
Automated Testing of Graphical Models in
Heterogeneous Test Environments

A. Beresnev∗, B. Rumpe†, F. Schroven‡

∗ TU Braunschweig, Software Systems Engineering Institute
† RWTH Aachen, Chair for Software Engineering

‡ Volkswagen AG, Driver Assistance and Integrated Safety

Abstract—Automated and therefore repeatable tests
are important in product lines to ensure and maintain
quality of software functions as well as efficiency of the
developers. This article shows methods for fully au-
tomated testing of SIMULINK models with the slUnit
framework and techniques for the integration of slU-
nit tests in a general test framework to allow integrated
and automated test reports.

Index Terms—unit test, slUnit, CxxTest, test automa-
tion.

I. INTRODUCTION

Complexity of automotive software systems is still
vastly increasing. To achieve the desired optimum of
correctness, efficient mechanisms are needed to re-
producibly and automatically execute tests and report
their findings. Furthermore, integrated testing in het-
erogeneous development environments is necessary,
because we frequently see heterogeneous tool chains
including development languages such as C, C++ or
Matlab. This article presents improvements to unit
test frameworks for SIMULINK [1] and C++[2] which
are especially important regarding the automation of
test execution and the evaluation of test results.

The article is structured as follows: The first sec-
tion describes the technical basis of automated soft-
ware testing and graphical models used in the auto-
motive industry. Then a test automation system for
C++ is presented along with slUnit [1] – a unit test
environment for SIMULINK. Finally two methods are
shown to execute slUnit tests fully automatically.

II. TECHNICAL BASIS

A. Automated Software Tests

Since the idea was made prominent by Kent Beck
[3] unit tests have become an essential part of the
quality assurance in modern software engineering.
Not only do unit tests help to find software problems

early in the development cycle where the cost of fix-
ing bugs is minimal. Fully automated tests moreover
are good indicators that the desired functionality has
been stable after any change e. g. necessary as en-
hancement of the requirements. The whole develop-
ment process becomes more flexible and predictable
and thus is more amenable for product lines [4]. That
is why unit tests are vital for agile software develop-
ment techniques like eXtreme Programming (XP) [5],
[6] and Test Driven Development (TDD) [7] which
imply the creation of unit tests even before the actual
functionality is implemented.

One of the main principles of unit tests is that the
test specification language is the programming lan-
guage itself, i. e. the language of the code under
test. In fact this was one of the main reasons of unit
tests’ success: the developers can use their familiar
programming language and do not need to learn and
switch to another just to write tests.

We now do have unit test frameworks (e. g. JUnit,
CppUnit, SlUnit) for nearly every existing program-
ming language. Their main goal is to make the devel-
opment, execution and reporting of unit tests as com-
fortable as possible. Here, the programmer should
just immediately and efficiently be able to write the
code of a test method including automated check of
the result, push a button and see the tests running ok
(green) or failure (red). For this reason xUnit frame-
works often facilitate integration directly into an IDE
or build system.

Since unit tests run automatically at no cost they
can be repeated after every change in the software,
along with incremental or at least daily builds of the
entire project. This technique is primarily known un-
der the term ”Continuous Integration” and is basically
independent of other XP principles. Under the control
of a continuous integration system, unit tests are most
effective, since every bug which can be detected by

[BRS09] A. Beresnev, B. Rumpe, F. Schroven.
Automated Testing of Graphical Models in Heterogeneous Test Environments.
6th International Workshop on Intelligent Transportation.
Hamburg University of Technology.
24.-25. März 2009
www.se-rwth.de/publications

existing unit tests is almost immediately reported af-
ter it is created and the developer should be able to
find and remove it much easier. From our own ex-
perience (e. g. [8]) we know that a continuously in-
tegrated project is much more predictable, since one
always knows which parts of the system already work
correctly, which still do not, and which bugs are to be
fixed next. In later development phases and evolution-
ary follow-up projects, continuous integration makes
it possible to always have the last fully functional ver-
sion of the software which can be deployed immedi-
ately.

B. Graphical Models for Automotive Engineering

In automotive engineering, model based design and
automatic code generation have reached significant
importance. In this context, graphical models, for ex-
ample MATLAB/SIMULINK [9] or UML [10], [11],
are used for coding high-level artifacts.

