
Journal of Computer Languages 76 (2023) 101226

b
A

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

Composition operators for modeling languages: A literature review
Jérôme Pfeiffer a,∗, Bernhard Rumpe b, David Schmalzing b, Andreas Wortmann a

a Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW), University of Stuttgart, Stuttgart, Germany1

b Software Engineering, RWTH Aachen University, Aachen, Germany2

A R T I C L E I N F O

Dataset link: https://awortmann.github.io/lang
uage-composition/

Keywords:
Software language engineering
Modeling languages
Language composition
Literature review

A B S T R A C T

Efficiently engineering modeling languages demands their reuse through composition. Research in language
engineering has produced many different operators to reuse and compose languages and language parts.
Unfortunately, these operate on different dimensions of languages, produce diverse results, and are distributed
across various technological spaces and publications, which hampers understanding the state of language
composition for researchers and practitioners. To mitigate this, we report the results of a literature review on
modeling language composition operators. In this review, we identify operators, their properties, and supported
language dimensions, and relate them to categories of language composition. Through this, our survey draws a
new, detailed map of modeling language composition operators that can guide researchers in software language
engineering in identifying uncharted territory and practitioners in employing the most suitable composition
operators.
1. Introduction

Software is the primary driver of innovation for cyber–physical sys-
tems, the Internet-of-Things, or Industry 4.0. Software languages [1,2]
can facilitate this innovation by providing syntax and semantics that
improve abstraction w.r.t the domain of investigation. For instance, a
systems engineering language might include SI units and the respective
computations to facilitate managing physical properties within its mod-
els In contrast, a logic-based query language might include modeling
elements about logical reasoning and corresponding computations.
Consequently, many domains have transitioned to using modeling
languages tailored to their specific challenges, such as automotive
[3,4], avionics [5], biology [6,7], chemistry [8,9], construction [10],
insurance [11], law [12], manufacturing [13,14], medicine [15,16],
robotics [17], and systems engineering [18,19]. But the engineering of
modeling languages often demands expertise in multiple
meta-languages, tools, or paradigms, such as describing abstract and
concrete syntaxes [20–23] as well as model transformations oper-
ating on instances of these syntaxes [24–26] to, e.g., realize their
semantics [27].

For software, we know reuse is a main driver for its proliferation,
that is, reuse-in-the-large (e.g., complete applications, frameworks, li-
raries) and reuse-in-the-small (individual modules or their fragments).
s software languages are also software [28], they can benefit from

∗ Corresponding author.
E-mail addresses: jerome.pfeiffer@isw.uni-stuttgart.de (J. Pfeiffer), rumpe@se-rwth.de (B. Rumpe), schmalzing@se-rwth.de (D. Schmalzing),

andreas.wortmann@isw.uni-stuttgart.de (A. Wortmann).
1 www.isw.uni-stuttgart.de
2 www.se-rwth.de

reusing them or their parts in the engineering of new languages as
well. Reusing language parts requires means for modeling language
composition [29].

Ten years ago, Erdweg et al. uncovered five different categories of
language composition [30]: language extension, language restriction,
language unification, self-extension, and extension composition. But
since then, much has happened in software language engineering:
Various language workbenches [31] have emerged and perished, pro-
jectional editing has become popular [32], language engineering is
moving toward becoming web-based [33,34], and concepts to better
understand and organize language reuse have been developed [29,35].
Given the importance of software languages today and these devel-
opments, we aim to understand how the composition of languages
and language parts has evolved in the last decade. This work, hence,
aims to guide researchers in the field in directing their efforts towards
research gaps in modeling language composition and to help practi-
tioners in finding suitable modeling language composition operators
efficiently. To this end, we investigate the following questions:

RQ1 Which kinds of modeling language composition operators are
there, and how do they relate to the five categories of [30]?

RQ2 Which language definition dimensions (regarding syntax and
semantics) are supported by the operators?
https://doi.org/10.1016/j.cola.2023.101226
Received 23 February 2023; Received in revised form 24 July 2023; Accepted 24 J
Available online 28 July 2023
2590-1184/© 2023 Elsevier Ltd. All rights reserved.
uly 2023

[PRSW23] J. Pfeiffer, B. Rumpe, D. Schmalzing, A. Wortmann: 
Composition operators for modeling languages: A literature review. 
In: Journal of Computer Languages (COLA), Volume 76,  
Art. 101226, DOI 10.1016/j.cola.2023.101226, Elsevier, Aug. 2023.

https://doi.org/10.1016/j.cola.2023.101226
https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2023.101226&domain=pdf
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
mailto:jerome.pfeiffer@isw.uni-stuttgart.de
mailto:rumpe@se-rwth.de
mailto:schmalzing@se-rwth.de
mailto:andreas.wortmann@isw.uni-stuttgart.de
http://www.isw.uni-stuttgart.de
http://www.se-rwth.de
https://doi.org/10.1016/j.cola.2023.101226


J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

t
g
E
c

g
e
e
l
E
i
c
m
a
n

p
l
e

RQ3 Which properties do language composition operators have con-
cerning being black-box, modular, additive, and closed under
composition?

The findings of the presented study show that most composition op-
erators can be classified as language extension. Furthermore, the com-
position of syntax is covered by all operators although the realization
of syntax specifications differs between the operators and oftentimes
depends on a technological space of a language workbench. The com-
position of semantics is supported by 10 out of 25 operators we found
in our study. Besides, many operators are modular, but only one en-
ables black-box composition. Language workbenches and composition
operators are closely related. However, our findings show that three
operators are described without a realization in the technological space
of a language workbench. We, therefore, decided not to focus on the
support of composition operators in the different technological spaces.

In the remainder, Section 2 recapitulates categories of language
composition. Afterward, Section 4 describes the research method and
study design, and Section 5 reports our findings. Next, Section 6 dis-
cusses related studies, and Section 7 highlights observations. Finally,
Section 8 concludes.

2. Categories of language composition

Erdweg et al. [30] identified five categories of language composition
to address the lack of precise language engineering terminology con-
cerning composition. To this end, they assume that languages comprise
context-free syntax, well-formedness rules, and semantics [36] and can
be reused unchanged. The categories are:

1.) Language Extension. Language extension is a direct form of lan-
guage composition that operates on the level of language definitions.
It requires the reuse of a language without changes to extend that
language. This, e.g., can be achieved by creating a new grammar that
inherits from a parent grammar to reuse its productions.
Example: Creating a grammar for timed state machines by extending an
existing state machine grammar and adding productions for handling
time to the new grammar.

2.) Language Restriction. Language restriction is a special case of
language extension in which the extension restricts the language. Re-
striction can be, e.g., achieved by extending a language definition with
new context conditions that prevent the occurrence of certain model
elements. Hence, models with these elements are restricted from the
language.
Example: Removing fork nodes and join nodes from an activity diagram
language to prevent modeling parallel activities.

3.) Language Unification. Language unification is a language compo-
sition ‘‘on equal terms’’ [30], i.e., without direction, which requires that
he definitions of both languages can be reused unchanged by adding
lue code only.
xample: Unifying OCL with transitions of statechart, such that state-
hart transitions can fire based on OCL constraints in their guards.

4.) Self-Extension. Self-extension describes the embedding of lan-
uages into a host language by providing a host language model that
ncapsulates the embedded language’s concepts. The concepts of the
mbedded language are realized only with the concepts of the host
anguage.
xample: Having an object-oriented programming language and creat-
ng a program that adds new classes to the language. Other programs
an then use these; hence, the language has been extended without
odifying the language definition (e.g., the compiler). As this is not
property of a composition operator but of a language itself, we do

ot consider self-extension in the following.
5.) Extension Composition. Extension composition describes the ca-

ability of language extensions to work together. That is, whether
anguage extensions can be composed, either through the incremental

xtension of a language or by the union of independent extensions.

2

As extension composition is trivial for operators that are closed under
composition and matter of a language workbench for operators not
closed under composition, this also is not considered in the following.

However, the exact interpretation of these categories depends on
what can be considered ‘‘glue code’’ and what ‘‘equal terms’’ are.
Language composition operators that produce a new language by copy-
ing and merging elements of their input languages, e.g., to create a
new grammar by joining all productions of two input grammars, can
be considered to be composing on ‘‘equal terms’’, but without glue
code (unless the resulting grammar can be considered being the glue).
Consequently, the lack of precision in the formulation of the initial
categories leaves some freedom of interpretation that we leverage and
explain in the description of our findings.

3. Terminology

For the analysis of language composition operators, we investigate
the following important properties of operators (not of the composed
language parts):

Modularity of Composition: An operator supports the modular
composition of language fragments if the composed parts continue to
exist as identifiable artifacts in the composite. Modular composition
allows, for instance, to evolve or maintain the composed language
fragments individually so that the composite can also automatically
benefit from these changes.
Example: When composing a state machine language with a data type
language defining the properties usable in the state machines through
linking (e.g., importing of data types), both parts continue to exist
as uniquely identifiable languages with only little composition ‘‘glue’’
between them.
Counterexample: When merging two metamodels into a new metamodel,
the result often is a single new metamodel artifact containing the
elements from both input metamodels. Hence, changes to the input
metamodels are not propagated to the composed new metamodel.

Closed under Composition: An operator is closed under compo-
sition if the operator’s application on two instances of a type 𝑇 (e.g.,
grammars or metamodels) produces an instance of type 𝑇 again. This
ensures that the operator can be applied to the result of the composition
again.
Example: The metamodel composition outlined above takes two input
metamodels and produces another metamodel.
Counterexample: When restricting a language by composing an ab-
stract syntax definition (e.g., grammars or metamodels) with well-
formedness rules to prevent instantiation of certain abstract syntax
elements (cf. [37]), the inputs are of different types.

Additive or Restrictive: An additive (restrictive) operator can only
add elements to (remove elements from) a language definition. Note
that an additive operator on well-formedness rules can add restrictions
to a language definition that ultimately reduce the language.
Example: The metamodel composition outlined above produces a new
metamodel containing the elements of both input metamodels.
Counterexample: The restriction operator outlined above adds new ele-
ments to the language definition but reduces the resulting language.

Black-box (BB) or White-box: A black-box composition operator
does not require detailed insights into the language definitions to be
composed but operates on their well-defined interfaces. A white-box
operator, on the other hand, needs detailed insights into the definitions
and their constituents.
Example: For languages with operational semantics, a corresponding
black-box composition operator could only rely on the interfaces of the
language interpreters to compose them.
Counterexample: Composing two grammars usually requires understand-
ing both grammars completely to understand intended extension points.

In the following, we assume the following definitions from [29]
to investigate language composition on the more detailed level of

language definitions: (1) A language is a set of possible sentences; and



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

p
i
w
c

l

(2) A language definition comprises concrete syntax (CS), abstract syntax
(AS), context conditions (CoCos), and semantics (Sem).

• action language (AL),
• interpreter (Int),
• code generator (CG),
• general-purpose language (GPL),
• grammar (Gr), and
• metamodel (MM).

In our analysis, we refer to grammar rules as ‘‘productions’’ and meta-
model elements as ‘‘classes’’. For directed composition operators, we
use the prefix ‘‘base’’ for the language, grammar, metamodel, etc.,
that elements of the ‘‘client’’ language, grammar, metamodel, etc., are
composed into.

Furthermore, we understand semantics as the meaning of a model
[27], which is constructed by its language’s syntax to a well-understood
semantic domain. The semantic domain can, e.g., be mathematical
theories, such as stream-processing functions [38] or Petri-nets [39],
as well as sufficiently understood domains. Denotational, translational,
or operational semantics can define such a semantic mapping.

4. Research method

To answer RQ1-RQ3, we conducted a systematic literature re-
view [40–42] on modeling language composition3 consisting of five
phases: (1) First, we decided on our study’s scope and research ques-
tions. (2) Based on this scope, we performed a literature search in the
second phase to identify the initial corpus of our study. (3) We then
removed irrelevant publications from our initial corpus by screening
keywords, abstracts, and titles in the third phase. (4) Afterward, we
analyzed the publications in detail, applying classification schemes
based on our research questions and removing the remaining irrelevant
publications from the corpus. (5) Finally, we extracted the data from
the publications of the corpus to answer our research questions. As we
also performed backward and forward snowballing [43], we applied
phases two to five a second time for the additional identified literature.

