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ABSTRACT
Abstraction, refinement and (de-)composition are fundamental techniques for engineering large software systems. In the context
of Model Driven Development (MDD), these techniques are primarily applied to models. Our goal is to integrate automated
composition of data models into the development process. We focus primarily on Class Diagrams (CDs) which are widely
used to model object-oriented systems. In particular, we consider the variant of UML/P CDs which are equipped with a formal
semantics for both the closed-world and open-world assumptions and allow for underspecified associations. A sound merge
of CDs must include precisely the information of its components and preserve their semantic implications. In this paper we
introduce a merge operator for CDs that considers both formal and implementation-oriented soundness requirements. The
operator is able to support a divide-and-conquer approach for modeling and code-generation of large object-oriented software
systems. We clarify why we deem an open-world approach necessary and outline merge conflicts and variants. Finally, we
discuss integration of automated merging into the development process and provide an outlook on run-time data integration.
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1. Introduction

One paramount principle of software engineering is to achieve
separation of concerns across software components. Conse-
quently, larger software systems are usually composed of dedi-
cated sub-modules. Ideally, there is loose coupling between and
strong cohesion within components to achieve a high degree
of adaptability and re-usability. Components should therefore
be defined and integrated using interfaces that hide the internal
behaviour and complexity. This then allows for development
in separate teams with distinct responsibilities for certain mod-
ules (Nagl 1990).

In MDD, models become first-class programming artifacts
and input to code generators (France and Rumpe 2007). But
although there have been previous approaches to sound model
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composition (Boronat et al. 2007; Fahrenberg et al. 2014) and
aspect-oriented modeling (Wimmer et al. 2011), integration
of automated data model composition into the development
process is still uncommon. The current situation leads to either
of the two following pitfalls:

– Consistent but monolithic data models. These models
mostly entail all data types that are required to generate the
code for the complete target system and become inflated
and incomprehensible, thus contradicting one of the major
principle of MDD: reducing complexity via abstraction.

– Decomposed, but potentially inconsistent data models.
Here each data model is used to characterize a specific
component of the software system. However, such models
will inevitably share and possibly extend common data
types that are used across the system. Any conflicting
model statement in such a datatype will then lead to incon-
sistency and errors.

Clearly, the first option contradicts the software engineering
principles and is hence not favorable. To achieve the desired
decomposed model architecture, a sound model composition
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semantics and appropriate tool support is required to mitigate
inconsistency. As generated code usually requires additional
handwritten extensions (Greifenberg et al. 2015; Wile 2003),
such composition semantics need to ensure two aspects: (1) that
the semantic of the aggregated model is sound with respect to
the semantics of each input model and (2) does not violate any
implications of implementation in the handwritten or generated
code. The component models could be interpreted as views of
the integrated system in traditional data modeling. However, we
assume that the component models remain the primary devel-
opment artifacts and continue to have their own development
life-cycle. As such, the aggregated model is merely virtual and
created on demand to prove consistency among the component
models and to generate (glue) code. In that sense, traditional
views are top-down and originate from an integrated data model
whereas composition of component models is bottom-up.

We focus on composing/merging UML/P CDs, a variant of
UML CDs designed for agile development of object-oriented
systems in Java (Rumpe 2011), as corresponding tooling for
code-generation as well as a methodology for extending gen-
erated code-artifacts with handwritten code already exists
(Schindler 2012).

In general, we seek to answer the question on how to
(de-)compose the architecture of model driven systems, in par-
ticular its complex data structures, in order to support inde-
pendent, generator-supported development of subsystems. As
part of our contributions we address the following research
questions:

1) How can a merge-operator for data models (e.g., CDs)
be defined such that it preserves semantic implications
as well as consistency even for handwritten extensions of
functionality?

2) How well can semantics-preserving composition support
integration and re-usability of model driven software com-
ponents?

Our contributions include a formal specification and imple-
mentation of a semantically sound CD-merge operator that is
suitable for model-based integration of software components.
Moreover, we discuss potential merge conflicts and variants of
the merge operator, that consider both formal and practical as-
pects such as backwards-compatibility with preexisting software
components. The implementation of the operator, referred to as
CDMerge, has been integrated into the CD4Analysis Tool de-
veloped at the Chair for Software Engineering at RWTH Aachen
University. The project is publicly available on GitHub1.

The remainder of this paper is structured as follows: The
next section discusses related work. Section 3 introduces a mo-
tivating example. Section 4 defines abstract syntax and formal
semantics of CDs. Section 5 characterizes the notion of a seman-
tically sound merge, defines a corresponding merge operator,
and discusses potential merge conflicts and variants. In section
6, we evaluate the implementation of the merge operator and
discuss runtime implications when integrating software compo-

1 https://github.com/MontiCore/cd4analysis

nents. The final section presents conclusions drawn from our
research and discusses potential future work.

2. Related Work
The need for software merging has been prevalent for quite
some time and (Mens 2002) discusses the problem domain in
general and in particular the problems of optimistic version
control where software artifacts are edited separately and in-
dependently which requires a merge to integrate the different
versions. The author clearly stresses the importance of semantic
based merging, which is also the main objective of our contri-
bution. However, we do not aim to generate a merged class
diagram which is then used by all parties as new version. In-
stead, we assume that each input model remains a first-class
development artifact.

Aspect-Oriented Modeling (AOM) approaches Model-
Driven integration of software components by merging func-
tional requirements models with aspect models that deal with
crosscutting concerns and are mostly non-functional (Wimmer
et al. 2011; Johannes & Aßmann 2010). In AOM, models
and meta models either require defined interfaces, usually re-
ferred to as pointcuts or hooks, or run within a framework to
allow composition of models. Invasive Software Composition
introduced in (Aßmann 2003) allows injection of fragment com-
ponents, (e.g., classes, methods or package implementations)
into dedicated hooks. Our approach instead aims to integrate
components in a more holistic manner and attempts to guarantee
backwards-compatibility with preexisting implementations of
each component CD.

Integration of data models is a well-known subject matter
that was already being discussed in the early days of database
views and schema integration by superimposition (Batini et al.
1986). In the remainder, we instead focus on related work that
deals with the composition of UML CDs.

(Dingel et al. 2008) discuss UML package merge and its
application for modular construction of data models via exten-
sion. Package merge was introduced for UML 2.0 in order to
define the UML meta model in a modular way and in particular
to specify UML compliance levels in a hierarchical manner. It
specifies the composition of a source CD and a target CD that
extends the source CD. Elements within the composite CDs
are matched (mostly by name) and then merged. Merging of
elements is either done (1) recursively, (2) by union, or (3)
by property-specific transformation. Merge by union is, for
example, applied to cardinalities of associations and as such
conflicts with the formal notion of semantic refinement (Maoz
et al. 2011; Nachmann et al. 2022). Moreover, associations are
matched across super-/sub-classes and the merging is property-
specific in that the merged association always references the
most specific types. This not only conflicts with refinement but
also backwards-compatibility with preexisting software compo-
nents.

