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Abstract

Machine learning is a discipline which has become ubiqui-
tous in the last few years. While the research of machine
learning algorithms is very active and continues to reveal
astonishing possibilities on a regular basis, the wide usage
of these algorithms is shifting the research focus to the inte-
gration, maintenance, and evolution of Al-driven systems.
Although there is a variety of machine learning frameworks
on the market, there is little support for process automation
and DevOps in machine learning-driven projects. In this
paper, we discuss how metamodels can support the develop-
ment of deep learning frameworks and help deal with the
steadily increasing variety of learning algorithms. In particu-
lar, we present a deep learning-oriented artifact model which
serves as a foundation for build automation and data man-
agement in iterative, machine learning-driven development
processes. Furthermore, we show how schema and reference
models can be used to structure and maintain a versatile deep
learning framework. Feasibility is demonstrated on several
state-of-the-art examples from the domains of image and
natural language processing as well as decision making and
autonomous driving.

CCS Concepts: - Computing methodologies — Machine
learning; « Software and its engineering — Abstraction,
modeling and modularity; Software development methods.
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1 Introduction

Machine learning models such as deep neural networks have
proven to be applicable to a variety of problems in a mul-
titude of domains in the last decade and the boundaries
are pushed further on a daily basis. Such methods are used
for both implementing application functionality, e.g., facial
recognition, and supporting the development process itself,
e.g., through automatic model repair [2, 3] or understanding
the semantics of code [32, 46].

The widespread usage of machine learning in more and
more software systems leads to the necessity of processes,
frameworks, and tools supporting software architects and de-
velopers to cope with the abundance of available algorithms
and variants thereof, the integration of machine learning
components into large systems, as well as their continuous
evolution.

It turns out that from a software engineering point of
view, the development of machine learning-based software
is in several aspects more intricate than classical software
development and poses more challenges for engineers and
tools. For instance, the modularization and encapsulation of
machine learning models can prove difficult due to a vari-
ety of reasons [42]. Furthermore, machine learning-driven
software development introduces a multitude of new types
of artifacts, which are not present in conventional software
systems.
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In a machine learning-driven project, in addition to a stan-
dard code base written in a general purpose programming
language (GPL) or a domain-specific language (DSL), the
developers need to deal with a variety of artifact types in-
cluding but not limited to machine learning models, e.g.,
neural network descriptions, training data, training config-
urations, the learned parameters (the trained model, e.g.,
the weights of a neural network), training result metadata
holding information on the quality of the trained network,
etc.

To implement an efficient machine learning development
process, the developers and the tools need to be aware of the
artifact heterogeneity, understand the relationships between
the artifact types and organize them efficiently.

The first research question of this paper is therefore:

(RQ1) Which constituents and relationships are present
in machine learning-based software a build system
needs to be aware of in order to accelerate and auto-
mate its development?

To this end, we contribute a machine learning artifact
model making the types and relationships of artifacts present
in machine learning-based projects explicit, delivering a
foundation for the automation of machine learning-oriented
development processes. An extensive evaluation, which is
based on a reference implementation, shows how the ma-
chine learning-oriented artifact model can be used as a basis
for the automation of a data-driven development process
serving as the core of the required build infrastructure.

Nowadays a zoo of machine learning frameworks exists.
These frameworks vary in different dimensions such as the
offered level of abstraction, the target audience (education
vs. research vs. production), but also the specialization, e.g.,
supervised deep learning, reinforcement learning, generative
adversarial networks (GANs), etc. This leads us to our second
research question:

(RQ2) How can a high level of variability regarding the
training and building of machine learning compo-
nents be enabled in a single generative framework?

A goal of our research is the unification of a broad range
of deep learning algorithms in a single powerful, yet main-
tainable generative framework for applied machine learning
with a slim, user-friendly application programming interface
(API). Therefore, the second main contribution of this pa-
per is a reference modeling approach to deep learning
framework design. This approach uses component-based
role modeling and configuration schemas to define training
pipelines explicitly, thereby enhancing the maintainability
and extensibility of deep learning frameworks. The reference
models are used to define the configuration languages for
the training pipelines they describe and can therefore be
seen as the framework’s metamodels.
In summary, the contributions of this paper are:
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Figure 1. Artifact model for Java (taken from [15]).

e a machine learning artifact model making explicit the
types and relationships of artifacts present in deep
learning-based projects

o areference modeling approach to deep learning frame-
work design

e an evaluation featuring a Maven-based, automated
build infrastructure and three examples making use of
the artifact and the reference models.

The remainder of this paper is structured as follows. In
section 2 we provide the required preliminaries as well as
related work. In section 3 we introduce our artifact model
for machine learning-based software. In section 4, we dis-
cuss how training reference models can be employed to keep
the complexity of continuously evolving machine learning
frameworks under control. An evaluation is given in sec-
tion 5. Finally, we conclude our work in section 6.

2 Preliminaries and Related Work

Since our work is based on both advances in machine learn-
ing as well as model driven software engineering (MDSE),
in particular artifact modeling, our related work section is
subdivided in multiple parts accordingly.

