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Abstract—The integration of independently developed digital
twins for automotive diagnosis in a service-oriented vehicle
architecture into a complex systems-of-systems rises various
challenges to be handled. These challenges have to be tackled
in detail for each particular domain and technical system
architecture. Current research lacks to discuss them for service-
oriented vehicle architectures. Within the project AUTOtech.agil,
we are developing a digital twin for automotive diagnosis. This
paper describes the application scenario, discusses integration
challenges in detail and identifies possible mitigation strategies
for the challenges. This discussion allows us to identify areas
where general mitigation techniques have yet to be found and to
extract a concrete roadmap for the automotive diagnosis digital
twins.

Index Terms—Digital Twin, Model-Driven Engineering, Soft-
ware Architecture, Automotive, Vehicle Diagnosis, Integration

I. INTRODUCTION

The term software-defined vehicle (SDV) [1] describes

the vision of software-driven automotive development, where

functions are primarily defined by software. The research

project AUTOtech.agil develops a service-oriented architec-

ture for SDV to enable easy updateability and upgradability

[2]. We efficiently develop digital twins (DTs) for vehicle
diagnostics utilizing model-driven engineering (MDE). Model-

driven digital twin engineering approaches [3] are applied for

creating digital twins of cyber-physical systems [4], e.g., in

production [5]–[9], for hospital transportation systems [10],

wind turbines [11], robotic arms [12], spacecrafts [13], soccer

robots [14] or indoor air quality management systems [15].

MDE approaches are also applied for DTs of software sys-

tems [16], cyber-bionical systems [17], or smart cities [18].

Within the automotive domain, up to now, digital twins for,

e.g., for safely connected cars [19], vehicle system dynam-

ics [20], smart electric vehicles [21], or electric vehicle battery

systems [22], have been developed, however, MDE is rarely

used for their development.

As the understanding of DTs often differs from domain to

domain, prior to presenting our approach and the resulting

challenges, a clarification of our understanding of DTs and

digital shadows is required. The following definition is based

on [5], [10], [23], [24], and was first published in [25]. It

aims to provide a general definition for DTs applicable to

The work presented in this paper was funded by the German Federal
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various purposes. In our understanding, “a digital twin of a
system consists of a set of models of the system and a set
of digital shadows, both of which are purposefully updated
on a regular basis, and provides a set of services to use
both purposefully with respect to the original system. The
digital twin interacts with the original system by providing
useful information about the system’s context and sending it
control commands.” [25] A digital shadow includes “a set of

contextual data traces and/or their aggregation and abstraction

collected concerning a system for a specific purpose with

respect to the original system.” [24] Thus, a DT might include

several digital shadows for different purposes encapsulating

the relevant data and relationships to relevant models. Clearly,

these digital shadows as well as the digital twin itself are

subject to change over time, as the related cyber-physical

system can be updated and upgraded.

The requirement for easy updateability and upgradability in

SDV requires the constant evolution of our DT. Thus, instead

of developing and updating one highly complex DT each time,

we develop compositional DTs, such that only the DTs of

updated services need modifications. During DT engineering,

we use architecture models in an iterative MDE approach [26]

to refine the DT. The evolution of DTs is still a challenging

research area [27]. While our compositional DT approach

focuses on easing the DT engineering and evolution, it requires

integrating small DTs. The integration of these model-based

DTs in itself comes with many different challenges.

In [28], we identified and described 15 challenges for

integrating DTs. In this paper, we discuss how these challenges

apply to the application scenario of SDV in AUTOtech.agil

and how we intend to handle the challenges. This paper’s

contributions are:

(a) A description of the application scenario of digital twins

for automotive diagnosis in AUTOtech.agil.

(b) The discussion of the challenges for DT integration as

stated in [28] in the context of the application scenario.

(c) A discussion of mitigations for these challenges in the

given application scenario.

For this specific use case, we have identified 8 of the chal-

lenges as not relevant, 5 as relevant, and 2 as very relevant. The

remainder of this paper is structured as follows: We present the

application scenario and the technical concept of how we build
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DTs for diagnosis in Sec. II. Sec. III discusses the challenges

for DT integration in the context of the application use case,

and how we intend to handle the challenges. In Sec. IV we

show a research roadmap that emerges from the discussion

before we conclude.