In (Boronat et al. 2007) an automated approach for generic
model merging using the QVT Relations language is presented.
The paper focuses on the definition of a merge operator for CDs.
Set logic is used to describe the CDs themselves, as well as
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the merge. However, association directions and underspecified
associations are not supported. Merging of non-equal cardi-
nalities via intersection is permitted, thus potentially violating
implied “write”-promises2. In (Kolovos et al. 2006) the authors
introduce the Epsilon Merging Language and provide a rule set
for merging CDs. However, here the provided rules only allow
matching of syntactically identical elements, e.g., named asso-
ciations with identical cardinalities. The concept of soundness
based on a formal semantics for CDs is discussed in neither of
the two publications. (Meier et al. 2020) discusses multi-view
software development and how to ensure consistency across
views. The approach proposed in the paper utilize a projective,
top-down perspective from a Single Underlying Model (SUM),
which functions as a single point of truth that is to be respected
in all components corresponding to with of the SUM. It ensures
that all views are consistent according to the integrity of the
SUM and the semantically sound projection mechanism.

In (Lutz et al. 2011), the authors study how humans approach
the merging of UML CDs. They identified categories of activi-
ties that the participants engaged in during the merging process
and formulated guidelines for developing interactive merge tools
based on their findings. These findings showed a preference
for simple solution and preservation of functionality. During
the merge process new elements would be added in order to
produce a valid and/or semantics-preserving solution. More-
over, elements identified to be redundant or unnecessary were
removed and perceived design flaws eliminated or corrected. An
automated approach for merging CDs would certainly less flex-
ible, but it also would ensure formal soundness. Furthermore,
necessary adjustments can simply be made to the component
diagrams before merging.

In (Fahrenberg et al. 2014) a merge and difference operator
for CDs was introduced that uses a formal open-world seman-
tics of permitted object structures in order to characterize the
soundness-property. The authors introduce the notion of syntac-
tic refinement as a sufficient condition for semantic refinement.
This notion is similar to the concept of CD-expansion intro-
duced in (Nachmann et al. 2022). The operator does not support
attributes, association directions or underspecified associations.
Furthermore, implementation-specific aspects not covered by
the formal notion of refinement, which are needed in order
to achieve backwards-compatibility with preexisting software
components, are not considered either (e.g., preserving “write”-
promises of cardinalities in addition to “read”-promises when
merging CD 2).

Overall, we find that most existing approaches only discuss
the merge semantics in terms of valid data instances or confor-
mance with meta models and do not consider the implications
on operational interactions from software components that are
implemented in accordance to prevailing component models.

3. Motivating Example
As a motivating example we consider the development of a uni-
versity administration system. The system is divided into two
components to support both teaching activities and the manage-

2 see Merge Conflict 5.5 in section 5.3

ment of staff. Both of these components have specific demands
that require domain expertise (e.g., curricula, accounting proce-
dures) for the system design and hence should be implemented
by dedicated software teams as separate subsystems. A MDD
approach is taken and since CDs are widely used to model the
data architecture of object-oriented software systems, the data
model of each of the modules is a CD. Each CD can be inter-
preted as a view on the university system at large. However, they
are in fact source-models and not just virtual artifacts derived
from a larger source-model. The CDs are kept rudimentary for
the purpose of demonstration.

Figure 1 Teaching Subsystem: Planning of lectures and stu-
dent registration.

The teaching subsystem is depicted in fig. 1. A Lecture
is held by exactly one lecturer of type Professor. Via the
attendance association a Student can register to multiple
lectures. It is not specified how many lectures a professor holds,
or how many students can attend a lecture. All classes have
attributes relevant for the teaching subsystem, for example the
mail address to contact a professor.

Figure 2 Management Subsystem

The data model of the management subsystem is shown in
fig. 2. It has an abstract super-class Employee with an attribute
name. A Professor is an Employee. They must hold at least
one Lecture.

From their respective CD each development team generates
code in a general programming language, e.g., Java. The gen-
erated code can contain database access, validators or even
visualisations (Reiß 2016; Dalibor et al. 2020; Michael et al.
2022). The actual business logic is written manually, either by
importing or extending the generated code.

In this paper we analyze under which conditions and how
the two subsystems can be merged such that the generated
code and handwritten business logic of each component can be
reused for the merged system. Figure 3 depicts the idealized
workflow. First, the two teams responsible for developing the
Teaching and Management subsystems define corresponding
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data-schemata and write the required business logic. Then the
CDs are merged into one CD representing the data-architecture
of the overarching system, denoted as University. Generated
code from this composed model serves to integrate the sub-
components with their corresponding business logic. Hence, the
hand-coded business logic of subsystems must also be compati-
ble with the generated code of the merged system. Note that the
composed model is created on demand and thus only exists as a
virtual artifact and does not have an independent life-cycle.

Figure 3 Distributed Model-Driven Engineering (MDE) us-
ing CDMerge. Teaching and Management is developed by
separate teams in parallel. The handwritten business logic is
compatible to the merged system.

A syntactical composition or merge of CDs should combine
class declarations of the same name as well as attributes of
the merged classes with the same name and datatype. Further-
more, associations are matched using role-names and associ-
ation names. While it is straightforward to match named ele-
ments, this is not the case for associations that do not share an ex-
plicit name. The matching and merging of associations is further
complicated by cardinalities on each side (or lack thereof) as
well as their direction. Hence, in order to preserve the intended
properties of the component CD, it is necessary to specify a for-
mal semantics for CDs (see section 4) and then ensure that the
merge semantically refines its components (see section 5). The
merging of the two previously discussed example-subsystems
results in the composite CD shown in fig. 4.

Figure 4 University System = Teaching ⊕Management

For the implementation it is paramount, that each applica-
tion either uses the data types of the composed model, or that

there exists an infrastructure that introduces necessary data type
adapters or wrappers to facilitate data exchange between mod-
ules. This might be necessary for security and privacy reasons,
assuming that each module will result in an own application
that is used by different entities in a university. For example,
data instances of a Professor have an attribute int salary
which should not be known to the Teaching Subsystem. These
run-time integration aspects are discussed in section 6.2.

The takeaways of this motivating example are as follows

– A decomposed system architecture is favorable as each
module addresses domain-specific requirements.

– Dedicated domain models for each module are more con-
cise and comprehensive compared to a monolithic system
model.

– It is necessary to merge all data models into a holistic
model to create a fully integrated system.

– Type adapters may be required to handle run-time data
exchange among the software components.

4. Class Diagrams and their Semantics
In this section, we give a formal specification of abstract syntax
and semantics for CDs. Our notion of CDs is based on the
UML/P variant as outlined in (Rumpe 2011). We consider a
formal semantics that maps each CD to a set of valid objects
structures (Harel & Rumpe 2004; Maoz et al. 2011; Nachmann
et al. 2022). Furthermore, we distinguish between the closed-
world semantics of a CD, which only includes instances of
explicitly modelled elements, and the open-world semantics,
that considers CDs as under-specified and thus permits instances
of other, undeclared types and associations, as well. We have
already discussed these notions of closed-world and open-world
semantics in (Nachmann et al. 2022). However, since we now
also consider association directions as well as underspecified
associations, it is necessary to adjust our previous definitions.

For notation, let C be a universe of class names and N a uni-
verse of non-empty names for associations, roles and attributes.
We also define Nϵ := N∪̇{ϵ}. Moreover, let T be a set of ba-
sic predefined data types such as int, bool, char, String
etc. Finally, for the purpose of defining association cardinali-
ties, let I be the set of all finite unions of finite or unbounded
intervals of natural numbers.