Artifact Models. According to Hillemacher et al. [21], “an
artifact is an individually storable and uniquely named unit
serving a specific purpose in the context of a development
process”. Artifact models are used to structure file types,
e.g., in a model-driven development (MDD) project. They de-
scribe the structure of the (possibly generated) development
artifacts and the relations between them using class diagram
(CD) syntax and can serve as a basis for tool construction.
Figure 1 shows an exemplary artifact model for Java projects.
Java artifacts may rely on other Java artifacts and are either
source files or the compiled class files that are compiled from
the source files. The source files may also import other Java
artifacts

As MDD projects may contain various different file types,
artifact models help to tame the complexity introduced by
this [8, 15, 16]. Especially, artifact models can also help tools
to understand artifacts and their relations. Such tools can
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1 from tensorforce.agents import DQNAgent TensorForce]
2 | from tensorforce.execution import Runner

3 from tensorforce.contrib.openai_gym import OpenAIGym

4 q network = [{'type’: ’'dense’, ’'size’: 64, ’'activation’: ’tanh’},
5 {’type’: ’'dense’, ’'size’: 64, ’'activation’: ’‘tanh’},]
6 agent = DQONAgent (states={’type’: ’'float’, ’shape’: (4,)},

7 actions={'type’: ’int’, ’‘shape’: (2,)},

8 network=q network, memory={’'type’: ’'replay’, ’capacity’:
9 10000},

10 step_optimizer={'type’: ‘adam’, ’learning rate’: 0.001},
11 states_preprocessing={’type’: ’'divide’, ’'scale’: 10})

12 | environment = OpenAIGym(’CartPole-v0’)

13 | runner = Runner (agent=agent, environment=environment)
14 | runner.run(episodes=1000)

15 | runner.close()

Figure 2. Setting up and training a Deep Q-Network (DQN)
agent using Tensorforce.

then support developers. For example, Integrated Develop-
ment Environments (IDEs) need to understand the files used
by a project. Therefore, IDEs providing extensive support
for a specific language are often tailor-made for this very
language and its corresponding artifacts. One of the most
widely used IDEs for Java, Intelli], is also offered in differ-
ent variations for, e.g., C++ (CLion), Python (PyCharm), and
many other languages. Plugins and modes within the IDE
such as the Scientific Mode of PyCharm!' already enable IDEs
to adapt to specific domains. In contrast to those handwrit-
ten extensions, artifact models foster the development of
IDEs, or more generally speaking tools, which can adapt to
the domains in which they are used and the domain-specific
artifacts.

Similarly to artifact models, megamodels provide a global
overview of artifacts within MDD projects by making state-
ments about their relations [5, 15, 19]. Broy presents an
artifact model for linking artifacts in different views of the
same system, e.g., requirements and architectural views [7].
[12] and [4] address the problem of linking requirements to
artifacts. However, to the best of our knowledge, no prior
work examined artifact models in the context of machine
learning and its artifacts in software engineering processes.
Creating reusable machine learning components has been
examined, e.g., in [18], but without putting them in the con-
text of a clear artifact model. Machine learning has also been
applied to classify metamodels in repositories with a large
number of metamodels [38, 39].

Machine Learning Frameworks. Today a multitude of
deep learning frameworks exists targeting different audi-
ences. Low-level frameworks such as TensorFlow [1] provide
a whole lot of flexibility and are well suited for experimen-
tation and research. High level pendants or APIs such as
Keras [17] on the other hand focus on usability and enable
rapid prototyping of neural network models. Comparisons
of different GPL and model-based approaches can be found
in [28, 29].

https://www.jetbrains.com/help/pycharm/matplotlib-support.html
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DQNAgent .gamma = 0.99

DONAgent .update_period = 4
tf.train.RMSPropOptimizer.learning rate = 0.00025
tf.train.RMSPropOptimizer.decay = 0.95
atari_lib.create_atari_environment.game_name = 'Pong’'
create_agent.agent_name = 'dgn'

Runner.num_iterations = 200

Runner.training_steps = 250000
WrappedReplayBuffer.replay capacity = 1000000
WrappedReplayBuffer.batch_size = 32

H 0o o0 W N

o

Figure 3. Excerpt of a Google Dopamine gin configuration
to train a DQN agent in the Atari Pong environment.

A particular trait of high-level deep learning frameworks
is that they aim to hide the complexity of the training proce-
dure from the machine learning developer. The algorithms
for supervised training are provided out of the box, but re-
quire a proper hyperparameterization. Inherently different
training methods either need to be crafted manually or are
provided by dedicated frameworks having their own hyper-
parameters to be set. For instance, reinforcement learning is
offered by specialized frameworks such as Tensorforce [27]
or Google Dopamine [9]. As can be seen in Figures 2 and 3,
setting up a DQN based reinforcement training [37] can be
achieved with a few lines of code in both frameworks, which
are mostly dedicated to setting the required hyperparame-
ters. While it might seem convenient to work with a tailored
framework for each training approach when there is only
a small number of such approaches, the situation becomes
more and more confusing with the rising number of learning
methods and the lack of a common ground, e.g., a common
parameterization facility. For this reason, the aim of section 4
is to create an extensible and maintainable metamodeling
approach for a universal machine learning modeling frame-
work.

Integration of Machine Learning Components. While
the aforementioned deep learning frameworks such as Ten-
sorFlow, Tensorforce, and Dopamine focus on the algorith-
mic part of machine learning, there is much less work avail-
able on the integration of machine learning models as build-
ing blocks into complex software development processes,
which is the aim of this paper.

Working with data and applying machine learning can
become complex and cluttered. Therefore, tools are needed
to help manage and automate the development process of
data-driven projects. An example of such a tool is the open-
source platform MLflow [48]. MLflow’s primary functions
are tracking experiments, packaging ML code such that it
can be reused or transferred to production, managing and
deploying models from a variety of ML libraries and provid-
ing a central model store®. The functionalities of MLflow are
independent of the used machine learning framework. They
can be used directly in the code to train and build a machine
learning model through a Python, Java, R, or REST APL

Zhttps://mlflow.org/docs/latest/index.html
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ML Metadata (MLMD) [23] is a library for recording and re-
trieving metadata when running machine learning pipelines®.
While MLflow focuses on models, MLMD analyzes machine
learning pipelines and looks at the interconnections between
pipeline components, e.g., which hyperparameters were used
to train the model. Similarly to MLflow, MLMD provides a
Python library to use the functionalities in the training code
directly. Furthermore, it is independent of the used machine
learning framework. TensorFlow Extended (TFX) is a ma-
chine learning platform that uses MLMD, but only supports
TensorFlow.