One primary goal of those models is to gener-
ate code that is compiled for a certain target. In
the context of automotive research projects, dSPACE
rapid prototyping hardware [12] is quite often used.
The generator supports common vehicle buses (e. g.
CAN) on the level of signals and thus allows fast in-
tegration in demonstrator vehicles. Together with on-
line parameter modification and measurement of val-
ues this speeds up development and manual testing.

The model can also be used for offline simula-
tion. Then all interfaces to the car need to be sim-
ulated as well, but the simulation can run efficiently
overnight and without any physical device (car) at-
tached. In case of embedded automotive software de-
velopment this means simulating directly connected
switches and data from other electronic control units
(ECU) that would be received over an appropriate
bus. Two cases can be distinguished:
• Offline simulation
• Interactive simulation
In case of offline simulation generated or recorded

input data is used to feed the control system. The
systems output is usually saved in files or evaluated
directly.

Although vehicle integration is quite comfortable,
in the long run testing in a real car is far more time
consuming than simulating. It is also quite easy to
build an interactive simulator around a SIMULINK

model. Therefore, manageable situations can easily
be investigated using an interactive simulator. De-
pending on the type of application, a more or less

explicit and detailed model of the vehicle and its sur-
rounding environment is needed. In the intercative
case the output, i. e. the car’s behavior, is usually di-
rectly visualized.

In both cases it is necessary to set up the model so
that it automatically detects whether it is used in sim-
ulation or for code generation to dynamically switch
on and off parts of the model that are only condition-
ally needed.

III. UNIT TESTING WITH CXXTEST AND SLUNIT

Existing unit test frameworks, namely CxxTest [2]
for C++ and slUnit [1] for Simulink can be used for
two very different development environments. How-
ever, both need to be adapted and in particular inte-
grated to allow heterogeneous developments in C++
and Simulink to be tested in an integrated fashion.

A. Continuous Integration with CxxTest
Unit test frameworks for Java, .NET and other lan-

guages heavily rely on reflection mechanisms to au-
tomatically identify the methods and classes contain-
ing the test code and thereby minimize the amount of
code required to define a test case or test suite. Due to
the lack of reflective facilities in C++, unit test frame-
works for this language (like for example CppUnit)
oblige the developer to mark test cases explicitly
through macros or function calls which however con-
tradicts the spirit of xUnit. CXXTEST however uses
the technique of parsing the source code before com-
pilation and generating a test runner which is able to
call the test functions directly. This approach allows
the test suites to be as simple as shown in figure 1.
The only requirements are that a header file is created
with a class derived from CxxTest::TestSuite
and the test methods’ names must start with test.

// MyTestSuite.h
#include <cxxtest/TestSuite.h>

class MyTestSuite : public CxxTest::TestSuite
{
public:

void testAddition(void)
{

TS_ASSERT(1 + 1 > 1);
TS_ASSERT_EQUALS(1 + 1, 2);

}
};

Fig. 1. A simple CxxTest example

To generate the test runner for one or several such
test suites the developer would run the generator for
example as follows:

cxxtestgen.pl --error-printer -o \
runner.cpp MyTestSuite.h

This would generate runner.cpp, which then
could be compiled as usual.

Based on CxxTest, we have implemented BUG-
BUSTER, a Continuous Integration System. BUG-
BUSTER is able to run on any machine which can ac-
cess the source repository of the project. It checks
the repository periodically for changes and, if an
unchecked revision is detected, initiates a config-
urable action sequence. Following actions are avail-
able:
• Check out
• Build
• Run unit tests
• Measure code coverage
• Generate reports for the web
• Optionally mail report result to developers
• Clean up
BUGBUSTER contains a test coverage tool indicat-

ing the quality of the tests in terms of coverage (state-
ments and control flow on code level, but not yet on
diagram level). As usual, it instruments the C++ code
by inserting extra code around each instruction. E. g.
the instruction’s line number is passed as a parame-
ter. During the test run, the coverage measurement
tool matches the line numbers with the corresponding
source code and has the ability to determine the per-
centage of the instructions actually being executed.