4.1. Search strategy and data sources

To produce a corpus of relevant publications on modeling language
composition, we first identified relevant search terms as follows: Syn-
onymous or at least closely related to these is also the term ‘‘domain-
specific language’’ or ‘‘DSL’’ for short. The basis for defining such
languages and, thus, language composition mechanisms are usually
metamodels or grammars. These terms, therefore, form the first part
of our search clause. Then, conjugated with these terms, we consider
the concept of composition in the second part of the search clause and
include terms used in the context of language composition, namely
integration, derivation, and extension. These led to the following search
term:

(‘‘metamodel’’ OR ‘‘modelling language’’ OR ‘‘mod-
eling language’’ OR ‘‘software language’’ OR ‘‘DSL’’
OR ‘‘domain-specific language’’ OR ‘‘grammar’’)
AND
(‘‘composition’’ OR ‘‘integration’’ OR ‘‘derivation’’
OR ‘‘extension’’).

For this study, we were interested in publications that explicitly
resent a language composition operator in detail. We, therefore, lim-
ted the text search to keywords, titles, and abstracts. Publications,
here language composition is part of the contribution, should mention

ombinations of terms of our search clause in the keywords, title, or

3 Replication package is available at https://awortmann.github.io/
anguage-composition/.
3

abstract. However, to avoid missing relevant publications due to this
limitation, we have included synonyms for the term modeling language
in the search clause. Since we are interested in how language com-
position has evolved since the classification of language composition
in [30], we limit our search to the years after its publication. That
is, we limited our search to publications published after the first of
January 2012 up to the first of March 2022, our search date. For
our search, we used the ACM Digital Library, IEEE Xplore, Springer,
Scopus, and the Web of Science. We excluded Google Scholar for its
well-known problems [44,45]. Instead, we employed snowballing to
identify potentially relevant literature that we might have missed in
the initial search.

For the databases that did not support the search query as presented,
we split the query into multiple queries and merged their results
manually. For the ACM Digital Library, this resulted in three search
queries, one for the keywords, one for the title, and one for the abstract.
For Scopus, we similarly split the search query into three parts but
could combine these parts using disjunctions. For Springer, we had to
search for exact phrases, i.e., perform a search for each conjunction
of the search terms separately. Finally, for the Web of Science, we
could reuse the search query as presented with minor modifications.
Other limitations did not affect our query. Overall, applying the search
query to the selected databases under the aforementioned constraints
returned the 8.741 results presented in Fig. 1.

Since we had to use multiple overlapping queries for some of the
libraries, the search on these libraries already resulted in duplicate
findings. When merging the multiple queries for a single library, we
removed the duplicate findings for that library. The numbers of publi-
cations given per library are, therefore, without duplicates. However,
across the different libraries, we again had duplicate findings.

To identify the corpus relevant to our study, we first removed
the 2.703 duplicates resulting in 6.038 unique publications. We then
applied inclusion and exclusion criteria (cf. Section 4.2) to keywords,
titles, and abstracts to remove an additional 5.915 publications, re-
sulting in 123 English, potentially relevant, peer-reviewed publications.
These publications we then analyzed in detail during the classification
phase (cf. Section 4.3) to understand if they were relevant to our study.
Again applying our inclusion and exclusion criteria, this time to a
deeper analysis of the publications resulted in 28 publications. Applying
forward and backward snowballing (cf. Section 4.4) we added another
11 publications. This resulted in 39 publications relevant to our study.

4.2. Screening papers for inclusion and exclusion

We applied the following inclusion and exclusion criteria to key-
words, titles, and abstracts of the unique 6.038 publications.

Inclusion: (1) Peer-reviewed publications published in journals,
conferences, and workshops. (2) Publications that are accessible elec-
tronically. (3) Publications where from the title, abstract, and key-
words, we can deduce that the publication focuses on software
language composition. (4) Publications that describe a language com-
position operators.

Exclusion: (1) Publications that are not available in English. (2)
Publications that are not systematically peer-reviewed, such as mono-
graphs, slides, and websites. (3) Teasers and short papers of less than
four pages, such as calls for papers, editorials, or curricula. (4) Pub-
lications that are secondary studies. (5) Pure case studies that apply
but do not explain a language composition operator. (6) Publications
on internal DSLs. (7) Publications that are not about DSLs, DSMLs or
modeling languages

We included a publication if it met every inclusion criteria and did
not meet any exclusion criteria. By screening the publications, we iden-
tify relevant publications and eliminate all non-relevant and further
publications that meet our exclusion criteria, removing publications
from the corpus that are not to be considered in our study. We first
performed an initial screening, thereby pre-selecting and identifying
potentially relevant publications using our inclusion and exclusion
criteria based on keywords, titles, and abstracts only. Thereby, we
included publications where in doubt.

https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/


J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

4

2

c
s
p
h
p
c
a
f
c

4

f

p
1
d
4
r
s
w
t
i
s
l
o

t
s
s
o
r
t
c
o
b
f
l
r
r
1
s
s
t
o

5

o
t
c
l
c
c
c

5

t
u
m
O
g
c
t
c
c
d

s
p
r
o
c
m
i
c
i

Fig. 1. Our literature search and selection process.

.3. Classifying studies

Removing 5915 publications in the screening phase, we obtained
123 potentially-relevant publications for further consideration. We di-
vided these between authors for detailed analysis and classification
and documented the results for each publication in a detailed ques-
tionnaire tailored to our research questions. Classifying studies with
multiple reviewers entails aligning the reviewers’ understanding of
the matter at hand. Therefore, each author classified the same set
of 20 (ca. 16%) randomly selected publications from our corpus. By
comparing the results and discussing discrepancies, we developed and
refined our shared understanding of the publications, the employed
questionnaire, and the inclusion and exclusion criteria. We then split
the remaining publications evenly among the authors, who analyzed
and classified the publications in detail. However, we did not ex-
clude any publication solely based on its comprehensibility. Instead,
in cases where a single author was uncertain about the analysis or
classification of a publication, we discussed the publication among all
authors. The questionnaire and the classification scheme we conceived
to answer our research questions. Possible answers to the questions of
our questionnaire manifested as a simple yes or no, answers alongside a
classification scheme, or free-text answers in cases where appropriate.
During classification, we eliminated another 95 publications to obtain
8 relevant publications.

For each relevant publication, we extracted the presented language
omposition operators and classified these along the classification
cheme revisited in Section 2, where such a classification was appro-
riate. This classification partially enables us to answer RQ1 regarding
ow language composition has evolved in recent years. Either the
reviously proposed classification scheme still holds, that is, we can
lassify all of the presented language composition operators, or there
re new language composition operators that do not uphold this classi-
ication scheme. Where publications presented more than one language
omposition operator, we investigated each operator in isolation.

.4. Snowballing

To identify relevant publications we might have missed, we applied

orward snowballing [43] to [46], identifying all citations of this

4

ublication. For this search, we used semantic scholar,4 identifying
15 citations. Before looking at the publications in detail, we removed
uplicates already considered in our initial search. After removing
4 duplicates, we applied our inclusion and exclusion criteria to the
emaining 71 publications, thereby removing 4 publications for being
hort papers or non-peer-reviewed. For the remaining 67 publications,
e decided on inclusion by looking first at the title, then the abstract,

he location of the citation, and finally, the full publication to decide
f the publication is relevant to our study. During these steps, we
uccessively removed irrelevant publications, thereby removing 60 pub-
ications irrelevant to our study in total. Through forward snowballing
f [46], we, therefore, identified 7 publications relevant to our study.

Performing backward snowballing, we applied a similar process,
his time to references of publications in our corpus. Using semantic
cholar, we identified 89 references in the initial search. From the
earch result, we removed 34 duplicates and one publication because
f inaccessibility. Applying our inclusion and exclusion criteria, we
emoved another 31 publications for being published at a date outside
he scope of our study (27 publications), non-peer-reviewed (1 publi-
ation), not available (1 publication), or short papers (2 publication)
nly. We again decided inclusion for the remaining 22 publications
y looking at the title, abstract, place of citation, and the paper in
ull. We thereby identified 19 publications as irrelevant to our study,
eaving 4 for inclusion. Applying backward snowballing again to the
esults of backward and forward snowballing did not yield any new
esults, wherefore we terminated the search. Therefore, we identified
1 publications relevant to our study through forward and backward
nowballing. Together with the relevant publications of our initial
earch, this resulted in 39 publications that remained in the corpus of
his study. From these, we extracted 25 unique language composition
perators.

. Findings

We categorized all 25 language composition operators into three
f the five categories described in [30]. For these categories, we dis-
inguish between operators that compose syntax only and those that
ompose both syntax and semantics. Overall we identified 9 cases of
anguage extension composing syntax, 6 cases of language unification
omposing syntax, 4 cases of language extension composing syntax, 4
ases of language unification composing syntax and semantics, and 2
ases of language restriction composing syntax and semantics.

In the following, we detail our findings regarding RQ1 – RQ3.

.1. RQ1: Which language composition operators exist?

With this question, we aim to investigate which composition opera-
ors exist for language extension, language restriction, and language
nification. We grouped our findings by the dimensions (syntax, se-
antics) of language definitions composed by the respective operators.
verall, we found operators composing definitions of syntaxes (e.g.,
rammars, metamodels) and operators composing language modules
omprising definitions of syntaxes and semantics (e.g., code genera-
ors, interpreters, transformations). We did not find an operator that
omposes only semantics or syntax with semantics. Since none of the
omposition operators we found provided a formalized definition, we
ecided on a semi-formal description of each operator.

The tables presented in this section report one language compo-
ition operator per row. The tables include the language operators’
ublication, the constituents (AS, CS, Sem, . . . ), the kind of technical
ealizations (Gr, MM, GPL, . . . ) it addresses, the technological space it
perates within, and its modularity, that is, whether it is closed under
omposition, additive, and black-box. Consequently, a paper reporting
ultiple operators is referenced in multiple rows. Also, this does not

mply that a specific technological space comes with the described
omposition operator but that a composition operator was developed
n the referenced technological space (e.g., by a third party).

4 https://www.semanticscholar.org/.

https://www.semanticscholar.org/


J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

t
n
a
t
p
o
b
g
p

o

1

g
u
o

Fig. 2. The operator for grammar embedding on the left and the effect on the model
level on the right [48].

Fig. 3. The operator for grammar inheritance on the left and the effect on the model
level on the right [51].

5.1.1. Language extension operators composing syntax
This section reports our findings on language extension operators

capable of composing the syntax of two language definitions. Overall,
we found operators that can compose either grammars, metamodels,
or (RDF) graphs that describe abstract syntax, as well as operators that
can compose grammars with metamodels. We summarized our findings
regarding language extension composing syntax in Table 1.

1.1) Grammar Embedding [47–51]
The operator takes a base grammar, a production of the base

grammar, a client grammar, and a production of the client grammar.
In the example of Fig. 2 grammar IOAutomaton and its production
Automaton is embedded into the production BehaviorModel of
he base grammar MAAutomaton. Executing the operator produces a
ew grammar in which the selected production of the base grammar is
ugmented with an alternative of the selected client grammar produc-
ion. To this end, the base grammar may feature dedicated extension
oints (e.g., special kinds of productions) to denote the incompleteness
f the grammar. Models conforming to the resulting grammar can use
ase grammar production instances as usual and the embedded client
rammar production instances in place of the selected base grammar
roduction in the same model (cf. Fig. 2).

1.2) Grammar Inheritance [47,48,50–53]
The operator takes base grammar and client grammar as input.

This results in a client grammar where all productions from the base
grammar are made available. Hence, the client grammar can reuse or
override the productions of the base grammar (cf. Fig. 3). Models con-
forming to the resulting grammar can use instances of base and client
productions in the same model (cf. Fig. 3). An algebraic formalization
f grammar inheritance is available from [53].