While MLflow and MLMD provide means to work with
machine learning artifacts and keep track of experiments, the
goal of our paper is to derive an explicit artifact model from
a series of machine learning-based projects featuring con-
volutional neural networks (CNNs), reinforcement learning,
GAN:s, etc. enabling us to build tools for automated data-
driven software development and the integration of machine
learning components into large software systems.

EmbeddedMontiArc Deep Learning. For the proof-of-
concept and evaluation of the theoretical foundations, we are
going to build upon the textual EmbeddedMontiArc Deep
Learning (EMADL) modeling framework, a research plat-
form for component-based engineering of machine learning-
driven software [28]. EMADL is a generative framework and
lifecycle management system that comes with a wide range
of tools including parsers and code generators. The structure
of an EMADL program is defined by the means of hierar-
chically decomposable components and the interconnection
thereof [30, 31]. The interface of a component is given by a
set of typed input and output ports. For the implementation
of the behavior of a component, if it cannot be expressed
as a network of subcomponents, the modeler can choose
between different approaches.

First, a GPL can be employed to implement the mapping of
the input to the output ports in a conventional way. EMADL
offers its own, math-oriented MATLAB-like scripting lan-
guage for this purpose, but variants such as MontiThings
Deep Learning (MTDL) for the Internet of Things (IoT) do-
main allow a direct integration of C++ code, as well. Sec-
ond, the behavior of a component can be defined as a neu-
ral network using MontiAnna, the deep learning DSL of
EMADL. In MontiAnna, a neural net is represented as a di-
rected acyclic graph (DAG) of neuron layers and trained
by the compiler when the model is processed based on a
training configuration file. MontiAnna has been shown to
be applicable to a wide range of deep learning problems
including CNNs, reinforcement learning, GANs, as well as
state-of-the-art language modeling networks such as BERT
and GPT [14, 28, 29]*. Depending on the user’s choice, the

Shttps://www.tensorflow.org/tfx/guide/mlmd
4Models and CI pipelines including code generation, training, and testing
are available under (hidden for double-blind review) .
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Figure 4. The MNIST calculator is the hello world example
of a machine learning-based system, which consists of both
machine learning components and classically written soft-
ware [28].
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code generated from MontiAnna models is based on MXNet
Gluon (Microsoft/Amazon), Tensorflow (Google), or Caffe2.
For this reason and due to its openness and extensibility it is
well-suited as a basis for our research.

A simple hello world style example of an EMADL archi-
tecture is given in Figure 4. The purpose of this architecture
is to read six handwritten digits, compose them into two
three-digit numbers and, finally, compute the sum of these
two numbers. To detect the digits provided as small images,
each of the image inputs is forwarded to an MNISTDetector
component. This component type is implemented as a CNN
and is trained based on the widely used MNIST dataset [34].
In EMADL, neural networks are first level citizens, i.e., the
compiler knows that the MNISTDetector components need
to be trained and handles the training during compile-time
based on a declarative hyperparameter configuration file
(similar to Dopamine gin files). What is more, knowing that
the MNISTDetector instances are of the same type, have the
same training data, and are even stateless, the compiler per-
forms training only once and instantiates just one flyweight
instance [13].

3 Machine Learning Artifact Model

In this section we present a machine learning-oriented ar-
tifact model, which we are going to use as a basis for tool
development. Thereby we demonstrate that it can be inte-
grated in a machine learning-oriented software development
process definition later on. The central concepts of the arti-
fact model are given as a class diagram in Figure 5(a). We take
a component-based perspective aiming for a platform- and
paradigm-independent theoretical framework. In this sense,
a component can be any constituent of a software system,
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(b) The machine learning-oriented artifact model adapted for EMADL
(EMADL Component, MontiMath Component, and MontiAnna
Component replace Software Component, Atomic Component, and
Machine Learning Component, respectively, in Figure 5(a)).
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(c) The machine learning-oriented artifact model adapted for MTDL
(MTDL Component, C++ Component, and MontiAnna Component
replace Software Component, Atomic Component, and Machine
Learning Component, respectively, in Figure 5(a)).

Design Time

Figure 5. The machine learning-oriented artifact model and its adaptions to the languages EmbeddedMontiArc (EMA) and

MTDL.

such as a class, a function, a module, etc. The only distinc-
tion we make is between “classical” software components
including everything except machine learning models on the
one hand side and components representing such trainable
models on the other hand. The former are represented by the
artifact type ComposedComponent, i.e., components that may
contain other components, and AtomicComponent, i.e., com-
ponents that do not contain other components. The atomic
components serve us as a hook for other artifact models such
as the Java artifact model given in Figure 1. For instance, the
AtomicComponent can be represented by a JavaArtifact
of Figure 1. Figure 5(b) and Figure 5(c) show how this part of
the artifact model can be applied to the EMADL and MTDL
languages. While EMADL uses MontiMath to describe the
behavior of atomic components, MontiThings uses C++ [25].
For machine learning, EMADL and MTDL use MontiAnna
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components. Both share the common CNNTrain configura-
tion language for hyperparameter specification.

As suggested by [28] we aim to achieve a clear encapsula-
tion of machine learning models, thereby enforcing the high
cohesion principle. A machine learning component consists
only of the machine learning model it encapsulates, e.g., a
neural network, and is by no means intertwined with other
parts of the software such as data loading, preprocessing, or
business logics. This enables us to view machine learning
components as first level citizens in a development method-
ology, giving us the possibility to treat such components in
a specific way.

Each machine learning component is trained and tested
with data artifacts. Depending on the form in which data is
stored, it can consist of one or more artifacts. For instance,
data can be provided as a single HDF5 database or a dedicated
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file for each data point. Training and testing of machine
learning components should be carried out on different data,
although our artifact model does not enforce this.

