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Abstract—This work explores at first various communication
patterns, analyzing their strengths and trade-offs for distributed
systems. Two architectural patterns are then evaluated with
regard to their typical communication pattern and overall
methodical approach. The contribution lies in offering insights
into how different communication and architectural patterns
are applicable for efficiently designing high quality distributed
systems.

Index Terms—Distributed System, Communication Pattern,
Architectural Pattern, Tight Cohesion, Loose Coupling

I. INTRODUCTION

A. Motivation for Distributed Systems

The need for distributed systems is motivated by a variety
of perspectives, where some of which are presented in this
section: For structural reasons, a local distribution of systems
is observed if their subsystems are to be networked for
them to fulfill their purpose. For example, in the German
healthcare system, the IT systems of different stakeholders
located at different locations are connected through the
gematik telematics infrastructure. With the recently introduced
electronic prescription form, the IT systems of a general
practitioner, for example, are connected with those of a
pharmacy to prescribe and dispense medication to patients,
respectively. As an additional example, the automotive sector
can be mentioned, in which via the mobile communications
network a connection is established between vehicles and the
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backend of the manufacturer in order to offer value-added
services such as remote checking of the fuel level using a
smartphone app.

The increasing complexity of IT systems and the
functionalities they offer require a corresponding mastery
during the development and maintenance. Because of the
limitations of human cognitive capacity, this can often no
longer be achieved with a monolithic system due to the
large size. If a system with a particularly high level of
functionality is broken down into manageable subsystems, it
can be developed through division of labor.

Due to the size of nowaday’s systems, the development is
usually carried out in (locally distributed) teams. Thus, teams
or their members can do development work independently
from each other. This means that the response to change
requests can be made promptly within short release cycles.
Patches can then be delivered as needed. Often, timely patches
are required for fixing breaking changes, e.g., compatibility
issues, compliance reasons, critical bugs, performance issues,
or due to information security reasons. From the perspective of
the development organization, agile methods are advantageous
in such a context.

Isolated computing nodes with resource limitations are
oftentimes not suitable for meeting the required performance.
For instance, processors or memory modules in embedded
systems are limited in their performance or capacity. It can
be observed in aircraft or automobiles that individual onboard
computers or control devices only perform a dedicated task or
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implement a demarcated functional area.
When processing a system’s huge amount of tasks, load

balancing is needed to deal with peak loads. In this case, an
overall system is provided which can cope with the maximum
expected computing load. If necessary, the computing jobs
are distributed among the existing (spare) nodes in order to
achieve the required quality of service, i.e. without delay or
achieving the agreed availability.

The desired service quality can potentially be affected by
the failure of computing nodes. To counteract this deficit,
redundancy mechanisms are used to ensure the availability.
Unlike for load balancing scenarios, synchronization
mechanisms are necessary to seamlessly replace failed
systems with those that are kept in a waiting state. While
for example stateless Web server requests can be handled
and delegated to computing nodes with enough resources
without the need for synchronization, taking over a previously
interrupted task from another computing node requires the
synchronization of the (temporarily) computed data to ensure
determinism.

B. Contribution

As can be seen in section I-A the scenarios cover a broad
spectrum of applications, and so do the required architecture
implementations. Thus, there is no one-architecture-fits-all use
cases, but for the development of a distributed system a
proper architecture needs to be selected carefully to meet the
respective requirements. One aspect for driving the selection
of the right architecture are communication patterns. Thus,
this paper takes into account their direction of communication,
timing, structure, number of participants, degree of coupling,
and communication strategy. This enables the categorization
of architectural patterns. As an example, two architectural
patterns are introduced and related to their typical usage of
communication patterns.

C. Definition of Distributed Systems

An exact definition of the object under consideration is
required for the purposes of this paper. According to [1, p. 373]
we distinguish between a physical and a logical distribution:

• Physically distributed and mutually independent IT
systems have resources exclusively available to them,
such as memory, and exchange defined messages with
other IT systems via communication systems.