.3) Grammar Mixins [54]
The operator takes a base grammar (cf. l. 1 of Fig. 4) and a client

rammar, the mixin (cf. l. 2 of Fig. 4), as input. Any grammar can be
sed as a mixin. It makes the abstract syntax, defined in a metamodel,
f the client grammar available to be referenced in the client grammar’s
5

Fig. 4. The operator for grammar mixins exemplified with a grammar View where a
metamodel Model is imported as mixin [54].

Fig. 5. The operator for metamodel embedding that embeds expressions into sheet
cells [55].

productions. However, they cannot be overwritten or extended. On
the model level, this has the effect that models of the base grammar
can leverage modeling concepts from the client grammar’s metamodel
within the same model.

1.4) Metamodel Embedding [55]
The operator takes a base metamodel, a client metamodel, a meta-

class of the base metamodel, a metaclass of the client metamodel,
the cardinality of the relation between the selected metaclasses, and
two Boolean arguments denoting whether the relation between the
classes should express a composition or aggregation. It composes both
metamodels by introducing an association with the given cardinality
and the relation between the client metaclass and the base metaclass
(cf. Fig. 5). The example given in the paper is that of an expression
metaclass which is embedded into a cell class of sheet metamodel,
which then has the effect that cells now can define expressions (cf.
Fig. 5). An algebraic, partial, formalization of metamodel embedding
is available from [55].

1.5) Metamodel Fragment Composition [56]
A metamodel fragment is a container for a metamodel that exposes

contractually specified provided and required interfaces. A provided



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226
Table 1
Language extension operators composing syntax.

Name Constituents Tech. Space Modular Closed Additive BB

Grammar embedding [47–51] AS (Gr), CS (Gr) Grammarware, Language
Boxes, MontiCore

✓ ✓ ✓ ✗

Grammar inheritance
[47,48,50–53]

AS (Gr), CS (Gr) MetaDepth, MontiCore,
Grammarware

✓ ✓ ✓ ✗

Grammar mixins [54] AS (Gr), CS (Gr) Xtext ✓ ✓ ✓ ✗

Metamodel embedding [55] AS (MM), CS (MM) EMF ✓ ✓ ✓ ✗

Metamodel facet composition
[57,58]

AS (MM), CoCos (OCL) Metadepth ✓ ✓ ✓ ✗

Metamodel fragment composition
[56]

AS (MM) CML ✓ ✓ ✓ ✓

Metamodel mixins [59] AS (MM) ADOxx ✓ ✗ ✓ ✗

Metamodel template instantiation
[60]

AS (MM) EMF & SWAT ✗ ✗ ✓ ✗

Syntax component composition
[61,62]

AS (Gr), CS (Gr), CoCos (GPL) MontiCore ✓ ✓ ✓ ✗
Fig. 6. The operator for metamodel fragment composition applied to a business process
diagram that is composed with an organization and a risk catalog metamodel [56].

interface exposes metaclasses of the fragment’s metamodel, whereas a
required interface demands implementation by a metaclass of another
metamodel fragment. For instance, the Business Process Dia-
gram metamodel in Fig. 6 demands a implementation of IPerformer
that is fulfilled by the IOrgElement of the Organization Model.
The Composition of a base metamodel fragment and a client metamodel
fragment is realized by mapping classes of the provided interface of
the client metamodel fragment to the required interfaces of the base
metamodel fragment. Thereby, the client metamodel fragment classes
implement the required interfaces of the base metamodel fragment. The
effect on the modeling level is similar to Metamodel Embedding where
the mapped modeling concepts can be used in the models conforming
to the base metamodel.

1.6) Metamodel Mixins [59]
This composition operator takes two metamodels, the base meta-

model, and the mixin metamodel as input. They are composed by
adding the elements of an abstract metamodel class (the ‘‘mixin ele-
ment’’), e.g., RiskHolderMixin and SimulationActivity
Mixin (cf. Fig. 7), of the mixin metamodel to a class of the base
metamodel, e.g., Task (cf. Fig. 7). The result is a new metamodel
comprising the base metamodel, and the mixin metamodel, and an
additional class that extends the class of the base metamodel, and
6

Fig. 7. The operator for metamodel mixins that mixes Simulation and Risk into
a Task metaclass [59].

references the mixin class (cf. Fig. 7). Note that the result of a mixin
composition cannot be used as a mixin element again.

1.7) Metamodel Template Instantiation [60]
The template instantiation operator takes a metamodel template,

which comprises abstract classes as extension points, and a ‘‘variant’’
metamodel as input together with renamings. For instance, in Fig. 8 the
extension points SoundSource and Filter of a base metamodel are
implemented by the variant metaclasses Oscillator and Filter,
respectively. The operator then merges both metamodels based on
naming and thereby instantiates the metamodel template. The result
is a new metamodel. Models that conform to this new metamodel can
utilize the non-abstract concepts of the metamodel of the template,
and, in addition, the instantiated abstract classes instantiated by the
‘‘variant’’ metamodel.

1.8) Syntax Component Composition [61,62]
The operator takes two language components, comprising gram-

mars, Java well-formedness rules, and bindings between interfaces
of provided and required extension points as input. The components
are composed by relating the provided extension points of the client
component to the required extension points of the base component.
Fig. 9 shows the operator exemplified with three language components
that are composed according to their extension points via a feature
diagram. This governs how the artifacts of the client language need to
be composed with the artifacts of the base language component. The
result is a language component again. Models conform to the composed
language can use all the concepts of the base language component, and,
additionally, the concepts of the client component in place of the bound
concepts of the required extensions.



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

t

c

1

s
m
p
c
s
o
l
l
m
t

5

t
r
c
g

a
d
n
w
i
r
t
l

2

t
i
i
i
p
m
p

2

o
t

Fig. 8. The input for the operator for metamodel template instantiation that takes the
emplate classes SoundSource and Filter and instantiates them with Oscilator and

Filter respectively [60].

Fig. 9. The operator for syntax component composition exemplified with three
omponents that are bound to another [62].

.9) Metamodel Facet Composition [57,58]
Facets extend existing objects with a new type, fields and con-

traints [58]. They are instances of a metamodel that is called facet
etamodel. Facet metamodels provide an interface restricting the com-
atible classes to the facet type. The operator for metamodel facet
omposition takes at least one metamodel, one facet metamodel, and a
et of facet laws as input (cf. Fig. 10). Facet laws govern the acquisition
f facets by conditions automatically. After the composition, on the
anguage level, both metamodels remain loosely coupled. On the model
evel, facet objects (instances of facet metamodels) can be added to
etamodel objects. With this, objects are extended with the type and

he properties of the facet.

.1.2. Language unification operators composing syntax
This section reports our findings on language unification opera-

ors capable of composing the syntax of two language definitions on
oughly ‘‘equal terms’’ [30]. Some of these are forms of language
oordination [29], i.e., the composition is achieved mainly by adding

lue code between the composed language’ artifacts, some are forms r

7

Fig. 10. The operator for metamodel facet composition [58].

Fig. 11. The operator for annotation-based language unification exemplified with Java
annotation unifying a database language with Java [46].

of language integration [29], where the elements of the composed
languages’ artifacts, e.g., their productions, are copied into a new
artifact. With respect to [30], we consider this reusing the composed
languages unchanged and argue that a new artifact is a form of glue
code. Otherwise, operators, such as metamodel merging, where new
language extensions are composed by copying elements of the input
languages on equal terms, cannot be captured by the classification
of [30]. We summarized our findings regarding language unification
composing syntax in Table 2.

2.1) Annotation-Based Language Unification [46]
The operator takes a textual base syntax definition (e.g., grammars,

bstract syntax tree (AST) classes, JSON, . . . ) and a client syntax
efinition as input. The base syntax definition needs to support the
otion of annotations. It unifies elements of the base syntax definition
ith concepts from the client syntax definition based on annotations

n the base syntax models. For instance, the annotations in Fig. 11
eference elements specified in an XML file that defines a database
able. Models of the composed language can use annotations of client
anguage concepts in models of the base language.

.2) Grammar Unification [63,64]
The operator takes multiple grammars and creates a new grammar

hat contains the union of productions of the input grammars. For
nstance, Fig. 12 shows the unification of three grammars resulting
nto the grammar result (cf. l. 1–2).. Where productions of the
nput grammars have the same left-hand-side name, alternatives for this
roduction are created. Models conforming to the resulting grammar
ay use grammar productions to conform to the composed grammar’s
roductions in the same model.

.3) Graph Merging [65]
The operator takes two graphs that represent the abstract syntax

f two languages, nodes of these graphs and connection rules between
hese nodes (cf. Fig. 13). The graphs are merged by applying these
ules. Models of the languages remain separated and are unified by



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

b

Table 2
Language unification operators composing syntax.

Name Constituents Tech. Space Modular Closed Additive BB

Annotation-based language unification [46] AS N/A ✓ ✗ ✓ ✗

Grammar unification [63,64] AS (Gr), CS (Gr) APEG, Enso ✓ ✓ ✓ ✗

Graph merging [65] AS (RDF graph) RDF ✗ ✓ ✓ ✗

Language aggregation [48,51,66] AS (Gr/Symbols) MontiCore ✓ ✓ ✓ ✗

Metamodel alignment [67] AS (MM) N/A ✓ ✓ ✓ ✗

Metamodel merging [68,69] AS (MM) Melange ✗ ✓ ✓ ✗
b
t
𝑀
h
a
t
t

2

o
a
F
a
o
m
f

5

c
t
c
s
m
t
w
f
i

3

n
c
f

Fig. 12. The operator for grammar unification [64].

Fig. 13. The operator for graph merging exemplified with a integration rule int:fw
etween the nodes itml:FW and fwcl:FW [65].

Fig. 14. The operator for language aggregation exemplified with a grammar production
ClArcPort that references a Type which is defined in a production CDClass [51].

the graph interconnections on the metalevel. A logical formalization
of graph merging is available from [65].

2.4) Language Aggregation [48,51,66]
Language aggregation takes two syntax definitions, i.e., grammar

[48,51] or metamodel [66], and one named element of each as input to
be aggregated. The named elements of both languages are aggregated
by producing an adapter that coordinates the interaction between both.
For the syntax definition based on grammars [48,51], e.g., this happens
via an adapter between the symbol tables of both languages linking the
corresponding defining symbols of one language with the using symbols
of the other language. For metamodel-based language aggregation, an
additional coordinating metaclass is produced [66]. Both adapters have
to be implemented manually. In both cases, the result is a language in
which the files containing the models remain separate but link to each
other (cf. Fig. 14). This is similar to importing classes in programming
languages. An formalization of metamodel alignment using category
theory is available from [67].

2.5) Metamodel Alignment [67]
The operator takes multiple similar metamodels and a set of map-

ping metaclasses with unidirectional connections between the similar
metaclasses of the metamodels as input. The metamodels are aligned
8

Fig. 15. The operator for metamodel alignment exemplified [67].

y mapping a selection of their classes to the base metamodel using
he mapping rules. For instance, in Fig. 15 three metamodels 𝑀1,

2, 𝑀3 are aligned using the mapping 𝑀0. The resulting metamodel,
ence, comprises all metaclasses of the input metamodels as well as the
dapters and relations between the selected elements. The models of
he composed languages remain separated but are linked to one another
hrough their metamodels.

.6) Metamodel Merging [68,69]
The classes of two metamodels are merged based on the names

f their elements. The result is a new metamodel featuring classes,
ttributes, and associations from both input metamodels (cf. Fig. 16).
or metamodel classes of the same name, their elements are merged
s well. The effect achieved on the model level is similar to the effect
f applying the operators Language Aggregation and Metamodel Align-
ent. An algebraic formalization of metamodel merging is available

rom [69].

.1.3. Language extension operators composing syntax and semantics
This section reports our findings on language extension operators

apable of composing the syntax and semantics of two language defini-
ions. Therefore, most of these operators expect a language definition
ontainer, such as a module or component, or expect that operational
emantics are part of the abstract syntax definition (e.g., a meta-
odel with semantics realized in its methods). Some of these apply

o syntax without semantics as well, e.g., where semantics is defined
ithin the methods of a metamodel’s classes. We summarized our

indings regarding language extension composing syntax and semantics
n Table 3.