II. APPLICATION SCENARIO

The vision of software-defined vehicles (SDV) is that the

functions of vehicles are enabled through software. A key role

in this vision is the use of a few strong computing resources

that orchestrate services in the vehicle. Traditional vehicle

manufacturing statically integrates software components to

software architecture at design time. SDV instead envisions

an easy updateability and upgradability of the software via

dynamic architectures.

Fig. 1. Application scenario in the project AUTOtech.agil; Self-driving
vehicles of different types (shuttles, transporters, taxis, and personal vehicles)
provide mobility services. Multiple vehicles are managed by fleet managers.

A. Digital Twin Hierarchy

In the research project AUTOtech.agil, we develop digital

twins (DT) for SDV for diagnosing issues within vehicles [29].

Fig. 1 sketches the project’s vision of different types of self-

driving vehicles: shuttles, transporters, taxis, and personal ve-

hicles. Multiple vehicles are managed by fleet managers, e.g.,

for a transportation company or a shuttle service company. The

project employs the automotive service-oriented architecture

(ASOA) [2] for vehicles’ software components. The ASOA

defines multiple layers for service components, as shown in

Fig. 2 (bottom to top):

• The physical layer shows the single electronic control

units (ECU), which are interconnected via Ethernet.

• The service layer describes vehicle services, which pro-

vide and require interfaces, compute functions, and con-

trol the hardware, e.g., window motors, window control

buttons, or the trajectory motor.

• The function layer describes the vehicle functions that

emerge from the interplay of services.

• The driving mode layer describes different modes of

the vehicle. The car may be in the automated driving
mode. The tele-operation mode means that the vehicle is

remotely controlled by a human operator in situations that

the automated driving mode cannot handle. The secure

stop mode means that the car securely comes to a stop

in the case of irresolvable incidents.

The ASOA orchestrator controls how the vehicle services

are interconnected via a mode automaton. The automaton

switches between service interconnection modes based on

triggers from the service meta data. E.g., when a laser scanner

service for environment detection becomes unavailable, it can

switch to a camera-based detection for safely stopping the

car for maintenance. Fig. 2 shows active modes, functions,

services, and ECUs as configured by the orchestrator at a given

time as an example (blue background).

Fig. 2. Layered Architecture of the ASOA (adapted from [2])

The application scenario uses DTs on two levels for diag-

nosing issues in the vehicle: (1) vehicle services of the ASOA

and (2) the vehicle level.

First, for each vehicle service we develop a DT for single

vehicle service diagnosis (vehicle service DT). An example is

a diagnosis DT for the front left wheel (and one each for the

other three wheels).

As part of this vehicle service DT, digital shadows store

time-related data about the wheel’s runtime properties, in-

cluding the pressure and the rotational speed, alongside meta

data, including the service availability status, and quality

data that describes the quality of the data provision. The

latter can decrease over time, e.g., when the pressure sen-

sor’s precision decreases over time. A diagnosis DT service
provides operations for diagnosing the data and meta data.

Using an architecture modeling language, we model vehicle

services and their behavior according to their specification

and generate the respective vehicle service DT, which in-

cludes a simulator DT service. Thus, we can check whether

the observed behavior of an ASOA service conforms to its

specification. In the ASOA architecture, both hardware and

software components are handled as services, and detectable

errors on both hardware- and software side throw error codes.

These error codes are explicitly handled by our DTs, which

offer predefined diagnosis operations for each error code. As
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Fig. 3. ASOA ervices involved in planning automated driving and safe halting
(adapted from [29]).

both hardware and software components are services, we do

not explicitly differentiate between software-induced errors,

e.g., receiving an implausible message value, and hardware-

induced errors, e.g., faulty memory causing the termination of

a service. Instead, each kind of error has its own error code.

Diagnosis does not only operate on single-vehicle services.

Multiple vehicle services may contribute to a diagnosis. There-

fore, secondly, we develop a vehicle DT by integrating the DTs
of the vehicle services. This vehicle DT also implements the

orchestrator as a DT service that tracks vehicle service inter-

connections. A subset of the orchestrator automaton represents

a single vehicle function, from which we can derive a DT ser-

vice for function diagnosis. Fig. 3 gives an example of services

in the ASOA for automated driving. A vehicle function in

this context is given by the driving dynamics function, which

controls the steering and the speed of the vehicle according to

the trajectories calculated from the automated driving and safe

halting planners. These trajectories then consider additional

information from the environment monitoring service, before

being sent to the vehicle dynamics control service. This service

then executes the resulting trajectories by sending control

commands to the wheel hubs. As each wheel hub in the

AUTOtech.agil vehicles is steered and powered individually

[30], the driving dynamics function coordinates the maneu-

vers by sending steering and motor signals from the vehicle

dynamics control to each individual wheel hub, which in return

Fig. 4. The hierarchical control flow of the vehicle DT; it can combine the
diagnosis operations of the vehicle service DTs to enable effect chain analysis.

