
Composing Code Generators for C&C ADLs with
Application-Specific Behavior Languages (Tool Demonstration)

Jan Oliver Ringert
School of Computer Science, Tel Aviv University, Israel

http://cs.tau.ac.il/

Bernhard Rumpe and Andreas Wortmann
Software Engineering, RWTH Aachen University,

Germany
http://www.se-rwth.de/

Abstract
Modeling software systems as component & connector architec-
tures with application-specific behavior modeling languages en-
ables domain experts to describe each component behavior with the
most appropriate language. Generating executable systems for such
language aggregates requires composing appropriate code genera-
tors for the participating languages. Previous work on code gen-
erator composition either focuses on white-box integration based
on code generator internals or requires extensive handcrafting of
integration code. We demonstrate an approach to black-box gen-
erator composition for architecture description languages that re-
lies on explicit interfaces and exploits the encapsulation of compo-
nents. This approach is implemented for the architecture modeling
framework MontiArcAutomaton and has been evaluated in various
contexts. Ultimately, black-box code generator composition facil-
itates development of code generators for architecture description
languages with embedded behavior languages and increases code
generator reuse.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.13 [Software Engineer-
ing]: Reusable Software

Keywords Model-Driven Engineering, Component & Connector
Architectures, Code Generation, Code Generator Composition

1. Introduction
Modeling software systems with component & connector (C&C)
architecture description languages (ADLs) [1] and application-
specific component behavior languages (CBLs) facilitates the sepa-
ration of concerns between domain experts and system integrators.
The former provide component models with stable interfaces and
behavior models formulated in the most appropriate component
behavior modeling language. The latter integrate these components
into an overall architecture.

Generating executable systems from ADLs with embedded
CBLs requires language integration mechanisms and either re-

quires specific, hardly reusable, code generators for each combi-
nation of languages or means to integrate generators for the partic-
ipating languages. We have presented an interface-based approach
to black-box code generator composition for ADLs with embedded
languages [2] that is implemented with the architecture modeling
framework MontiArcAutomaton [3, 4, 5].

In this contribution, we demonstrate the code generation of
MontiArcAutomaton for an example software architecture. To this
effect, Sect. 2 introduces preliminaries, before Sect. 3 introduces
the MontiArcAutomaton toolchain. Afterwards, Sect. 4 illustrates
the example and Sect. 5 discusses related work. Finally, Sect. 6
concludes.

2. Preliminaries
The modeling language integration mechanisms of MontiArc-
Automaton are implemented on top of the language workbench
MontiCore [6, 7]. MontiCore provides a modeling language to
describe the syntax of DSLs and generates language processing
infrastructure. MontiCore languages are defined as context-free
grammars with well-formedness rules (“context conditions”) to
model properties [8] not expressible with context-free grammars.
Based on a DSL’s grammar, MontiCore generates infrastructure to
translate textual models into an abstract syntax tree (AST) repre-
sentation, check the DSL’s context conditions, integrate it with
other languages [9, 10], and translate its models into general-
purpose programming language (GPL) artifacts [11]. For each non-
terminal rule of the DSL’s grammar, MontiCore generates an AST
class to represent the rule’s content. Terminal rules are mapped
to primitives. The syntax-oriented, black-box language integration
mechanisms of MontiCore support language aggregation, language
embedding, and language inheritance [10]. MontiArcAutomaton
uses language embedding to integrate elements of CBLs into the
ADL. To this effect, the model processing infrastructure for each
language can be generated individually and without considering
future embedding. MontiCore combines these infrastructures to
process integrated models and generates DSL-specific tools that
encapsulate everything required to parse and check models of the
DSL. The template-based code generation framework of Monti-
Core [11] employs the FreeMarker template engine1 to translate
models into GPL artifacts. However, it does not provide means
to compose code generators in a black-box fashion. Detailed de-
scriptions of MontiCore and its infrastructure are available [12, 8,
11].