.1) Abstract-Syntax-Driven Language Embedding [70]
An abstract-syntax-driven language definition is a language defi-

ition in which the abstract syntax artifacts also comprise (a) their
oncrete syntax in the form of annotations and (b) their semantics in the
orm of aspects carrying methods for some abstract syntax classes. For



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226
Table 3
Language extension operators composing syntax and semantics.

Name Constituents Tech. Space Modular Closed Additive BB

Abstract-syntax-driven language embedding [70] AS (GPL classes), CS (AS annotations), Sem
(AS methods)

YAJCo ✓ ✓ ✓ ✗

Language component embedding [71,72] AS (Gr), CS, (Gr) Sem (GPL), CoCos (GPL) MontiCore ✓ ✓ ✓ ✗

Language concern composition [68,73] AS (MM), Sem (MM) ALEX, Melange ✓ ✓ ✓ ✗

Language module extension [74–76] AS (Gr), CS (Gr), Sem (AL) LISA, Neverlang ✓ ✓ ✓ ✗
Fig. 16. The operator for metamodel merging by merging 𝑀𝑀2 (b) into 𝑀𝑀1 (a)
resulting in the metamodel 𝑀𝑀1 (c) [68].

instance, Fig. 17 defines AddOp together with an annotation that states
the concrete syntax. The operator takes a base language definition and
a client language definition, and a mapping from a client class to a class
of the base language definition. The base language definition then is
extended by providing a subclass (carrying CS and Sem) for a selected
base class and registering it as an alternative for the selected base class
(cf. Fig. 17). Thus, new alternatives for syntax and semantics can be
embedded into a base language definition. The effect achieved on the
model level is that the mapped client language concepts are usable
in place of the base language’s concept including concrete syntax and
semantics.

3.2) Language Component Embedding [71,72]
A language component comprises a grammar that supports the

integrated definition of CS and AS, Java well-formedness rules, and
a code generator and is encapsulated with interfaces of required and
provided extension points. Fig. 18 shows an example of a language
component for a Transition System. Provided extension points ex-
pose elements of the language component to the environment, whereas
required extension points expose extension points of the language
component’s elements. The operator takes a base language component,
a client language component, and a mapping from the client language
component’s provided interfaces to the base language component’s
required interfaces. Based on these bindings, the grammars of the
language components are embedded (using grammar embedding), their
well-formedness rules joined, and the code generators embedded as
well. Moreover, a new interface is synthesized from the interfaces of
both language components and a new language component comprising
the composed artifacts as well as the new interface is created. On the
model level, the same effect as with Grammar Embedding is achieved
9

Fig. 17. The operator for abstract-syntax-driven language embedding visualized by a
subclass AddOp extending the abstract class Expression [70].

Fig. 18. An example for a language component for a TransitionSystem
language [71].

regarding syntax. However, by composing also well-formedness rules
and code generators, the semantics of the embedded concepts are also
available.

3.3) Language Concern Composition [68,73]
A language concern is a metamodel with behavioral semantics

realized in its methods. The metamodel may expose required extensions
as annotated interface classes. This operator takes a base language
concern with required extensions, a client language concern as in-
put, and a mapping from client concern metamodel classes to base
metamodel required interface classes. It establishes interface implemen-
tation relations between the classes of the client metamodel and the
required interfaces of the base metamodel according to this mapping
(cf. Fig. 19). For instance, Fig. 19 shows a base language concern
FSM that is composed with two client language concerns AL and Exp
via two adapting metaclasses BindAction and BindGuard, respec-
tively. The models of the composed language can then use the client’s
language concepts in place of the base language’s concepts according to
the mapping between both concerns including semantics. An algebraic
formalization of language concern composition is available from [68].



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

t

Fig. 19. An example for the language composition operator language concern compo-
sition that extends a state machine language (FSM) with an action language (AL) and
expression (Exp) [73].

Fig. 20. An example for the language composition operator language module extension
hat extends a Robot language with time constraints [76].

Fig. 21. An example for the language composition operator language component
aggregation that composes two language components CD and Aut and creates a new
component as result [77].

3.4) Language Module Extension [74–76]
A language module [75], called language [76] or trait [74], com-

prises definitions of CS, AS, and computation rules (e.g., for semantics
or well-formedness rules), such that the definitions of semantics are
unambiguously related to a single AS element (cf. Fig. 20). The client
language module can extend from a base language module to make all
10
Fig. 22. An example for the language composition operator language union that
enables lists to use error expression [78].

CS, AS, and computation rules of the base language modules available
in the client, which then can override (some of) these elements. For
instance, in Fig. 20, the language RobotTime extends the existing lan-
guage Robot and extends the rule commands to add time constraints.
The result is that these new CS, AS, and computation rules are available
on the model level.

5.1.4. Language unification operators composing syntax and semantics
This section reports our findings on language unification opera-

tors capable of composing the syntax and semantics of two language
definitions. As with language extension operators composing syntax
and semantics, most of these operators expect a language definition
container and some can be applied to syntaxes without semantics.
We summarized our findings regarding language unification composing
syntax and semantics in Table 4.

4.1) Language Component Aggregation [77]
This operator takes two language components of the kind taken by

language component embedding and a set of bindings between the in-
terfaces of both components. It then unifies selected language symbols
exposed through their interfaces according to the bindings passed to
the operator. To realize this unification, it uses language aggregation be-
tween their symbols, joins their well-formedness rules, and synthesizes
adapters between components’ code generators. Fig. 21 shows language
component aggregation exemplified with two language components CD
and Aut. Applying the operator results into a new composed language
component. The effect on the model level, is, thus, the same as with
language aggregation but additionally includes well-formedness rules
and code generators.

4.2) Language Union [78]
Lang-N-Play defines AS, CS, and Sem by logic rules. Here, language

union is the merging of new rules, which can extend the language
definition’s syntax, well-formedness rules, or transformations, into lan-
guage definitions. The rules to be merged do not need to be part
of another language definition, but can also be specified in terms of
a Prolog program. For instance, Fig. 22 shows the union of a base
grammar lists with client grammar rules for errors. Note that the
rules to be merged into a language definition do not exist as a stand-
alone artifact before and that the result of a union is a language
definition that cannot be merged into another one directly.

4.3) Metamodel Service Orchestration [79]
This operator can compose language definitions in the form of

metamodels that carry semantics as methods and expose provider
and consumer services contracts. The base language definition, there-
fore, comprises consumer interfaces without implementations and the
client language definition comprises provider interfaces with imple-
mentations (cf. Fig. 23). At the ‘‘runtime’’ of the metamodel instances,
links between them can be established by exchanging ‘‘XML-based
messages’’ [79]. Hence, a composite metamodel is a ‘‘conceptual no-
tion’’ [79] only as the metamodels are not woven together.

4.4) Object-Oriented Language Unification [76]
Here, a language module comprises definitions of CS, AS, and

computation rules (e.g., for semantics or well-formedness rules), such



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226
Table 4
Language unification operators composing syntax and semantics.

Name Constituents Tech. Space Modular Closed Additive BB

Language component aggregation [77] AS (Gr), CS (Gr), Sem (GPL), CoCos (GPL) MontiCore ✓ ✓ ✓ ✗

Language union [78] AS, CS, Sem (GPL) Lang-N-Play ✗ ✗ ✓ ✗

Metamodel service orchestration [79] AS, CS, Sem (GPL) N/A ✓ ✗ ✓ ✗

Object-oriented language unification [76] AS (MM), CS (Gr), Sem (AS methods) LISA ✓ ✓ ✓ ✗
A
l
c
s

5

t
b
p
r

5

e
g
i
s
i
b
t
o
m

5

m
a
e
D
m
e
A
f

5

c
G
p
(
w

Fig. 23. An example for the language composition operator for metamodel service
orchestration consisting of three metamodels that are orchestrated based on their
provideer and consumer interfaces [79].

Fig. 24. An example for object-oriented language unification [76].

Fig. 25. An example for the language composition operator for language module
restriction depicting a state machine language in Neverlang consisting of slices that
reference modules. By removing slices, the language can be restricted [75].

that the definitions of semantics are unambiguously related to a single
AS element. This operator then takes two language modules and a set
of glue rules overriding the rules of the input languages. For instance,
in Fig. 24 the language unifies two languages Robot and ExprAdd.
 e

11
Fig. 26. An example for the language composition operator for language slicing with
the source left and the result on the right based on the input of metaclass D [68].

s a result, it creates a new language module extending from both
anguage modules featuring the overriding rules. Thus, the models that
onform to this newly created language can use each other’s syntax and
emantics in an integrated way within the same model file.

.1.5. Language restriction operators composing syntax and semantics
The operators presented in this section can be applied to restrict

he set of accepted models or semantic mapping of these models of a
ase language. Some do not require semantics and can be applied to
ure syntax as well. We summarized our findings regarding language
estriction composing syntax and semantics in Table 5.

.1) Language Module Restriction [50,53,75,78]
This operator takes a base language module and a list of language

lements of the base language that shall be reused. The result is a new
rammar that extends the base language module without inheriting all
ts elements. Thus language restriction, in this case, is achieved by not
electing the elements of the base language module to be restricted. For
nstance, in the language definition in Fig. 25, one of the slices could
e removed to restrict the language. The effect on the model level is
hat all language concepts of the base language without the restricted
nes are available to be used. An algebraic formalization of language
odule restriction is available from [53].

.2) Language Slicing [68]
In language slicing, elements of one metamodel (pattern) are re-

oved from a base metamodel by matching of names of, e.g., classes,
ttributes, methods, etc.. The resulting metamodel then yields fewer
lements than its base metamodel. For instance, in Fig. 26 the class
is sliced. Where the metamodels can carry semantics in the form of
ethod implementations, this also slices semantics realizations. The

ffect on model level is the same as in Language Module Restriction.
n algebraic formalization of language module restriction is available

rom [68].

.1.6. Summary of findings and practitioners guide
Our findings show that most of the operators found work solely

omposing syntax. Thereby, using graphs, metamodels, grammars, or
PL classes for specifying the abstract syntax. For the desired com-
osition effect, most operators are classified into language extension
13), followed by language unification (10). Only two operators, that
e found can be used for language restriction. From our findings, we

xtracted a guide for practitioners (see Fig. 27) that gives an overview



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

f

Fig. 27. A guide to choosing a suitable composition operator for specific needs. Whenever an option for a decision is not available, we found no suitable operator in our study
or it.
Table 5
Language restriction operators composing syntax and semantics.

Name Constituents Tech. Space Modular Closed Additive BB

Language module restriction [50,53,75,78] AS (Gr), CS (Gr), Sem (AL) Grammarware, Neverlang ✗ ✗ ✗ ✗

Language slicing [68] AS (MM), Sem (Int) GEMOC/Melange ✓ ✓ ✗ ✗
of all composition operators available in literature today and to identify
the most accurate operator for their needs. To this end, Fig. 27 depicts
different decisions that ultimately lead to a composition operator iden-
tified in our study. For all operators, we decide between the different
abstract syntax realizations, whether semantics is required, if yes, how
it is realized, and what the desired effect of applying the operator
should be, i.e., how it is classified. Where necessary to distinguish from
other operators, we furthermore added decision nodes for properties
or technological spaces. Otherwise, the properties and technological
spaces are stated in the Tables 1–5. For instance, for abstract syntax
is realized in a metamodel, and semantics is not required, the desired
effect should be classified as an extension, and all the investigated
properties of our studies should be fulfilled, then the only appropriate
operator is Metamodel Fragment Composition. For the paths that are not
covered in Fig. 27 we did not find an operator in our study. This lets
12
researchers identify uncharted territory, e.g., no composition operator
composes metamodels including semantics defined in code generators.

5.2. RQ2: Which language dimensions are supported by composition oper-
ators?

Most language composition operators only support a subset of lan-
guage constituents or may only be realized in certain technological
spaces. Therefore, they are only applicable to some implementations
of language constituents. For example, some language composition
operators may only support the composition of abstract or concrete
syntax, whereas others also enable the composition of semantics (mean-
ing [27]). Furthermore, some language composition operators operate
on metamodels, whereas others operate on context-free grammars.