sends status data back to the vehicle dynamics control. Thus,

we introduce a diagnosis DT service for the driving dynamics

function and compose it with the DTs of all-wheel hub

services. The diagnosis service for the function in the vehicle

DT therefore provides read/write access to the data and meta

data required for the driving dynamics function and all wheel

hub sensors. This approach creates a hierarchical composition

of DTs for diagnosis with a vehicle DT integrating all vehicle

service DTs. This hierarchical integration can be seen in Fig. 4.

A DT operator can run diagnostic operations using a diag-

nostic device. This device is able to connect to the vehicle DT

and single vehicle service DTs and send diagnosis requests
to both. The diagnostic device can also utilize the DTs to

send control commands to the vehicle and its services via the

service-oriented vehicle diagnostics (SOVD) [31] compliant

interface. As an example, when diagnosing a defect driver

window, we first check whether using the window lifter switch

leads to respective data in the DT of the switch service.

Second, we check whether sending a control command to

the window lifter motor DT triggers the motor of the original

system. Third, we check via the data in the DTs whether using

the switch triggers a command from the switch ASOA service

to the motor ASOA service. In case of any failures, we can

diagnose the respective parts as defective.

The vehicle DT contains a DT service for the orchestration

of the different vehicle services and their functions, which re-

flects the orchestrator in the ASOA, to diagnose the state of the

orchestrator. It includes a database collecting the orchestration-

relevant signals as well as the state of the orchestrator. On

changes in the ASOA by the orchestrator, the orchestrator

DT service in the vehicle DT updates the integration of

the underlying DTs on the service and function layer. Thus,

diagnostic operations on the vehicle DT can be relayed to the

correct vehicle service DTs.
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Fig. 5. The DT of a single vehicle service; model-driven engineering
is utilized to generate digital twin parts from architecture diagrams, class
diagrams, and OCL.

B. Digital Twin Engineering

The structure of our DT for a single vehicle service is shown

in Fig. 5. Utilizing model-driven engineering, we generate

parts of our DTs from models in the architecture modeling

language MontiArc [32], [33], UML class diagrams, and OCL.

Architecture models are used to describe service interfaces

and the orchestrator. Additionally, the architecture models

utilize automata to model the service behavior according to

the ASOA service specification to detect service behavior that

does not comply with the specification. Hereby, the degree of

behavior modeling varies from service to service and can be

underspecified or iteratively refined.

Additional service-specific operations can be generated by

utilizing class diagrams and OCL to model classes for software

errors of services. In the case of diagnosing the behavior of a

single-vehicle service, these operations can be utilized directly

by the diagnostic device. They contain suitable diagnosis

queries for error analysis. Additionally, a diagnostic device

can connect to the DTs by utilizing the diagnosis interface.

DT operations for diagnosis can be accessed from the

diagnosis interface via SOVD. SOVD is a standard developed

by ASAM e.V. It defines a tree structure for retrieving data

and allows the execution of queries on the data. It is the basis

of communication for our DTs with the diagnostic device as

well as with the original vehicle and its services.

The transfer of time-related data from the vehicle to the DT

is performed by a server that provides a SOVD interface inside

the vehicle. This server pre-processes the data before sending

it to the DT to reduce the amount of data while ensuring

high quality. Therefore, data points of services that do not

contain changing data get approximated while changing data

gets recorded with a higher level of precision. For service data

that influences other services as part of an effect chain, such

a change in data requires more precise data of all affected

services during the time frame of interest.
For basic diagnosis of services, identifiers and measured

values can be read and control commands can be sent to

vehicle service DTs via the SOVD interface. SOVD also

provides suitable functions for the analysis of log files. Thus,

the concept of errors can be mapped directly to SOVD by

filtering the log files for error codes and calling the appropriate

generated diagnosis operations of the DT according to the

error code. These suitable diagnosis operations are modeled in

our DT per error kind as a UML class. Thus, the error code

itself does not require to contain additional diagnosis-relevant

information, as the means to extract this information from the

log files is either fully modeled in the respective software error

class itself or can be extracted from our orchestrator log data

in case of involvement of multiple services. This ensures a

fixed size of the error code, which is important to satisfy time

constraints regarding in-vehicle communication.
The general structure of our composite vehicle DT is the