1 FreeMarker website: http://freemarker.org/.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

GPCE’15, October 26–27, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3687-1/15/10...$15.00
http://dx.doi.org/10.1145/2814204.2814224

113
[RRW15b] J. O. Ringert, B. Rumpe, A. Wortmann:
Composing Code Generators for C&C ADLs with Application-Specific Behavior Languages (Tool Demonstration).
In: Conference on Generative Programming: Concepts and Experiences (GPCE’15), pp. 113–116, ACM, 2015.
www.se-rwth.de/publications

http://cs.tau.ac.il/
http://www.se-rwth.de/
http://freemarker.org/

UltraSonic
d

Color

Sensor c

Controller

p
a

ArmController

p r

Program

ToasterBot Toaster

Controller te

t

e

TCCmd

c

d

toaster = 120° 20cm;

prog Pickup {

move up;

open;

move toaster;

close;

move up;

}

MAA

Float

outgoing port ‚d‘
of type ‚Float‘

Boolean

connector
between two ports

atomic component with
embedded automaton

composed component of
type ‚ToasterBot‘

incoming port ‚t‘
of type ‚TCCmd‘

TCEvent

atomic component with
embedded RobotArm programs

Receiver
r

r
Color

String

automaton {

state Idle,Toasting,..

Toasting->Retrieving

{e=FINISHED, c=DARK}

/ {p=Pickup};

// ...

}

}

Figure 1: MontiArcAutomaton software architecture ToasterBot.

3. MontiArcAutomaton
The MontiArcAutomaton modeling framework2 for C&C soft-
ware architectures integrates an extensible ADL with application-
specific CBLs and a comprehensive code generation framework.
The MontiArcAutomaton ADL models logically distributed C&C
software architectures where components perform computations
and connectors control communication. Components are black-
boxes with stable interfaces that consist of typed and directed ports,
configuration parameters, and type parameters to support definition
of generic component types. Components are either atomic or com-
posed: atomic components yield a component behavior description
– either a CBL model or a reference to a GPL artifact. Composed
components instead contain a hierarchy of components and their
behavior emerges from their interaction. The MontiArcAutomaton
ADL supports component inheritance and distinguishes between
component types and their instantiation. It also enables embedding
arbitrary MontiCore languages into an extension point for non-
terminals of CBLs and has been used with different languages,
such as I/Oω automata [5], IO Tables [4], or programs for a sim-
ple robot arm [2]. Embedding allows describing components and
their behavior in integrated artifacts and facilitates maintenance and
evolution of the architecture. All data types are modeled as UM-
L/P [11] class diagrams (CDs). Fig. 1 depicts the software architec-
ture ToasterBot that models a robotic toast service system. The
robot consists of seven components of which ToasterBot is com-
posed from multiple subcomponents. The robot receives input from
its sensors Receiver, ColorSensor, and UltraSonic which emit
signals over their outgoing ports (cf. port d of data type Float).
Based on its inputs, the component Controller calculates the next
action and instructs the component ArmController to perform a
certain program. The behavior of component Controller is mod-
eled with an I/Oω automaton CBL and the behavior of is modeled
ArmController is modeled using the RobotArm CBL.

3.1 MontiArcAutomaton Toolchain
Architecture models are parsed by MontiArcAutomaton’s model
processing infrastructure before being checked for well-formedness,
and finally transformed into executable systems using template-
based code generators [3]. Fig. 2 illustrates the toolchain and its
constituents. After integrating the behavior languages required for
parsing component models with integrated CBLs, the application’s
component models are processed. This entails parsing the models
into an AST and checking their well-formedness rules. Afterwards,
the code generators selected in the application configuration model
are instantiated and configured. Ultimately, the composed code
generator transforms the components into GPL artifacts that com-
ply to the same run-time system as the artifacts of handcrafted
component implementations. Building MontiArcAutomaton appli-

2 Available via http://monticore.de/robotics/montiarcautomaton

code

generation

generated

comp. impl.
generated

comp. impl.

environment

models

code

generator

generated

comp. impl.

run-time

system

behavior

language

generated

comp. impl.
generated

comp. impl.
manual

comp. impl.

generator

composition

model

processing

language

integration

MontiArcAutomaton

embedded component
behavior languages

application configuration model
selects code generators

available code
generators

Figure 2: MontiArcAutomaton processes models with integrated CBLs and
combines code generators to produce executable systems that comply to a
run-time system.

cations requires not only invoking its code generation toolchain but
also dependency management, code compilation, and execution
of tests. To this effect, MontiArcAutomaton employs the Maven3

build automation tool with a special plugin that configures and ex-
ecutes parsing, checking, and code generation. Maven takes care
of build process order, dependency resolution, uses the DSL’s tools
generated by MontiCore to process models, compiles the resulting
artifacts, and executes tests. Furthermore, Maven enables integra-
tion into the Eclipse IDE as well as with command line clients.

