
conducted the evaluations of both composition variants on the
same computer at the same date.

In [38], for each of the architectures, three specification
checks are executed: it is checked whether the semantics of
a component is equal to itself, whether a component refines a
component with the same interfaces that implements arbitrary
behavior, i.e., all possible behaviors, and whether the semantics
of a component are equal to the semantics of a component im-
plementing arbitrary behavior. We performed the same checks
on a computer with 3.0 GHz Intel Core i7 CPU, 16 GB Ram,
Windows 10, and RABIT 2.4 using our translation from Monti-
ArcAutomaton architectures to BAs and the language inclusion
checking tool RABIT [3] (cf Section 6.2).

Table 1 summarizes the computation times of RABIT given
the BAs resulting from the transformation as input. For
the component ECS constructed using the naive composi-
tion method, for instance, checking whether it refines itself
took 461ms, checking refinement with arbitrary behavior took
7124ms, and calculating a diff witness distinguishing the com-
ponent from arbitrary behavior took 15339ms. Table 2 depicts
the sizes of the automata resulting from the translations and
the time required to construct a TSCA from its subcomponents’
TSCAs using the denoted composition method. For compo-
nent ECS, for instance, it took 3465ms to construct the TSCA
using the naive composition method. The TSCA and the BA
resulting from the transformation have 746 states and 98496
transitions. RABIT reported the tool has reduced the BA to 8
states and 1728 transitions after internal preprocessing. For ev-
ery component we modeled arbitrary behavior (Chaos) with a

Table 2: The numbers of states and transitions of the TSCAs translated from
the architectures and of the generated BAs.

TSCA/BA BA AP Chaos

time #states #trans. #states #trans. #trans.

Naive

Floors 25ms 32 1024 32 1024 23328

Elevator 460ms 34 10206 1 729 236196

ECS 3465ms 746 98496 8 1728 472392

SensorReading 7ms 2 1296 2 1296 69984

Controller 1ms 1 9 1 9 108

Pumpstation 19ms 6 3888 4 2592 17496

MobileRobot 4ms 150 2700 12 216 1152

Mod8Counter 0ms 8 32 8 32 32

Trim

Floors 267ms 32 1024 32 1024 23328

Elevator 10ms 1 729 1 729 236196

ECS 2829ms 8 1728 8 1728 472392

SensorReading 118ms 2 1296 2 1296 69984

Controller 1ms 1 9 1 9 108

Pumpstation 3482ms 6 3888 4 2592 17496

MobileRobot 10ms 12 216 12 216 1152

TSCA consisting of one state and a transition for every possi-
ble component input/output combination. The TSCA and the
BA modeling arbitrary behavior for component ECS, for in-
stance, comprise 472392 transitions (cf. Table 2). In contrast to
the translation from MontiArcAutomaton architectures to the
model checker Mona [38], our implementation succeeded for
all example architectures. The longest computation time of our
evaluation (15850ms, cf. Table 1) resulted from semantic dif-
ferencing arbitrary behavior with the ECS component. We ad-
ditionally used the implementation to automatically verify se-
mantic equivalence of the three architectures depicted in Fig-
ure 3. We checked whether the specifications are semantically
equivalent by checking refinement in both directions. Proving
equivalence between the initial specification and the first struc-
tural refinement took 41ms. Checking equivalence between the
initial specification and the second structural refinement took
47ms. The same check between the first and the second struc-
tural refinements was possible in 46ms.

The composition method that includes trimming the com-
pounds yields a smaller composition duration in case the com-
pound is smaller than the compound obtained from using the
naive composition method (cf. Table 2). In case both composi-
tion methods yield the same compound, the naive composition
method outperforms the method that includes trimming. This
is plausible because of the overhead caused by trimming the
TSCA. We conclude that our translation provides promising re-
sults. Nevertheless, the evaluation was only performed on a few
specific architectures. Thus, the results are not generalizable to
all possible architectures: the time needed by our tool may vary
strongly from system to system.