By means of training data and a training configuration, a
machine learning component can be generated to a trained
model. In the case of deep learning, this model comprises
both the neural network architecture as well as the training
weights. During the evolution of a system, different versions
of a trained model may have different levels of quality. There-
fore, we need to store evaluation metadata describing the
quality of each such model. The evaluation is usually created
using the test data of a machine learning component. Persist-
ing the evaluation results in evaluation metadata files enables
developers to compare different versions of the model with
each other during model evolution.

In addition, pretrained networks can be embedded into
a neural network model as “layers”. This is helpful if cer-
tain parts of the modeled network are already available as
pretrained building blocks. Assume that we’d like to train
a Natural Language Processing (NLP) downstream task on
top of a language model such as GPT-3 [6] or BERT [11].
Of course, we don’t want to carry out a time-consuming
training of a complex language model. Instead, we can reuse
a pretrained implementation and connect it to additional
neuron layers for the downstream functionality. Thus only
a small number of parameters on top of the reused model
needs to be trained by means of a special data set.

After training the machine learning models and develop-
ing the classical software components, the system can be
compiled to a set of executables. We propose the usage of five
archive types to package machine learning-based projects
conveniently and to leverage artifact reusability.

SAR : The software archive contains the final, usable soft-
ware including compiled files as well as fully trained
machine learning models. Thereby, it has a similar pur-
pose as the standard executable Java Archive (JAR).

SCAR : The source code archive contains the plain source
code including both standard as well as machine learn-
ing components. However, there are no trained param-
eters for the machine learning models. This archive
type is similar to a sources JAR and is useful as docu-
mentation or as a basis for experimentation and further
development. For interpreted languages like Python,
the only difference between the source code archive
and the software archive is the absence of the trained
models in the former.

DAR : The dataset archive contains training data to be used
in training by machine learning modules. The con-
tained data can be organized as training, test, and,
evaluation data. Dataset archives facilitate the reuse
and evolution of training data.
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PAR : The pretrained model archive contains a trained ma-
chine learning model consisting of the learned parame-
ters, e.g., a neuron network’s weights as well as further
information needed to use the parameters, e.g., a neural
network’s structure.

TEAR : The training environment archive unifies the source
code archive and the dataset archive into a single con-
tainer. Such an archive can be used out-of-the-box to
train or extend a machine learning system without
having to depend on an external dataset archive.

The TEAR contains both the handwritten artifacts form
the SCAR and the data from the DAR. Thus, it contains
all information necessary to create the trained models. By
storing the trained models in a separate PAR, we enable
their reuse across different projects. Using the PAR and the
SCAR, the final SAR containing the executable artifacts can
be created and shipped or deployed.

Overall these archive types enable developers to package
and, hence, reuse related artifacts throughout different de-
velopment stages in machine learning-based projects. The
compilation of classical software components can usually be
done in continuous integration (CI) pipelines in a reasonable
amount of time. Incremental builds can accelerate the pro-
cess. In contrast, the training of machine learning models
often requires not only a non-negligible amount of time but
also expensive computing resources. It is thus highly desir-
able to avoid model retraining with the same data and to
reuse training results as dependencies instead.

4 Training Metamodeling

As can be seen in the artifact model presented in the pre-
vious section, a central development stage of a machine
learning-based system is its training preceding the final build
of the system and delivering important artifacts for the lat-
ter. While training cannot be automated completely since
its application-tailored setup is crucial for the quality of the
developed system, high-level frameworks tend to hide the
implementation details from the developer and only require
a hyperparameter configuration (as was shown for Tensor-
Force and Google Dopamine in the related work section).
Such an approach allows us to regard the training phase as
part of a highly configurable compilation process.

A machine learning-aware language and its compiler such
as EMADL are able to detect the trainable machine learn-
ing components of the system such as neural networks and
prepend a training phase if needed. Now, the difficulty is that,
as was also pointed out in the related work section, different
training approaches require their own training pipelines and
individual parameter sets which leads to specialized frame-
works as in the case of reinforcement learning. The multitude
of solutions can be confusing and inconvenient. A goal of
this section is to provide the foundations for an integrated
framework offering different training approaches hidden in
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Figure 6. A taxonomy excerpt of training pipelines sup-
ported by MontiAnna.

the compiler and parameterizable meaningfully through a
single interface, a universal training configuration language.

To achieve this, we introduce the notion of training pipe-
lines in the EMADL compiler. Each training pipeline rep-
resents a class of similar training algorithms and can be
tuned by pipeline-specific hyperparameters. An excerpt of
the training pipelines of EMADL is depicted in Figure 6. It
is mainly subdivided into supervised, reinforcement, and
generative adversarial learning. Children nodes inherit the
configuration parameters from their parents, e.g., general
parameters are available for all three subtypes. To realize
such a highly configurable multi-pipeline training frame-
work, we use two modeling techniques, which we are going
to discuss in the next paragraphs. First, we use schema mod-
els enabling us to define sets of hyperparameters for the
different pipelines along with their respective types. Second,
we use reference models capturing the basic architectures of
each training pipeline using the dataflow-centric component-
and-connector (C&C) paradigm. The reference models im-
plicitly define further configuration parameters required by
the respective pipelines, but also can be used to generate the
structural pipeline code.