3.2 Code Generator Composition
MontiArcAutomaton combines modeling languages for three sep-
arate concerns: C&C structure, data types, and component behav-
ior. These languages are developed independently of each other by
different domain experts. The development of code generators fol-
lows the same separation, e.g., code generator developers for the
structural C&C part do not require expertise about code generators
for behavior. Code generator interaction is governed by MontiArc-
Automaton. As the three concerns are well-separated and follow
the language integration mechanisms, code generator composition
in MontiArcAutomaton and similar C&C ADLs can be described in
terms of the participating code generators’ types. The code gener-
ator composition infrastructure of MontiArcAutomaton [2] builds
upon three types of code generators: (1) component structure gen-
erators translate component interfaces, ports, connectors, and other
structural ADL elements to GPL artifacts; (2) behavior generators
translate component behavior models into GPL artifacts; (3) data
type generators translate CDs into GPL artifacts.

Component structure generators process complete architecture
models and thus require invoking component behavior genera-
tors whenever they process a component with embedded behavior
model. Structure generators invoke registered behavior generators
based on the language elements (AST nodes) these are responsi-
ble for. Following the separation of concerns between architecture
experts and behavior experts, component structure generators and
component behavior generators produce individual GPL artifacts.
Integration patterns for generated code are formalized in interfaces,
which component structure generators and behavior generators ex-
plicate. All participating code generators define how they may be
invoked and may restrict the models they are capable to process by
additional context conditions. For each generator type, an interface
exists, that formalizes these requirements and each participating
code generator is expected to implement exactly one of these in-
terfaces. Extracts of two such interfaces and their relations to other
composition artifacts are depicted in Fig. 3, which briefly recapit-
ulates [2]. Here, IComponentGenerator represents the interface
of a component generator and IBehaviorGenerator represents
a behavior generator. Both interfaces describe properties of the re-
spective code generator, such as the processable modeling language

3 Apache Maven website: https://maven.apache.org/

114

http://monticore.de/robotics/montiarcautomaton
https://maven.apache.org/

Application

Configuration

Model

ComponentsJava

Generator

«interface»

IBehaviorGenerator

RobotArmJava

Generator

IOAutomatonJava

Generator

«interface»

IComponentGenerator

*1

configures

Generated Code

producesGenerator

Orchestrator

ComponentsJava

generator configuration

IOAutomatonJava

generator configuration

RobotArmJava

generator configuration

specifies specifies specifies

+ Class getResponsibleAST ()

+ String getRuntimeSystem()

+ configure(String className, *)

+ Class getResponsibleAST ()

+ String getRuntimeSystem()

+ configure(IBehaviorGenerator[])

* *

Figure 3: MontiArcAutomaton code generators belong to one of three gen-
erator types [2] and implement the corresponding interfaces. An appli-
cation configuration model selects the code generators and the Genera-
torOrchestrator combines the generators accordingly.

element (in terms of the related AST node via method getRespon-
sibleAST()) and provides a method to configure() the code gen-
erator at run-time. To reduce code generator development effort, the
actual implementations of these interfaces are generated from gen-
erator configuration models [2] (although manual implementation
of these interfaces for special requirements is possible). An appli-
cation configuration model selects the software architecture and the
participating code generators. With this, the GeneratorOrches-
trator is configured, which checks whether exactly one generator
for each modeling language is present. Afterwards, it instantiates
the implementation of IComponentGenerator and configures it
with the available implementations of IBehaviorGenerator. The
component generator traverses the AST and whenever it visits a
behavior model, the responsible behavior generator is configured
with information from the currently processed AST and invoked.
Application configuration models and generator models are intro-
duced in [2].

ComponentCode

Run-Time System

IComputable

RobotArmCode

ArmControllerImpl

IOAutomatonCode

ControllerImpl

CD

ArmController

generated by ComponentsJava generator

Controller

generated by
RobotArmJava

generator

generated by
IOAutomatonJava

generator

RTS the generators
are compatible with

Receiver

Figure 4: Compatibility of artifacts produced by different generators is
ensured by compliance to run-time systems.