7. Discussion

If the semantics domain of an ADL is overly general, un-
decidability of the underlying mathematical problems renders
automated formal verification impossible. Then, architecture
properties have to be proven manually, which is too expen-

sive to be carried out in continuous architecture modeling and
thus hinders employing agile development in architecture mod-
eling projects: little changes to requirements or implementa-
tions can entail changing many manually performed proofs. In
contrast, where automated formal verification is possible, sound
and complete proofs can be generated automatically, supporting
agile implementation evolution.

Focus is a comprehensive framework that supports specify-
ing the observable input/output behavior of interactive systems.
Its complexity requires carrying out proofs for system behav-
ior verification manually. Focus provides various constructs
for describing the semantics of distributed systems [36]. Ex-
amples are relations, set-based functions, sets of functions, as-
sumption/guarantee predicates, or state-based representations.
As identified in [36], the most fine-grained domain for describ-
ing the semantics of distributed systems using Focus are sets
of SPFs. Independent of the style, specifications can describe
timed or untimed behavior. Untimed behavior only considers
the causality regarding the order of inputs and outputs. Timed
specifications additionally concern causality regarding the pas-
sage of time. Many requirements are not only concerned with
the order of messages but also state requirements with respect
to passage of time. Thus, we employ a variant of the timed
subset of Focus and thereby use sets of TSSPFs as semantics
domain [36, 39].

Our approach is limited to systems where the data types’ do-
mains are finite and is restricted to the time-synchronous model
of computation. However, our system model fits well into the
kinds of systems developed for embedded systems such as au-
tomotive or robotics applications. Thus, our results enable fully
automated tool support for many systems in such domains. Em-
phasizing that our approach cannot be generalized to the timed
model of Focus as, for example, used in [16], is important:
Timed SPFs (cf. [16, 36, 39]), for instance, are too general to
be applicable to our approach. A timed SPF processes infi-
nite sequences of finite sequences (of arbitrary lengths) of mes-
sages. Each of the finite sequences represents a finite stream
of messages received or sent by a component in a single time
unit. In contrast, TSSPFs only process single messages per time
unit. The set of finite streams of messages over a non-empty
finite data type is already infinite. Thus, for each time unit,
a timed SPF needs to define a possible behavior for infinitely
many tuples of input streams, whereas a TSSPF needs to de-
fine a reaction for all possible tuples of input messages, which
are finitely many if the messages’ data types are finite. From a
practical viewpoint it is rarely required to specify the reaction
in a time unit in response to the receipt of an arbitrary number
of messages. Usually it either requires to handle single mes-
sages (TSSPFs) or sequences of messages where the length of
the sequence is bounded by an arbitrary but fixed natural num-
ber. The latter can be reduced to the former by introducing lists
of fixed length as message types.

The underlying theoretical problem for semantic differencing
used in our approach is language inclusion checking between
Büchi automata. Its complexity can be considered as another
limitation of our approach. However, our main focus is not ver-
ifying a system’s properties (e.g., refinement or semantic differ-

encing) within seconds, which is most often already rendered
impossible due to the complex nature of the safety critical sys-
tem under development. We believe that nonetheless the pos-
sibility to apply formal fully automated verification (e.g., over
night) greatly facilitates continuous architecture modeling.

8. Related Work

Studies on the verification techniques of ADLs have been
conducted, e.g., in [43] and [45]. The study in [45] surveys ver-
ification techniques supported by ADLs with formal semantics,
the translation of architectures to inputs for model checkers, and
tool support as well as usability, scalability, and expressiveness.
As supported by our approach, the study states that architecture
verification for practical applications requires tool-support and
automation. The study in [43] compares different verification
tools and applies them to various ADLs. All architectures are
transformed into intermediate labeled transition systems before
the verification tools are applied, hampering the direct compar-
ison with our approach.