Schema-Based Training Definition. The schema and
reference model-backed training pipeline configuration lan-
guage we are developing here is syntax-wise compatible
with the original EMADL training configuration language
presented in [28, 29]. It can be used to set simple numeric,
string-typed, or enum-typed as well as complex (nested)
parameters, cf. examples in Figures 8(b) and 8(c). The syn-
tax for setting a parameter is simply the parameter name
followed by a colon and the parameter value. While the lan-
guage is very similar to JSON, a major difference is that
complex parameter values are similar to clabjects known
from object-oriented multi-level modeling [20] as they have
traits of values and types at the same time. For instance, if
we need to set the optimizer for our training, we can do
this by setting the optimizer parameter to an optimizer
type such as sgd or adam representing the widely used sto-
chastic gradient descent (SGD) and Adam [24] algorithm,
respectively. Depending on the choice, different sets of sub-
parameters become available, making sgd and adam not only
values, but also types (cf. L.9-13 in Figure 8(b)). For instance,
while sgd defines the momentum parameter in addition to
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Schema

gan

1 schema General {

2 learning_method: schema //supervised, reinforcement,
3 context: enum { CPU, GPU }

4 optimizer: opt

5 define interface opt {

6 learning_rate_minimum: Q

7 learning_rate: Q

8 weight_decay: Q

9 learning_rate_decay: Q

10 }

11 define sgd extends optimizer {
12 momentum: Q

13 () .}

schema reinforcement {
rl_algorithm: schema //dgn, ddpg
num_episodes: N
target_score: Q

Schema

oUW N

Figure 7. Excerpt of the General and Reinforcement schemas
defining the training configuration language together.

core optimizer parameters such as the learning rate, adam
requires the exponential decay rates betal and beta2 for
the moment estimates as its further parameters.

To constrain and manage the parameters of the configura-
tion language, we introduce an appropriate schema language.
Schema languages are a widely used principle for the defini-
tion of configuration and data description languages. Some
prominent examples are the XML Schema Definition (XSD)
language for the definition of XML-based languages as well
as JSON Schema. Furthermore, configuration object struc-
tures can be constrained using class diagrams and the Object
Constraint Language (OCL) [41]. For our purposes we use
our own schema language supporting the abstract EMADL
type system, cf. Figure 7. This enables us to constrain the
entries of the MontiAnna configuration language using its
original type system featuring the abstract typesN, Z, Q,
C, and B® as well as derivations and multidimensional exten-
sions thereof [30]. Figure 7 shows an excerpt of the general
schema, applicable to all training configurations, as well as a
snippet of the reinforcement learning-specific schema. The
basic syntax is straightforward and similar to the one of the
configuration language: to add a parameter to the schema,
we need to specify its name followed by a colon and the
desired type. If the type is not atomic, it might need to be
defined first. This is done for the optimizer interface opt and
the sgd type in L.5-13 of the general schema.

To keep the schema modular and extensible, we use a
schema linking mechanism enabling us to activate schema
modules in a concrete configuration model by setting special
variables to values referencing these modules. Consider the
parameter learning_method in L.2 of the general schema.
Its type is set to the special value schema. This means that

SThese types are based on the mathematical notation for sets and repre-
sent positive integers, integers, rationals, Gaussian rationals, and Booleans,
respectively.
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EMADL
TORCSDriver
cameralmage e
DeepDirectPerception AlController
(ANNA) (ANNA) [

Z controls the vehicle based on
the affordance indicators
(reinforcement learning)

extracts relevant information
(affordance indicators) of camera
images (supervised learning)

(a) C&C model of an autonomous driving system for the TORCS
simulator incorporating two neural networks.

1 configuration DeepDirectPerception { CNNTrain
2 context : gpu

3 learning method : supervised

4 num_epoch : 100, <<‘\\\\\

5 batch_size : 64, . .

5 eval metric : mse, The deep direct perception
7 context : gpu, CNN is trained using the

8 normalize : true, supervised learning pipeline
9 optimizer : sgd {

10 learning rate : 0.01

11 learning_rate_decay : 0.9

12 step_size : 8000

131}

(b) Excerpt of the training configuration model for the supervised
learning-based DeepDirectPerception network based on [29].

general parameter available for EMA components only used during

all learning methods \ training play specific roles \
1 configuration TorcsActor {
2 context : gpu / N CNNTrain
3 learning method : reinforcement ¢ paramefe/'s' for schema
4 rl_algorithm: ddpg-algorithm J instantiation
5 critic: torcs.agent.network.torcsCritic
6 reward: torcs.agent.network.Reward
7 environment : ros_interface {
8 state_topic : "/torcs/state"
9 terminal_state_topic : "/torcs/terminal"
10 action_topic : "/torcs/step" environment is integrated
11 reset_topic : "/torcs/reset" USIhgaRO.Sadapfer’ (each
12 } . N 3
13 actor optimizer: adam { pﬂl‘f s mapped toa fop/c)
14 learning rate: 0.0001 } | gopnera/ neuyral network parameters are
15 critic optimizer: adam { ilable for all networks of th
16 learning_rate: 0.001 } avaiiable yor all networks or ine
17 | .} reference model using the role prefix

(c) Excerpt of the training configuration model for the reinforcement
learning based AIController based on [14].

Figure 8. Graphical TORCS driver model and the correspond-
ing training configurations.

in a configuration model conforming to this schema, the de-
veloper can set learning_method to an identifier of another
schema. Thereby, the referenced schema name is resolved
and, if available, activated, i.e. the effective schema for the
configuration file is extended by the definition of the refer-
enced schema module. In this concrete example, if learn-
ing_method: reinforcement, the reinforcement schema
given in the bottom listing of Figure 7 is activated and its
parameters can be used in the configuration model, cf. Fig-
ure 8(c). Hence, appending new learning methods and vari-
ants to the tree in Figure 6 and adding the corresponding con-
figuration options to the training configuration language can
be realized using schema modularization. Old schemas do not
need to be changed when new subschemas are added, which
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Agent
Actor: ANNA

runtime

Environment

DDPG<T, U extends Q*{N}>()
this is the same actor network component used at training time and at runtime

/

Environment

training time

Actor : ANNA

Update au |Update cu|

Figure 9. A simple runtime architecture using a reinforce-
ment learning agent (top) and the role metamodel (or training
reference model) of the DDPG training algorithm used for
this agent’s training (bottom).

makes the approach highly extensible. Similarly, schema
inheritance can be applied.