Each code generator in MontiArcAutomaton produces indepen-
dent artifacts that are integrated via compatibility to specific inter-
faces of explicit run-time systems (RTS). This separates behavior
implementations from component implementation internals and re-
duces sources of errors from misuse of component structure code
by component behavior code. It also reduces comprehension ef-
fort required by component behavior generator developers. Instead
of accessing ports, component configuration parameters, and other
component internals directly, the information relevant to compo-
nent implementations (such as the current inputs) is passed to be-
havior implementations in simplified form.

The integration of behavior implementations utilizes delega-
tors [13] as depicted in Fig. 4. This pattern unifies the integration of

controlled by
component

ArmController

controlled by
component

ToasterController

Figure 5: A robotic toast that employs multiple CBLs and for which multi-
ple code generators are composed.

implementations generated from CBL models and handcrafted be-
havior implementations for atomic components without embedded
behavior models. The packages ComponentCode, IOAutoma-
tonCode, and RobotArmCode are generated by the respective
generators. Package ComponentCode contains the implementa-
tions for all components of the generated system. For atomic com-
ponents, these rely on implementations of interface IComputable
to provide behavior as explicated per getRuntimeSystem() and
entailed by the convention that each RTS contains a single behavior
interface of this name. Each behavior generator produces artifacts
that implement this interface. As components are black-boxes, the
configuration of behavior models can only be passed through the
configuration parameters of the interface. Furthermore, the com-
ponent generator controls the class name of the resulting behavior
artifact (Fig. 3) Hence, it may directly reference to the results of the
behavior generators and their arguments.

4. Example
We have developed a robotic system to toast bread4 as depicted
in Fig. 5. The system consists of multiple Lego NXT controllers,
sensors, and actuators. It is modeled as the MontiArcAutomaton
software architecture depicted in Fig. 1 and uses two embedded
CBLs: I/Oω automata and RobotArm programs. The MontiArc-
Automaton toolchain was extended with the RobotArm language
and a behavior generator was developed as illustrated in Fig. 3. The
atomic components Receiver, ColorSensor, UltraSonic, Toast-
erController contain no behavior model and hence, component
behavior implementations were handcrafted. Fig. 6 displays the
outline of the ToasterBot’s Eclipse project, which depicts its mod-
els, handcrafted implementations, and generated Java artifacts in
the project explorer on the left. The right depicts the correspond-
ing application configuration model that selects the code generators
and part of code generated for ArmController.

5. Related Work
Previous work on modeling C&C software architectures focuses on
modeling and analysis aspects [14, 15, 16] instead of language in-
tegration or code generation issues. Where language integration of
CBLs is considered [17, 16] it is either restricted to the meta model
level and does neither support black-box language integration, nor
integration of language processing infrastructure [18]. C&C ADLs
that consider code generation are specialized to code generators for
specific language aggregates [19, 20]. Approaches towards code
generator composition for arbitrary modeling languages instead ei-
ther focus white-box integration based on code generator inter-
nals [21] or extensive handcrafting [22] of integration code. De-

4 The toast system in action: https://youtu.be/5EggJHtTg0c.

115

https://youtu.be/5EggJHtTg0c

hand-crafted
component

implementations

application
configuration

model

component
models

generated behavior
implementation of

component RobotArm

generated
code

Maven
build process
configuration

Figure 6: The ToasterBot application contains the robot’s software archi-
tecture models, handcrafted component implementations for atomic com-
ponents without behavior model, an application configuration that selects
code generators, and the code generated by executing their composition.

tailed discussions of related work for different aspects are available
in the respective publication.

6. Summary
We have presented the MontiArcAutomaton modeling framework
and its toolchain for modeling C&C software architectures with
application-specific component behavior languages. This frame-
work enables modeling software architectures with the most-
appropriate behavior languages and code generation from inte-
grated models to GPL artifacts using compositional generators.
These generators exploit a separation of concerns of ADLs with
embedded behavior languages and rely on interfaces represent-
ing these concerns. The MontiArcAutomaton toolchain composes
such generators based on simple generator configuration models
and thus facilitates code generator reuse. MontiArcAutomaton has
been applied in various contexts and is subject to ongoing research.

References
[1] Nenad Medvidovic and Richard N. Taylor. “A Classifica-

tion and Comparison Framework for Software Architecture
Description Languages”. In: IEEE Transactions on Software
Engineering (2000).