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

b
T
a
s
t
d
e
l
a
s

w
s
w
t
l
e
u
c
g
t
m
i
m

c
s
c
c
t
r
t
t
t
a
a
s
p
a

5
c

p
i

R

R

R

R
c

k
n
r
t
t
i
w
m
o
c
m
t
T
w
i

C
p
c
t
t
m
l
d
g
o
f
r
t
h
o
c

M
d
M
t
a
t
s
w
e
s
a
b
w
e
r

With this research question, we aim to identify which language com-
position operators support which language constituents and which
implementations. In particular, we are interested in language composi-
tion operators that support the composition of semantics and whether
or not any language composition operators support a multitude of
implementations.

Regarding language constituents, our primary question is if any
language composition operators support both the composition of syntax
and semantics. While all identified operators support the composition
of language syntax in one form or another, only 10 (40%) of the 25
identified language composition operators support the composition of
semantics. For the composition of abstract syntax, composition oper-
ators mainly operate on grammars (40%) and metamodels (40%). On
these, the composition of languages’ abstract syntax is well-understood.
Other composition operator utilizes GPL classes [70] or employs RDF
graphs [65] for abstract syntax composition. For the remaining lan-
guage composition operators, the respective publications claimed to
support the composition of abstract syntax. However, these did not
specify how the abstract syntax is defined. On both grammars and
metamodels, operators exist that support language extension (cf. Ta-
les 1 and 3), unification (cf. Tables 2 and 4), restriction (cf. Table 5).
here are language composition operators such as language extensions,
ggregation, and language embedding for the composition of abstract
yntax defined by grammars, and language merging and slicing for
he composition of abstract syntax defined by metamodels. For the
efinition of language semantics, language definitions rely on code gen-
rators, internal and external interpreters, and aspects. For all these, at
east one operator exists that supports their composition. Furthermore,
ll of these can be combined with the common concepts for abstract
yntax definition, i.e., grammars and metamodels.

Besides the combined support for language syntax and semantics,
e were also interested in whether language composition operators

upport different implementations, e.g., the composition of grammars
ith metamodels. Such composition operators could help to bridge

he gap between technological spaces and foster the reuse of legacy
anguages. Furthermore, the composition of grammars with metamod-
ls would enable language developers to benefit from both concepts,
tilizing their strengths and mitigating their weaknesses. Through such
omposition operators, for example, language developers could utilize
rammars’ close connection of concrete and abstract syntax to define
he syntax-heavy part of a language, such as expressions, and utilize
etamodels for the structural parts. However, in our study, we did not

dentify any operator that supports the composition of grammars with
etamodels.

Besides the composition of grammars with metamodels, language
omposition operators should also support the composition of language
emantics to ensure that also the meanings of their models can be
omposed. Otherwise, composing modeling languages is reduced to
omposing syntax and ‘‘gluing’’ the different semantics carrying ar-
ifacts together manually again. This entails that modeling language
euse through composition is limited to experts in the corresponding
echnological spaces. However, the findings of our corpus suggest that
he semantics of modeling languages are largely realized through in-
erpretation or translation (compiling), i.e., the semantics are specified
s code in the interpreter or through transformations that produce
rtifacts carrying the semantics of the models. This entails that the
emantics of a modeling language often is implemented in code and
olluted with technical details to an extent that complicates analyzing
nd composing their semantics realizations.

.3. RQ3: Which properties do language composition operators have con-
erning being black-box, modular, additive, and closed under composition?

With this question, we aim to investigate the properties of the com-
osition operators that we identified in our review. Thereby, we aim to

dentify how much knowledge about language specifics and internals

13
is necessary to apply composition operators. Furthermore, we want
to find out how modular the composed language is, i.e., whether the
composed languages continue to exist as identifiable and changeable
artifacts from which changes are propagated to the composed language.
Besides, we want to investigate which operators are additive and which
are restrictive. Finally, we are interested in the operability of the oper-
ators, i.e., whether they are closed under composition. Summarized, in
this section, we aim at answering the following research questions:

RQ 3.1 How much knowledge about the internals of a language is
necessary to perform the composition, i.e., what are existing
black-box approaches to language composition?

Q 3.2 How modular are existing composition operators?

Q 3.3 Are the existing operators additive or restrictive?

Q 3.4 Are the existing operators closed under composition?

Q 3.1: How much knowledge about language internals is necessary for
omposition?

With this research question, we want to investigate, how much
nowledge about the internals of the languages to be composed is
ecessary. This includes knowledge about the technological space, the
ealization of the constituents, e.g., is it important to know whether
he abstract syntax is specified in a metamodel or a grammar, and also
he knowledge about the internal structure of these artifacts, e.g., is it
mportant to know the right-hand side of a grammar production that
e want to compose. A black-box composition operator for composing
etamodels is the operator Metamodel Fragment Composition [56]. The

perator introduces metamodel fragments as units of composition with
ontractually specified provided interfaces and required interfaces. A
etamodel fragment encapsulates metamodel elements that contribute

o either fragment implementation or fragment interface definition.
o support information hiding, a fragment defines a set of interfaces,
hich hide the internal implementation of a fragment. By binding

nterfaces of two fragments, metamodels can be composed.
The operators Language Component Embedding [71,72] and Language

omponent Unification [77] are white-box composition operators em-
loying language components representing language fragments that
an be reused. Language components can comprise syntax and seman-
ics. These constituents can then be provided for other components
o be reused by the component’s interface. The interface points of
ultiple components can then be bound to each other for the under-

ying language artifacts to be composed. Thus, the language engineer
oes neither require knowledge about the artifacts to realize the lan-
uage nor their internal structure. For the automated composition
f the realizing artifacts, the authors present composition operators
or context-free grammars, well-formedness rules, and code generators
ealizing the semantics. However, when composing code generators via
his mechanism, the language engineer needs to write glue code, thus,
e needs white-box knowledge in this case. Hence, both operators are
nly black-box when considering the composition of syntax and context
onditions, otherwise, they are white-box.

Another borderline white-box composition operator is Language
odule Extension based on Neverlang [75]. In Neverlang, languages are

efined at multiple levels of abstraction. The lowest level is modules.
odules can declare syntax and arbitrary many roles. Roles implement

he semantics for the respective syntax. Slices, the next higher level of
bstraction are language components that comprise multiple modules
hat belong to one another. For example, a module containing a
yntax definition for a while loop, a module with a role for checking
hether the condition evaluates to a Boolean and a role for generating
xecutable code. Slices then can be reused in languages where multiple
lices are imported and composed. This seems like a black-box operator
t first but requires white-box knowledge as there are no explicit
indings of roles or syntax rules in the language definition. Thus,
hen composing two slices containing syntax and roles, the language
ngineer has to know, which syntax rule fits another one, and which
ole has to be executed in which order.



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

m

R

c
c
s
8
o
n
i
a
r
c
c
T
e
c
a

m
i
s
m
m

R

t
w
l
l
L
e
o
i
t
i
l
t
a
L
t
t

R

p

t
t
c
s
p
O
M
p
m
r
e
a
H
b

6

[
c
e
v

S

n
c
a
t
s
l
t
e
i
b
f
a
c
o
o
e
i
s
t
t
d
c
r
m
a
i
e
m
t
s
a
d
t
m
l
B
a
b
t
r

Fig. 28. The number of operators with the properties of being (a) black-box (1), (b)
odular (20), (c) additive (22), and (d) closed under composition (19).

Q 3.2: How modular are the composition operators?
This research question aims at finding out, whether the result of the

omposition is modular. The result is modular if the composed parts
ontinue to exist as identifiable artifacts in the composite. Fig. 28(b)
hows the findings of our literature review regarding this question.
0%, i.e., 20 of the operators, are modular, whereas 20%, i.e., 5
perators, are not. In the following, we present a modular and a
on-modular composition operator. A modular composition operator
s Grammar Embedding [47–49]. This operator takes a production of

host grammar and a production of a client grammar as input. The
esult is a new grammar with an extended production that embeds the
lient grammar’s production into the host grammar’s production. Both
omposed productions exist and are identifiable after the embedding.
he involved grammars may be imported and the host production be
xtended by a new alternative on its right-hand side containing the
lient’s production. Thus, all of the operator’s input continues to exist
fter the composition.

A non-modular operator is Metamodel Merging [52,69]. It takes two
etamodels as input and produces one merged metamodel compris-

ng all concepts of both metamodels and merged concepts that are
hared across both metamodels. However, the result, i.e., the merged
etamodel, no longer provides information about the two source meta-
odels or which concepts originate from which metamodel.

Q 3.3: Are the composition operators additive or restrictive?
We consider a language composition operator as additive when

he operator only adds language constituents to a language definition,
hereas a restrictive operator removes constituents. All of the found

anguage composition operators classified as language extension or
anguage unification are additive. For instance, Abstract -Syntax-Driven
anguage Embedding supports language unification by extending an
xisting language with concepts that enable the embedding of concepts
f a second language. However, there are operators that are additive
n the language definition but can be restrictive on the language
hat results. Syntax Component Composition is additive in the way that
t enables to add grammar productions and context conditions to a
anguage definition. Since context conditions add constraints based on
he abstract syntax of a language adding context conditions can restrict
language. There are two restrictive language composition operators.

anguage Slicing gets a metamodel class and a metamodel and removes
he class and all its dependencies from the metamodel recursively and,
hereby, restricts the language and its definition.

Q 3.4: Are the composition operators closed under composition?
We consider a language composition operator as closed under com-

osition if it takes two language fragments of the same type (e.g.,
14
wo grammars) and produces another fragment of that type, such that
he result of the composition again can serve as input for another
omposition. This facilitates reuse and language evolution. Fig. 28(d)
hows our results on composition operators that are closed under com-
osition. Most of the operators (76%) are closed under composition.
ne of the operators that is not closed under composition is Metamodel
ixins [59]. The operator for metamodel mixin takes two inputs, a

arent element and a mixin element. A parent element is a compound
etamodel class that can contain other elements such as attributes or

eference other metamodel classes. A mixin element is a compound
lement that must be abstract to be reused. The result of the operator is
n extended metamodel with the mixins mixed in the parent element.
owever, the result of the operator, the extended metamodel, cannot
e reused as a mixin element in another composition step.

. Related work

Systematic mapping studies [80] and systematic literature reviews
81] are common methods for investigating state-of-the-art and open
hallenges in software engineering. Several mapping studies and lit-
rature reviews examining the current state of DSLs, their reuse, and
ariability exist today.

tudies on the engineering of DSLs

A systematic mapping study on DSLs [82] investigates, which tech-
iques and methods are used when working with DSLs. Regarding the
omposition of DSLs, their mapping study states that the development
nd tooling for single DSLs is well-studied, but research on the in-
eraction and integration of multiple DSLs is still ongoing. Another
ystematic mapping study on DSLs [83] points out that there is a
ack of research in the direction of validation and maintenance. We
hink, that by giving DSL developers a clear understanding of the
xisting landscape of composition operators, maintenance could be
mproved by better modularization and reusability of DSLs. However,
oth mapping studies aim at giving a general overview of techniques
or DSL development and which DSLs are created with which tools
nd for which domain, instead of being focused on the reuse and
omposition of DSLs. For managing variability in DSLs, the concept
f language product lines has emerged. A systematic literature review
n language product lines [84] analyses the capabilities of currently
xisting approaches. The paper identifies three dimensions of variabil-
ty: (1) Abstract syntax variability describes the capability to select
uitable language constructs for a particular user, (2) concrete syn-
ax variability to the support selecting a different representation of
he same construct, and (3) semantic variability is supported when
ifferent interpretations for a language construct can be selected. For
apturing all of these dimensions of variability, different feature model
epresentations are proposed in the literature. One possibility is feature
odels supporting functional variability where one feature is associ-

ted with one language that comprises all dimensions. Another one
s multi-dimensional variability with concern-specific features, where
ach feature comprises either abstract syntax, concrete syntax, or se-
antics, but it is not mandatory to comprise all aspects at once. The

hird possibility is multi-dimensional variability with concern-specific
ubtrees. In this feature tree, all dimensions of variability are one
bstract feature and the concerns are then children of the respective
imension feature. Besides, for supporting language modularization
he review differentiates between two techniques: (1) In endogenous
odularity relationships between languages are defined as part of the

anguage definition itself. Usually, this is done via import statements.
y importing another language definition, all of its language constructs
re available. (2) In exogenous modularity, however, the relationship
etween languages is defined externally in third-party artifacts that are
hen input for the composition process of both languages. For future
esearch, the paper identifies the analysis, evaluation, and evolution of



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

v
i
w
X
t
E
g
m
i
t
o
o

L

b
t
l
e
t
c
l
p
c
[

f
s
A
m
o
c
c
c
c

7

l
o

language product lines as open challenges. Since the paper investigates
language product lines and the modularity of languages that should
be incorporated into these, the composition of languages or identifying
language composition operators and their specifics is not the main focus
of the literature review.