The schema definition is not only used to check the valid-
ity of training configurations, but also to generate structural
code for the corresponding training pipelines. For instance,
to extend the EMADL compiler by a reinforcement learn-
ing pipeline, a schema defining the additional configura-
tion parameters is modeled (cf. bottom of Figure 7). Then
this schema is fed into a pipeline generator, which creates
Python code providing stubs for basic pipeline functions
as well as access to the configuration parameters accord-
ing to the new schema. The developer of the reinforcement
learning pipeline needs to implement the stubs of the gener-
ated pipeline skeleton and can eventually integrate it into
the toolchain. A reinforcement learning model developer,
i.e. the pipeline user, can then use this pipeline by creating
configuration models conforming to the general and rein-
forcement learning schemas by setting learning_method:
reinforcement.

Role-based Metamodeling. While our schema modeling
framework is a simple yet powerful means to define a train-
ing configuration language, it lacks context-sensitivity and
cannot be used to model the interactions of different training
pipeline constituents. For this reason, we provide training
reference models capturing the required components, types,
and dataflows explicitly. We reuse the C&C architecture
modeling language of EMADL and introduce the notion of
component roles enabling us to incorporate component in-
stances into an ensemble of specialized components in the
scope of a training pipeline.

While role modeling has been mostly studied for object-
oriented structures [22, 26, 44], we are going to transfer the
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main concepts to C&C modeling in this work. A component
role consists of a role interface and the definition of its re-
lationships to other roles in specific contexts. In contrast to
object-oriented modeling, we abstain from dynamic proper-
ties of roles such as the ability of acquiring and abandoning
roles dynamically at runtime. Instead we are going to use
predefined roles for the usage in different training pipelines,
e.g., reinforcement and GAN [36] learning. For instance, in
Deep Deterministic Policy Gradient (DDPG) learning [35],
an actor-critic reinforcement learning method for continu-
ous action spaces, we need components playing the actor,
the critic, and the reward role at training time. The training
time reference architecture for the DDPG training pipeline
of MontiAnna is depicted in the lower part of Figure 9. The
environment is exchangeable between the training and the
runtime phases. Critic and reward components on the other
hand, become obsolete and are thrown away after training
time. The reference training architecture is fixed for a given
training pipeline and defines the roles required for the algo-
rithm to function as subcomponents.

The port types in the role definitions are kept generic
and are adapted to the application. Training time reference
models make the training time architecture of a machine
learning system explicit and fulfill two key purposes: (partial)
definition of the configuration language schema and training
code generation. They can hence be regarded as metamodels
spawning new configuration languages.

We use reference models to extend the schemas of the
training configuration language. For instance, the reference
model at the bottom of Figure 9 extends the corresponding
DDPG schema. For each role (i.e. subcomponent) defined in
the reference architecture, the configuration language will
allow a corresponding entry and, if applicable, nested entries
for the role component parameters. The value assigned to
such an entry can be a reference to the implementing com-
ponent with the corresponding interface, e.g., a Java class
or, in our case, an EMADL or an MTDL component. For in-
stance, if the DDPG training pipeline is used in a project, the
reward component can be set in the configuration model as
reward: MyRewardComponent, where the reward parame-
ter stems from the corresponding component (or role) of the
reference model.

As an alternative, to facilitate the integration of external
software, instead of providing a concrete implementation, the
role can be assigned a data source. For our implementation
we integrated the Robot Operating System (ROS) middleware,
which supports the public/subscribe communication pattern
[40]. If the a role is played by an external source, we need to
map each of the role’s ports to a ROS topic, cf. Figure 8(c).

Training reference architectures are conceptual models.
They define dataflows, types, and component roles. However,
they do not contain any information on the concrete behav-
ior of the trainer. For this reason, in contrast to the fully
generative EMADL runtime models, they are only used to
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generate stubs, dataflows, and role component access func-
tions for the training pipeline developer (which is also the
case for schema models) as well as to check a concrete project
using the pipeline for consistency, e.g., whether the state
types of the actor and the critic components provided by the
training pipeline user are compatible. The concrete training
procedure needs to be implemented by the framework or
training pipeline developer. To do so the framework devel-
oper needs to fill the generated stubs with behavior code,
e.g., the computation of the neural network’s weight updates.
Therefore, the generated code provides access to the role
components defined in the reference model and their ports.
Furthermore, it provides functions to trigger the execution of
these components. The combination of code generation and
handwritten implementation is a deliberate design decision
granting the framework developer all the freedom she needs
while ensuring consistency and a clear framework structure.

We abstain from showing reference models for further
training pipelines due to space limitations. Some reinforce-
ment learning pipelines do not use a critic network, which
leads to a simpler reference model. The GAN pipeline fea-
tures a generator and a discriminator role. The generator
network generates data and passes it to the discriminator
network, which tries to determine whether the provided
input is fake or not. Similar to the critic network of the rein-
forcement learning pipeline, the discriminator is only used
during training, i.e. it is only present in the training reference
architecture, but not in the runtime model.

5 Evaluation

To demonstrate the applicability of our concepts to auto-
mated build systems, we integrate them into the Maven build
infrastructure. As a technical foundation of a development
process based on our artifact model we developed a Maven
plugin, which is capable of dealing with the proposed archive
types and the development artifacts contained therein (an-
other build platform such as Gradle is conceivable, as well).
It is a basis for machine learning-aware DevOps and enables
us to implement continuous integration / continous training
(CI/CT) pipelines for our projects, where continuous training
and retraining contribute to a steady evolution of machine
learning-based software.

