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Abstract
Modeling software systems as component & connector architec-
tures with application-specific behavior modeling languages en-
ables domain experts to describe each component behavior with the
most appropriate language. Generating executable systems for such
language aggregates requires composing appropriate code genera-
tors for the participating languages. Previous work on code gen-
erator composition either focuses on white-box integration based
on code generator internals or requires extensive handcrafting of
integration code. We demonstrate an approach to black-box gen-
erator composition for architecture description languages that re-
lies on explicit interfaces and exploits the encapsulation of compo-
nents. This approach is implemented for the architecture modeling
framework MontiArcAutomaton and has been evaluated in various
contexts. Ultimately, black-box code generator composition facil-
itates development of code generators for architecture description
languages with embedded behavior languages and increases code
generator reuse.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.13 [Software Engineer-
ing]: Reusable Software

Keywords Model-Driven Engineering, Component & Connector
Architectures, Code Generation, Code Generator Composition

1. Introduction
Modeling software systems with component & connector (C&C)
architecture description languages (ADLs) [1] and application-
specific component behavior languages (CBLs) facilitates the sepa-
ration of concerns between domain experts and system integrators.
The former provide component models with stable interfaces and
behavior models formulated in the most appropriate component
behavior modeling language. The latter integrate these components
into an overall architecture.

Generating executable systems from ADLs with embedded
CBLs requires language integration mechanisms and either re-

quires specific, hardly reusable, code generators for each combi-
nation of languages or means to integrate generators for the partic-
ipating languages. We have presented an interface-based approach
to black-box code generator composition for ADLs with embedded
languages [2] that is implemented with the architecture modeling
framework MontiArcAutomaton [3, 4, 5].

In this contribution, we demonstrate the code generation of
MontiArcAutomaton for an example software architecture. To this
effect, Sect. 2 introduces preliminaries, before Sect. 3 introduces
the MontiArcAutomaton toolchain. Afterwards, Sect. 4 illustrates
the example and Sect. 5 discusses related work. Finally, Sect. 6
concludes.

2. Preliminaries
The modeling language integration mechanisms of MontiArc-
Automaton are implemented on top of the language workbench
MontiCore [6, 7]. MontiCore provides a modeling language to
describe the syntax of DSLs and generates language processing
infrastructure. MontiCore languages are defined as context-free
grammars with well-formedness rules (“context conditions”) to
model properties [8] not expressible with context-free grammars.
Based on a DSL’s grammar, MontiCore generates infrastructure to
translate textual models into an abstract syntax tree (AST) repre-
sentation, check the DSL’s context conditions, integrate it with
other languages [9, 10], and translate its models into general-
purpose programming language (GPL) artifacts [11]. For each non-
terminal rule of the DSL’s grammar, MontiCore generates an AST
class to represent the rule’s content. Terminal rules are mapped
to primitives. The syntax-oriented, black-box language integration
mechanisms of MontiCore support language aggregation, language
embedding, and language inheritance [10]. MontiArcAutomaton
uses language embedding to integrate elements of CBLs into the
ADL. To this effect, the model processing infrastructure for each
language can be generated individually and without considering
future embedding. MontiCore combines these infrastructures to
process integrated models and generates DSL-specific tools that
encapsulate everything required to parse and check models of the
DSL. The template-based code generation framework of Monti-
Core [11] employs the FreeMarker template engine1 to translate
models into GPL artifacts. However, it does not provide means
to compose code generators in a black-box fashion. Detailed de-
scriptions of MontiCore and its infrastructure are available [12, 8,
11].

1 FreeMarker website: http://freemarker.org/.
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Figure 1: MontiArcAutomaton software architecture ToasterBot.