To generate HTML reports like in figure 2, Bug-
Buster enhances CXXTEST with a test runner which
produces XML-based output of the test results instead
of presenting them in a console or a GUI window.
Subsequently, the test outputs are processed by a set
of XSLT transformations, which combine them with
the results of the coverage measurement and the ex-
tracted code fragments to a comprehensive test report
which not only shows the number and status of the
executed tests but also gives an impression of their
quality. The extracted code fragments allow the de-
velopers to quickly look up the position and cause of a
failed test directly in the HTML report. Finally, BUG-
BUSTER can send the compiled test reports via email
to the developers or store them in a shared folder.

An important feature of BUGBUSTER is its revi-
sion management which traces not only the version
of the main project repository but also all of its ex-
ternal dependencies. For this purpose BUGBUSTER,
maintains its own list of virtual revisions. Each of
them is composed of the main project’s revision num-
ber and the revision numbers of all externals. Every

Fig. 2. BugBuster HTML report

change of these numbers causes BUGBUSTER to cre-
ate a new virtual revision. This allows the test results
of the project to be monitored separately with every
version of all subprojects and external libraries.

B. Interactive slUnit

SlUnit is an interactive testing framework for
SIMULINK models [1]. It is completely implemented
in the language of MATLAB/SIMULINK and there-
fore follows one of the basic ideas of xUnit testing,
i. e. to implement the test framework in the same lan-
guage as the components to be tested. To construct
a testbed, one can use templates that already contain
an empty test case, a placeholder for the system under
test (SUT), the GUI elements to control the test exe-
cution and a progress bar showing the testsuites exe-
cution state. It is possible to run a single test case or
all tests of the test suite. The result of each test case
is displayed through the color of the corresponding
subsystem. Such a setup allows users to develop their
model and interactively see whether the changed sys-
tems still fulfills the requirements that are represented
by the tests.

slUnit uses the following test patterns: assertions,
test methods, all tests and fixtures. The assertion is
the basic element for testing that compares the sys-
tems output for a given input with an expected value.
In case of equality, the test passes, otherwise it fails.
When an error occurs when executing a test, the test is
aborted and slUnit proceeds to the next. This ensures
that tests are independent from each other, which is
another of the xUnit principles [13]. As SIMULINK is
made for dynamic systems testing means simulating
the model for a certain period of time. If all signals
and transfer functions within the model are constant
with respect to time, it is sufficient to minimize the
simulation to speed up testing.1 The test methods in-

1It is sufficient that the assertion fails in a single time step.

Fig. 3. slUnit testsuite with two testcases, shared code, the sys-
tem under test and GUI elements

clude processing blocks for the test case. At least the
input and expected output values are given. Fixtures
share common code that is needed for all test cases
but is not part of the system under test. This can easily
be implemented in SIMULINK and is just one block
that is located “beyond” the multiplexer and hence is
used for all test cases. This block could for instance
be used for input conversion that is the same for all
test cases.

IV. AUTOMATION AND INTEGRATION OF

TESTING FRAMEWORKS

A. Fully Automated slUnit

One of the most important principles in unit testing,
automation of the test run and the result examination,
has so far only been realized to a small extent, i. e.
that all tests in a test suite can be run consecutively
while the SIMULINK model is open. When working
on a larger project, there will be many modules to test
repeatedly. Therefore, the need for automated pro-
cessing is evident.

slUnit had an intuitive mechanism to show the test
results: the test cases subsystem block is colored
green in case of all assertions passing and red when
at least one assertion fails (figure 3). The colors are
saved with the model, so that one can always see the
results of the latest run. When tests are spread over
several suites, i. e. several files, it, however, becomes
quite impossible to get an overview over the project’s
status.

In our approach both shortcomings have been over-
come. Concerning automation, slUnit can be con-
trolled from a test runner, which only needs the spec-
ification of a directory and the names of the test suites
to be included. Figure 5 shows an exemplary script.

Fig. 4. slUnit overview HTML report of two small testsuites
with hyperlinks to the detailed test results

After setting a root directory all test suites’ names
are aggregated in a cell string2. After that, the test
runner is called with two more arguments: the func-
tion mfilename returns the file name of the calling
script which is used to generate a plausible file name
for the report file so that the user can easily associate
the test script and the HTML report. Besides that, the
argument verbosity (here 1) describing the extent of
the report is passed to the test runner.

testpath = ’<directoryString>’;
testsuites = {’suite_1’,...