The Maven plugin supports the following goals: Similar
to the standard install and deploy goals provided for Java
projects by Maven by default, our plugin provides install
and deploy goals for all kinds of archives of our artifact
model. The install goal only installs the artifacts locally,
whereas the deploy goal loads the artifacts into a remote
repository making them available for usage in other projects.
Following our artifact model from Figure 5(a), there are
Maven goals for the following archive types: dataset, sources,
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TEAR

Dataset Tag

Sprint Backlog

Sprint Backlog

Sprint

Figure 10. Iterative process of developing the MNIST calculator application. Circles represent process steps, while boxes
denote archive types produced. Furthermore, some process steps are tagged with the Maven goals invoked. Each iteration
ends with a SAR containing the potentially shippable product increment. In the second iteration the data preparation phase is

skipped due to reusing the DAR from the first iteration.

training environment, pretrained models, (compiled) soft-
ware. Additionally, the train goal can be used to train the
machine learning components of a project.

Our approach avoids mixing model and training code with
the functionality of the machine learning management tool;
the functionalities of our Maven approach can be used in
a declarative way. Thus, neural network architectures and
training configurations are clearly separated from the Maven-
based build infrastructure, there is no scattering and tangling
of concerns.

Application examples shown in the following paragraphs
have been chosen to highlight different aspects of our con-
tributions. The evolution example shows that our artifact
model covers artifact types necessary to enable a high level
of reuse on system level and to avoid redundant retraining
when integrated into a build and dependency system. The
neural network composition example shows how the artifact
model supports us on neural network level enabling us to
reuse pretrained network parts and extend them by new
layers. Hence, the first two examples cover artifact usage
on system and on network levels thereby showing that our
artifact model successfully answers RQ1. Finally, the third
example demonstrates how a system incorporating different
training algorithms can be implemented using a single frame-
work based on training reference models. Hence, it is shown
that variability, extensibility, and configurability of machine
learning frameworks as demanded by RQ2 can be tackled
using explicit training time models, which can be used to
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derive a universal configuration schema and generate the
structure of training pipelines.

Evolution Example. In this illustrative case study, a team
develops a calculator that can work with handwritten input,
which was already mentioned to introduce EMADL in sec-
tion 2. More specifically, two three-digit numbers should be
summed. The architecture for this project is shown in Fig-
ure 4. The MNISTDetector component is a machine learning
component responsible for converting handwritten digits
into digital numbers. A requirement states that the recog-
nition rate must be above 95%. The ComposeNumber compo-
nent takes three single digits and joins them into a single
three-digit number. Two such numbers are produced and
then summed up by the Sum component.

Figure 10 shows the iterative process used to develop this
application. First, a team of data scientists prepares the train-
ing and test data. They decide to use the MNIST dataset
containing 70000 labeled handwritten digits and transform
it into HDF5 databases for the training and test data. This
dataset is packaged as a DAR according to our artifact model
using the Maven plugin and deployed in a Gitlab package
repository. In the modeling step, the architecture of the ma-
chine learning architecture is designed. The team chooses a
LeNet architecture [33]. Using the training data and the ar-
chitecture, the models can be trained in the third step of the
process. This is done using MxNet and Gluon as deep learn-
ing backend generated from EMADL models. The trained



Artifact and Reference Models for Generative Machine Learning Frameworks and Build Systems

models are evaluated using the test data in the fourth step
of the process. Lastly, the system can be deployed.
Unfortunately, the developed component does not reach
the desired accuracy of 95 % during the first iteration. In the
next iteration the team wants to improve the accuracy. As
the data has already been prepared during the first iteration
of the process, the development team can skip the first step in
the second iteration. Instead, the database packaged as a DAR
can be downloaded using the Maven plugin as a dependency
from our Gitlab package registry. The team changes the
machine learning architecture by adding Relu and dropout
layers. Furthermore, the team adjusts the learning rate and
step size of the training configuration. Then, the models are
trained again. The evaluation phase reveals an improvement
to an accuracy of 96.66 %. Thereby, we reach the desired
95 % accuracy. Final PAR and SAR archives are deployed.
The trained machine learning models can be reused without
retraining in future iterations and other projects.

Neural Network Composition. The field of neural NLP
has been drawing more and more attention over the last
view years. In particular, recent developments by OpenAl
and its GPT-3 network have shown astonishing results in
automated text production, translation, and other processing
tasks [6]. The GPT networks but also several other successful
language models such as BERT [11] are based on the Trans-
former architecture [45]. Transformers refrain from using
classical recurrent neural network (RNN) or long short-term
memory (LSTM) neurons and apply the attention mechanism
instead to analyze dependencies between different parts of
a sequence. Another important trait is the typical modular
encoder-decoder structure, which is also important for our
evaluation. A sequence, e.g., a natural language sentence or
text, is input into the encoder whose task is to analyze the
sequence and to find an internal representation.

The decoder on the other hand takes the encoder’s results
and uses them to produce the final network output. The latter
might be another sequence, e.g., the same sentence in another
language, but also a classification result, e.g., identifying
specific text properties. A generic language model such as
BERT can be fine-tuned for specific applications or even
combined with an application-specific output network, e.g.,
a classification network.

The training of a generic language model requires masses
of natural language data and is computationally very expen-
sive. The application-specific output network on the other
hand can be trained much easier depending on the applica-
tion. Consequently, we need means for neural network reuse
and composition enabling us to design new NLP applications
rapidly. In particular, we want to skip the data preparation,
design, and training time of the language model and concen-
trate on the design and training of the application.

Consider the neural network definition in Figure 11(a).
The goal of this neural network is to indicate the sentiment
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of textual input. The in and out ports of the network define
the component interface in EMADL syntax in L.2-5. The ac-
tual network structure is captured in MontiAnna syntax [28]
as a sequence of neuron layers in L.8-14. The LoadNetwork
layer in L.9 receiving the component’s input is a special layer
loading a pretrained network according to our artifact model
(machine learning component integrates trained model). It
enables us to embed arbitrary pretrained networks into a net-
work model. In our example we load the BERT-small model
bert_12_768_12 trained on the book_corpus_wiki_en_un-
cased dataset provided by GluonNLP®. The LoadNetwork
layer receives the name of the network to be included as a
parameter. The compiler then tries to resolve it in the project
scope. This is similar to importing and instantiating external
classes in Java. To automate the embedding, we packaged
the pretrained network as a PAR archive using our Maven
plugin and deployed it in the package registry of our Gitlab
instance, thus making it available for use by other projects
compatible to our artifact model as a Maven dependency. Fig-
ure 11(b) shows a Maven dependency snippet a user needs
to include into the Maven pom.xml file in order to obtain the
pretrained network from our archive repository. Then the
network is installed in the local Maven repository and can
be used in our project.