[2] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and
Andreas Wortmann. “Code Generator Composition for Model-
Driven Engineering of Robotics Component & Connector
Systems ”. In: 1st International Workshop on Model-Driven
Robot Software Engineering (MORSE 2014). 2014.

[3] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wort-
mann. “From Software Architecture Structure and Behavior
Modeling to Implementations of Cyber-Physical Systems”.
In: Software Engineering 2013 Workshopband. 2013.

[4] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wort-
mann. “MontiArcAutomaton : Modeling Architecture and
Behavior of Robotic Systems”. In: Workshops and Tutori-
als Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). 2013.

[5] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wort-
mann. Architecture and Behavior Modeling of Cyber-Physical
Systems with MontiArcAutomaton. Shaker Verlag, 2014.

[6] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “Mon-
tiCore: Modular Development of Textual Domain Specific
Languages”. In: Proceedings of Tools Europe. 2008.

[7] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “Mon-
tiCore: a Framework for Compositional Development of Do-
main Specific Languages”. In: International Journal on Soft-
ware Tools for Technology Transfer (STTT). 2010.

[8] Steven Völkel. Kompositionale Entwicklung domänenspezi-
fischer Sprachen. Shaker Verlag, 2011.

[9] Markus Look, Antonio Navarro Perez, Jan Oliver Ringert,
Bernhard Rumpe, and Andreas Wortmann. “Black-box In-
tegration of Heterogeneous Modeling Languages for Cyber-
Physical Systems”. In: Proceedings of the 1st Workshop on
the Globalization of Modeling Languages (GEMOC). 2013.

[10] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, An-
tonio Navarro Perez, Bernhard Rumpe, Steven Voelkel, and
Andreas Wortmann. “Integration of Heterogeneous Model-
ing Languages via Extensible and Composable Language
Components”. In: Proceedings of the 3rd International Con-
ference on Model-Driven Engineering and Software Devel-
opment. 2015.

[11] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen En-
twicklung mit der UML/P. Shaker Verlag, 2012.

[12] Holger Krahn. MontiCore: Agile Entwicklung von domänen-
spezifischen Sprachen im Software-Engineering. Shaker Ver-
lag, 2012.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1995.

[14] Manfred Broy, Franz Huber, and Bernhard Schaetz. “Auto-
FOCUS – Ein Werkzeugprototyp zur Entwicklung eingebet-
teter Systeme”. In: Informatik-Forschung und Entwicklung
(1999).

[15] Frank Höwing. “Effiziente Entwicklung von AUTOSAR-
Komponenten mit domänenspezifischen Programmierspra-
chen”. In: Proceedings of Workshop Automotive Software
Engineering. 2007.

[16] Peter H Feiler and David P Gluch. Model-Based Engineering
with AADL: An Introduction to the SAE Architecture Analysis
& Design Language. Addison-Wesley, 2012.

[17] Eric M Dashofy, André Van der Hoek, and Richard N Taylor.
“A Highly-Extensible, XML-Based Architecture Description
Language”. In: Software Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference on. IEEE. 2001.

[18] Leila Naslavsky, Hadar Ziv Dias, H Ziv, and D Richard-
son. “Extending xADL with Statechart Behavioral Specifica-
tion”. In: Third Workshop on Architecting Dependable Sys-
tems (WADS), Edinburgh, Scotland. IET. 2004.

[19] Christian Schlegel, Andreas Steck, and Alex Lotz. “Model-
Driven Software Development in Robotics : Communication
Patterns as Key for a Robotics Component Model”. In: Intro-
duction to Modern Robotics. 2011.

[20] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik
Ziadi, and Mikal Ziane. “RobotML, a Domain-Specific Lan-
guage to Design, Simulate and Deploy Robotic Applica-
tions”. In: Simulation, Modeling, and Programming for Au-
tonomous Robots. 2012.

[21] Markus Voelter and Iris Groher. “Handling Variability in
Model Transformations and Generators”. In: 7th OOPSLA
Workshop on Domain-Specific Modeling. 2007.

[22] Lorenzo Bettini. Implementing Domain-Specific Languages
with Xtext and Xtend. Packt Publishing Ltd, 2013.

116

	Introduction
	Preliminaries
	MontiArcAutomaton
	MontiArcAutomaton Toolchain
	Code Generator Composition

	Example
	Related Work
	Summary