• Logically distributed systems consist of a set of
concurrent and mutually independent processes
(programs), which exchange data (messages) via
specified mechanisms for coordinating tasks. In doing
so, a process (program) has exclusive access to the
variables assigned to it.

When a user interacts with such a distributed system, the
distribution transparency is expected [2, p. 11]. This means
that the distributed nature of the system is hidden from its
users. In addition, such systems are usually scalable [3].

D. Differentiation from Parallel Systems

For the scope of this article we differentiate between
distributed and parallel systems. The distinction between the
two approaches is based on their architecture and their goal
of data processing: Parallel systems use several processors
within a single computer or a closely integrated (usually
homogeneous) cluster. They execute a program in parallel
across all processors involved and use a common control flow
(SPMD – single program multiple data). The objective is to
simultaneously work on different parts of the same task in
order to increase the processing speed [3].

A system can be both parallel and distributed by leveraging
parallel processing and distributed architecture. However, the
patterns considered in this work focus on just distributed
systems, while architectural patterns and concepts for parallel
systems are considered in [4], [5].

E. General Architectural Principles

With a clear understanding of distributed systems and their
differentiation from parallel systems, we can now shift our
focus to the general architectural principles that guide the
design of distributed systems. The architectural principles of
tight cohesion and loose coupling, which are described in
the following, serve as the basis for the architectural patterns
considered in this paper. According to the principle of tight
cohesion [6], [7], in structuring units, semantically related
calculations are carried out with semantically related data.
For example, in object orientation, data and calculation rules
are combined in one class. This is often accompanied by the
principle of secrecy (data encapsulation, information hiding),
with which the implementation of functionality is hidden from
its users and only made accessible via a defined interface.
These principles enable adequate structuring of the software
and independence from the respective implementation.

The interfaces between the structuring units of tight
cohesion are ideally characterized by loose coupling [6], [7].
Such a loose coupling is given if there are as few dependencies
as possible between structuring units. This ensures that a
change in one structuring unit causes as few or preferably
no changes in another structuring unit that interacts with the
first.

F. Necessity of Suitable Development Methodologies and
Languages

In the domain of software development, complexity
in systems engineering has long been addressed through
modeling. To effectively manage this complexity, modeling
languages must provide decomposition and refinement
capabilities. Coupled with a well-defined methodology, this
enables the efficient development of high-quality distributed
systems [8], [9].

Modeling languages such as Unified Modeling Language
(UML) [10] or Systems Modeling Language (SysML) [11]
are suitable for presenting designs and requirements of a
system to be developed. There is a learning curve and
additional front-loaded costs associated with Model-Based



Systems Engineering (MBSE). The choice between MBSE
and a document-based approach depends on the project
context. Developing and maintaining complex models can
be time-intensive and may not be warranted for smaller or
less complex projects. However, the use of Model-Based
Systems Engineering (MBSE) instead of document-based
approaches offers a better overview with improved consistency
of the model artifacts. In Model-Driven Systems Engineering
(MDSE) models are additionally linked to the products
(usually software) through generators. This holistic chain
enables a more consistent maintenance between model and
product. It also reduces the time effort by automating repetitive
tasks, which can result in shorter development cycles.

Both UML and SysML are universally applicable. This
flexibility often leads to incompatible models in practice due
to ambiguities in their interpretation. Also, the analyzability
of the models is reduced, since specific statements, for
example about the behavior of a subsystem, are not possible.
These ambiguities can be eliminated by suitable development
methodologies such as SPES [12]. The methodologies provide
guidelines for using modeling elements, for example, by
restricting them to semantically well-defined constructs. Such
methodologies can then be put into industrial practice through
tool integrations like SpesML 1. Formal correctness analysis
of SysML models can also be realized in this way [13], which
is an appropriate means of meeting ever-increasing operational
and information security requirements.