4.1. Abstract Syntax of Class Diagrams
A CD defines a finite set of classes, as well as a finite set of
associations between those classes. Each class contains a finite
set of attributes and each attribute consists of a name and a type.
A class may extend other classes, thus inheriting all attributes
and associations of its super-classes. Moreover, classes can be
declared abstract. Abstract classes cannot be instantiated di-
rectly and may only extend other abstract classes. Associations
can be either bidirectional, unidirectional or have no specified
direction. An association may also have a unique name, as well
as a role name and cardinality for each side. The cardinality
imposes constraints on the number of allowed instances (i.e.,
links) referencing the same object. Formally, we define the
abstract syntax of a CD as follows:
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Definition 4.1 (Class Diagram). Given a Class Diagram cd we
declare that

– cd.classes ⊆ C\T : denotes the finite set of class declara-
tions in cd,

– cd.abstract ⊆ cd.classes: denotes the subset of classes
declared abstract in cd,

– cd.attr ∈ cd.classes→ ℘ f in{N ×T }: is a function that
assigns each class in cd a finite set of attributes,

– c1 ≺cd c2: denotes that a class c1 directly extends another
class c2 in cd,

– cd.assoc ⊆ cd.classes×Nϵ ×Nϵ × cd.classes:
denotes the finite set of associations in cd,

– cd.nav ∈ cd.asssoc → ℘{→,←}: is a function that
assigns each associations in cd its directions,

– cd.label ∈ cd.assoc ⇀ N : is a partial function that
assigns a unique name to an associations in cd,

– cd.cardL, cd.cardR ∈ cd.assoc ⇀ I: are two partial
functions that respectively assign a cardinality to the left
and right side of an association in cd

Additionally, we require that the following context conditions
hold:

1. The reflexive transitive hull of the extends-relation ≺cd, de-
noted by ≺∗cd, must define a partial ordering on cd.classes.

2. The transitive attributes of a class c ∈ cd.classes, denoted
by cd.attr∗(c) :=

⋃
c≺∗cds cd.attr(s), must be conflict free,

i.e., for two attributes (n1, t1), (n2, t2) ∈ cd.attr∗(c) it
holds that n1 = n2 =⇒ t1 = t2.

3. There are no duplicate associations, i.e., (c1, r1, r2, c2) ∈
cd.assoc =⇒ (c2, r2, r1, c1) ̸∈ cd.assoc.

Consider, for example, the CD in fig. 2. The
set of class declarations is given by cd.classes =
{Employee, Pro f essor, Lecture}, the subset of abstract
classes is cd.abstract = {Employee} and the set of associa-
tions is cd.assoc = {(Pro f essor, lecturer, holds, Lecture)}.
Pro f essor extends Employee, denoted by
Pro f essor ≺M Employee, and contains the attribute
(salary, int) ∈ cd.attr(Pro f essor). The association
a := (Pro f essor, lecturer, holds, Lecture) is unidirectional
with cd.nav(a) = {→} and has a right cardinality of
cd.cardR(a) = [1, ∞).

It should be noted that the following elements of UML/P
CDs were omitted from this definition: (1) method signatures,
(2) composition, (3) interfaces, and (4) enumerations. These
elements were excluded for two main reasons, first their inclu-
sion in the formal syntax and semantics would exceed the scope
of this paper, second their consideration with respect to the
static semantic is superfluous. However, unlike (Nachmann et
al. 2022) or (Fahrenberg et al. 2014), we do consider attributes
and association directions, as well as underspecification for
cardinalities, association directions and role names.

Next, we introduce the notion of a normalized CD. Normal-
ization ensures that an associations orientation corresponds to

lexicographic order. This is helpful when comparing associa-
tions of multiple CDs as we no longer have to check for the
reverse notation, as well.

Definition 4.2 (CD-Normalization). Let ≤C denote a relation
that defines a lexicographic order on C, and let ≤Nϵ

be anal-
ogous for Nϵ. A Class Diagram cd is normalized iff for all
associations (c1, r1, r2, c2) ∈ cd.assoc it holds that c1 ≤C c2
and c1 = c2 =⇒ r1 ≤Nϵ

r2.

4.2. Semantic Domain
The semantic domain for CDs consists of object structures,
which represent potential data states of an object-oriented sys-
tem. An object structure consists of a finite set of objects, as
well as a finite set of directed links. Each object instantiates a
class and contains a set of attributes, and each attribute has a
type and a name. Formally, we denote an object structures as
follows:

Definition 4.3 (Object Structure). An object structure os con-
sists of

– a finite set of objects os.obj such that for each o ∈ os.obj

- o.type ∈ C\T denotes its (most-specific) type,
- and o.attr ⊆ N × T denotes its set of attributes,

– as well as a finite set of links between objects:
os.links ⊆ os.obj×N × os.obj.

Note that we abstract from the concrete value of an attribute
within an object structure, as attribute values are not relevant
for the remainder of the paper.

4.3. Closed-World Semantics
First, let us consider the closed-world assumption. Informally,
we may say that an object structure is a legal instance of a
CD in the closed-world, iff the following conditions hold: (1)
Each object within the object structure must instantiate a non-
abstract class from the CD. (2) Each object must have precisely
those attributes specified in the classes it instantiates. (3) Each
link must correspond to an association. (4) The cardinality
constraints of each association have to be respected.

To refer back to our motivating example in section 3, any in-
stance of Management.cd (2) must contain only objects of type
Professor or Lecture and each object of type Professor
must be linked to at least one object of type Lecture.

For our formal definition of closed-world semantics, it is
sufficient to consider fully-specified CDs. A CD is fully spec-
ified if all associations have non-empty role-names as well as
specified directions and cardinalities. To further abbreviate the
definition, we write cd→ to denote a modified Class Diagram
cd, where each right-to-left association has been replaced with
an equivalent left-to-right association.

Definition 4.4 (Closed-World Semantics of Class Diagrams).
An object structure os is a closed-world instance of a fully
specified Class Diagram cd iff the os satisfies the following
constraints

CDMerge: Semantically Sound Merging of Class Diagrams for Software Component Integration 5



1. For every object o ∈ os.obj, it holds that
o.type ∈ cd.classes\cd.abstract.

2. For every object o ∈ os.obj, it holds that
(n, t) ∈ o.attr ⇐⇒ (n, t) ∈ cd.attr∗(o.type)

3. For every link (o1, r2, o2) ∈ os.links, there is an associ-
ation a ∈ cd→.assoc with a = (t1, r1, r2, t2) such that
o1.type ≺∗cd t1 and o2.type ≺∗cd t2.

4. For each a := (c1, r1, r2, c2) ∈ cd→.assoc and each o2 ∈
os.obj with o2.type ≺∗cd c2, it holds that |{(o1, r2, o2) ∈
os.links : o1.type ≺∗cd c1}| ∈ cd→.cardL

5. For each a := (c1, r1, r2, c2) ∈ cd→.assoc and each o1 ∈
os.obj with o1.type ≺∗cd c1, it holds that:

(i) (o1, r2, o2) ∈ os.links =⇒ o2.type ≺∗cd c2

(ii) |{(o1, r2, o2) ∈ os.links}| ∈ cd→.cardR

6. For each a = (c1, r1, r2, c2) ∈ cd.assoc that is bidirec-
tional, i.e., cd.nav(a) = {←,→}, and each o1, o2 ∈
os.obj with o1.type ≺∗cd c1 and o2.type ≺∗cd c2, we have:
(o1, r2, o2) ∈ os.links ⇐⇒ (o2, r1, o1) ∈ os.links.

