
Compositional Modeling Languages in Action:
Engineering and Application of Heterogeneous

Languages with MontiCore
Nico Jansen

Software Engineering
RWTH Aachen University

Aachen, Germany
jansen@se-rwth.de

Bernhard Rumpe
Software Engineering

RWTH Aachen University
Aachen, Germany
rumpe@se-rwth.de

Nico Jansen is a research assistant at the Depart-
ment of Software Engineering at RWTH Aachen
University. His research interests cover software
language engineering, software architectures, and
model-based software and systems engineering.

Bernhard Rumpe is a professor heading the Soft-
ware Engineering department at the RWTH Aachen
University, Germany. His main interests are rigor-
ous and practical software and system development
methods based on adequate modeling techniques.
This includes agile development methods as well
as model-engineering based on UML/SysML-like
notations and domain-specific languages.

Abstract—As modeling languages become increasingly so-
phisticated, the reusability of individual language components
and their integration into full-fledged languages is essential in
language engineering. While different composition techniques
have been established over the past years, language engineer-
ing endeavors still too often start from scratch instead. One
reason is that although these techniques, such as extension,
embedding, or aggregation, are elaborated and studied, they are
rarely used in practice outside of research. This tutorial aims
to bridge this gap by providing a practical course in which
heterogeneous languages are developed and further integrated via
advanced composition techniques. Using the MontiCore language
workbench, we demonstrate hands-on the benefits of reusability
in language development such that the advantages are already
experienceable in a single session. The tutorial starts with a short
introduction about language composition techniques with their
respective fields of application and then proceeds to the practical
part, where participants develop modeling languages themselves,
combine them, and use the integrated result.

Index Terms—Domain-Specific Languages, Model-Driven En-
gineering, Software Language Engineering, Language Composi-
tion, Language Reuse

I. BASIC INFORMATION

• Proposed length: 90 min

• Level of the tutorial: Advanced

• Required prerequisite background: Basic knowledge
of modeling languages, their application, and their engi-
neering

II. TUTORIAL CONTENT

A. Description of the Tutorial

There is a gap in the development of modeling languages
between research and application. Model-Driven Development
[1] gets increasingly involved in the engineering process
of different domains. As a result, corresponding modeling
languages, independent of whether domain-specific (DSLs)
or general-purpose (GPLs), are becoming more sophisticated.
A prominent example is the new SysML v2 [2]. However,
this progress also means that their development, maintenance,
and evolution are becoming more and more complicated and
time-consuming. Therefore, various composition techniques
[3] were designed to take advantage of reuse and improve
development through language modularization and employing
language component libraries [4]. Most state-of-the-art lan-
guage workbenches and frameworks [5] support multiple com-
position techniques. While their names and exact realizations
may vary in different tools, prominent language composition
practices are (cf. [6]):

• Inheritance is the most basic composition type, which
allows for extending a single language. It involves adopt-
ing the constructs of an existing language definition,
overwriting these, and adding new ones. A special variant
of this technique is conservative extension, in which
models of the original language remain valid, i.e., only
new constructs are added optionally.

• Embedding provides for reusing multiple language def-
initions and combining those in a single definition.

[JR23a] N. Jansen, B. Rumpe: 
Compositional Modeling Languages in Action: Engineering and Application of Heterogeneous Languages with MontiCore. 
In: MODELS 2023 Tutorials, IEEE, Oct. 2023.



Here, the constructs of all languages are adopted and
suitably coupled with each other. A classic example is
the embedding of different language components (such
as expressions, statements, etc.) [4] in an existing host
language. Both inheritance and embedding are usually
realized via the particular language definition, i.e., a
grammar or metamodel.

• Aggregation also integrates multiple languages, but un-
like the other techniques, it preserves the models as
separate artifacts. This means that models of different
languages operate loosely coupled in a shared context
and can reference each other. The corresponding coupling
and cross-referencing are usually realized via the symbol
table [3] of a language.

Despite these advances, in practice, language engineers still
often start from scratch when developing a new DSL. Com-
position techniques, although understood in concept, are only
little used.

This tutorial tackles this problem by introducing the various
composition techniques hands-on, explaining their uses, and
applying them directly in this context. After a short intro-
duction, participants will face the challenge of engineering
different modeling languages, which can be created efficiently
by employing existing language components. Furthermore,
the constructed languages are loosely coupled via language
aggregation and thus extended to an integrated language
family. The tutorial will be conducted using the MontiCore
language workbench [6]. The developed language family is
directly operational and will be used for modeling at the end of
the session, demonstrating that proper application of language
composition increases engineering efficiency and quality.

B. Intended Outline

1) Short introduction via slides (ca. 25 min)

• Overall topic
• Brief introduction to MontiCore
• Different language composition techniques
• Goal in the practical part

2) Short setup phase for the audience (ca. 5 min)
3) Engineering of two small languages also reusing existing

language components(ca. 20 min)
4) Aggregating these languages (ca. 20 min)
5) Modeling and applying the newly established language

family (ca. 20 min)

III. FURTHER INFORMATION

A. Novelty of the Tutorial

To the best of our knowledge, there has been no tutorial
yet, that focuses on the application of different language
composition techniques in action that allows practitioners
to hands-on experience the integration of multiple modeling
languages.

B. Required Infrastructure

A standard notebook is sufficient to participate in the
tutorial. In addition, we require the installation of a Java
Development Kit (JDK) at version (at least) 11 and a Gradle
7 installation. A pre-installed integrated development environ-
ment (IDE), such as IntelliJ1, is recommended for conducting
the tutorial but is optional.

C. Adaptations for a Potential Virtual Environment

The tutorial can also be online or hybrid. For remote
sessions, we will prepare a Zoom room (unless otherwise
specified by the organizers). We will also provide the necessary
sources online before the tutorial. This additionally allows
participants to test whether the setup works for them ahead
of time.

REFERENCES

[1] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE soft-
ware, vol. 20, no. 5, pp. 19–25, 2003.

[2] O. M. Group, “Systems Modeling Language (SysML®) v2 Request For
Proposal (RFP),” 2017.

[3] A. Butting, J. Michael, and B. Rumpe, “Language Composition via Kind-
Typed Symbol Tables,” Journal of Object Technology (JOT), vol. 21,
pp. 4:1–13, October 2022.

[4] A. Butting, R. Eikermann, K. Hölldobler, N. Jansen, B. Rumpe, and
A. Wortmann, “A Library of Literals, Expressions, Types, and Statements
for Compositional Language Design,” Journal of Object Technology
(JOT), vol. 19, pp. 3:1–16, October 2020.

[5] S. Erdweg, T. v. d. Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al., “The State
of the Art in Language Workbenches,” in International Conference on
Software Language Engineering, pp. 197–217, Springer, 2013.

[6] K. Hölldobler, O. Kautz, and B. Rumpe, MontiCore Language Workbench
and Library Handbook: Edition 2021. Aachener Informatik-Berichte,
Software Engineering, Band 48, Shaker Verlag, May 2021.

1https://www.jetbrains.com/idea/