Building on the formal specification language FOCUS [14],
the article [15] introduces a semantic basis for developing
modular and hierarchical distributed systems in a model-
based way. This semantic basis describes that system
components have an interface and a description of their
behavior. The interface allows communication with other
system participants. The behavior can be depicted either
as a composition (additional hierarchy level), as a black
box specification, or as an automata [16], [17]. Further
development of distributed systems, through which correctness
is guaranteed, is possible with the principle of refinement [18].
This principle allows, for example, the effective development
of software product line architectures in the automotive
industry [19], the design of energy-efficient cyber-physical
systems [20], or the modeling of secure communication
systems in aviation [13].

II. ONTOLOGIES AND CORRESPONDING COMMUNICATION
STANDARDS

The concept of loose coupling presented in section I-E
increases the independence between communicating entities.
However, this increases the necessity for specifying the
messages to be exchanged. In particular, a common semantic
basis for the content exchanged via the messages is required.
Ontologies are suitable for this purpose because they describe
a conceptual scheme for a particular domain in a technology-

1https://spesml.github.io/, accessed on 18/09/2024.

neutral way [21]. Entities are defined as categories with
associated properties, which are connected via relations.

For a machine-based processing of ontologies, the W3C
Web Ontology Language2 (OWL) in the current version 23

is often used. This is based on Description Logic (DL, [22]),
which provides the formal basis for the syntax and semantics.
Such an ontology is stored in a machine-readable form in the
Semantic Web document format. To simplify machine-based
processing, the query language SPARQL4 (SPARQL Protocol
and RDF5 Query Language) can be used.

An Interface Description Language (IDL) is a formal
language that is used to describe the structure, methods, and
data formats of an interface between software components
[23]. These languages are used to ensure that different
systems or services can communicate with each other,
regardless of the underlying implementations or platforms.
To ensure interoperability between different systems, various
IDL standards have been established, some of which are listed
below:

• OpenAPI6: A widely used standard for describing
RESTful APIs. It enables the automatic generation of
documentation, client, and server code and provides
testing and validation tools.

• WSDL (Web Services Description Language)7: An
XML-based standard for describing SOAP (Simple
Object Access Protocol) web services that specifies the
operations and data formats.

• Protocol Buffers8: Is a serial data format developed by
Google that is used to efficiently describe and transfer
structured data. It is used as the standard format for the
gRPC framework (Remote Procedure Call), among other
things.

III. COMMUNICATION PATTERNS FOR DISTRIBUTED
SYSTEMS

With ontologies and communication standards in place
to ensure a shared understanding of data and seamless
interoperability, the focus now shifts to how distributed
systems actually operate in practice. Communication patterns
for distributed systems describe how different units of a
distributed system interact with each other and exchange
information. The selection of a suitable pattern depends on
the specific use case and significantly influences the efficiency,
reliability, and scalability of the entire system [24]. In a
complex distributed system, several communication patterns
are often combined to achieve the best possible performance.
In order to make the different patterns more comparable,
criteria for uniform classification are introduced first:

2https://www.w3.org/OWL/, accessed on 27/09/2024.
3https://www.w3.org/TR/owl2-overview/, accessed on 27/09/2024.
4https://www.w3.org/TR/sparql11-overview/, accessed on 27/09/2024.
5Resource Description Framework forms the basis of OWL for the

representation of information about resources in a graph, see also https:
//www.w3.org/RDF/, accessed on 27/09/2024.

6https://www.openapis.org, accessed on 01/10/2024.
7https://www.w3.org/TR/wsdl20/, accessed on 01/10/2024.
8https://protobuf.dev, accessed 10/01/2024



• The direction of communication refers to the
direction of the flow between units of a distributed
system. A distinction is made between unidirectional
(communication takes place in one direction, from the
sender to the receiver) and bidirectional (communication
takes place in both directions between sender and
receiver).

• The temporal coordination describes whether the
communication is synchronous or asynchronous.
Synchronous means that the sender waits for a response
before it continues to work. Thereby, the control flow is
blocking. In asynchronous communication, the sender
sends a message and continues without waiting for a
response. The control flow is not blocking.

• The structure describes the organization of the
communication units. Centralized means that a central
unit coordinates the communication, while in a
decentralized structure the communication takes place
without central control.