The closed-world semantics JcdKcw of cd is the set of all
closed-world instances.

A semantic refinement constitutes a restriction of permitted
object structures. As such, a CD A is a refinement of a CD B
under the closed-world assumption iff JAKcw ⊆ JBKcw Note that
a refinement in the closed-world does not necessarily constitute
a refinement in the open-world, and vice-versa. (Nachmann et
al. 2022)

4.4. Open-World Semantics
In order to accurately characterize open-world semantics for
CDs, we employ the notion of CD-expansions introduced in
(Nachmann et al. 2022). Informally, a CD-expansion must
preserve preexisting classes, associations and extends relation,
but additions are permitted. Associations may also be refined
by reducing underspecification.

Definition 4.5 (CD-Expansion). A Class Diagram cd+ is an
expansion of a normalized Class Diagram cd iff

1. cd.classes ⊆ cd+.classes,

2. cd.abstract ⊆ cd+.abstract,

3. ∀c1, c2 ∈ cd.classes : c1 ≺cd c2 =⇒ c1 ≺cd+ c2,

4. ∀c ∈ cd.classes : cd.attr∗(c) ⊆ cd∗attr∗(c),

5. and for each association a = (c1, r1, r2, c2) ∈ cd.assoc
there is a (syntactic) refinement in cd+.assoc, i.e., there
must be an association a′ = (c1, r′1, r′2, c2) ∈ cd+.assoc
with

– r1 ̸= ϵ =⇒ r′1 = r1
– r2 ̸= ϵ =⇒ r′2 = r2
– cd.nav(a) ⊆ cd+.nav(a′)

– cd+.label(a′) = cd.label(a) if defined.
– cd+.minL(a′) = cd.minL(a) if defined.
– cd+.maxL(a′) = cd.maxL(a) if defined.
– cd+.minR(a′) = cd.minR(a) if defined.
– cd+.maxR(a′) = cd.maxR(a) if defined.

Moreover, we say that a Class Diagram cd+ is an expan-
sion of a set of Class Diagrams S iff cd+ is an expansion
of each Class Diagram s ∈ S.

In our running example (fig. 4), University.cd is an ex-
pansion of both Teaching.cd (fig. 1) and Management.cd
(fig. 2) as it contains all elements from both CDs.

(Fahrenberg et al. 2014) employed a similar concept under
the name “syntactic refinement” to characterize a merge. How-
ever the authors did not account for underspecified association
and association directions. Moreover, we do not permit restric-
tion of defined cardinalities. Although it constitutes a refinement
with respect to permitted object structures, a restriction of an as-
sociation cardinality may still correspond to a breaking change
in the implementation (see section 5.3, conflict 5.5).

Definition 4.6 (Open-World Semantics of Class Diagrams).
An object structure os is an open-world instance of a Class
Diagram cd iff there exists a fully specified expansion cd+ of cd
with os ∈ Jcd+Kcw. The open-world semantics of cd, denoted
as JcdKow, is the set of all open-world instances.

In contrast to the closed-world semantics from definition 4.4,
this notion of open-world semantics is well defined even for
CDs that are not fully-specified themselves, as each of them
has a fully-specified expansion (simply add specification to
underspecified associations).

We say that a CD A is a refinement of a CD B under the the
open-world assumption iff JAKow ⊆ JBKow (Nachmann et al.
2022).

5. Sound Merging for Class Diagrams
To address research question 1, we specify the formal aspects
of merging CDs and define a merge operator that is sound with
respect to the formal semantics of CDs as outlined in section 4.
Moreover, we outline the potential conflicts that may occur
when merging two incompatible CDs, as well as discuss variants
of the merge operator to handle these merge conflicts.

5.1. A Semantically Sound Merge
A sound merge of CDs must itself be a syntactically valid CD
that contains precisely the information present in its compo-
nents i.e., it does not include any superfluous elements not
found in its components but preserves their semantic impli-
cations. With regards to the formal semantics, this means
that a merge must refine its component-CD. For this purpose,
the closed-world assumption is unsuited, as a proper merge
needs to include precisely those elements present in its compo-
nents. This, however, would normally not constitute a closed-
world refinement, except in trivial cases. Consider for example
the CDUniversity.cd in fig. 4, it is not a refinement of the
CDManagement.cd (fig. 2) in the closed-world as it permits
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objects of type Student, which are not included in the closed-
world semantics of Management.cd.

We therefore define a semantically sound merge of CDs as
the minimal expansion of all component-CDs. This ensures
that the merge contains only the elements/information already
present in its component-CDs and also refines each of them
under the open-world assumption.

Definition 5.1 (Semantically Sound Merge of Class Diagrams).
Given a Class Diagram cd⊕, as well as a finite set of Class
Diagrams S, we say that cd⊕ is a semantically sound merge of
all cd ∈ S iff cd⊕ is a minimal expansion of S, i.e., there is no
expansion cd′ of S such that cd⊕ is an expansion of cd′ but cd′

is not also an expansion of cd⊕.

In our motivating example, University.cd (fig. 4) ful-
fils these requirements with regards to Teaching.cd (1) and
Management.cd (fig. 2) as it does not contain any elements or
specifications that are not also present in at least one of its com-
ponents. Now it remains to show that the semantic implication
of each component-CD are preserved by the merge.

Theorem 5.2. Given a set of Class Diagrams S, let be cd be a
semantically sound merge of S. For each s ∈ S, it holds that
JcdKow ⊆ JsKow, i.e., cd is a refinement of s in the open-world.

Proof. By definition 5.1 cd is an expansion of each s ∈ S.
Furthermore, any expansion cd+ of cd is also an expansion of
s. It follows then that every open-world instance of cd is an
open-world instance of s, as well.

It should be noted that not every set of CDs possesses a
semantically sound merge, as two different component-CDs A
and B may contain conflicting definitions of the same class or
association (see section 5.3).

5.2. Defining a Merge Operator for Class Diagrams
Let CD be the set of all syntactically valid CDs. In the following
we define the merge operator ⊕ : CD × CD ⇀ CD that given
two input-CDs with a common expansion and unambiguous
matching for associations produces a semantically sound merge.

In order to merge two CDs, we first have to identify and
then merge matching classes and associations and then include
the remaining elements of both CDs. Classes are matched by
name and merging them requires merging their sets of attributes,
as well as the extends relations. The matching associations
is a bit more involved, as they do not always posses a unique
association name.