3. MontiArcAutomaton
The MontiArcAutomaton modeling framework2 for C&C soft-
ware architectures integrates an extensible ADL with application-
specific CBLs and a comprehensive code generation framework.
The MontiArcAutomaton ADL models logically distributed C&C
software architectures where components perform computations
and connectors control communication. Components are black-
boxes with stable interfaces that consist of typed and directed ports,
configuration parameters, and type parameters to support definition
of generic component types. Components are either atomic or com-
posed: atomic components yield a component behavior description
– either a CBL model or a reference to a GPL artifact. Composed
components instead contain a hierarchy of components and their
behavior emerges from their interaction. The MontiArcAutomaton
ADL supports component inheritance and distinguishes between
component types and their instantiation. It also enables embedding
arbitrary MontiCore languages into an extension point for non-
terminals of CBLs and has been used with different languages,
such as I/Oω automata [5], IO Tables [4], or programs for a sim-
ple robot arm [2]. Embedding allows describing components and
their behavior in integrated artifacts and facilitates maintenance and
evolution of the architecture. All data types are modeled as UM-
L/P [11] class diagrams (CDs). Fig. 1 depicts the software architec-
ture ToasterBot that models a robotic toast service system. The
robot consists of seven components of which ToasterBot is com-
posed from multiple subcomponents. The robot receives input from
its sensors Receiver, ColorSensor, and UltraSonic which emit
signals over their outgoing ports (cf. port d of data type Float).
Based on its inputs, the component Controller calculates the next
action and instructs the component ArmController to perform a
certain program. The behavior of component Controller is mod-
eled with an I/Oω automaton CBL and the behavior of is modeled
ArmController is modeled using the RobotArm CBL.

3.1 MontiArcAutomaton Toolchain
Architecture models are parsed by MontiArcAutomaton’s model
processing infrastructure before being checked for well-formedness,
and finally transformed into executable systems using template-
based code generators [3]. Fig. 2 illustrates the toolchain and its
constituents. After integrating the behavior languages required for
parsing component models with integrated CBLs, the application’s
component models are processed. This entails parsing the models
into an AST and checking their well-formedness rules. Afterwards,
the code generators selected in the application configuration model
are instantiated and configured. Ultimately, the composed code
generator transforms the components into GPL artifacts that com-
ply to the same run-time system as the artifacts of handcrafted
component implementations. Building MontiArcAutomaton appli-

2 Available via http://monticore.de/robotics/montiarcautomaton
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Figure 2: MontiArcAutomaton processes models with integrated CBLs and
combines code generators to produce executable systems that comply to a
run-time system.

cations requires not only invoking its code generation toolchain but
also dependency management, code compilation, and execution
of tests. To this effect, MontiArcAutomaton employs the Maven3

build automation tool with a special plugin that configures and ex-
ecutes parsing, checking, and code generation. Maven takes care
of build process order, dependency resolution, uses the DSL’s tools
generated by MontiCore to process models, compiles the resulting
artifacts, and executes tests. Furthermore, Maven enables integra-
tion into the Eclipse IDE as well as with command line clients.

3.2 Code Generator Composition
MontiArcAutomaton combines modeling languages for three sep-
arate concerns: C&C structure, data types, and component behav-
ior. These languages are developed independently of each other by
different domain experts. The development of code generators fol-
lows the same separation, e.g., code generator developers for the
structural C&C part do not require expertise about code generators
for behavior. Code generator interaction is governed by MontiArc-
Automaton. As the three concerns are well-separated and follow
the language integration mechanisms, code generator composition
in MontiArcAutomaton and similar C&C ADLs can be described in
terms of the participating code generators’ types. The code gener-
ator composition infrastructure of MontiArcAutomaton [2] builds
upon three types of code generators: (1) component structure gen-
erators translate component interfaces, ports, connectors, and other
structural ADL elements to GPL artifacts; (2) behavior generators
translate component behavior models into GPL artifacts; (3) data
type generators translate CDs into GPL artifacts.

Component structure generators process complete architecture
models and thus require invoking component behavior genera-
tors whenever they process a component with embedded behavior
model. Structure generators invoke registered behavior generators
based on the language elements (AST nodes) these are responsi-
ble for. Following the separation of concerns between architecture
experts and behavior experts, component structure generators and
component behavior generators produce individual GPL artifacts.
Integration patterns for generated code are formalized in interfaces,
which component structure generators and behavior generators ex-
plicate. All participating code generators define how they may be
invoked and may restrict the models they are capable to process by
additional context conditions. For each generator type, an interface
exists, that formalizes these requirements and each participating
code generator is expected to implement exactly one of these in-
terfaces. Extracts of two such interfaces and their relations to other
composition artifacts are depicted in Fig. 3, which briefly recapit-
ulates [2]. Here, IComponentGenerator represents the interface
of a component generator and IBehaviorGenerator represents
a behavior generator. Both interfaces describe properties of the re-
spective code generator, such as the processable modeling language