• Number of participants: Describes how many senders
and receivers are involved in the communication. A
distinction is made between One-to-One, One-to-Many
and Many-to-Many communication.

• The degree of coupling describes the dependency
between the systems or components involved. Tightly
coupled means that the systems are directly dependent on
each other, while loosely coupled means that the systems
can act independently of each other.

• The communication strategy describes whether the
sender or the receiver initiates the communication. A
distinction is made between push (the sender initiates the
communication and “pushes” the data to the receiver) and
pull (the receiver initiates the communication to retrieve
data from the sender).

In the following, commonly used communication patterns
are explained and classified concerning the criteria mentioned
above. In addition, fig. 1 compares the communication patterns
based on the criteria.

In distributed systems, communication patterns can be
combined in various ways to suit the specific requirements
of different architectural components. Certain parts of the
system may rely on distinct patterns, while in some cases,
multiple patterns can be employed within the same component
to support different aspects of a single interaction. However,
not all communication patterns can be easily combined. For
example, merging Request-Response with Publish-Subscribe
can be challenging due to their differing timing characteristics.
Selecting compatible communication patterns requires careful
consideration of each pattern’s characteristics, and how well
they align with the system’s communication needs.

A. Request-Response

The request-response-pattern is a widely used bidirectional
communication pattern in which a client (sender) sends a
request to a server (receiver) and the server then sends
back a response [25]. This pattern relies on pull-based

communication, where the client initiates the interaction to
retrieve data from the server. Communication usually takes
place synchronously, i.e., the client waits for the server’s
response before continuing its work.

Areas of application include, among other things, web
applications (HTTP-based communication between browsers
(clients) and web servers), database queries (applications send
queries to a database and receive the result of the query) or
remote procedure calls (RPC), in which clients call remote
procedures (functions) on a server.

The advantages of the request-response pattern are its
simplicity and clarity, the good control over the process (the
client can decide how to proceed based on the response), and
the widespread support in many protocols and libraries.

Disadvantages are the high latency (the client is blocked
until the response arrives), the dependency on the server due
to the centralized structure (communication is interrupted if
the server fails), the difficulties in scalability (the more clients
send requests, the more difficult it becomes to cope with the
load) and a tight coupling between client and server.

B. Publish-Subscribe

The publish-subscribe pattern is a flexible and asynchronous
unidirectional communication pattern in which messages are
sent (pushed) from a publisher to one or more subscribers
without the publisher knowing the identity of the subscribers
[26]. It is based on the idea that messages are grouped
according to certain topics or “channels” and subscribers
“subscribe” to these topics to receive the associated messages.
Usually, there is a central intermediary or message broker
(such as Kafka or RabbitMQ) that receives the messages and
forwards them to the corresponding subscribers.

Application areas include content-distribution networks
such as news or social media portals (information/messages
are distributed to all subscribers), IoT applications (sensors
send data to a central broker that forwards the data to interested
subscribers), and log and monitoring systems (systems such as
Elasticsearch, Logstash, Kibana, or Prometheus use publish-
subscribe for the distribution of logs and monitoring data).

The advantages of the publish-subscribe-pattern are the
loose coupling between publisher and subscriber (they do
not need to know each other), the scalability (multiple
subscribers can receive messages simultaneously without the
publisher having to do any extra work), the asynchronous
communication (no direct answers or feedback is necessary)
and the high flexibility (new subscribers can easily be added
without changing the publishers).

Disadvantages include the difficulty of troubleshooting
(since publisher and subscribers are decoupled, it can be
more difficult to find errors in the communication chain), the
lack of guaranteed delivery (depending on the implementation,
messages may be lost or not all subscribers may receive the
message), possible delays (in systems with many messages
and many subscribers, there may be delays when the
broker distributes the messages), and the more complex



Fig. 1. Classification of Communication Patterns.

synchronization (if several systems or subscribers react to the
same data, it can be difficult to synchronize them correctly).