same as for the single service DTs. The difference is that

architecture diagrams for the vehicle DT model the orches-

tration of the composed DTs and vehicle functions. Herein,

the term vehicle function describes a vehicle functionality

that can involve multiple vehicle services. Furthermore, class

diagrams and OCL in our composite DT model errors on the

vehicle or vehicle function level, meaning errors that involve

multiple vehicle services for diagnosis, which therefore require

access to multiple vehicle service DTs. An example of such

an error would be a timeout of an expected input. As the

vehicle services themselves do not have information about

their interconnection, the vehicle is required to provide in-

formation on which service should have delivered said input.

The interconnection of these vehicle services at the point in

time that is observed by the diagnosis, can be derived from

the orchestrator DT service. Thus, our composite DT controls

the data flow between our single-service DTs and provides

diagnostic operations dependent on information from multiple

vehicle service diagnoses.
The orchestrator DT service allows to query (over time) and

control the vehicle service composition. Hence, the vehicle

DT can also analyze the behavior of the ASOA orchestrator.

This is relevant, as the ASOA orchestrator does not only

control service interconnection but also functionality that is

dependent on multiple services. An example of such a vehicle

function is given by the permission to open the door of a

shuttle vehicle from the outside [2]. Three services contribute

to the permission to open the door via four different rules:

1. The vehicle is stationary.
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2. The vehicle is in one of the defined areas for boarding.

3. A passenger is within two meters of the door with his

or her registered transceiver (e.g., a smartphone with an

app).

4. Technical staff requests the opening.

The door may be opened from the outside if either rules 1,

2 and 3 are satisfied, or if rules 1 and 4 are satisfied. The

vehicle’s movement status is detected by the service for the

traction motors. Whether the vehicle is in a specified area

for boarding and disembarking is detected by a service that

compares the position signal with regularly updated maps. The

presence of an approaching passenger is detected by a service

with a radio transceiver. The opening request of technical

personnel is detected by a service that uses the same radio

transceiver.

The part of the orchestrator that controls a vehicle function

is modeled as its own automaton from which a function diag-

nosis service is generated. Thus, when diagnosing a specific

function, the function diagnosis service with the respective

sub-automaton that handles the function orchestration is used

to access the relevant vehicle service DTs. The main advantage

of splitting vehicle function diagnosis from vehicle diagnosis

via an orchestrator subautomaton lies in the possibility to

model additional function-specific diagnostic operations.

In the remainder of this paper, we will use similar terms

associated with the word “service” or “DT” with very different

meanings. To avoid confusion, we briefly describe these terms:

• Vehicle Service: A concept of the service-oriented ve-

hicle architecture. Vehicle services are responsible for

a specific task in the context of the use case, such as

controlling the window motors.

• ASOA Service: A service in the ASOA architecture

implements a vehicle service. Not every vehicle service

must have an ASOA implementation, e.g., some vehicle

services have a ROS implementation and an ASOA

wrapper. For reference see Fig. 2.

• Vehicle Service DT: A digital twin of one vehicle

service. It has a connection to the corresponding ASOA

service or ASOA wrapper. For reference see Fig. 5.

• Vehicle DT: The digital twin of the entire vehicle. For

reference see Fig. 4.

• DT Service: An active software component within a

vehicle service DT or a vehicle DT, consisting of a state,

functionality algorithms, and optionally also visualiza-

tions in a graphical user interface for human operators.

Thus, other digital systems or humans may be users of

DT services. For reference see Fig. 5.

III. CHALLENGES

In this section, we discuss how the challenges mentioned

in [28] apply to the application scenario above, and how we

intend to mitigate them.

1. Horizontal integration of digital twin parts: Multi-

ple views of the original systems, such as the driver’s, the

maintainer’s, or the insurance’s view upon an original system

may lead to the necessity to integrate multiple DTs into one.

In our application scenario, diagnosis is considered one of

these views. Therefore horizontal integration on this level is

not necessary.

We do, however, integrate multiple DTs for the diagnosis

of multiple different original systems – the vehicle services

– to build the vehicle DT. The service DTs can be used

for isolated diagnostics of single services. These atomic parts

are integrated horizontally to enable effect chain analysis for

analyzing more complex diagnostic use cases. Additionally,

we need to provide multiple visualizations and DT cockpits

for the different DT parts.