3 Apache Maven website: https://maven.apache.org/
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element (in terms of the related AST node via method getRespon-
sibleAST()) and provides a method to configure() the code gen-
erator at run-time. To reduce code generator development effort, the
actual implementations of these interfaces are generated from gen-
erator configuration models [2] (although manual implementation
of these interfaces for special requirements is possible). An appli-
cation configuration model selects the software architecture and the
participating code generators. With this, the GeneratorOrches-
trator is configured, which checks whether exactly one generator
for each modeling language is present. Afterwards, it instantiates
the implementation of IComponentGenerator and configures it
with the available implementations of IBehaviorGenerator. The
component generator traverses the AST and whenever it visits a
behavior model, the responsible behavior generator is configured
with information from the currently processed AST and invoked.
Application configuration models and generator models are intro-
duced in [2].
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Each code generator in MontiArcAutomaton produces indepen-
dent artifacts that are integrated via compatibility to specific inter-
faces of explicit run-time systems (RTS). This separates behavior
implementations from component implementation internals and re-
duces sources of errors from misuse of component structure code
by component behavior code. It also reduces comprehension ef-
fort required by component behavior generator developers. Instead
of accessing ports, component configuration parameters, and other
component internals directly, the information relevant to compo-
nent implementations (such as the current inputs) is passed to be-
havior implementations in simplified form.

The integration of behavior implementations utilizes delega-
tors [13] as depicted in Fig. 4. This pattern unifies the integration of
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Figure 5: A robotic toast that employs multiple CBLs and for which multi-
ple code generators are composed.

implementations generated from CBL models and handcrafted be-
havior implementations for atomic components without embedded
behavior models. The packages ComponentCode, IOAutoma-
tonCode, and RobotArmCode are generated by the respective
generators. Package ComponentCode contains the implementa-
tions for all components of the generated system. For atomic com-
ponents, these rely on implementations of interface IComputable
to provide behavior as explicated per getRuntimeSystem() and
entailed by the convention that each RTS contains a single behavior
interface of this name. Each behavior generator produces artifacts
that implement this interface. As components are black-boxes, the
configuration of behavior models can only be passed through the
configuration parameters of the interface. Furthermore, the com-
ponent generator controls the class name of the resulting behavior
artifact (Fig. 3) Hence, it may directly reference to the results of the
behavior generators and their arguments.

4. Example
We have developed a robotic system to toast bread4 as depicted
in Fig. 5. The system consists of multiple Lego NXT controllers,
sensors, and actuators. It is modeled as the MontiArcAutomaton
software architecture depicted in Fig. 1 and uses two embedded
CBLs: I/Oω automata and RobotArm programs. The MontiArc-
Automaton toolchain was extended with the RobotArm language
and a behavior generator was developed as illustrated in Fig. 3. The
atomic components Receiver, ColorSensor, UltraSonic, Toast-
erController contain no behavior model and hence, component
behavior implementations were handcrafted. Fig. 6 displays the
outline of the ToasterBot’s Eclipse project, which depicts its mod-
els, handcrafted implementations, and generated Java artifacts in
the project explorer on the left. The right depicts the correspond-
ing application configuration model that selects the code generators
and part of code generated for ArmController.

5. Related Work
Previous work on modeling C&C software architectures focuses on
modeling and analysis aspects [14, 15, 16] instead of language in-
tegration or code generation issues. Where language integration of
CBLs is considered [17, 16] it is either restricted to the meta model
level and does neither support black-box language integration, nor
integration of language processing infrastructure [18]. C&C ADLs
that consider code generation are specialized to code generators for
specific language aggregates [19, 20]. Approaches towards code
generator composition for arbitrary modeling languages instead ei-
ther focus white-box integration based on code generator inter-
nals [21] or extensive handcrafting [22] of integration code. De-

4 The toast system in action: https://youtu.be/5EggJHtTg0c.
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tailed discussions of related work for different aspects are available
in the respective publication.

6. Summary
We have presented the MontiArcAutomaton modeling framework
and its toolchain for modeling C&C software architectures with
application-specific component behavior languages. This frame-
work enables modeling software architectures with the most-
appropriate behavior languages and code generation from inte-
grated models to GPL artifacts using compositional generators.
These generators exploit a separation of concerns of ADLs with
embedded behavior languages and rely on interfaces represent-
ing these concerns. The MontiArcAutomaton toolchain composes
such generators based on simple generator configuration models
and thus facilitates code generator reuse. MontiArcAutomaton has
been applied in various contexts and is subject to ongoing research.
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