C. Message Queueing

Message queueing is a unidirectional communication
pattern in which messages are temporarily stored in a queue
before they are processed by the receivers [26], [23]. Here, the
sender places a message in a queue without communicating
directly with a receiver. The receiver collects the message
from the queue (according to the pull principle) and processes
it at a later time. The pattern is often used to decouple the
communication between different system components and to
enable asynchrony by buffering messages and sending and
receiving them independently of each other. There is usually a
central message queueing system (such as RabbitMQ, Apache
Kafka, or Amazon SQS) that receives the messages and puts
them in the queue.

Areas of application include load balancing (applications
that have to distribute different workloads to several
consumers), asynchronous processing (systems that have to
process large quantities of messages, e.g. batch processing
or job queues), and fault-tolerant systems (since messages
are stored temporarily, even if the consumers are temporarily
unavailable).

The advantages of the message-queueing-pattern are the
high decoupling of sender and receiver (sender and receiver do
not have to be active at the same time), scalability (consumers
can be added or removed depending on the load in order to
cope with the load without affecting the sender), and fault
tolerance and reliability (because messages are buffered until
they are processed, even if a receiver fails).

Disadvantages are the more complex architecture (the
introduction of queues leads to a more complex system
architecture, especially in error handling and queue
management), latency (delays in processing, especially
if the queue is long or consumers are overloaded), and
memory and resource management (queues require additional

memory and must be configured correctly to manage resources
efficiently and not overflow).

D. Broadcast and Multicast

Broadcast and multicast are unidirectional and
asynchronous communication patterns in which messages are
sent (based on the push principle) from one sender to several
receivers [27]. The main difference between the two lies in
the target group of the messages: With broadcast, messages
are sent to all participants in the network, while multicast only
sends messages to a defined group of receivers. Furthermore,
broadcast uses a decentralized structure because messages are
sent to all nodes in the network without a central control over
the receivers. Multicast usually follows a more centralized
approach, with a central server managing multicast groups.

Publish-Subscribe can be seen as a specific form of
multicast; however, it differs by relying on a broker as
an intermediary that manages subscriptions and selectively
distributes messages to interested receivers. This approach
allows for additional features, such as filtering and persistence,
providing more control over the distribution and handling of
messages.

Application areas for the broadcast and the multicast include
network management (e.g. DHCP requests to all the devices in
the network), real-time transmissions for example in streaming
applications or in the IoT area (e.g., to send sensor data to a
group of recipients).

The advantages of broadcast and multicast are efficiency,
scalability, and centralized management. In particular,
multicast is an efficient method, since a message is only sent
once but is received by several receivers at the same time. This
reduces the bandwidth consumption compared to individual
point-to-point communication. Multicast supports a large
number of receivers without overloading the sender because
typically, the network infrastructure takes care of distributing
the messages. The sender does not have to establish individual



connections to the receivers, which simplifies the management
of communication.

Disadvantages of broadcast and multicast encompass the
lack of feedback (neither broadcast nor multicast provide
feedback from the receivers to the sender by default, resulting
in no guarantee that the messages have been successfully
received). Additionally, they can lead to network overload
(broadcast, in particular, can overload the network because all
nodes must process the messages, even if they do not require
them).

E. Peer-to-Peer

Peer-to-peer (P2P) is a communication pattern in which
the participants in a network (known as peers) communicate
directly with each other and no central authority is required
manage the communication [23]. Each peer operates in a
decentralized manner and can function bidirectionally as
both a sender (client) and a receiver (server), capable of
both receiving and sending messages. P2P networks can
implement both push and pull models. A peer can actively
send data to other peers (push), or peers can request data from
other peers (pull). The direct communication between peers
leads to a close coupling between the individual participants.
The communication can be synchronous or asynchronous,
depending on the implementation.

Areas of application for P2P networks include file-
sharing systems (e.g. BitTorrent), blockchain technologies
(e.g. Bitcoin), VoIP services (e.g. Skype), or distributed
computing power (e.g. SETI@home).

The advantages of the peer-to-peer pattern are scalability
(P2P architectures can grow with the number of participants
without straining central resources), fault tolerance (if a peer
fails, another peer can take over the communication), and
cost efficiency (the costs for central servers and infrastructure
are avoided because the resources are distributed between the
peers).