’suite_2’,...
};

slunit_testrunner(testpath, testsuites,...
mfilename, 1);

Fig. 5. Example of a slUnit testrunner call

The test runner ensures that all test suites are exe-
cuted and takes care of the result files. The test runner
can easily be wrapped in a batch file so that execution
(including startup of MATLAB) can be planned with-
out any user interaction and thus fully automated. The
test runner avoids dependencies among the test suites,
similar to the single tests. It means that if one test or
a whole test suite exhibits problems, such as a crash
because of an error, there is no effect on the execution
of the others.

The test results are presented in a hierarchical re-
port that is built by a custom HTML generator. The
report is interactively examinable at different levels of
detail. A call of the test runner leads to one summary
that sums up the results for all test suites (Figure 4)
and gives the project manager quick feedback and the
possibility to take actions when necessary. The re-

2A cell string is a MATLAB data type that can handle strings of
different lengths.

port also informs about the time and duration of the
test execution. For further investigation, the summary
can contain hyperlinks to the result files for every test
suite. These low level reports contain hyperlinks to
the executed test suites (model files). That means that
there is a continuous path from a high level summary
down to the test case of interest.

The productive part, the system under test, can ei-
ther be developed within the test suite or not. When
working alone on a small project developing within
a set of test cases might be possible. As a project
is larger this is impossible because models grow and
will most likely be divided into smaller modules that
are tested individually. Since a test suite is an ordinary
SIMULINK model the developer has to ensure that no
inconsistency arises from the fact that test suite and
the developed model are different files. This can be
achieved by using the techniques of libraries or model
referencing (figure 6).

Fig. 6. Automatic update of slUnit test suites when working
with libraries or model referencing

B. Integrating Heterogeneous Test Frameworks

Despite the growing importance of model-based
development and code generation in the automotive
industry, projects usually can not be implemented us-
ing only MATLAB/SIMULINK and would be to low-
level to only use C++. So a mixture of languages
is used. This leads to heterogeneous development
and test environments and if tests are more than just
method or module tests, both tested system and tests
are heterogeneous. Our experience e. g. in the CAR-
OLO project [14] shows how important it is to inte-
grate and test the modules from such different worlds
early. A good integration also allows the creation of
test parts which interact with modules from another.
Another positive side effect of this solution is the con-
sistence of test reports, i. e. the status of the entire
project is presented in a single report.

In some projects, we integrate slUnit test cases into
a BUGBUSTER test environment which already ex-
isted for the C++ part of the project [15], [16]. How-
ever, as mentioned in section III, BUGBUSTER ex-
pects to find test suites in CXXTEST style and can not
handle SIMULINK models of slUnit directly. There-
fore, we embed slUnit test cases to make them look
like CXXTEST test cases. More precisely, we use
adapters for each slUnit test suite which can be ex-
ecuted and evaluated by the CXXTEST framework.
We use a generator, developed for that purpose, which
scans all SIMULINK models in a given directory pro-
ducing an adapter for each detected slUnit test case of
the form shown in figure 7 into a prepared CXXTEST

test suite.

void test_<<TestCaseName>>()
{

<< run slunit test >>
<< get result and output from matlab >>
<< forward output >>
if(<< result is negative >>)
{

<< fail CxxTest >>
}

}

Fig. 7. slUnit test case adapter for CxxTest

To actually run a slUnit test case from C code and
obtain the necessary information like test results we
utilize the external interface of MATLAB [17] which
allows to call MATLAB software from other pro-
grams, thereby employing MATLAB as a mathemat-
ical library or as a simulink engine. During the exe-
cution of our adapted slUnit tests the MATLAB engine
is initialized only once prior to all tests as a global test
fixture. After that every test starts a MATLAB script
passing the test case name as parameter. This script
executes a single slUnit test case end returns its re-
sults.

Of course executing slUnit test cases in context of
an existing C++ unit test environment can be seen
as a special case of a more general problem, namely
the integrated execution of test cases for two or more
different unit test frameworks with the aim of using
a single continuous integration system or reporting
mechanism. We have positive experiences with the
described approach of generating adapter test cases.