Studies on language workbenches

A comparison of language workbenches [31], extracts a feature
model on the realization of constituents of modeling languages, i.e.,
notation, semantics, validation, editor, and composability, in different
language workbenches. The results of the comparison on composability
show that most of the investigated language workbenches support
incremental extension and language unification across all constituents
of their respective language specifications. To evaluate their results,
they performed various benchmarks in the course of the language work-
bench challenge. Although the comparison partly investigated compos-
ability, this is not the main focus of the study and is also limited to
the scope of language workbenches, whereas our review also included
operators conceptualized without having a specific technological space
of a language workbench in mind.

The survey performed in [85] provides an overview of DSL imple-
mentation aspects and classifies 14 language workbenches according
to these implementation approaches. Besides the implementation as-
pects for language structure, i.e., syntax, language semantics, language
alidation, and language editors, they consider language composabil-
ty as one implementation aspect of DSLs. The investigated language
orkbenches support composability in different means. For instance,
text supports only language extension and from only one grammar and

hus, does not support language extension composition or unification.
nso realizes composability by defining its merge operator between two
rammars resulting in a new combined language. Although the authors
ention different composition operators, they do not argue, why and

n which way they support the classifications of [30]. Furthermore,
heir investigations on composition operators are limited to the scope
f language workbenches and potentially missing operators described
n a conceptual level only.

anguage composition classifications

We based the classification of extracted composition operators
ased on [30]. However, there are other classifications in the litera-
ure, that we could have used instead. For instance, classify between
anguage extension and specialization [86]. The former describes the
xtension of a base language with additional concepts, and the latter
he specialization by restricting a base language. We consider both
lassifications in this paper but adopt the more precise differentiation in
anguage extension and call specialization restriction instead. Besides,
apers describing composition operators also name new composition
lassifications like merging [54,59], inheritance, slicing, and mixin
65,68,69].

However, we only found a few implementations of each classi-
ication and found that they could be classified as language exten-
ion and unification according to the definition of Erdweg et al..

literature study on model composition [87] classifies studies into
odel-driven development-oriented, aspect-oriented modeling, collab-

rative programming, and domain-specific languages. Only the last
lassification is focused on language composition that propagates the
omposition to the model level. Nonetheless, the study’s scope is model
omposition, and therefore they do not provide any new language
omposition classifications.

. Discussion

This section summarizes our observations, identifies future chal-
enges for language composition, and discusses threats to the validity

f our literature review.

15
7.1. Observations

Regarding the classification of the composition operators that we
found, most of the operators belong to the classification of language
extension. All of the identified composition operators across all classi-
fications support the composition of syntax. However, there are differ-
ences in the realization of syntax specifications between the operators.
Language extension composing syntax is entailed in the composition of
grammars, metamodels, and GPL classes. The operators classified into
language restriction are even more restrictive by supporting grammars
and metamodels only. In that regard, we observed that there are no
composition operators for restricting syntax solely. Consequently, there
are many unexplored paths in our guide for practitioners that are not
covered by current publications on language composition operators,
and, thus, are open to future research (cf. Fig. 27). The specification
of a language’s constituents depends on the technological space. We
observed that two-thirds of the composition operators are specific to
a single technological space or at least are presented that way. The
operators that were described without a technological space were ei-
ther pure conceptual work using pseudo code or technology-unspecific
description techniques, e.g., MOF models as metamodels. Since com-
position operators and language workbench are strongly intertwined,
investigating how the composition operators can be realized using
different language workbenches would be a great opportunity for future
research. Regarding modularity, most operators are modular. This is
also the case for closed under composition. The operators that are
not closed under composition and do not compose language artifacts
of the same type; instead, these operators use the language as one
input and a second input specifying the operation or the element
to be modified, e.g., removed. Another observation is that, besides
the operators for reduction, all operators are additive. We found that
black-box capabilities are rare with only one operator supporting this
property. Taking a look at the different classifications for the operators
shows that there exists one black-box operator for syntax extension
only. No black-box composition operator exists regarding the extension
of syntax with semantics, unification, and restriction. Since only five of
the found operators provide formal descriptions, i.e., making an effort
to describe their composition operators mathematically, it is unclear
whether some of these cases describe different mechanisms or whether
they are essentially the same but in slightly different contexts, for
instance, at different levels of abstraction. Also, our findings indicate
the usefulness or fitness of using a language composition operator along
the classification of Erdweg et al. and the properties that we observed.
However, the suitability for a specific purpose or use case cannot be
indicated as they may feature other properties outside of the scope
of this paper, e.g., whether they can be applied fully automatically or
whether the application can produce conflicts that need to be resolved
(manually).

In summary, many extension operators for external modeling lan-
guages focus on abstract syntax, either specified through grammars or
metamodels of which all are additive and none is usable in a black-box
fashion. There also are some operators for the extension of modeling
languages featuring syntax and semantics. The prevalent means to
compose semantics seems to be by including methods realizing the
semantics in the abstract syntax and the use of the same (mostly object-
oriented) composition mechanisms for both syntax and semantics. This
eases the composition as fewer different composition mechanisms need
to be understood then. For the unification of modeling languages
including syntax and semantics, only four operators were identified and
these use different mechanisms each. Likewise, for the restriction of
modeling languages, only two operators were identified, one removing
metamodel elements and the other removing grammar rules. A side
effect of the diversity of modeling language composition operators
being spread across different technological spaces is that there currently
is no technological space supporting all kinds of language composition

operators as outlined in Section 2.



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226

c
a
f
o
d
o

t
c
l
m
e
l
a

7

a

(

a
i
d
o
k

(

l
l
e
o

(

m
p
o
f
c
b
r
t
u

(

l
e
t
l
H
f
c
F
f
c

(

o
p
c
W
e
i
o
a

7

v
(
v
i
d

s
a
S
u
w
b
t
F
f
f
‘
a
D
w
o
I
o
a
f
c
t
o
t
o
t
c
p

t
T
e
t
c
t
p
a
d
f
a

a
i
i
r
t

8

c
s
w
c
2
i
t

Of course, the pure technical availability of a modeling language
omposition operator is not sufficient for its adoption. This requires also
wareness of their existence by practitioners as well as support in suf-
iciently sophisticated language workbenches. For the former, surveys
r interviews with practitioners would be necessary, for the latter, a
etailed analysis of implementations in the different workbenches. Both
f which should be the subject of future research.

For this survey we opted to reuse the classification schema of [30],
o ensure some comparability with their initial work on language
omposition. Naturally, there are other means to classify modeling
anguage composition operators as well, such as the distinction into
erging, inheritance, and slicing [68] or referencing, embedding, and

xtension [88]. Such classifications usually stem from a specific techno-
ogical background, such as metamodeling [68], and, hence, are partly
pplicable to general modeling language composition.

.2. Challenges

Our observations regarding existing language composition operators
nd their properties lead to challenges for future investigations:

1.) Black-box Composition
Furthermore, composition operators should be easy to learn and

pply. Black-box composition of languages can help with that as the
mplementation details of the languages to be composed remain hid-
en. In our study, we could only identify one black-box composition
perator. Beyond these, further black-box operators supporting various
inds of language composition operators may be developed.

2.) Heterogeneous Composition
Language composition is a means of language (part) reuse. As such,

anguage composition operators should support the composition of
anguages and language parts across different technological spaces (e.g.,
mbedding a Neverlang language in an Xtext language). However, none
f the identified operators supports such heterogeneous language reuse.

3.) Automated Composition
Another challenge is the automation of the composition, i.e., how

uch-handwritten extension is necessary after the composition took
lace. This is especially important for black-box approaches because
therwise, white-box knowledge is needed after the composition to
inish integrating all parts of the composed languages. For instance, the
omposition operator Language Component Embedding [71,72] is black-
ox regarding the composition of syntax and context conditions, but
equires a handwritten adaptation of the generator after the composi-
ion for the generators of both languages to be integrated, and, thus,
ltimately, is white-box.

4.) Alignment of Operators
In summary, we identified 36 publications reporting on 25 distinct

anguage composition operators in the past ten years. Hence, much
ffort is put into the development of new composition operators. We
ook a detailed look into the functioning of the operators on the
anguage definition level and distinguished the operators based on that.
owever, in the future, their effect on model level could be investigated

urther to align operators on that level, too. From that operators
ould be further generalized to be reusable across technological spaces.
urthermore, another literature review could investigate what the most
requently used operators are. With this knowledge, we could tackle the
hallenges mentioned before for these operators first.

5.) Formalization
In this paper, we informally described 25 different composition

perators. This is, because only 8 of 25 and only 6 out of 39 papers
rovide a formal description of their presented operator. As we are
onducting a secondary study, we can only report on what is available.
here formal descriptions were provided, these usually build upon

ither a specific algebraic or logical theory built up in the correspond-
ng publication. Future investigations could be formalizing existing
perators to target exact definitions and relations between the various

pproaches and operators. o

16
.3. Threats to validity

We identify threats to validity according to the four basic types of
alidity threats [89]: Our study is subject to threats to construct validity
research design), internal validity (data extraction), and conclusion
alidity (reliability). Threats to external validity (generalizability) are
rrelevant as the results of our study cannot be generalized to other
omains besides software languages and their composition.

Construct validity: the presented findings are only valid for our
ample of papers. Thus, we ensured to include as many relevant papers
s possible. To achieve this, we included the ACM digital library,
COPUS, WOS, Spring Link, and IEEE Explore and only very carefully
nder the given exclusion criteria, excluded publications. Furthermore,
e did not restrict our search query to only ‘‘language composition’’
ut also included other terms for language like ‘‘DSL’’ or ‘‘grammar’’ for
he definition of a language’s syntax in the first part of our conjunction.
or the second part, we also have chosen three more synonymous terms
or ‘‘composition’’. This enabled capturing related publications without
ocussing on the exact, very specific, partly ambiguous ‘‘language’’ and
‘composition’’ terminology. Another threat to research design validity
rises from the definition of the criteria of inclusion and exclusion.
uring the screening, we only considered the title, abstract, and key-
ords. To prevent excluding relevant publications based on the lack
f investigation, we included papers we were uncertain of temporarily.
n the subsequent phase, the complete papers were read and inclusion
r exclusion was decided ultimately. Furthermore, in this step, all
uthors of this paper read 25% of the potentially relevant papers,
illed out the analyses sheet, and discussed these papers together by
omparing each other’s sheets. This helped us get more confident in
he analysis of the subsequent papers and improved our understanding
f the questions in the analysis sheet. Besides, our review also is subject
o the so-called publication bias, i.e., it can report on published results
nly. Thus, we can only report on composition operators found in
he literature. Furthermore, in cases where authors claim that their
omposition operators apply to certain language constituents without
roving their claim, we have to trust their scientific ethics.

Internal validity: copes with problems arising during data extrac-
ion. Of course, our study relies on the quality of the primary studies.
he most important threat regards the terminology used in the differ-
nt publications to describe the composition operators. To deal with
his issue we discussed terminology among the authors during the
lassification phase and agreed on the names in Section 5.1. Another
hreat to internal validity is the description of the operators. Some
apers provide a fine-grained description, whereas others only provide
cursory introduction to their operator. To counteract this issue we

esigned a detailed questionnaire that was required to be filled out
or each operator. We excluded all publications that did not provide
sufficient description to fill out our questionnaire.