The LoadNetwork layer is followed by a simple application-
specific classification network consisting of two fully con-
nected layers (also referred to as dense layers in some frame-
works) having 768 and 2 neurons, respectively. As the train-
ing data for the fine-tuning of the sentiment analysis appli-
cation we use the Stanford Sentiment Treebank v2 (SST2)
dataset [43]. To enable the integration of the dataset into our
Maven-based lifecycle, we package it as a DAR and deploy it
in our Gitlab package registry as we did for the MNIST data.
Now it can be used as a Maven dependency, as well.

Reference Model-Based Training Configuration. To
show the benefits of the reference model-backed training
configuration, we are going to discuss a multi-network archi-
tecture from the autonomous driving domain consisting of
two neural networks aiming to control a racing vehicle in the
TORCS simulator [47]. The system receives camera images
as input and is expected to output actuation commands for
the steering wheel, throttle, and braking pedal in order to
finish the race as quickly as possible without crashing or
leaving the track.

The first neural network aims to extract affordance indi-
cators from camera images following the direct perception
approach [10]. We reuse the training data provided by the
authors of the original paper for a supervised training. Affor-
dance indicators resemble sensor signals including distances
to other objects, orientation relative to the track, and the like,
which can be estimated from visual inputs as is also done
by humans. These affordance indicators can be fed into a

®https://nlp.gluon.ai/model_zoo/bert/index.html
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[ EmADL )
1 component Network<Z(l:oo) n = 128> {
2 ports in Z(0:o00)*{n} data_0,
3 in z(0:00)”{n} data_1,
4 in Z(0:00)”{1} data_2,
5 out Q(0:1)~{2} softmax;
6
7 implementation CNN {
8 (data_0 | data_1 | data_2) —>
9 LoadNetwork (network="tag:bert_base", numInputs=3,
10 outputShape= (128, 768) ) ->
11 FullyConnected (units=768) —->
12 FullyConnected (units=2) ->
13 Softmax () ->
14 softmax; } }

(a) BERT-based sentiment analyzer network including the BERT base as
a dependency using a LoadNetwork layer.

Maven

<dependency>
<groupId>org.models.conference</groupld>
<artifactId>bert-base</artifactId>
<version>l</version>
<classifier>pretrained</classifier>
</dependency>

oUW N e

(b) Pretrained network dependency in Maven.

Figure 11. Sentiment analyzer project using a pretrained
BERT language model as a Maven dependency

controller to compute a driving behavior as suggested in the
aforementioned paper and as was modeled using EMADL in
[29].

Instead of writing the controller manually, it can be imple-
mented as a neural network, as well. In [14], reinforcement
learning was employed to train an agent controlling a TORCS
vehicle using sensor inputs. In our evaluation we combine the
two networks trained using different pipelines (supervised
and reinforcement) to get rid of manually written parts. The
resulting C&C architecture is depicted in Figure 8(a). Due
to space limitations, we abstain from including the concrete
neural network models. Excerpts of the training time config-
urations are given in Figure 8(b) and Figure 8(c) for the Deep-
DirectPerception and the AIController components, re-
spectively. The well-formedness of the supervised training
configuration is checked against the supervised learning
schema. Again, to facilitate the automated integration of the
required training data we first package and deploy it as a
DAR archive.

The training configuration of the ALController is checked
against the reinforcement_learning and the ddpg_algo-
rithm schemas as well as the DDPG reference model, cf. Fig-
ure 9. In particular, concrete components need to be bound
to the roles critic, reward, and environment. The first two are
assigned in L.5-6 of Figure 8(c). However, we do not want
to provide an environment as a self-written component. In
most applications, simulation software is very complex and
it is desirable to reuse it. To enable the integration of third-
party software according to our reference model, instead of
providing a simulation component, we map all of its ports to
ROS topics, cf. L.7-12 of Figure 8(c). This way, our training
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framework is compatible not only with TORCS, but with any
simulator supporting ROS. Adapters for other middleware
solutions such as Message Queuing Telemetry Transport
(MQTT) can be integrated in a similar way.

Recall that the generic port types of the reference model
are adapted to the application at compile-time. The generic
type parameters of the roles are bound by providing a con-
crete component for the corresponding role as is done for
the actor role in Figure 8(a). Hence, the state input type T
of the DDPG reference model becomes the 29-dimensional
affordance vector and the action type U is bound to a three-
dimensional vector type containing the steering, braking,
and acceleration of the vehicle. Manually implemented con-
text conditions checking types and compatibility of training
time components become obsolete. The reinforcement learn-
ing related components including the actor, the critic, and
the reward only need to be checked against the reference
model of Figure 9. Furthermore, the port types of the runtime
and the training time actor must match.

6 Conclusion

Our conclusion is that the unceasingly increasing complexity
and variety of machine learning frameworks can be coped
with by means of appropriate metamodeling techniques. We
presented an artifact model which is an important foun-
dation for the development of machine learning-oriented
tooling and frameworks, enabling reusability and evolution
of all constituents in a machine learning-driven project. By
introducing the training-time as an explicit step of the build
process, we enable individual training and prevent unnec-
essary retraining of machine learning components such as
deep neural networks. What is more, training reference mod-
els coupled with configuration schemas can serve as a strong
basis for deep learning frameworks, drastically enhancing
their maintainability and extensibility.
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