This is a special case of horizontal integration because

we can use the same modeling language for the DT mod-

els, which utilize composable languages, i.e., MontiArc [33]

for composable architecture models, class diagrams for data

structures, and OCL for data constraints. Therefore, on the

modeling level, the integration uses well-understood composi-

tion mechanisms. On the architectural level, we use SOVD as

a unified interface technology to technically integrate the DTs.

We automatically generate code for these interfaces from the

models.

Still, our DTs are provided with a single perspective: the

vehicle diagnosis. Other perspectives on the vehicle or its

services might be subject to DTs later on. This showcases

the mentioned challenge: a DT, that is produced for one

specific purpose, must consider its future integration into

other contexts. From software engineering, we have successful

methods to handle this: Modularization with clearly defined

interfaces in standardized formats.

Main Finding: Horizontal integration is very relevant as we

need to combine multiple DTs (for vehicle services) to build

the vehicle DT.

2. Vertical composition of digital twins: The challenge

of vertical composition means that the i) data, ii) service,

and iii) models of a DT need to be composed when their

respective DTs are composed. The challenges here include

the different data frequencies, service operations required, or

model granularity.

ASOA architecture specifications are not hierarchical, but all

services are defined on the same layer. However, the vertical

composition of DTs is still present in the form of vehicle

DTs. Diagnostics of vehicles and their functions include

the diagnosis of the composed services. An example is the

function of automated door controls: allowing the doors to be

opened from outside (a vehicle function) depends on multiple

services. The speed of the vehicle has to be 0 and the current

autonomous driving mission has to be completed [2]. For the

purpose of diagnosis, we introduce a hierarchy of the vehicle

and its service orchestration.

Composing the data of the vehicle (i) service DTs and the

vehicle DT is simple due to the purpose of the DT and the

composed nature of the vehicle functions and vehicle services.

All data required for the functions require a respective defi-

nition in a DT service of the vehicle DT. Therefore the data

is available in the required format and granularity. All vehicle

service DTs provide uniform DT services (ii) for the purpose
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of diagnostics. The SOVD standard describes composable

interfaces via a tree structure, which propagates to the DT

services and their queries and control commands. For the

composition of models (iii), concepts and tools already exist

(see challenge 1).

Main Finding: Vertical composition is very relevant as

we need to compose different vehicle service DTs to enable

vehicle function diagnosis.

3. Composition of DTs for different perspectives: This

challenge tackles different perspectives upon an original sys-

tem, e.g., DTs of the machines and of the employees on

the shop floor of a factory. Vehicle diagnostics is the only

purpose for the DT at hand, and the application scenario

only provides this one, technical perspective on the issue.

Thus, multiple perspectives are not relevant. One could argue

that the distinction between software-induced and hardware-

induced errors in the architecture can be handled from different

perspectives. However, hard- and software components are

considered services in the context of ASOA, with error types

only distinguished by the respective error codes.

Main Finding: Composition of DTs for different perspec-

tives onto the vehicle is not relevant to our scenario, as we

just have the diagnosis as a singular perspective.

4. Connection of independently developed systems to a
system-of-system: The services that the DTs are based on

are developed independently with different technologies by

different developers. E.g., services such as the automated driv-

ing component are implemented in Robot Operating System

(ROS) instead of ASOA services. Therefore the connection of

independently developed systems to a system-of-system comes

as a challenge in this scenario. To mitigate this challenge,

communication interfaces with the DTs are unified via the

SOVD standard. We, thus, implement diagnosis interfaces

for the DTs with SOVD to ensure a unified communication,

independent of the vehicle service implementation. This also

affects the virtualization, as the SOVD standard provides API

composition (see challenge 2).

Main Finding: The connection of independently developed

systems to a system-of-system is relevant in the context of

vehicle services with different technology stacks.

5. Different lifecycle representations of the original sys-
tem: Different lifecycle representations of an original system,

such as in-manufacturing and in-operation are not the focus of

our project. Therefore this challenge does not apply. However,

diagnostic data could be used in the context of different

lifecycle representations. One example of this would be a

quality assurance twin for car producers, as one DT per vehicle

or as one DT for all vehicles (or a respective DT composition).

During manufacturing, diagnosis has another role than after

production. Diagnosis information during the manufacturing

phase can increase the effectiveness and efficiency of issue

handling on single cars. A DT of all cars in manufacturing

can help identify common hardware issues such as degrading

sensor quality and fixing it in the production process for future

cars, while identified software issues can be patched.