Definition 5.3 (Matching Associations). Without loss of gener-
ality, let cd1, cd2 be two normalized Class Diagrams. Two
associations a1 = (c11, r11, r12, c12) ∈ cd1.assoc, a2 =
(c21, r21, r22, c22) ∈ cd2.assoc, are matching candidates for
each other iff the following conditions hold

1. Classes match:
c11 = c21 and c12 = c22.

2. Explicit match of association name if defined:
cd1.label(a1) ̸= ⊥ ̸= cd2.label(a2)
=⇒ cd1.label(a1) = cd2.label(a2)

3. Roles match if non-empty:

(i) r11 ̸= ϵ ̸= r21 =⇒ r11 = r21

(ii) r12 ̸= ϵ ̸= r22 =⇒ r12 = r22

These two matching candidates are then matched iff (1) there
is no other matching candidate a′1 ∈ cd1.assoc for a2 or a′2 ∈
cd2.assoc for a2, and (2) their cardinalities match if defined,
i.e., cd1.cardL(a1) = cd2.cardL(a2) and cd1.cardR(a1) =
cd2.cardR(a2) respectively. We then write a1 ∼M a2 to denote
that a1 matches a2. If all matching candidates are matched,
we say that cd1 and cd2 have a non-ambiguous matching of
associations.

Two matching associations are equal in their classes, role-
names, direction and cardinalities if specified. This makes the
merge straightforward.

Definition 5.4 (Merging Associations). Without loss of general-
ity, let cd1, cd2 be two normalized Class Diagram. For each pair
of matching associations (a1, a2) with a1 = (c1, r11, r12, c12) ∈
cd1.assoc and a2 = (c2, r21, r22, c2) ∈ cd2.assoc, the merged
association a⊕ = (c1, r1⊕, r2⊕, c2) has the following proper-
ties:

1. r1⊕ :=


r11 , if r11 ̸= ϵ,
r21 , if r21 ̸= ϵ,
ϵ , otherwise.

2. r2⊕ :=


r12 , if r12 ̸= ϵ,
r22 , if r22 ̸= ϵ,
ϵ , otherwise.

3. cd⊕.nav(a⊕) = cd1.nav(a1) ∪ cd2.nav(a2)

4. cd⊕.label(a⊕) :=


cd1.label(a1) , if defined,
cd2.label(a2) , if defined,
⊥ , otherwise.

5. cd⊕.cardL(a⊕) :=


cd1.cardL(a1) , if defined,
cd2.cardL(a2) , if defined,
⊥ , otherwise.

6. cd⊕.cardR(a⊕) :=


cd1.cardR(a1) , if defined,
cd2.cardR(a2) , if defined,
⊥ , otherwise.

The set of merged associations for cd1 and cd2 is then denoted
as assoc⊕(cd1, cd2).

Note that we do not merge associations between super-
classes with associations between sub-classes, i.e., we don’t
consider a "pull up" of associations for the merge as this can
lead to conflicts in software component implementations (see
5.3, conflict 5.7).

Definition 5.5 (Merge Operator for Class Diagrams). The bi-
nary merge operator for two Class Diagrams is formally defined
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as the partial function ⊕ : CD × CD ⇀ CD that given two
Class Diagrams cd1 and cd2 as inputs, produces a Class Dia-
gram cd⊕ := cd1 ⊕ cd2 iff cd1 and cd2 have a non-ambiguous
matching of association and the following specifications are
syntactically valid according to definition 4.1:

1. cd⊕.classes := cd1.classes ∪ cd2.classes

2. cd⊕.abstract := cd1.abstract ∪ cd2.abstract

3. ∀c ∈ cd⊕.classes : cd⊕.attr(c) := cd1.attr(c) ∪
cd2.attr(c)

4. ∀c1, c2 ∈ cd⊕.classes :
c1 ≺cd⊕ c2 ⇐⇒ c1 ≺cd1 c2 ∨ c1 ≺cd2 c2

5. cd⊕.assoc := assoc⊕(cd1, cd2)
∪̇{a1 ∈ cd1.assoc| ̸ ∃a2 ∈ cd2.assoc : a1 ∼M a2}
∪̇{a2 ∈ cd2.assoc| ̸ ∃a1 ∈ cd1.assoc : a2 ∼M a1}

For the most part, the merge operator simply unifies cor-
responding element-sets. Additionally, each pair of matching
associations is replaced with a corresponding merged associa-
tion. Although the resulting CD may contain redundant attribute
definitions and class-extensions, these are not considered syn-
tactical errors according to definition 4.1 nor do they affect
minimality of CD-expansion. Note that in our implementation
these redundancies are removed.

Theorem 5.6. Given two Class Diagrams cd1 and cd2 with a
common expansion and a non-ambiguous matching for associa-
tions, it holds that cd1 ⊕ cd2 is a semantically sound merge.

Proof. If cd1 ⊕ cd2 is undefined, then cd1 and cd2 must either
contain a conflicting attribute declaration, i.e., there is a class
c ∈ cd⊕ with attributes (n, t1), (n, t2) ∈ cd⊕.attr∗(c) such
that t1 ̸= t2, or conflicting extends relations such that there
exists two classes c1, c2 ∈ cd⊕ with c1 ≺∗cd2

c2 and c2 ≺∗cd1
c1.

It follows then that there can be no common expansion of cd1
and cd2.

If cd1 ⊕ cd2 is defined, then cd⊕ preserves all classes, at-
tributes and the transitive extends relation as well as refines
each associations of both cd1 and cd2. Consequently, cd⊕ is a
common expansion of cd1 and cd2.

Now, let cd′ be a common expansion of cd1 and cd2 such that
cd⊕ is an expansion of cd′. Assume that cd′ is not an expansion
of cd⊕, then at least one of the following conditions has to hold:

1. cd′.classes ⊊ cd⊕.classes

2. cd′.abstract ⊊ cd⊕.abstract

3. ∃c ∈ cd′.classes : cd′.attr(c)∗ ⊊ cd⊕.attr(c)∗

4. ∃c1, c2 ∈ cd′.classes : c1 ≺cd⊕ c2

5. ∃a ∈ cd⊕.assoc : a is not refined by any a′ ∈ cd′.assoc

Since the merge operator ⊕ does not add any unnecessary ele-
ments or refinements of associations, it follows that cd′ is not a
common expansion of cd1 and cd2. We conclude that cd⊕ is a
minimal expansion of {cd1, cd2} and thus a semantically sound
merge.

In addition to formal soundness, we can identify the follow-
ing properties of the merge operator: Given 3 Class Diagrams
cd1, cd2, cd3, the merge operator is

1. conditionally idempotent, i.e., cd1 ⊕ cd1 = cd1 holds iff
cd1 has a non-ambiguous matching of associations,

2. commutative, i.e., cd1 ⊕ cd2 = cd2 ⊕ cd1,

3. conditionally associative, i.e., (cd1⊕ cd2)⊕ cd3 = cd1⊕
(cd2 ⊕ cd3) holds if all associations have a defined associ-
ation name or if all associations have two non-empty role
names.

5.3. Merge Conflicts
As mentioned before, not all pairs of CDs have a common
expansion or a non-ambiguous matching of associations. Con-
sequently, the merge operation may not always produce a valid
CD. Conflicts arise from ambiguity and under-specification
within the component diagrams. Some are detected during the
merge process, others by checking the model integrity of the
merge result. Variants of the merge operation can resolve certain
conflicts at the cost of formal soundness.

Merge Conflict 5.1 (Attribute Type Violation). An attribute
type violation occurs if a class c contains or inherits two
attributes with the same name but different types, i.e.,
(n, t1) ∈ cd1.attr∗(c) and (n, t2) ∈ cd2.attr∗(c) with t1 ̸= t2.
As those attributes do not match they cannot be merged into one
target attribute.
Result: Error
Variant: Apply implicit type conversion.