The following surveys concrete approaches for formally
analyzing hierarchical architecture descriptions. Auto-
FOCUS 3 [18] is a tool for the development of reactive embed-
ded systems that also bases its semantics on FOCUS [7]. Al-
though AutoFOCUS 3 supports model checking architectures
against LTL and CTL formulas that specify properties concern-
ing component behavior [10], we are not aware of a fully auto-
mated refinement checking method for AutoFOCUS 3. The π-
ADL supports statistical model checking for verifying dynamic
software architectures against DynBLTL properties [11]. To
this effect, a statistical model of finite system executions is built
and the probability of satisfying a property within a confiden-
tial bound is calculated. This approach is particularly tailored to
dynamic architectures and is only concerned with finite traces.
In contrast, our approach deals with infinite traces, static archi-
tectures, and full certainty. Refinement of architectures speci-
fied with timed I/O is described in [20]. Similar to behaviors of
TSCAs, the semantics of a timed automaton is given by a set
of traces. Refinement between timed I/O automata is defined
similar as in our approach by trace inclusion. However, timed
I/O automata are only marked with one message per transition
and composition is defined differently. Further, the timing con-
cept of I/O automata is more powerful and complicated than
the one of our approach [16]. A game-based extension of the
timed I/O automaton model enabling tool supported refinement
checking has been proposed in [12]. Another approach to au-
tomated refinement checking based on the time-synchronous
frame of FOCUS is described in [34, 38]. This approach is
based on a relational semantics domain where the semantics of
a component is given as a relation between the component’s
possible inputs and outputs. In contrast, our approach uses a
more fine grained [36] semantics domain consisting of sets of
functions. Refinement checking in [34, 38] relies on translat-
ing component semantics into WS1S and is implemented us-
ing the model checker Mona [13]. The approach suffers from
the tool’s high computational complexity, which is grounded in
the non-elementary complexity of solving W1S1 problems. In

contrast, we define a translation to Büchi automata and thereby
obtain a PSPACE-complete complexity for refinement check-
ing. While the relational approach is based on analyzing the
result from composing the semantics of the individual compo-
nents of a system, our approach first syntactically composes the
individual components and bases analysis on the semantics of
the compound.

9. Conclusion

We have presented an implementation of stepwise refinement
for C&C ADLs using a subset of the Focus semantics for time-
synchronous, distributed, interactive systems that is powerful
enough to model complex and realistic systems. Based on pre-
vious work [9], we describe an approach to transform com-
ponent models into time-synchronous channel automata that is
based on an associative, commutative, and semantically compo-
sitional, syntactic composition operator for time-synchronous
channel automata. Using this operator, the automata are com-
posed syntactically and translated into Büchi automata, where
their refinement can be checked through language inclusion. To
this effect, we proved that the operational semantics of a fi-
nite time-synchronous channel automaton and the language ac-
cepted by the Büchi automaton resulting from the transforma-
tion coincide. This enables fully automated refinement check-
ing for software architecture models in reasonable time.

We extended the previous approach [9] to improve its perfor-
mance through technical enhancements of the underlying for-
mal system model and extended previous evaluations. We fur-
ther defined a notion of system architecture based on a white-
box view where component implementations are assumed to
be available. For such system architectures, we presented an
algorithm leading to practical performance improvements for
refinement checking.

This form of stepwise refinement supports continuous archi-
tecting through ensuring evolved components adhere to proper-
ties already proven for their predecessors. This ultimately re-
duces the effort for component evolution and, hence, facilitates
continuous architecting.

References

[1] MontiArcAutomaton Models. http://www.monticore.de/
robotics/verification/, [Online; accessed 2018-05-24].

[2] RABIT Tool Homepage, 2016. http://www.
languageinclusion.org/ [accessed 2016-12-31].