Main Finding: This challenge is not relevant for us, as

different lifecycle representations of an original system are

not the focus of our application scenario.

6. Protection of intellectual property: The DT for diagno-

sis collects data about the input, state, and output of services

in the car and the orchestrator state. Assuming that multiple

companies are involved in producing parts of these cars, the

data can provide insights into the intellectual property of these

companies. Hence it has to be considered who can access

the data and execute a diagnosis based on the data. In the

course of the project, we assume that the services of each

part provide only the diagnosis information that the respective

companies are willing (or obliged) to share with their partners

and potentially the customer.

Main Finding: Protection of intellectual property is not a

challenge in our scenario as we assume that the diagnosis

information shared by the vehicle consists only of information

the respective companies are willing to share. However, this

might become a relevant topic in the future.

7. Privacy aspects of data and 8. Rights and roles in
the integrated DT: A DT for vehicle diagnostics can define

certain rights and roles for different diagnostic use cases. For a

private vehicle owner, a role with access to a subset of simpli-

fied diagnostic information might be of interest, while the car

repair shop needs access to the complete diagnostic interface.

As already mentioned, in terms of lifecycle representation,

whole product lines might be of interest to the car manufac-

turer. To address privacy concerns such as those arising from

the EU’s general data protection regulation (GDPR), any DT

for a vehicle must respect the respective regulations. Privacy

and security aspects with associated rights and roles need to

be integrated. The SOVD standard specifies an authentication

concept, that can be used to limit access to SOVD data, but

no implementation technology or composition mechanism is

defined. As the implementation is in our control, we can use

technology with a common configuration of rights and roles.

When the development of vehicle services is distributed over

multiple stakeholders, standardization of this technology stack

and configuration must be enforced.

Main Finding: Data privacy and rights and roles in the

integrated DT are both relevant to our application scenario, as

the result has to comply with data protection regulations. Thus,

certain roles such as car manufacturers require disidentification

of vehicle diagnosis data.

9. Composition of heterogeneous twin implementations:
Within the presented application scenario the DT for diagnosis

is developed by one single organization and is expected

to be homogeneously developed in a model-based approach

with code generation. As we expect the DT to be at least

as long-living as the vehicle itself, we must also expect

considerable software updates of the DT. The model-based

approach provides the benefit of abstracting potential hetero-

geneity on the code level, leaving the generation of clear

interfaces as a requirement. This provides a composition of

heterogeneous implementations at run time. We also expect

modeling techniques to evolve. This poses a challenge with

respect to the composition of models [34], potentially built
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with heterogeneous modeling languages and even language

workbenches.

Main Finding: Composition of heterogeneous twin imple-

mentations is not relevant to our application scenario, as our

model-based approach mitigates potential heterogeneity on

code level by generating standardized interfaces and homo-

geneous DT implementations. However, heterogeneous DT

models and DTs developed by different organizations pose

a challenge for composition in the long term.

10. Conflicting constraints and requirements: Conflicting

requirements in the application scenario are not DT-specific,

but rather diagnosis-specific. An example of this is given by

the fact that the DT requires exact data for diagnostics, while

the DT operator wants to send less data to minimize cost. In

terms of conflicting requirements between DTs, all of our DTs

in the project are based on the domain of vehicle diagnostics.

A conflict in requirements arising in the scenario is the data

granularity. Some services require fine-grained data, others

avoid that due to data rate limits for the transfer to the DT

implementation in the cloud. Effect chain analysis requires this

fine-grained data. In our example scenario, we use a technique

employed in vehicle diagnosis: we allow for configuring the

granularity (e.g. frequency) of data at run time by control

commands. During correct operation, only some information is

transmitted. When a reason for a deeper look exists, we trigger

a more fine-grained data transfer until a specified event takes

place.

Main Finding: On DT-level, this challenge is not relevant

to our application scenario, as our different DTs are diagnosis

specific and therefore held to the same constraints and require-

ments.

11. Hierarchical functional abstraction: Vehicle service

diagnosis requires all data provided by the vehicle services,

while the diagnosis of vehicle functions only requires parts of

that. This is a functional abstraction. The ASOA orchestrator

defines the functions and their interconnection to services.

The function services in the vehicle DT reuses them. Vehicle

services in our application scenario are designed to provide

the necessary data and control commands, albeit more than

necessary. Therefore, functional abstraction is not a challenge

in the context of our project.