Figure 5 illustrates the attribute type conflict for the attribute
birthdate which is either of type long in Unix format or as
String. The proposed variant of implicit type conversion for
base data types, as it is applied by general purpose programming
languages such as Java, would merge two attributes (n, int) and
(n, long) into (n, long). This resolves the conflict, however,
there is now a danger of buffer overflows for any software com-
ponent that is implemented according to this type specification,
since int variables cannot handle long values that exceed the
range of integer.

Figure 5 Merge Conflict: Attribute with same name but in-
compatible type

Merge Conflict 5.2 (Abstract Class). A class c is declared
abstract in the first Class Diagram cd1 whereas the other Class
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Diagram cd2 declares c as non-abstract, or vice-versa.
Result: Warning, the merged class will be declared abstract.
Variants: (1) Warning, the merged class will be declared non-
abstract. (2) Error

Declaring the merged class abstract will ensure formal sound-
ness of the composite CD. If the merged class was declared
non-abstract instead, the semantics of the composite CD would
permit direct instances of the class. This would contradict the
formal notion of refinement. On the other hand, any valid im-
plementation for the component diagram cd2 that creates direct
instances of the class c would be incompatible with the resulting
merge. As such, it might be warranted to (1) sacrifice formal
soundness in favor of backwards-compatibility with the compo-
nent implementation in certain cases or alternatively (2) prohibit
merging of abstract and non-abstract classes.

Merge Conflict 5.3 (Type Hierarchy Violation). A sound
merge must preserve the type hierarchies ≺∗cd1

and ≺cd2

of its components cd1 and cd2. Assume that for classes
A, B ∈ cd1.classes ∩ cd2.classes we find A ≺∗cd1

B and
B ≺∗cd2

A, i.e., A is a subclass of B in cd1 while B is a subclass
of A in cd2. The merge operator would now produce an
inheritance cycle A ≺∗cd⊕ B ≺∗cd⊕ A which violates the partial
order property of the transitive inheritance relation.
Result: Error

Merge Conflict 5.4 (Association Conflicts with At-
tribute). Given components cd1 and cd2 with a com-
mon class c1 ∈ cd1.classes ∩ cd2.classes, as well as
an attribute (n, t) ∈ cd1.attr(c1) and an association
a ∈ cd2.assoc = (c1, r1, n, c2). The expression cd⊕.n is
ambiguous as it denotes either the attribute of the class or an
instance of c2 that is accessed by the same role name.
Result: Error
Variant: This ambiguity can be tolerated if the navigation
direction is explicitly cd.nav(a) ∈ {←} as this prevents direct
access to object instances of c2 via the role n. In that case
cd1.n always denotes the attribute.

Merge Conflict 5.5 (Association with Mismatching Car-
dinalities). Let a1 ∈ cd1.assoc and a2 ∈ cd2.assoc be
two matching associations in the respective Class Dia-
gram. Then cd1.cardL(a1) ̸= ⊥ ̸= cd2.cardL(a2) =⇒
cd1.cardL(a1) = cd2.cardL(a2) and cd1.cardR(a1) ̸= ⊥ ̸=
cd2.cardR(a2) =⇒ cd1.cardR(a1) = cd2.cardR(a2)
Result: Error

Cardinalities on each side of the association will only be
merged if they are identical or unspecified. This restriction is
not necessary if we simply require a formal refinement. Con-
sequently, previous approaches that specified a merge operator
for CDs (Fahrenberg et al. 2014; Boronat et al. 2007) merge
cardinalities via intersection. However, for implementation pur-
poses, we have to not only consider implied “read”-promises
but “write”-promises, as well. Consider, for example, the CDs

Figure 6 Merge Conflict: Mismatching Cardinalities

in fig. 6. Assume that we have a preexisting software com-
ponent that corresponds to CD A. This software component
might add arbitrarily many Lecture instances to holds for
some instance of Professor. Now assume that we permit a
merge of CD A with CD B that merges cardinalities via intersec-
tions. From the perspective of CD A, the cardinality for holds is
thereby decreased from [1, ∞) to [1, 2]. We now might run into
backwards-compatibility issues with our preexisting software
component, as the component might still add more than two
Lecture instances to holds for some instance of Professor.

Merge Conflict 5.6 (Associations with Ambiguous Match). Let
a1 = (c1, r1, r2, c2) ∈ cd1.assoc and a2 = (c1, r1, ϵ, c2) ∈
cd2.assoc and a3 = (c1, ϵ, r2, c2) ∈ cd2.assoc be unnamed
associations in their respective Class Diagrams. There are
multiple matching candidates for association a1 as either of its
roles matches exactly one association role in the other Class
Diagram.
Result: Warning, Preserve all associations
Variant: Error

Figure 7 Merge Conflict: Ambiguous match of associations

Simply preserving all 3 associations in fig. 7 might produce
a syntactically valid expansion, however, the semantics of the
composite CD would effectively consider the intersection of
all cardinalities and such an implicit change in these cardinal-
ity constraints would be problematic for the reasons outlined
before.

Merge Conflict 5.7 (Ambiguous Roles). Let a1 =
(c1, r1, r, c2) ∈ cd1.assoc and a2 = (c1, r2, r, c3) ∈ cd2.assoc
and c1 ̸= c3. The role r is ambiguous for the resulting associ-
ation if cd1.nav(a1) ∈ {→,↔} or cd2.nav(a2) ∈ {→,↔}
and creates a type conflict navigating from the class c1 as c1.r
refers either to type c2 or to type c3. The same conflict for
right-to-left associations is defined analogous.
Result: Error
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Figure 8 Merge Conflict: Ambiguous roles
Lecture.attendee

This merge conflict is depicted in fig. 8: The role
Lecture.attendee refers to ambiguous data types Professor
vs. Student. Note that this remains a conflict even if, e.g., c3 is
sub-class of c2: Assume that an implementation for one com-
ponent expects to navigate from an instance of the sub-class
on the left side to an instance of the sub-class on the right side.
If it finds an instance of the super-class (that was added by an
implementation for the other component), it might run into an
error when trying to access an operation or data that is only
defined for the sub-class.

Finally, it should be mentioned that certain programming
languages such as Java do not permit multiple-inheritance for
classes. If this is the case for the implementation language, the
following conflict has to be considered, as well:

Merge Conflict 5.8 (Multiple Inheritance). The merge will
preserve class extensions declared in the component diagrams.
Assume that component diagram cd1 declares classes A ≺cd1 B
whereas component diagram cd2 declares A ≺cd2 C. Merging
both type hierarchies will result in multiple inheritance, i.e.,
A ≺cd⊕ B and A ≺cd⊕ C hold at the same time.
Result: Error
Variant: Interleave class extensions

The proposed variant would interleave class extension such
that A ≺cd⊕ B ≺cd⊕ C or A ≺cd⊕ C ≺cd⊕ B holds. This
would only correspond to a weakened minimality with respect to
CD-expansion where only CDs without multiple inheritance are
considered. Additionally, it would weaken conditional associa-
tivity of the merge operator, as e.g., A ≺cd⊕ B ≺cd⊕ C might be
chosen for cd1 ⊕ cd2 and thus, given a third Class Diagram cd3
that specifies C ≺cd1 B, we would find that (cd1 ⊕ cd2)⊕ cd3
is undefined, but at the same time cd1 ⊕ (cd2 ⊕ cd3) might be
a syntactically valid CD.