[3] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holı́k,
Chih-Duo Hong, Richard Mayr, and Tomáš Vojnar. Advanced Ramsey-
Based Büchi Automata Inclusion Testing. In International Conference on
Concurrency Theory, CONCUR 2011, 2011.

[4] Stephan Barth. Deciding Monadic Second Order Logic over ω-Words
by Specialized Finite Automata. In Integrated Formal Methods: 12th
International Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016,
Proceedings, 2016.

[5] Manfred Broy. A Logical Basis for Component-Oriented Software and
Systems Engineering. The Computer Journal, 2010.

[6] Manfred Broy and Max Fuchs. The Design of Distributed Systems - An
Introduction to FOCUS. Technical report, TU Munich, 1992.

[7] Manfred Broy and Ketil Stølen. Specification and Development of Inter-
active Systems. Focus on Streams, Interfaces and Refinement. Springer
Verlag Heidelberg, 2001.

http://www.monticore.de/robotics/verification/
http://www.monticore.de/robotics/verification/

[8] Julius Richard Büchi. On a Decision Method in Restricted Second Order
Arithmetic. In Logic, Methodology and Philosophy of Science. Proceed-
ing of the 1960 International Congress. Stanford University Press, 1962.

[9] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Semantic Differencing for Message-Driven Component & Connector
Architectures. In International Conference on Software Architecture
(ICSA’17), pages 145–154. IEEE, 2017.

[10] Alarico Campetelli, Florian Hölzl, and Philipp Neubeck. User-friendly
Model Checking Integration in Model-based Development. In Interna-
tional Conference on Computer Applications in Industry and Engineer-
ing, 2011.

[11] Everton Cavalcante, Jean Quilbeuf, Louis-Marie Traonouez, Flávio
Oquendo, Thaı́s Batista, and Axel Legay. Statistical Model Checking of
Dynamic Software Architectures. In European Conference on Software
Architecture, 2016.

[12] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej
Wasowski. Timed I/O Automata: A Complete Specification Theory for
Real-time Systems. In ACM International Conference on Hybrid Systems:
Computation and Control, 2010.

[13] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: New tech-
niques for WS1S and WS2S. In Computer-Aided Verification, 1998.

[14] Robert France and Bernhard Rumpe. Model-Driven Development of
Complex Software: A Research Roadmap. In Future of Software En-
gineering 2007 at ICSE., 2007.

[15] Max Fuchs. Formal Design of a Modulo-N Counter. Technical Report
TUM-I9512, Technische Univerität München, 1995.

[16] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata.
Technical report, TU Munich, 1995.

[17] Radu Grosu, Ketil Stølen, and Manfred Broy. A Denotational Model for
Mobile Point-to-Point Data-flow Networks with Channel Sharing, 1997.

[18] Florian Hölzl and Martin Feilkas. AutoFocus 3 - A Scientific Tool Proto-
type for Model-Based Development of Component-Based, Reactive, Dis-
tributed Systems. In Model-Based Engineering of Embedded Real-Time
Systems, 2007.

[19] Bengt Jonsson. A Fully Abstract Trace Model for Dataflow and Asyn-
chronous Networks. Distributed Computing, 1994.

[20] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaan-
drager. Timed I/O Automata: A Mathematical Framework for Modeling
and Analyzing Real-Time Systems. In IEEE Real-Time Systems Sympo-
sium (RTSS 2003), 2003.

[21] Dexter Kozen. Lower Bounds for Natural Proof Systems. In Proceed-
ings of the 18th Annual Symposium on Foundations of Computer Science,
1977.

[22] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: Modu-
lar Development of Textual Domain Specific Languages. In Proceedings
of Tools Europe, 2008.

[23] Orna Kupferman and Moshe Y. Vardi. Verification of Fair Transition Sys-
tems. In International Conference on Computer Aided Verification, 1996.