The disadvantages of P2P are performance (the quality of
the network can fluctuate since resource allocation depends
heavily on the performance and availability of individual
peers) and security risks (P2P-systems are more susceptible
to security risks such as malware propagation). Another
disadvantage is the more difficult management (the lack of
a centralized management makes monitoring and regulating
the system more difficult).

F. Event-Driven Communication

Event-Driven Communication (EDC) is a pattern in which
an unidirectional communication between units in a network is
determined by events [28], [26]. Events can represent changes
in a system, such as state changes or user input that are
communicated to other components. The components in an
EDC system react to these events, which are generated by
other components, by performing certain actions or triggering
further events. In the Event-Driven Communication pattern, an
event producer generates an event that is transmitted via an
event channel (according to the push principle) and typically

serves as a central component. Event consumers react to
these events when they arrive and process them. Abstracting
from a central component, each component can be event
producer and receiver. But in this case, the components must
know the interfaces of other components or system parts they
wish to communicate wish. Using a central component, other
components must only know the central one and only the
central component knows the interface of all components.
EDC systems are usually asynchronous and loosely coupled
because the various components work independently of each
other and do not need to communicate directly with each
other. In contrast, an example of a non-event-driven distributed
system is a batch processing system, where tasks are executed
in bulk across multiple nodes at scheduled times or intervals,
rather than reacting to real-time events. In this setup, data is
collected and distributed among different nodes, but processing
occurs only at predefined intervals.

Areas of application for EDC include E-commerce systems
(order tracking is often triggered by events such as “order
created”, “payment confirmed” or “product delivered”),
Internet of Things (sensors generate events such as temperature
changes or motion detection, which are then processed by
other devices or systems), and financial systems (stock market
prices, transactions, and market changes can be processed as
events in real-time).

The advantages of EDC are the loose coupling (components
are not directly dependent on each other, but only react to
events), and the scalability (new components can be added
without changing the existing ones).

The disadvantages of EDC are the high complexity (due
to the fact that the control flow is not linear and a
lot of components work independently of each other), the
lack of transaction security (because of the asynchronous
communication, it can be more difficult to ensure consistent
transaction security across multiple components), and the
difficulty of troubleshooting (since the sequence of events is
often not deterministic).

IV. ARCHITECTURAL PATTERNS FOR DISTRIBUTED
SYSTEMS

This section introduces two architectural patterns for
designing distributed systems and categorizes them in regards
to their typical communication patterns or combinations
thereof and the methodical approach.

A. Microservices

Microservices are an architectural pattern that divides a
software system into individual, mutually independent services
with a clearly definable technical scope (the bounded context)
[29]. Each service focuses on a specific, usually small
functional task, that can be implemented by a dedicated
development team of a maximum of ten people.

Microservices are based on the principle of modularization
[30]. The basic idea is to divide a system into modules with
limited complexity and clearly defined interfaces. In contrast
to traditional modularization techniques, microservices are



structured so that each module runs in its own independent
process and communicates through a language-neutral network
interface. Each service should have its own data storage,
independent business logic, and, if necessary, a user interface.
The technology stack (e.g. programming language, database
technology, etc.) can be selected individually for each
microservice in order to tailor it optimally to the respective
use case.

A key advantage of microservices is their independent
deployability. Development teams can put individual services
into production largely independently of each other, as they
are executed in isolation from each other and are only loosely
coupled via the network. In addition, coordination efforts
between teams are significantly reduced when implementing
large software systems, resulting in a faster time-to-market for
new features.

However, a microservices architecture also brings
challenges with it, particularly in terms of infrastructure.
Orchestrating and managing a large number of distributed
services that communicate in the network is far more complex
than with a monolithic approach, in which all functionalities
are bundled into a single large service. Moreover, end-to-end
testing of the entire system and ensuring fault tolerance pose
particular requirements.

In microservices-based architectures, different
communication patterns are often combined with each
other to optimally fulfill the requirements of the system.
Typical deployed communication patterns are request-
response (for synchronous communication between services),
publish-subscribe (for asynchronous communication and
event-driven communication), and message queueing (for
decoupling of services and processing of messages in the
queue).