We have given ample evidence that it is not sufficient to
ensure that a composite CD produced by the merge operation
is a refinement (or expansion) of its component diagrams but
that additional implementation-specific requirements must be
taken into account. It is paramount for any implementation of a
merge operator to detect and flag such conflicts.

6. Implementation and Evaluation
We have implemented the merge operator described in sec-
tion 5.2 in the CDMerge-tool which is part of the larger
CD4Analysis-project developed at the Chair of Software Engi-
neering at RWTH Aachen University. The project is publicly
available on GitHub3. CDMerge can be used as Java-library via
the public methods that are provided by the CDMerge class or
as a CLI-Tool via the MCCD.jar.

Consider the two component-CDs from our motivating ex-
ample in section 3. In order to apply the merge, we first
have to translate the input-CDs into the textual notation of
CD4Analysis (Schindler 2012) and save each of them as a
cd-file. We have already included the files Teaching.cd and
Management.cd in the doc folder of the project. Their contents
is listed in listing 1 and listing 2, respectively.

1 classdiagram Teaching {
2 class Professor{
3 String name;
4 String mail;
5 }
6 class Lecture {
7 int credits;
8 }
9 class Student {

10 long matrNr;
11 }
12 association [1] Professor (lecturer)<->(holds) Lecture;
13 association attendance [*] Lecture <- Student;
14 }

Listing 1 Teaching.cd. Textual representation of fig. 1
1 classdiagram Management {
2 abstract class Employee {
3 String name;
4 }
5 class Professor extends Employee{
6 int salary;
7 }
8 class Lecture{
9 int courseID;

10 }
11 association Professor (lecturer) -> (holds) Lecture [1..*]

;
12 }

Listing 2 Management.cd. Textual representation of fig. 2

By executing the MCCD.jar with the the following CLI-
command, the two CDsTeaching.cd and Management.cd are
merged. The resulting CD is then pretty-printed (-pp) to the
console. The runtime of the merge process itself is negligible
compared to the parsing of the input-CDs.

java -jar MCCD.jar -i Teaching.cd \
--merge Management.cd -pp

More configuration options are documented in the README.
A link for downloading the MCCD.jar is also provided. The
result of the merge is listed in listing 3.

6.1. Case Study: MaCoCo
CDMerge was evaluated using the CDs of the Management
Cockpit for university chair’s Controlling (MaCoCo)4 project.

3 https://github.com/MontiCore/cd4analysis
4 https://www.se-rwth.de/projects/#MaCoCo
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1 classdiagram Merge {
2 class Professor extends Employee {
3 int salary;
4 String mail;
5 }
6 class Lecture {
7 int courseID;
8 int credits;
9 }

10 abstract class Employee {
11 String name;
12 }
13 class Student {
14 long matrNr;
15 }
16 association [1] Professor (lecturer)<->(holds) Lecture

[1..*];
17 association attendance [*] Lecture <- Student;
18 }

Listing 3 Merge result on the console

MaCoCo handles financial management specific to needs of
university chairs, e.g. accounting of third-party funds. It is used
by more than 180 chairs at the RWTH Aachen university with
more than 1400 users in total.

The project uses a Model-Driven Engineering (MDE) ap-
proach to generate large parts of the application code. (Gerasi-
mov et al. 2021; Adam et al. 2020; Gerasimov et al. 2020)
describe the toolchain in more detail. The primary artifact is a
single CD5 with 1.141 text lines defining more than 100 classes
and enums. The system consists of four subdomains: 1) Finan-
cial 2) Staff 3) Project and 4) Application Settings. Given the
size of the model it is not easy to comprehend and alterations
of one component require thorough manual checking to avoid
inconsistencies.

A single holistic CD is needed for code generation. However,
this CD need not be a source-model itself, but instead could
be composed on demand. Therefore, we decided to decom-
pose the monolithic CD into smaller CDs corresponding to the
subdomains. The process was straightforward, since the mono-
lithic CD already utilizes comments to segment classes and
association into the aforementioned subdomains, each of them
having tight internal but low external coupling. The subdomain-
CDs are smaller, with about 250-300 lines of code. The merge
process takes only a few seconds on standard office hardware.

We were able to proof that CDMerge produces a full CD that
is semantically equivalent to the original model by using a CD
differencing tool (Maoz et al. 2011; Nachmann et al. 2022).
The evaluation shows that CDMerge is applicable to large CDs
that are used in real-life MDE projects. Data models of subdo-
mains can now be maintained individually while consistency is
guaranteed by CDMerge.

6.2. Runtime Data Integration of Merged MDD Compo-
nents

So far we have addressed the first research question by defining a
sound merge operator in section 5 and evaluated it’s applicability
in the previous section. In order to address the second research
question regarding the integration of preexisting software com-

5 Available online: https://zenodo.org/record/6422355

ponents, we have evaluated the applicability and limitations of
CDMerge based component integration with a proof-of-concept.
The objective was to integrate three software sub-components
according to their respective data models. The integration of the
data architectures by CDMerge ensured the interoperability of
data structures at design time, but we identified constraints and
issues that arise from integrating the corresponding run-time
data which will be discussed in the following.

For integration purposes it is mandatory that each compo-
nent’s CD precisely specifies binding agreements for the data
structure and the corresponding implementation of the respec-
tive component. Analogous to a component’s API that serves
as a functional contract, we could consider a CD as an ADI, an
Application Data Interface specification. Any form of communi-
cation between software components relies on compatible data
structures. Even if components do not actively communicate
with each other, they usually operate on parts of a common data
model. It is thus paramount that any implementation of the soft-
ware component strictly obeys the data-type specifications of the
CD. In particular, no alteration, extension or refinement of data
types and their associations are allowed in both the generated
and handwritten code. In that sense, the component’s CD de-
fines a closed-world data model for each sub-component, expect
of underspecified model elements such as cardinality or name
of associations. This restriction is necessary to allow CDMerge
to check the consistency of the involved models. However, this
does not impose a severe impediment on the component’s design
and implementation, it just requires thorough documentation
or relying on code generation for the component’s data model.
CDMerge can then be included in, e.g., continuous integration
setups to provide feedback on any inconsistency or potential
conflicts between data models of the software components. As
CDMerge itself operates under the open-world assumption, a
component’s underspecification is reduced by introducing ele-
ments from other components or specifying association names,
directions, role-names, and cardinalities based on matching as-
sociations. This will not cause issues as long as the component’s
implementation did not make any assumptions that are not re-
flected in the respective CD. When we consider the example
of the underspecified cardinality of an association, an imple-
mentation can assume that objects can be retrieved or stored via
corresponding links, but it needs to be robust in terms of storage
buffer sizes as well as the handling of missing objects (null
pointers).

Next, in order to specify time constraints, data integration
during runtime must be considered. Take the class Professor
from the running example: any object instance that refers to the
same entity should be consistent across all software components.
If an attribute value is changed in one software component, this
change must be propagated to all other software components
that deal with this instance.