[24] Orna Kupferman and Moshe Y. Vardi. Complementation Constructions
for Nondeterministic Automata on Infinite Words. In Tools and Algo-
rithms for the Construction and Analysis of Systems: 11th International
Conference, TACAS 2005, 2005.

[25] Robert P. Kurshan. Complementing Deterministic Büchi Automata in
Polynomial Time. Journal of Computer and System Sciences, 1987.

[26] Edward A Lee. CPS Foundations. In Proceedings of the 47th Design
Automation Conference, pages 737–742. ACM, 2010.

[27] Christof Löding. Efficient minimization of deterministic weak ω-
automata. Information Processing Letters, 2001.

[28] Zohar Manna and Amir Pnueli. Verifying Hybrid Systems. In Hybrid
Systems, pages 4–35. Springer, 1993.

[29] Nenad Medvidovic and Richard N. Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 2000.

[30] Peter Naur and Brian Randell, editors. Software Engineering: Report
of a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO,
1969.

[31] Object Management Group. MDA Guide Version 1.0.1, June 2003.
http://www.omg.org/news/meetings/workshops/UML_
2003_Manual/00-2_MDA_Guide_v1.0.1.pdf [Online; ac-
cessed 2015-12-17].

[32] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure Version 2.3 (10-05-05), May 2010. http:
//www.omg.org/spec/UML/2.3/Superstructure/PDF/
[accessed 2017-01-13].

[33] Jan Philipps and Bernhard Rumpe. Refinement of Information Flow Ar-
chitectures. In Proceedings of the 1st International Conference on Formal
Engineering Methods (ICFEM’97). IEEE Computer Society, 1997.

[34] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and
Connector Systems. Shaker Verlag, 2014.

[35] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wort-
mann. Language and Code Generator Composition for Model-Driven
Engineering of Robotics Component & Connector Systems. Journal of
Software Engineering for Robotics (JOSER), 2015.

[36] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. Inter-
national Journal of Software and Informatics, 2011.

[37] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Archi-
tecture and Behavior Modeling of Cyber-Physical Systems with MontiAr-
cAutomaton. Shaker Verlag, 2014.

[38] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Model-
Based Specification of Component Behavior with Controlled Under-
specification. In Modellbasierte Entwicklung eingebetteter Systeme
(MBEES’16), 2016.

[39] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorien-
tierter Systeme. Doktorarbeit, TU Munich, 1996.

[40] S. Safra. On the complexity of omega -automata. In Proceedings of the
29th Annual Symposium on Foundations of Computer Science, 1988.

[41] Sven Schewe. Minimisation of Deterministic Parity and Buchi Automata
and Relative Minimisation of Deterministic Finite Automata. Computing
Research Repository - CORR, 2010.

[42] Frank Strobl and Alexander Wisspeintner. Specification of an Elevator
Control System. Technical report, TU Munich, 1999.

[43] Jeffrey J.P. Tsai and Kuang Xu. A comparative study of formal verifica-
tion techniques for software architecture specifications. Annals of Soft-
ware Engineering, 2000.

[44] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, Simon Helsen,
and Krzysztof Czarnecki. Model-Driven Software Development: Tech-
nology, Engineering, Management. Wiley, 2013.

[45] Pengcheng Zhang, Henry Muccini, and Bixin Li. A Classification and
Comparison of Model Checking Software Architecture Techniques. Jour-
nal of Systems and Software, 2010.

http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf

Appendix A. Mod8Counter component in FOCUS

In MontiArcAutomaton, there is an explicit language con-
struct (the connector) to indicate that two ports are con-
nected. Besides this, MontiArcAutomaton distinguishes com-
ponent types and component instances. Therefore, MontiArc-
Automaton obtains unique port names by the fully qualified
name of component instance and the port name. On the con-
trary, FOCUS has no notion of component type and has no
explicit construct to indicate connectors. With this, Monti-
ArcAutomaton is better suited for praxis, whereas FOCUS ab-
stracts from implementation details to avoid notational clut-
ter and improve formal representation. Thus, a MontiArc-
Automaton architecture is conceptually transformed to a FO-
CUS architecture by omitting component types and by re-
naming ports such that they have identical names iff they
are connected. A transformed version of the component
mod8Counter as depicted in Figure 3 is depicted in Fig-
ure A.15.

mod8Counter counter

pos0
r

i

��	

pos1
r

��	

��	

pos2
r

��	 ��

ii ��

��controller
rresres r

i

��

��

��

��

��

��

������

Figure A.15: FOCUS architecture of the mod8Counter.