Main Finding: Hierarchical functional abstraction is already

defined by the ASOA orchestrator and therefore not a relevant

challenge for our DT, since the existing concept can be reused.

12. Composition of interfaces DT2DT and DT2CPS The

challenge of composing DT2DT and DT2CPS interfaces is

mitigated in our application scenario due to standardized com-

munication via SOVD, both for the real-world system. This

holds for both DT2DT communication as well as DT2CPS

communication.

However, standards are sometimes vague and allow for

different implementations, which can cause issues. Therefore,

the vagueness of the standard has to be mitigated by exact

documentation of certain design decisions. Additionally, cer-

tain vehicle services such as the automated driving component

are implemented in Robot Operating System (ROS) instead

of ASOA services (see challenge 4). This also impacts the

composition of interfaces for our vehicle DT, as ROS services

wrapped as ASOA services are not as introspective as regular

ASOA services and do not support traceable effect chains.

Therefore, information on whether a given vehicle service is

a ROS service or an ASOA service has to be included in the

model to ensure that only valid diagnostic queries are offered

by our composed vehicle DT depending on the service kind.

Main Finding: DT2DT and DT2CPS interface composition

is relevant in the context of vehicle services with different

technology stacks and vagueness in the SOVD standard.

13. Interoperability of models and simulation environ-
ments: The interoperability of models and simulation envi-

ronments for multiple vehicles is not a challenge in the given

application scenario. We define the environment of our DTs

ourselves, and having multiple interoperable environments is

not planned. However, on the level of vehicle service DTs

interoperability comes into play. We simulate the behavior of

the services and the interconnections in the DT for analysis.

This is possible because the DTs are all based on the same

family of modeling languages, which can be composed for the

simulation.

Additionally, the nature of a service-oriented architecture

facilitates a simpler composition, as each vehicle service can

be modeled as a single, self-contained component, and their

connections can be controlled during the simulation according

to the orchestrator service of the vehicle DT.

Main Finding: Interoperability of models and simulation

environment is relevant in the context of interoperability

between vehicle service DTs.

14. Integration of graphical user interfaces: The integra-

tion of graphical user interfaces in our DT is a challenge, as

the possibility to diagnose single services in our DT requires a

well-thought-out solution for displaying requested information

in a clear and concise manner. Displaying all information

about every single service at once is clearly the opposite

of that. As information concerning diagnostics is accessed

manually when an issue arises, the graphical interface should

highlight services that logged errors or showed unusual behav-

ior. Additionally, a keyword-based filtering option should show

just the services and service compositions tagged with those

keywords. In the given application scenario a standardized

interface exists towards the user’s devices: the SOVD standard

defines a tree structure for retrieving data and allows to execute

queries on the data. The graphical representation is left to

the devices. Thereby in the given use case, user interface

integration is limited to the integration of multiple SOVD

interfaces.

Main Finding: Integration of graphical user interfaces is

not relevant in our application scenario, as the graphical

representation of information is left to the diagnostic devices

connecting to our DTs via SOVD.

15. Heterogeneous technology-stack and different distri-
bution patterns of DTs: A heterogeneous technology stack

and different distribution of our DT are not an issue in our ap-

plication scenario. We define a homogeneous technology stack
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and distribution scenario for the DT in our project. The main

part of the DT exists in the cloud. However, parts of the DT for

pre-processing data might be in-vehicle. The standardization of

communication over SOVD solves possible issues concerning

this distribution by defining respective SOVD queries.

Main Finding: A heterogeneous technology stack is not

an aspect of our application scenario, and therefore not a

challenge. Additionally, standardization of communication

over SOVD mitigates different distribution patterns of our

DTs.

Summary. The composition of vehicle service DTs and the

vehicle DT is the main challenge in the application scenario.

We identified three mitigations: Composition on the model

level, unified interfaces, and uniform code generation.

Composition on the model level is possible because the lan-

guages in use are defined composably. By nature of a service-

oriented architecture, unified interfaces already exist in the

original vehicle, further easing interface construction between

our vehicle service DTs. Unified interfaces via the SOVD

standard are composable due to the data, query, and control

command structure of SOVD. The uniform code generation

helps us with the integration of the DTs via SOVD servers

and interfaces, and uniform diagnosis services in the DTs.

In the application scenario, challenges regarding intellectual

property and privacy and similar qualities are less important.

Therefore, the mitigation of these challenges is not in focus

for our project.