V. CONCLUSIONS AND OUTLOOK

This article presents an adaptation of the
SIMULINK testing framework slUnit and its in-
tegration into C++-based tests. Two ways for a

full automation including a convenient reporting
mechanism were discussed.

Of course, we can improve our tool, e. g. provid-
ing more information than labeling the test results as
passed, failed or error. In case of failed further in-
formation, e. g. about internal values and their time
dependent course need to be added to the report. Fu-
ture evolutions of slUnit will therefore include data
sinks that store values to plot them into the detailed
reports.

However, the most important task for now is to ac-
tively help traditional developers to adopt this testing
technique and use it for early testing as well as for
integration tests. This is a continuously hard job, as
it strongly affects the way how implementation is car-
ried out. Interestingly, developers in business projects
have successfully adopted these mechanisms of the
recent years and we support the hypothesis, that em-
bedded developers will also be able to use this kind
of testing techniques and improve efficiency and if
desired quality of their products. Of course, in the
embedded systems area this is somewhat more com-
plicated, as traditional real-life tests of software and
controlled device always will be necessary in addi-
tion to pure software tests – but hopefully consider-
ably less.

REFERENCES

[1] Thomas Dohmke and Henrik Gollee, “Test-Driven Devel-
opment of a PID Controller,” IEEE Software, vol. 24, no. 3,
pp. 44–50, May 2007.

[2] Tigris, “CxxTest,” http://cxxtest.tigris.org,
2008.

[3] Kent Beck, “Simple smalltalk testing: With patterns,” 1989.
[4] Klaus Pohl, Günter Böckle, and Frank van der Linden, Soft-

ware Product Line Engineering. Foundations, Principles,
and Techniques., Springer, Berlin, 2005.

[5] Kent Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 1999.

[6] Bernhard Rumpe, “Extreme Programming Back to Basics,”
Modellierung, pp. 121–131, 2001.

[7] Kent Beck, Test Driven Development. By Example,
Addison-Wesley Longman, 2002.

[8] C. Basarke, C. Berger, K. Berger, K. Cornelsen, M. Do-
ering, J. Effertz, T. Form, T. Gülke, F. Graefe, P. Hecker,
K. Homeier, F. Klose, C. Lipski, M. Magnor, J. Morgen-
roth, T. Nothdurft, S. Ohl, F. Rauskolb, B. Rumpe, W. Schu-
macher, J. Wille, and L. Wolf, “Team CarOLO – Technical
Paper,” Tech. Rep., Technische Universität Braunschweig,
Carl-Friedrich-Gauss-Fakultät, 2008.

[9] The Mathworks, “Matlab & Simulink,” http://www.
mathworks.com, 2008.

[10] Bernhard Rumpe, Agile Modellierung mit UML, Springer,
Berlin, 2004.

[11] “Unified Modeling Language Specification,” http://
www.omg.org/spec/UML/, OMG, 2008.

[12] “dSPACE,” http://www.dspace.com, 2008.

[13] Gerard Meszaros, xUnit Test Patterns: Refactoring Test
Code, Addison-Wesley Longman, 2007.

[14] Christian Basarke, Christian Berger, and Bernhard Rumpe,
“Software & Systems Engineering Process and Tools for the
Development of Autonomous Driving Intelligence,” Jour-
nal of Aerospace Computing, Information, and Communi-
cation, vol. 4, no. 12, pp. 1158–1174, October 2007.

[15] Andreas Weiser, Arne Bartels, and Simon Steinmeyer, “In-
telligent Car: Teilautomatisches Fahren auf der Autobahn,”
in Tagungsband der AAET 2009 – Automatisierungssys-
teme, Assistenzsysteme und eingebettete Systeme für Trans-
portmittel, 2009.

[16] Christian Berger, Holger Krahn, Bernhard Rumpe, and
Arne Bartels, “Qualitätsgesicherte Fahrentscheidungsun-
terstützung für automatisches Fahren auf Schnellstraßen
und Autobahnen,” in Tagungsband der AAET 2009 – Au-
tomatisierungssysteme, Assistenzsysteme und eingebettete
Systeme für Transportmittel, 2009.

[17] “Calling MATLAB Software from C and Fortran Pro-
grams,” http://www.mathworks.com/access/
helpdesk/help/techdoc/matlab_external/
f38569.html.