B. MontiBelle Pattern

The development of distributed systems based on the
MontiBelle methodology is aligned with the requirements
of avionics and is presented in [31]. The methodology not
only supports the methodical and model-based specification
of distributed systems but also the mapping of the semantics
of the system in the theorem prover Isabelle [32], [33]. This
then enables a formal correctness verification that accompanies
the development process [34]. The integration of domain-
specific modeling languages such as SysML or MontiArc
is possible and presented in [35], [36] using an avionics
case study. In principle, however, the MontiBelle approach
is language-agnostic with regard to the selected architecture
modeling language [37]. The MontiBelle methodology builds
upon the SPES development methodology [12] and utilizes
FOCUS citeBS01 as a formal foundation and semantic domain
for distributed systems. Its application in other domains
therefore is possible in principle and has been demonstrated,
for instance, for the automotive industry [38].

A system developed using the MontiBelle methodology
is typically characterized by event-driven communication.
However, alternative types of communication can also be

modeled and defined. The communication procedure can
either be modeled directly in the behavior of the components
or added to communication channels modularly as separate
processing components. Fundamentally, this also enables
the creation of diversified systems whose sub-systems can
communicate in different ways. Leveraging the modularity and
compositionality of the MontiBelle methodology to provide
a model library for the different communication patterns
described in section III offers practitioners simplified design
choices and combination possibilities.

As advantages, the formal basis FOCUS gives the modeled
system clear semantics by mapping the models to Focus as
its semantic domain [39] and thus enables strong verification
and validation for safety-critical systems. Furthermore, starting
from an abstract underspecified system architecture of
High-Level Requirements (HLRs) allows allocating system
parts or components to different development teams. The
development teams refine their respective development object
while maintaining compliance to their HLRs. This leads
to a loose coupling between system components while
maintaining high cohesion in strongly connected systemparts
over potentially multiple hierarchical system levels. Integration
problems do not occurr, since compositionality of refinement,
i.e., refining components seperately and then composing
them together leads to the refinement of the whole system,
is ensured by the use of FOCUS as a formal basis.
Leveraging a model-driven approach [40], using a SysMLv2
Profile for formal specification of distributed systems
(MontiBelleML [35]), the methodology MontiBelle [41], and
a Formal Integrated Development Environment (F-IDE) that
encodes MontiBelleML models into Isabelle syntax [42], the
MontiBelle pattern allows a hardware, programming language,
and tool independent functional design for the distributed
system.

As a disadvantage, the need for strictly formal models
of the architecture might lead to a longer time-to-market.
Following the MontiBelle pattern, starting with abstract
formal HLRs, refining and decomposing then into the
distributed architecture, and afterwards modeling concrete,
close to implementation Low-Level Requirements (LLRs), is
an overhead, but leads to formal verification of safety-critical
properties. Furthermore, building variants of systems and their
formal verification is then faster as most verification and
modeling effort was already done and need no, or only few,
changes.

V. CONCLUSION AND OUTLOOK

In this paper different communication patterns of distributed
systems were compared. The results regarding their direction
of communication, timing, structure, number of participants,
degree of coupling, and communication strategy was
summarized in fig. 1. Afterwards, two architectural
patterns were introduced. Both patterns offer insight
into the methodical development of distributed systems.
The MontiBelle pattern is a model-driven approach and
formally specifies distributed systems early on in the design



phase. This enables formal verification of safety critical
properties, especially relevant for certification of safety
critical system in the avionics industry. The development of
Microservice architectures allows through its loose coupling
independent development of its components. In comparison,
the Microservice approach is less formal early one and lacks
formal verification capabilities for the early design phase, but
may result in a faster time-to-market.
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L. Linsbauer, I. Schaefer, and A. Wortmann, Eds., vol. 2814. CEUR,
February 2021.

[38] S. Kriebel, D. Raco, B. Rumpe, and S. Stüber, “Model-Based
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