IV. ROADMAP

The next steps in our endeavor to model-based engineering

of DTs for vehicle diagnosis include defining reference models
used for describing the services and building code generators
for diagnosis using SOVD interfaces. We will build respective

models for the application scenario in the research project.

Defining and implementing composition operators for DT

models play an important role in our work. We will use

the work of Broy and Rumpe [35] for the composition of

system engineering models as a reference. We enrich our

architecture models with error classes that define specific

diagnostic operations based on error codes thrown by the

original system, which aids in providing assistance for error

diagnosis. As we analyzed the required diagnostic information

for certain errors, our next step in that regard is generating

suitable diagnosis queries to collect said information. For the

integration on the code level, we will define a uniform code
generator and unified interfaces for the DTs.

We will evaluate the approach on increasingly complex

service composition based on the project’s reference use cases.

Currently, we model the orchestrator DT service based on the

original system implementation for the vehicle DT.

The solutions to the challenges discussed in this paper are

specific to the given use case. It is interesting to investigate

how these specific solutions can contribute to a generic solu-
tion or how they can serve as guidance to find similar solutions

in other use cases, e.g., by describing them as patterns. In

addition, these reference solutions can be connected to the

reference models which describe the services.

V. CONCLUSION

Since automotive functions in SDV are updatable and

upgradable, DTs of SDV must reflect these adaptations. For

not adapting large complex DTs, we develop multiple smaller

DTs of vehicle services, which we integrate into vehicle DTs.

We use MDE to generate DTs from architecture models, data

models, and data constraints. In this paper, we presented the

application scenario of diagnosis for SDV in the research

project AUTOtech.agil and the associated DT engineering

method. We discussed the challenges of DT integration in the

application scenario and measures to mitigate the challenges.

We identified 7 of the challenges of DT integration pre-

sented in [28] as relevant in the given scenario. While 8

challenges do not apply yet, we found that 2 out of the 7

relevant challenges are very relevant and have a large impact

on DT engineering in the application scenario. However,

for all identified challenges, we are able to conceptualize

mitigations. The two most important challenges to overcome

in our application scenario are the horizontal and vertical

integration of DTs. Our mitigation techniques include model-

based system design with composition on the model level,

code generation from the MDE, and standardized interfaces.

In future work, we will develop the model-driven DT generator

for the application scenario for SDV in AUTOtech.agil.
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ment (Ö. Babur, J. Denil, and B. Vogel-Heuser, eds.), Springer, 2020.

[4] K. Feichtinger, K. Meixner, F. Rinker, I. Koren, H. Eichelberger,
T. Heinemann, J. Holtmann, M. Konersmann, J. Michael, E.-M. Neu-
mann, J. Pfeiffer, R. Rabiser, M. Riebisch, and K. Schmid, “Industry
voices on software engineering challenges in cyber-physical production
systems engineering,” in IEEE 27th Int. Conf. on Emerging Technologies
and Factory Automation (ETFA), IEEE, September 2022.

[5] M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits,” in Conceptual Modeling, Springer, 2020.

[6] T. Brockhoff, M. Heithoff, I. Koren, J. Michael, J. Pfeiffer, B. Rumpe,
M. S. Uysal, W. M. P. van der Aalst, and A. Wortmann, “Process
Prediction with Digital Twins,” in Int. Conf. on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C), pp. 182–
187, ACM/IEEE, October 2021.

[7] S. Fur, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, and
A. Wortmann, Sustainable Digital Twin Engineering for the Internet of
Production, pp. 101–121. Springer Nature Singapore, April 2023.

[8] D. Lehner, S. Sint, M. Vierhauser, W. Narzt, and M. Wimmer, “Aml4dt:
A model-driven framework for developing and maintaining digital twins
with automationml,” in 26th IEEE Int. Conf. on Emerging Technologies
and Factory Automation (ETFA ), 2021.

477



[9] A. Niati, C. Selma, D. Tamzalit, H. Bruneliere, N. Mebarki, and
O. Cardin, “Towards a digital twin for cyber-physical production sys-
tems: A multi-paradigm modeling approach in the postal industry,” in
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS ’20, (New
York, NY, USA), Association for Computing Machinery, 2020.

[10] D. Bano, J. Michael, B. Rumpe, S. Varga, and M. Weske, “Process-
Aware Digital Twin Cockpit Synthesis from Event Logs,” Journal of
Computer Languages (COLA), vol. 70, June 2022.

[11] J. Michael, I. Nachmann, L. Netz, B. Rumpe, and S. Stüber, “Generating
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