One building block of this proof-of-concept is MontiDex, a
MDD tool that generates data explorer views from CDs as Java
applications (Roth 2017). As depicted in fig. 9 each component
generated by MontiDex has a three-tier architecture that is com-
prised of a GUI, a Business Logic and a Data Access Layer. We
used MontiDex to generate three applications that reflect parts
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of a university management system. The two components to in-
tegrate were more comprehensive versions of the Teaching and
Management components presented in our motivating example
in section 3 which were integrated into a University application
according to the approach sketched in fig. 3. The objectives
were to (1) ensure that each component can function as a stan-
dalone application and (2) implement a particular view of the
integrated software. For this purpose, we have implemented a
middleware known as the Entity Management Framework which
integrates with the MontiDex code generator and generates glue
code that manages the consistency of runtime objects across
MDD components.

We connected the three components to a central data stor-
age with a schema matching the merged data model generated
by CDMerge that is managed by the implemented middleware.
Each application can manipulate data instances according to
the local data model and the component integration is done via
the data access layer. All CRUD6 operations performed by any
of the components are then delegated to and handled by the
middleware.

Figure 9 Software Components Teaching and Management,
the integrated component University and the runtime entity
management middleware.

Middleware and components must be able to deal with situa-
tions where attributes or object links are not yet fully initialized
or object structures become compromised (e.g., when objects
are deleted elsewhere). As shown in fig. 10, the object struc-
ture modelled in OD University becomes invalid as soon as
the Teaching module deletes the Lecture-object. This is per-
missible for the Teaching-component, as the cardinality is
underspecified, but not for the Management- and University-
components. CDMerge produces a warning in such cases and
the middleware prevents the deletion of mandatory instances.

We identified four basic constraints for runtime compatibility
of an integrated data model:

1. Integrity: Contradictory declarations in the CDs of the
individual modules must be uncovered and fixed before
runtime integration.

2. Conformance: A data instance must conform to all com-
ponent data models w.r.t. open-world semantics, i.e., at-
tributes have correct data types and specifications of the
associations, like cardinality constraints, are not violated.
Any manipulation of a data instance that leads to an invalid
state of the entire system must be prevented.

6 Create, Read, Update, Delete

3. Unique referenceability: Data instances must be acces-
sible and uniquely referenceable in all modules that use
this data type. Changes to a data instance are visible to
other modules as long as the corresponding attributes and
associations are known locally.

4. Consistency: If a data instance is manipulated, the change
and the new object state are propagated to all components
that refer to this data instance.

The first two constraints are ensured by the formal soundness
of the merge operator as well as by detecting the merge con-
flicts outlined in section 5.3. However, for runtime integration
we have to consider multiple implementations and hence run-
time polymorphism of a class, one for the data model of each
component. We identified two ways to handle this situation:

1. Code transformation that replaces each data type declara-
tions in every software component with a data type decla-
ration of the merged model.

2. Runtime transformation of one datatype representation to
another.

The first option is unfavourable as it would require recom-
pilation of each software component every time a data model
of any component is changed. It would also impose the in-
flated data structures of the merged data model on all software
components, as well as risk propagation of potentially sensitive
information. That leaves us with the option of transforming
object structures at run-time. Since all variants of every data
type are known at design time, the type transformers and neces-
sary adapters/wrappers can be derived and generated from the
component-CDs.

Ensuring the third constraint, unique referenceability, is chal-
lenging. The system needs to be able to trace data objects that
refer to the same entity. This requires primary identifiers for ob-
ject instances. One option, derived from the application domain,
are identifiers created from a common set of attribute values for
a datatype that are known in all components or unique data links
to other referable instances. Consider the motivating example
again. For an instance of Professor the identifier could be the
attribute String name (see figs. 1 and 2). For Lecture there
is no common attribute across the components. Here, the merge
tool can output a warning, that object instances of a Lecture
might not be unambiguously referable and duplicate data in-
stances have to be resolved manually. Alternatively, it must be
guaranteed that instances of this class can be created only in the
integrated component and the sub-components can only view or
edit data.

Assuming that either of the identifiers is used or that objects
are only created and stored at a single location, changes can
be propagated automatically to the central data storage and
across all components using well known Observer and Mediator
patterns (Gamma et al. 1995) that are generated and attached to
each entity derived from the input CDs. This ensures the fourth
constraint, consistency.

Lastly, we have to deal with incomplete data initialisation.
This situation is depicted in fig. 10 which shows three UM-
L/P Object Diagrams (ODs) that represent instances of their
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respective CD. We can see that an object that corresponds to
the merged data model University can easily be transformed
into objects of the respective component-CDs by omitting un-
specified elements, e.g., the p3:Professor can be transformed
into p2:Professor by removing the attribute salary. This is
always possible as the composite-CD is always an expansion
of its components. On the other hand, p1:Professor cannot
be easily transformed to a valid object for the Management-
CD as the the attribute salary as well as the required link to a
Lecture-object are missing (note the cardinality 1..* in fig. 2).
One possible solution is to use only the composite-CD as a tem-
plate for object creation. Whenever a data object needs to be
created, the creation is delegated to a factory in a middleware
and any mandatory but unspecified attributes or object links are
created with default values. The middleware then needs to keep
track of partially initialized objects and their default values.

Figure 10 Object Diagrams illustrating instances of three
possible type variants of the class Professor according to
their respective component-CDs.

7. Conclusion and Outlook
We have defined and implemented a sound merge operator that
allows merging underspecified CDs based on a formal open-
world semantics. Furthermore, we have discussed potential
merge conflicts and proposed variants of the operator to address
implementation-oriented aspects of software composition that
are not covered by the formal notion of semantic refinement.

To answer our first research question, we believe that an
expansion-based notion of soundness (cf. definition 5.1) is an
appropriate choice for the formal definition of a merge operator,
as it ensures refinement in the open-world, permits reducing
under-specification, and prevents altering specified cardinalities.
The final property mentioned preserves "write"-promises that
are not considered in the formal semantics of CDs, but that are
relevant for manual extension of functionality.

As for the second research question, our approach can detect
conflicts at the data level, as well as basic problems at the opera-
tional level early on and is well-suited for continuous integration.
However, the formal notion of a semantically sound merge does
not guarantee re-usability of preexisting software components
in all cases. Similarly, the merge conflicts outlined in section 5.3
are necessary but not sufficient to cover implementation-specific
aspects. A dedicated generator-infrastructure and additional
considerations for the target language are needed. Moreover,
we allow variations of the merge operator that may violate

certain aspects of formal soundness in order to accommodate
implementation-specific needs.

We have evaluated our approach in a case study where we
merged CDs of system components into a holistic CD of the
whole system. Here, CDMerge proved to be able to facilitate
valid composition of MDD system architectures. In addition,
we have examined runtime implications in a feasibility study
using a prototype implementation of an Entity Management
Framework that allows for late binding of software components
and integration of existing software modules as long as the inte-
grated data model is consistent. We have identified challenges
regarding referenceability that occur for domain instances in
run-time data integration, and intend to address them in a future
publication. In a next step, we aim to generalize this approach
using a code generator that takes the component-CDs as inputs
and generates the required glue code to integrate the software
modules. Our hope is that this facilitates reuse of ready imple-
mented, model-based components as building blocks for MDD.
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