Appendix B. TSCA of the Mod8Counter component

This section explains the TSCA of the initial specification of
the Mod8Counter component as presented in Figure 3 (a).
Figure B.16 demonstrates the TSCA in its graphical represen-
tation, where abbreviations for states and transitions are used.
Transitions that increase the counted value start with the letter i,
those that reset the value start with r, and those that do not alter
the counted value start with an n. The textual representation of
the TSCA and the abbreviations are explained in the following.

The TSCA depicted in Figure B.16 is a tuple TS CAMod8a =

(Σ, X, S , ι, δ), where

• Σ = ({res,inc}, {x0,x1,x2}),

• the internal channels are X = {lv} with type(lv) = {0, .., 7},

• the set of states is defined by the set of all functions S =

X→ = {θ ∈ [{lv} → M] | θ(lv) ∈ N ∧ 0 ≤ θ(lv) ≤ 7}, where
for notational simplicity, we denote by si = {lv 7→ i},

• the initial state is ι = {s0},

• the transition relation δ = I ∪ R ∪ N comprises the sets
of increasing transitions I =

⋃
k=0,..,8 ik, resetting tran-

sitions R =
⋃

k=0,..,16 rk, and state conserving transitions
N =
⋃

k=0,..,8 nk, where

– i0 = {(s0, θ, s1) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = ε}

– i1 = {(s1, θ, s2) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = ε}

– i2 = {(s2, θ, s3) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = ε}

– i3 = {(s3, θ, s4) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = >}

– i4 = {(s4, θ, s5) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = >}

– i5 = {(s5, θ, s6) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = >}

– i6 = {(s6, θ, s7) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = >}

– i7 = {(s7, θ, s0) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r0 = {(s0, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r1 = {(s1, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r2 = {(s2, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r3 = {(s3, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r4 = {(s4, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r5 = {(s5, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r6 = {(s6, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r7 = {(s7, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r8 = {(s0, θ, s0) | θ (res) = >∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r9 = {(s1, θ, s0) | θ (res) = >∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– r10 = {(s2, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧

θ (x1) = ε ∧ θ (x2) = ε}

– r11 = {(s3, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧

θ (x1) = ε ∧ θ (x2) = ε}

– r12 = {(s4, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧

θ (x1) = ε ∧ θ (x2) = ε}

– r13 = {(s5, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧

θ (x1) = ε ∧ θ (x2) = ε}

s1 s2 s3 s4 s5 s6s0 s7

��, ��

�� �� �� �� �	 �
 ��, ��

�� �� �� �� �	 �
 ��

�� �� �� �� �� �	 �

TSPA
Represents a set of transitions

Figure B.16: TSCA of a modulo 8 counter.

– r14 = {(s6, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧

θ (x1) = ε ∧ θ (x2) = ε}

– r15 = {(s7, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧

θ (x1) = ε ∧ θ (x2) = ε}

– n0 = {(s0, θ, s0) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}

– n1 = {(s1, θ, s1) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = ε}

– n2 = {(s2, θ, s2) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = ε}

– n3 = {(s3, θ, s3) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = ε}

– n4 = {(s4, θ, s4) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = >}

– n5 = {(s5, θ, s5) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = >}

– n6 = {(s6, θ, s6) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = >}

– n7 = {(s7, θ, s7) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = >}