Conclusion validity: Threats here are making wrong conclusions and
lack of replicability. Regarding the former, we have discussed various

ssues that could lead to wrong conclusions in the context of threats to
nternal validity. For the study’s replicability, we detailed the complete
esearch method in Section 4, which enables replicating every phase of
his mapping study.

. Conclusion

We investigated the state of language composition based on the
ategories identified by Erdweg et al. [30] ten years ago through a
ystematic literature review. Our findings amplify their categories as
e did not find a language composition operator outside of these

ategories. Based on a corpus of 36 relevant publications, we identified
5 composition operators. We detailed the identified operators regard-
ng the language constituents they consider, the technological space
hey operate within, and whether they are modular, closed, additive,

r require white-box expertise for their application. We found some



J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226
operators considering both syntax and semantics, which suggest that
there are approaches to holistic language reuse.

Based on the insights about the identified operators, we identified
four important challenges for easing language reuse even further, which
are (1) composition across technological spaces, (2) in a black-box fash-
ion, (3) fully automated, as well as (4) improving our understanding of
the commonalities and differences of operators to guide research on
language composition and enable investigation of language extension
composition.

Overall, the findings reported in this study draw a map of composi-
tion operators, that can guide practitioners in identifying the language
composition mechanisms they need for specific challenges based on our
classification related to Erdweg et al. and the properties we analyzed.
However, there are still unexplored paths in our map that are up to
future investigations on the topic.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Our replication package is available under: https://awortmann.
github.io/language-composition/.

Acknowledgments

Funding

The authors of the University of Stuttgart were supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
[grant number 441207927].

References

[1] A. Kleppe, Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels, Pearson Education, 2008.

[2] K. Hölldobler, B. Rumpe, A. Wortmann, Software language engineering in the
large: towards composing and deriving languages, Comput. Lang. Syst. Struct.
54 (2018) 386–405.

[3] I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, E. Kusmenko, M. Markthaler,
P. Orth, K.S. Salman, J. Richenhagen, B. Rumpe, C. Schulze, M. Wenckstern, A.
Wortmann, SMArDT modeling for automotive software testing, Softw. - Pract.
Exp. 49 (2) (2019) 301–328.

[4] M. Broy, I.H. Kruger, A. Pretschner, C. Salzmann, Engineering automotive
software, Proc. IEEE 95 (2) (2007) 356–373.

[5] B. Annighoefer, M. Halle, A. Schweiger, M. Reich, C. Watkins, S.H. VanderLeest,
S. Harwarth, P. Deiber, Challenges and ways forward for avionics platforms and
their development in 2019, in: 2019 IEEE/AIAA 38th Digital Avionics Systems
Conference, DASC, IEEE, 2019, pp. 1–10.

[6] G. Hinkel, H. Groenda, L. Vannucci, O. Denninger, N. Cauli, S. Ulbrich, A
domain-specific language (DSL) for integrating neuronal networks in robot
control, in: Proceedings of the 2015 Joint MORSE/VAO Workshop on Model-
Driven Robot Software Engineering and View-Based Software-Engineering, 2015,
pp. 9–15.

[7] T.C. Son, E. Pontelli, D. Ranjan, B. Milligan, G. Gupta, An agent-based domain
specific framework for rapid prototyping of applications in evolutionary biology,
in: International Workshop on Declarative Agent Languages and Technologies,
Springer, 2003, pp. 76–96.

[8] M.R. Lakin, A. Phillips, Domain-specific programming languages for computa-
tional nucleic acid systems, ACS Synth. Biol. 9 (7) (2020) 1499–1513.

[9] W.R. Saunders, J. Grant, E.H. Müller, A domain specific language for per-
formance portable molecular dynamics algorithms, Comput. Phys. Comm. 224
(2018) 119–135.

[10] D. Elshani, A. Lombardi, A. Fisher, S. Staab, D. Hernández, T. Wortmann,
Knowledge graphs for multidisciplinary co-design: Introducing RDF to BHoM,
in: Linked Data in Architecture and Construction, 2020.

[11] M. Voelter, S. Koščejev, M. Riedel, A. Deitsch, A. Hinkelmann, A domain-
specific language for payroll calculations: an experience report from DATEV,

in: Domain-Specific Languages in Practice, Springer, 2021, pp. 93–130.

17
[12] L.T. Van Binsbergen, L.-C. Liu, R. van Doesburg, T. van Engers, eFLINT: a
domain-specific language for executable norm specifications, in: Proceedings of
the 19th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, 2020, pp. 124–136.

[13] A. Lüder, N. Schmidt, AutomationML in a Nutshell, in: Handbuch Industrie 4.0
Bd. 2, Springer, 2017, pp. 213–258.

[14] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling languages in
Industry 4.0: an extended systematic mapping study, Softw. Syst. Model. 19 (1)
(2020) 67–94.

[15] O. Boiarskyi, S. Popereshnyak, Automated system and domain-specific language
for medical data collection and processing, in: International Scientific Confer-
ence ‘‘Intellectual Systems of Decision Making and Problem of Computational
Intelligence’’, Springer, 2021, pp. 377–396.

[16] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao,
H. Poon, Domain-specific language model pretraining for biomedical natural
language processing, ACM Trans. Comput. Healthc. (HEALTH) 3 (1) (2021) 1–23.

[17] A. Nordmann, N. Hochgeschwender, S. Wrede, A survey on domain-specific
languages in robotics, in: International Conference on Simulation, Modeling, and
Programming for Autonomous Robots, Springer, 2014, pp. 195–206.

[18] P.H. Feiler, D.P. Gluch, J.J. Hudak, The Architecture Analysis & Design Language
(AADL): An Introduction, Tech. Rep., Carnegie-Mellon Univ Pittsburgh PA
Software Engineering Inst, 2006.

[19] S. Wolny, A. Mazak, C. Carpella, V. Geist, M. Wimmer, Thirteen years of SysML:
a systematic mapping study, Softw. Syst. Model. 19 (1) (2020) 111–169.

[20] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt
Publishing Ltd, 2016.

[21] K. Hölldobler, B. Rumpe, MontiCore 5 Language Workbench Edition 2017, in:
Aachener Informatik-Berichte, Software Engineering, Band 32, Shaker Verlag,
2017.

[22] S.N. Voogd, K. Aslam, L. Van Gool, B. Theelen, I. Malavolta, Real-time collab-
orative modeling across language workbenches–a case on Jetbrains MPS and
Eclipse Spoofax, in: 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), IEEE, 2021, pp.
16–26.

[23] M. Voelter, B. Kolb, T. Szabó, D. Ratiu, A. van Deursen, Lessons learned from
developing mbeddr: a case study in language engineering with MPS, Softw. Syst.
Model. 18 (1) (2019) 585–630.

[24] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, P. Valduriez, ATL: a QVT-like
transformation language, in: Companion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications, 2006,
pp. 719–720.

[25] D.S. Kolovos, R.F. Paige, F.A. Polack, The epsilon transformation language, in:
International Conference on Theory and Practice of Model Transformations,
Springer, 2008, pp. 46–60.

[26] C. Forsythe, Instant FreeMarker Starter, Packt Publishing Ltd, 2013.
[27] D. Harel, B. Rumpe, Meaningful modeling: What’s the semantics of

’’semantics’’? IEEE Comput. 37 (10) (2004) 64–72.
[28] J.-M. Favre, D. Gasevic, R. Lämmel, E. Pek, Empirical language analysis in soft-

ware linguistics, in: International Conference on Software Language Engineering,
Springer, 2010, pp. 316–326.

[29] T. Clark, M.v.d. Brand, B. Combemale, B. Rumpe, Conceptual model of the
globalization for domain-specific languages, in: Globalizing Domain-Specific
Languages, in: LNCS, vol. 9400, Springer, 2015, pp. 7–20.

[30] S. Erdweg, P.G. Giarrusso, T. Rendel, Language composition untangled, in:
Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and
Applications, LDTA ’12, Association for Computing Machinery, New York, NY,
USA, 2012.

[31] S. Erdweg, T. Van Der Storm, M. Völter, L. Tratt, R. Bosman, W.R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al., Evaluating and comparing
language workbenches: Existing results and benchmarks for the future, Comput.
Lang. Syst. Struct. 44 (2015) 24–47.

[32] T. Berger, M. Völter, H.P. Jensen, T. Dangprasert, J. Siegmund, Efficiency of
projectional editing: A controlled experiment, in: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2016, pp. 763–774.

[33] M. Barash, Example-driven software language engineering, in: Proceedings of the
13th ACM SIGPLAN International Conference on Software Language Engineering,
2020, pp. 246–252.

[34] L.-E. Lafontant, E. Syriani, Gentleman: a light-weight web-based projectional
editor generator, in: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings,
2020, pp. 1–5.

[35] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse, W. Cazzola, P.
Collet, T. Degueule, R. Heinrich, J.-M. Jézéquel, et al., Concern-oriented language
development (COLD): Fostering reuse in language engineering, Comput. Lang.
Syst. Struct. 54 (2018) 139–155.

[36] R. France, B. Rumpe, Model-driven development of complex software: A research
roadmap, in: Future of Software Engineering (FOSE ’07), 2007, pp. 37–54.

[37] T. Degueule, T. Mayerhofer, A. Wortmann, Engineering a ROVER language in
GEMOC STUDIO & MONTICORE: A comparison of language reuse support, in:
Proceedings of MODELS 2017. Workshop EXE, in: CEUR 2019, 2017.

https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
https://awortmann.github.io/language-composition/
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb1
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb1
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb1
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb2
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb2
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb2
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb2
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb2
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb3
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb3
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb3
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb3
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb3
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb3
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb3
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb4
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb4
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb4
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb5
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb5
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb5
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb5
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb5
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb5
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb5
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb6
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb7
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb7
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb7
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb7
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb7
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb7
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb7
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb8
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb8
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb8
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb9
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb9
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb9
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb9
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb9
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb10
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb10
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb10
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb10
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb10
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb13
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb13
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb13
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb14
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb14
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb14
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb14
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb14
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb15
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb15
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb15
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb15
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb15
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb15
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb15
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb16
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb16
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb16
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb16
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb16
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb17
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb17
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb17
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb17
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb17
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb18
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb18
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb18
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb18
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb18
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb20
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb20
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb20
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb21
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb21
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb21
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb21
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb21
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb22
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb23
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb23
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb23
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb23
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb23
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb25
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb25
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb25
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb25
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb25
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb26
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb27
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb27
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb27
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb28
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb28
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb28
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb28
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb28
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb29
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb29
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb29
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb29
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb29
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb30
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb30
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb30
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb30
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb30
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb30
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb30
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb31
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb31
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb31
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb31
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb31
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb31
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb31
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb32
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb32
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb32
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb32
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb32
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb32
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb32
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb33
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb33
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb33
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb33
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb33
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb34
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb34
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb34
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb34
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb34
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb34
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb34
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb36
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb36
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb36
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb37


J. Pfeiffer, B. Rumpe, D. Schmalzing et al. Journal of Computer Languages 76 (2023) 101226
[38] M. Broy, K. Stølen, Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement, Springer Science & Business Media,
2012.

[39] J.L. Peterson, Petri nets, ACM Comput. Surv. 9 (3) (1977) 223–252.
[40] D. Budgen, P. Brereton, Performing systematic literature reviews in software

engineering, in: Proceedings of the 28th International Conference on Software
Engineering, 2006, pp. 1051–1052.

[41] S. Keele, et al., Guidelines for Performing Systematic Literature Reviews in
Software Engineering, Technical report, ver. 2.3 ebse technical report. ebse, Tech.
Rep., 2007.

[42] Z. Stapic, E.G. López, A.G. Cabot, L. de Marcos Ortega, V. Strahonja, Performing
systematic literature review in software engineering, in: Central European
Conference on Information and Intelligent Systems, Faculty of Organization and
Informatics Varazdin, 2012, p. 441.

[43] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, 2014, pp.
1–10.

[44] M. Boeker, W. Vach, E. Motschall, Google Scholar as replacement for systematic
literature searches: good relative recall and precision are not enough, BMC Med.
Res. Methodol. 13 (1) (2013) 1–12.

[45] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling languages in
Industry 4.0: an extended systematic mapping study, Softw. Syst. Model. 19 (1)
(2020) 67–94.

[46] M. Nosál, M. Sulír, J. Juhár, Language composition using source code
annotations, Comput. Sci. Inf. Syst. 13 (3) (2016) 707–729.

[47] A. Butting, K. Hölldobler, B. Rumpe, A. Wortmann, Compositional modelling
languages with analytics and construction infrastructures based on object-
oriented techniques—The MontiCore approach, in: Composing Model-Based
Analysis Tools, Springer, 2021, pp. 217–234.

[48] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe, S.
Völkel, A. Wortmann, Composition of heterogeneous modeling languages, in: In-
ternational Conference on Model-Driven Engineering and Software Development,
Springer, 2015, pp. 45–66.

[49] L. Diekmann, L. Tratt, Parsing composed grammars with language boxes, in:
Workshop on Scalable Language Specifications, 2013.

[50] A. Johnstone, E. Scott, M. van den Brand, Modular grammar specification, Sci.
Comput. Program. 87 (2014) 23–43.

[51] A. Haber, M. Look, A.N. Perez, P.M.S. Nazari, B. Rumpe, S. Völkel, A. Wortmann,
Integration of heterogeneous modeling languages via extensible and composable
language components, in: 2015 3rd International Conference on Model-Driven
Engineering and Software Development, MODELSWARD, IEEE, 2015, pp. 19–31.

[52] B. Meyers, A. Cicchetti, E. Guerra, J. De Lara, Composing textual modelling
languages in practice, in: Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling, 2012, pp. 31–36.

[53] J. Andersen, C. Brabrand, D.R. Christiansen, Banana Algebra: Compositional
syntactic language extension, Sci. Comput. Program. 78 (10) (2013) 1845–1870.

[54] C. Rieger, M. Westerkamp, H. Kuchen, Challenges and opportunities of mod-
ularizing textual domain-specific languages, in: MODELSWARD, 2018, pp.
387–395.

[55] A. Abouzahra, A. Sabraoui, K. Afdel, A metamodel composition driven approach
to design new domain specific modeling languages, in: 2017 European Confer-
ence on Electrical Engineering and Computer Science, EECS, IEEE, 2017, pp.
112–118.

[56] S. Živković, D. Karagiannis, Towards metamodelling-in-the-large: Interface-
based composition for modular metamodel development, in: Enterprise,
Business-Process and Information Systems Modeling, Springer, 2015, pp.
413–428.

[57] J. de Lara, E. Guerra, J. Kienzle, Y. Hattab, Facet-oriented modelling: open
objects for model-driven engineering, in: Proceedings of the 11th Acm Sigplan
International Conference on Software Language Engineering, 2018, pp. 147–159.

[58] J.D. Lara, E. Guerra, J. Kienzle, Facet-oriented modelling, ACM Trans. Softw.
Eng. Methodol. (TOSEM) 30 (3) (2021) 1–59.

[59] S. Źivkoviź, D. Karagiannis, Mixins and extenders for modular metamodel
customisation, in: Proceedings of the 18th International Conference on Enterprise
Information Systems, 2016, pp. 259–270.

[60] H. Berg, B. Møller-Pedersen, Type-safe symmetric composition of metamodels
using templates, in: International Workshop on System Analysis and Modeling,
Springer, 2012, pp. 160–178.

[61] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann, Systematic
composition of independent language features, J. Syst. Softw. 152 (2019) 50–69.

[62] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann, Controlled and
extensible variability of concrete and abstract syntax with independent language
features, in: Proceedings of the 12th International Workshop on Variability
Modelling of Software-Intensive Systems, 2018, pp. 75–82.
18
[63] T. van Der Storm, W.R. Cook, A. Loh, Object grammars, in: SLE, Springer, 2012,
pp. 4–23.

[64] L.V. Reis, V.O. Di Iorio, R.S. Bigonha, An on-the-fly grammar modification
mechanism for composing and defining extensible languages, Comput. Lang. Syst.
Struct. 42 (2015) 46–59.

[65] B. Braatz, C. Brandt, A framework for families of domain-specific modelling
languages, Softw. Syst. Model. 13 (1) (2014) 109–132.

[66] N. Essadi, A. Anwar, Coordination between heterogeneous models using a
meta-model composition approach, Adv. Sci. Technol. Eng. Syst. J. 4 (2019).

[67] P. Stünkel, H. König, Y. Lamo, A. Rutle, Towards multiple model synchronization
with comprehensive systems, in: FASE, 2020, pp. 335–356.

[68] T. Degueule, B. Combemale, A. Blouin, O. Barais, J.-M. Jézéquel, Melange: A
meta-language for modular and reusable development of dsls, in: Proceedings
of the 2015 ACM SIGPLAN International Conference on Software Language
Engineering, 2015, pp. 25–36.

[69] F. Rabbi, Y. Lamo, L.M. Kristensen, A model driven engineering approach for
heterogeneous model composition, in: International Conference on Model-Driven
Engineering and Software Development, Springer, 2017, pp. 198–221.

[70] S. Chodarev, D. Lakatoš, J. Porubän, J. Kollár, Abstract syntax driven approach
for language composition, Open Comput. Sci. 4 (3) (2014) 107–117.

[71] A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann, A compositional framework
for systematic modeling language reuse, in: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
2020, pp. 35–46.

[72] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann, Modeling language
variability with reusable language components, in: Proceedings of the 22nd
International Systems and Software Product Line Conference-Volume 1, 2018,
pp. 65–75.

[73] M. Leduc, T. Degueule, B. Combemale, Modular language composition for the
masses, in: Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering, 2018, pp. 47–59.

[74] W. Cazzola, E. Vacchi, Language components for modular DSLs using traits,
Comput. Lang. Syst. Struct. 45 (2016) 16–34.

[75] E. Vacchi, W. Cazzola, Neverlang: A framework for feature-oriented language
development, Comput. Lang. Syst. Struct. 43 (2015) 1–40.

[76] M. Mernik, An object-oriented approach to language compositions for software
language engineering, J. Syst. Softw. 86 (9) (2013) 2451–2464.

[77] J. Pfeiffer, A. Wortmann, Towards the black-box aggregation of language
components, in: 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), IEEE, 2021, pp.
576–585.

[78] M. Cimini, On the effectiveness of higher-order logic programming in language-
oriented programming, in: International Symposium on Functional and Logic
Programming, Springer, 2020, pp. 106–123.

[79] H. Berg, Service-oriented design of metamodel components, in: ICSOFT, 2012,
pp. 70–79.

[80] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies
in software engineering, in: 12th International Conference on Evaluation and
Assessment in Software Engineering (EASE) 12, 2008, pp. 1–10.

[81] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,
Systematic literature reviews in software engineering–a systematic literature
review, Inf. Softw. Technol. 51 (1) (2009) 7–15.

[82] L.M. do Nascimento, D.L. Viana, P. Neto, D. Martins, V.C. Garcia, S. Meira,
A systematic mapping study on domain-specific languages, in: The Seventh
International Conference on Software Engineering Advances (ICSEA 2012), 2012,
pp. 179–187.

[83] T. Kosar, S. Bohra, M. Mernik, Domain-specific languages: A systematic mapping
study, Inf. Softw. Technol. 71 (2016) 77–91.

[84] D. Méndez-Acuña, J.A. Galindo, T. Degueule, B. Combemale, B. Baudry, Lever-
aging Software Product Lines Engineering in the development of external DSLs:
A systematic literature review, Comput. Lang. Syst. Struct. 46 (2016) 206–235.

[85] E. Negm, S. Makady, A. Salah, Survey on domain specific languages
implementation aspects, Int. J. Adv. Comput. Sci. Appl. 10 (11) (2019).

[86] D. Spinellis, Notable design patterns for domain-specific languages, J. Syst. Softw.
56 (1) (2001) 91–99.

[87] A. Abouzahra, A. Sabraoui, K. Afdel, Model composition in Model Driven
Engineering: A systematic literature review, Inf. Softw. Technol. 125 (2020)
106316.

[88] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L.C. Kats, E.
Visser, G. Wachsmuth, DSL Engineering - Designing, Implementing and Using
Domain-specific Languages, M Volter/DSLBook.org, 2013.

[89] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-
perimentation in Software Engineering, Springer Science & Business Media,
2012.

http://refhub.elsevier.com/S2590-1184(23)00036-9/sb38
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb38
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb38
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb38
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb38
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb39
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb40
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb40
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb40
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb40
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb40
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb41
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb41
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb41
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb41
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb41
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb42
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb42
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb42
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb42
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb42
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb42
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb42
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb43
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb43
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb43
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb43
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb43
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb43
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb43
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb44
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb44
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb44
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb44
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb44
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb45
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb45
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb45
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb45
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb45
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb46
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb46
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb46
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb47
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb47
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb47
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb47
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb47
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb47
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb47
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb49
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb49
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb49
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb50
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb50
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb50
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb52
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb52
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb52
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb52
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb52
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb53
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb53
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb53
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb55
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb55
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb55
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb55
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb55
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb55
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb55
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb56
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb56
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb56
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb56
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb56
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb56
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb56
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb57
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb57
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb57
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb57
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb57
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb58
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb58
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb58
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb59
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb59
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb59
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb59
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb59
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb60
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb60
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb60
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb60
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb60
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb61
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb61
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb61
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb62
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb62
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb62
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb62
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb62
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb62
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb62
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb64
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb64
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb64
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb64
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb64
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb65
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb65
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb65
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb66
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb66
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb66
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb67
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb67
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb67
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb68
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb68
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb68
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb68
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb68
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb68
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb68
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb69
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb69
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb69
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb69
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb69
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb72
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb72
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb72
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb72
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb72
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb72
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb72
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb73
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb73
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb73
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb73
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb73
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb74
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb74
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb74
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb75
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb75
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb75
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb76
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb76
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb76
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb77
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb77
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb77
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb77
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb77
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb77
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb77
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb78
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb78
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb78
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb78
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb78
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb79
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb79
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb79
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb80
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb80
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb80
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb80
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb80
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb81
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb81
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb81
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb81
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb81
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb82
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb82
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb82
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb82
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb82
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb82
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb82
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb83
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb83
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb83
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb84
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb84
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb84
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb84
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb84
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb85
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb85
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb85
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb86
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb86
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb86
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb87
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb87
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb87
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb87
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb87
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb88
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb88
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb88
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb88
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb88
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb89
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb89
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb89
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb89
http://refhub.elsevier.com/S2590-1184(23)00036-9/sb89

	Composition operators for modeling languages: A literature review
	Introduction
	Categories of Language Composition
	Terminology
	Research Method
	Search strategy and data sources
	Screening papers for inclusion and exclusion
	Classifying studies
	Snowballing

	Findings
	RQ1: Which Language Composition Operators Exist?
	Language Extension Operators Composing Syntax
	Language Unification Operators Composing Syntax
	Language Extension Operators Composing Syntax and Semantics
	Language Unification Operators Composing Syntax and Semantics
	Language Restriction Operators Composing Syntax and Semantics
	Summary of Findings and Practitioners Guide

	RQ2: Which Language Dimensions are Supported by Composition Operators?
	RQ3: Which properties do language composition operators have concerning being black-box, modular, additive, and closed under composition?
	RQ 3.1: How much knowledge about language internals is necessary for composition?
	RQ 3.2: How modular are the composition operators?
	RQ 3.3: Are the composition operators additive or restrictive?
	RQ 3.4: Are the composition operators closed under composition?


	Related Work
	Studies on the Engineering of DSL
	Studies on Language Workbenches
	Language Composition Classifications

	Discussion
	Observations
	Challenges
	Threats to Validity

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References




